
Adapting Neural Text Classification for

Improved Software Categorization

Alexander LeClair, Zachary Eberhart, and Collin McMillan

University of Notre Dame, Department of Computer Science, Notre Dame, IN 46656

Email: {aleclair, zeberhar, cmc}@nd.edu

Abstract—Software Categorization is the task of organizing
software into groups that broadly describe the behavior of the
software, such as “editors” or “science.” Categorization plays an
important role in several maintenance tasks, such as repository
navigation and feature elicitation. Current approaches attempt
to cast the problem as text classification, to make use of the rich
body of literature from the NLP domain. However, as we will
show in this paper, text classification algorithms are generally
not applicable off-the-shelf to source code; we found that they
work well when high-level project descriptions are available, but
suffer very large performance penalties when classifying source
code and comments only. We propose a set of adaptations to
a state-of-the-art neural classification algorithm, and perform
two evaluations: one with reference data from Debian end-
user programs, and one with a set of C/C++ libraries that
we hired professional programmers to annotate. We show that
our proposed approach achieves performance exceeding that of
previous software classification techniques as well as a state-of-
the-art neural text classification technique.

I. INTRODUCTION

Software Categorization is the task of organizing software

into groups that broadly describe the behavior of the software,

for example, sound or web [1]. Categorization has long been

understood to play an important role in software maintenance,

for tasks such as helping programmers locate programs in

large repositories of code [2], [3], [4], [5], identifying features

to prioritize [6], [7], and finding similar programs to one’s

own. For example, McMillan et al. [8] describe a situation in

which stakeholders must find similar programs during feature

elicitation in a competitive commercial bidding process.

The problem of software categorization is usually defined as

a coarse-grained categorization of whole projects. Sometimes

this process is supervised, such as the assignment of a set

of known tags to code repositories [2], [9] or categories to

a dataset of projects [4], [1]. Unsupervised procedures are

popular as well, with LDA being a particularly important tool

for grouping similar programs [10], [11], [12], [13], [14],

[15]. In a rich variety of ways, the usefulness of automatic

classification and calculation of similarity of programs is well

established in the literature.

A logical choice in attempting automatic software catego-

rization is to turn to the existing literature in text classification.

Text classification is a well-studied research area, and quite

excellent results are reported for tasks such as sentiment

analysis and news article classification (see Section III). But as

we will show in this paper, these approaches are generally not

effective off-the-shelf for software classification. The reason,

in a nutshell, is the vocabulary problem in source code that

has been observed for decades [16], [17], [18]: the terms used

at a low-level in source code tend to vary more than terms in

text documents due to programmer-generated identifier names,

the widespread use of abbreviations and compound words that

may be hard to expand or split, and the specific meanings that

many words have in code that are different than their English

meanings (e.g. button, free, object). In short, the low-level

code details do not align with high-level concepts [16].

There are signs prior to this paper that the vocabulary prob-

lem in software affects automatic categorization. A revealing

result by Wang et. al [5] at ICSM’13 showed quite good

performance in placing software into hierarchical categories.

The result is informative because they achieved it by mining

the software’s profile including online resources and other text

data – they did not rely solely on the source code. In contrast,

Linares et. al [1] reported at ICSM’11 and EMSE far lower

performance when using attributes from source code only.

Notably, both sets of authors used the bag-of-words model

and a linear classifier, and a dataset derived from Java projects

downloaded from SourceForge. (However, there are a few

important caveats we discuss in Section III.)

Unfortunately, it is often not realistic to assume that soft-

ware has an online profile, a long text description, or signifi-

cant high-level documentation. New projects added to an open-

source repository may have only the source code available (a

problem GitHub has faced during automatic tagging [19]), and

commercial repositories may have many projects with only

limited related text information such as legacy code [8]. We

cannot assume that we will have high-level text data available

in these situations; if we wish to categorize a project that

does not have this information, we will have to rely on the

knowledge encoded into the source.

In this paper, we present an approach for using pre-

trained word embeddings in a neural architecture with several

adaptations for software categorization. Essentially what we

propose is a procedure for pre-training word embeddings that

we designed to encode the similarity between low-level terms

in the source code to high-level terms in project descriptions.

These high-level descriptions are sometimes available in large

repositories of projects. Then we built a neural classification

architecture that uses the word embedding, and trained this

architecture on a large corpus of software projects (with

descriptions). We then use the model to classify a test set

of projects that have source only (no text descriptions).





caution that the results from those papers are not comparable

to our work in this paper, because the feature selection phase

using expected entropy loss was performed on the entire

dataset, including the test set. Even though that may be useful

for answering interesting research questions about software, it

is not a real-world categorization scenario because one would

not have the categories of the test set on which to perform

feature selection, prior to making the predictions.

Several approaches have been explored in this vein, such as

by Sharma et al. [2], Kawaguchi et al. [14], Sandhu et al. [23],

Kim et al. [24], and Yang et al. [25]. Wang et al. [5] explore

hierarchical categorization, in which whole software projects

are placed into a hierarchy e.g. players or editors within

the video category. The overall message from these papers is

that a linear classifier using a bag-of-words model of software

is sufficient to obtain reasonable performance, when high-

level text descriptions are available. In fact, this conclusion is

supported by relevant work in NLP, finding that BoW+LR (bag

of words + linear regression) is a strong overall baseline [26].

After categorization into pre-defined categories, unsuper-

vised approaches are the next-most similar area of related

work. Unsupervised approaches are quite popular: Chen et

al. [27] present a thorough survey of using topic models to

organize software in software repositories such as automated

Github tagging [28], [12], and this work is complementary to

work to calculate software similarity in terms of features the

software implements [8], [29], [30], [31] (see a comparison of

various similarity metrics by Ragkhitwetsagul et al. [32]).

Broadly speaking, this paper is related to the field of

automated program comprehension for software maintenance.

Source code summarization, for example, seeks to generate

and update documentation by automatic understanding of

software components [33], [34], [35], [36]. Topics such as

code summarization, deobfuscation of source code [37], bug

localization [38], [39], [40], feature location [41], traceability

link recovery [42] are all, at a high level, instances of the

concept assignment problem [43] in automatic program com-

prehension. A distinguishing factor of this paper is that we

target categorization of functions in source code to provide a

more fine-grained view software, but without connecting code

functionality specific to only a few projects.

B. Neural Text Classification

Neural text classification techniques are usually thought

of as in contrast to classical techniques. In a classical text

classification technique, a feature engineering step is followed

by feature selection and then training of a machine learning

algorithm [44], [45]. The feature engineering and selection

phases are characterized by human design effort, such as

choosing a Bag of Words (BoW) model in which each word

is a feature, and filtering out words based on entropy loss [1].

There are many choices for ML algorithm, with, for example,

Linear Regression (LR) being quite popular [44], [46].

Neural classification algorithms have in recent years been

proposed as alternatives. A key advantage to neural algorithms

is that they avoid much of the feature engineering/selection

work that is dependent on educated guesswork by the designer.

Instead, a network learns the feature representation called a

word embedding. The word embedding, in a nutshell, is a

vector space in which each word is a vector of real numbers.

In a neural structure, the embedding can be created either via

a supervised training process, or via an unsupervised, pre-

trained word embedding based on word co-occurrences [20].

Supervised embeddings have the advantage of customization

to a particular dataset, but then are limited to that dataset.

Unsupervised embeddings have the advantage to learn from a

much larger and more diverse dataset (we use unsupervised

embeddings later in this paper for this reason).

The literature describes a huge variety of neural architec-

tures for text classification [47], [48], [49]. In general though,

most architectures include convolution and/or recurrent layers

combined in different ways for different tasks. At a high

level, a convolution layer (and associated pooling strategy)

is used to select which words are the most important, while a

recurrent layer is intended to capture the semantics of a word

by capturing the context in which a word appears (i.e., the

other words to the right or left of a word in a sentence).

In adapting neural architectures to software engineering

data, it is worth noting that a large number of the text

classification algorithms in existence have been designed for

and evaluated on datasets of sentences that have been manually

placed into a small set of relatively distinct categories. For

example, the problem of sentiment analysis is quite com-

mon: sentences from e.g. movie reviews are labeled as either

positive or negative [50]. Or, newsgroup categories such as

rec.motorcylces versus comp.sys.ibm.pc.hardware [51]. It is

not surprising that performance levels are reported to be

quite high, in the 96%+ range [45], since a convolution layer

will quickly pick out words like “excellent” for the positive

category, and a recurrent layer can detect important word

orders such as “not bad” versus “very bad”, among other

semantic factors.

The software categorization problem is different, because

1) the artifacts tend to be much longer than a sentence (in

terms of number of words), 2) the vocabulary tends to be

different among different projects (due to specialized identifier

names), and 3) the categories tend to overlap and are often not

polar opposites like negative and positive. Software categories

such as database and web are technically distinct, but

are likely to be closely bound together in practice, and are

definitely not mutually exclusive. For these reasons and others,

there is significant debate as to whether neural architectures

are appropriate for software engineering data at all [21],

despite their popularity [22]. In Section V, we will present

our argument that a neural approach is an appropriate tool for

software classification, and our SE-specific adaptations.

IV. CORPUS PREPARATION

We prepared a corpus from a snapshot of the Debian

packages repository taken September 19, 2017. The snap-

shot includes 24,598 software projects. From these, we filtered

projects that did not have any C or C++ source files (some



projects contain source files of multiple languages, but we

used only the C/C++ components; we chose C/C++ because

it was the largest language family in the repository), leaving

9804 projects. Using a suite of C/C++ analysis scripts provided

by the authors of [52], we extracted all files, functions, and

function calls. We took the category for the project from the

Debian package configuration files. The configuration files

allow package maintainers to place a project in more than

one category, but in practice we found this to be quite rare,

with only a tiny percent of projects having multiple categories.

Since multiple categories per project was unusual, we decided

to treat the classification problem as single-class. For the

few projects with multiple categories, we chose only the

first category listed in the configuration file. There were 75

categories in the dataset, though most are very small.

We then created five datasets:

Full Holdout/Test Corpus We randomly selected 320

projects from the 16 largest categories (twenty from each

category) to hold out from all other datasets. We use these

projects exclusively as a testing set in our experiments. The

holdout set is neither used to create the word embedding nor

to train the neural architecture. We kept the holdout to around

5% of the challenge corpus, to limit removal of training data.

Standard Training Corpus We intend the standard corpus

to reflect the common practice in text classification. Very

widespread practice in the text classification literature is to

pare down large, complex datasets into smaller, simpler ones

by keeping only the top few categories. For example, work

co-authored by Yann LeCun at NIPS’15 [53], already with

over 450 citations, selects the four largest out of 28 categories

in an English news corpus to ensure at least 31,900 samples

per category, and five out of over 100 categories in Chinese to

ensure 112,000 samples per category. To follow this practice,

we create a “standard corpus” from the largest six categories

(excluding libs, which we treat separately). Admittedly the

choice of six is somewhat arbitrary, but the top six categories

cover about 33% of the projects (excluding libs), making a

significant subset. The six categories are: admin, games,

net, science, sound, and utils. There are 1,443,408

functions over 3,119 projects in the standard corpus. To create

a balanced set, following an undersampling process similar

to [53], we randomly selected 150k functions (roughly the

size of the smallest category) from each category, for a total

of 900k functions.

Challenge Training Corpus In reality, software catego-

rization takes place over a larger and more diverse set of

categories than are in the standard corpus. There is also much

more noise, as more categories overlap (a project could be

both net and web, for example, even if they only labeled

as one category in the dataset), and the categories vary much

more in size. The result is a much more difficult classification

problem. To reflect this realistic situation, we select the top 16

categories (top 17 minus libs), which covers about 50% of

the projects, to form a “challenge corpus.” The remaining 58

categories that we do not use cover around 20% of the dataset.

In our view, categorization of the 58 smallest categories is too

far from the capabilities of current technology at this time.

The challenge corpus contains 2,951,529 functions over 5,958

projects. From these we selected 60k functions (roughly the

size of the smallest category) from each category for a total

of 960k functions.

Libs Holdout/Test Corpus We randomly selected 100

projects from the libs category to serve as a holdout/test set

for experiments on that category. We kept the “libs holdout”

set relatively small (around 5% of the training set) to facilitate

manual annotation and inspection.

Libs Training Corpus The libs category in the Debian

packages repository is a special category because it contains

projects that are very likely to also exist in another category,

even though in practice the other category is not listed in the

repository. For example, a project may not only be a library,

but a library for decoding mp3 files, so it can be considered

both in libs and sound. As a result, libs is a diverse

and large category that includes over 30% of projects. For

this reason, we separate libs from the rest of the repository,

annotate it manually with the categories from the rest of the

project, and study how well our model classifies the libraries

as e.g. a sound library. See Section VI-E for details.

V. OUR APPROACH

This section describes our approach, including how we

represent functions, the classification model we implement,

our rationale, and implementation details. In a nutshell, our

approach is to 1) represent each function as a vector of integers

and assign a label, 2) train a word embedding for code,

3) train a neural classification algorithm using the function

representations and labels from the first step, and 4) to classify

a whole project, we classify each of the functions from that

project and then apply a voting mechanism to predict a label

for the project.

A. Function Representation

We represent each function as a vector of integers.

To obtain this vector, we first create a text string of

the function in the form: projectName functionName

functionContents. We convert the project and function

names to lower case but do not split or otherwise preprocess

them. For the function contents, we take the code of the

function including comments, convert non-word symbols e.g.

brackets and commas to spaces, and convert to lower case.

Then we split the entire string on whitespace to obtain a vector

of text tokens (which may or may not be English words). Then,

we create an index where each token has a unique integer (to

avoid collisions, we do not use the hashing trick). We use the

index to create a vector of integers from each vector of tokens.

Our rationale for including the project name is described in

the next section, as it is connected to our use of a recurrent

layer. Note however that in our experiments, we divide the

training and testing sets by project, not by function, to avoid

a situation where the model simply learns which project name

belongs in which category (i.e. functions from projects in the

training set cannot be in the testing or validation sets).



Our rationale for including the function name is twofold.

First, the function name often includes valuable semantic

information [18]. Second, many projects in our dataset are

dependencies of other projects, and in this situation function

names from one project will occur in the function contents

of functions from other projects (since a project will typically

call functions in the projects on which it depends; preserving

these call relationships is also why we do not do aggressive

identifier splitting during preprocessing).

The function representation above involves information only

from the source code. We refer to it as the code-only or

co representation. The Debian packages repository contains a

short (usually about 3 sentences) high level project description

for most projects. Where that description is available, we

append it to the code only representation of each function to

create a second, code-description or cd representation.

This distinction is important because we use both in the

training set: we train our model using both the cd examples

and the co examples, to improve the versatility of the model.

The model will learn to classify both situations where text

descriptions are available, and where they are not.

B. Training a Word Embedding

We use three pre-trained word embeddings in this paper. We

used the GloVe word embedding technique [20]. Due to space

limitations we defer to the paper by Pennington et. al [20] for a

complete explanation, but essentially what the technique does

is create a vector space in which words are modeled as vectors,

and words that cooccur within a window size (typical is within

15 words) are considered more similar and thus made to be

closer in the vector space. We used a 100 dimension vector

space for all three embeddings in this paper.

Wikipedia Embedding The first embedding we use is the

100d, 6B token word vectors provided by the authors of the

original GloVe paper. These vectors were trained using general

text data from the entire corpus of sentences on Wikipedia. It

represents a typical embedding for use in classifying text data.

Code-Only Embedding The second set of word vectors

we used is one that we trained ourselves. Using a window

size of 200 tokens measured as left-context of each word,

we computed a word embedding using each function in the

training set as a “sentence.” Our idea was to produce an

embedding in which terms from code are nearby, if they

cooccur in functions. A similar idea has been proposed as

Python2Vec [54], except that we increase the window size to

200 due to the long length of functions compared to sentences.

Code-Description Embedding The third embedding we

used is also one we trained ourselves, and is, to our knowledge,

a novel strategy. Essentially what we do is prepend the project

description (the same one used to create the cd function

representation) to every function before computing the word

vectors. The description appears before the function in each

sequence, so that the words from the description will occur in

the left-context of the terms in the function’s code. The idea

is that the terms from code will be near in the vector space

to words in the high level description. Our intent is for this

to partially address the vocabulary problem, because low-level

code terms will cluster around high-level descriptive words.

C. Neural Classification Model

For maximum clarity and reproducibility, we describe our

neural classification model in the context of the actual Keras

code that we wrote to implement our model (Figure 2). The

rapid proliferation of a large variety of neural classification

algorithms available makes it quite difficult to select a “single

best” algorithm, so we designed our own model that charac-

terizes the advancements that seemed broadly effective during

our literature review (see Section III-B), centering around

convolution and recurrent layers. Our model is similar to the

C-LSTM model that was shown to have performance in line

with competitive models on several text datasets [55].

a) Our Model: Our model consists of the following:

Embedding Layer First we use an embedding layer in which

every token in the entire vocabulary is represented as a real-

valued vector of length embed_dims. We used one of the

pre-trained embeddings described in the previous subsection,

depending on the experiment in future sections, though in

general we recommend using the code-description embedding.

Note that we do not eliminate tokens that occur rarely, since

these tokens may have useful semantic information, and the

convolution layer should deemphasize lesser important tokens

anyway. We used a sequence length of 60 as a compromise

between maximizing information available to the model and

minimizing model size in memory. 88% of functions were

shorter than our sequence length; we truncated longer se-

quences. The output of the embedding layer is a representation

of a function that is an X by Y matrix where X is the sequence

length and Y is the number of embedding dimensions.

Convolution Layer The next layer is a one-dimensional

convolution layer. Our rationale for using this layer is so that

the model would learn which tokens and “phrases” of tokens

are the most important in determining whether a function

belongs in a category. In text classification, convolution may

find phrases such as “quite well filmed” to indicate a positive

movie review. In software classification a phrase could be e.g.

01 model = Sequential()

02 model.add(Embedding(vocab_size, embed_dims,

03 weights=[embed_matrix],

04 input_length=seq_len, trainable=False))

05 model.add(Conv1D(filters, kernel_size,

06 padding=’valid’, activation=’relu’,

07 strides=strides))

08 model.add(MaxPooling1D())

09 model.add(LSTM(lstm_units))

10 model.add(Dense(hide_u, activation=’relu’))

11 model.add(Dropout(dropout_level))

12 model.add(Dense(num_categories,

13 activation=’softmax’))

14 model.compile(

15 loss=’categorical_crossentropy’,

16 optimizer=’adam’, metrics=[’accuracy’])

Fig. 2: Keras code implementing our model, included for

maximum clarity and reproducibility. Also see Section IX.



“if not muted playsound” (we do not select these phrases, the

convolution layer learns them, see Section VIII).

Max Pooling We used a maximum pooling strategy to

downsample the output of the convolution layer and focus on

only the more-important tokens.

Long Short Term Memory Next we used a recurrent layer to

capture the semantics of tokens in terms of the order in which

the tokens appear in the function representations. We used

LSTM due to its ability to capture semantics over a relatively

long sequence, which is important because important tokens in

our function representation may not be near each other in the

sequence. For example, consider a situation where the model

“sees” a function representation with a project name projA

followed later in the sequence by volume, and that function

is in the sound category. If later during training the model

sees a function with projA followed by audio, the model

will learn not only that volume and audio are tokens associated

with the label sound, but that volume and audio are associated

with each other because of their co-occurrence with projA. The

output of the LSTM layer is an embedding representation of

each function as a real-valued vector of length lstm_units

(note that this embedding is of the function, not the word

embedding layer above).

Dense Hidden We use a fully-connected hidden layer after

the recurrent layer following the standard procedure of many

neural architectures, to provide a layer for learning how the

vector representations from LSTM belong to which categories.

As heavily recommended in related literature [56], we apply

dropout as regularization to resist overfitting.

Dense Output Finally, we include an output layer, after

which a function is represented as a real-valued vector of

length num_categories. The index of the highest value

in this vector is the predicted category for the function.

b) Parameter Tuning: We used grid search to tune the

parameters of our model. We used all the projects in our

standard corpus training set, creating a validation set from

5% of the standard corpus during grid search to avoid using

our holdout/test set during tuning, across the eight parameters

listed below. In any given run, we pick the model that performs

best on the validation set (Test-for-best-Validation strategy).

Ultimately, we settled on the following configuration:f

epochs best-of-3 filters 250
kernel_size 3 strides 1
lstm_units 100 hide_u 512
dropout_level 0.5 optimizer adamax

c) Implementation Details: We implemented our tech-

nique using Keras 2.1.2 running TensorFlow 1.4.0. Hardware

included an E5-1650v4 CPU and two Geforce 1070 GPUs.

D. Voting Mechanism

We use a plurality voting mechanism to predict a project

category from a list of function labels predicted by our

classification model. The concept is very simple: a project

gets the label assigned to the most number of its functions

(one function one vote). More complex voting mechanisms,

such as those based on function size or importance [57], are

an area of future work.

VI. EVALUATION

This section describes our evaluation of our approach, start-

ing with our research questions, methodology, and justification

for the baselines we chose.

A. Research Questions

A major motivation for this paper is the performance penalty

associated with using text classification algorithms on source

code data. We designed our proposed approach to reduce this

penalty by several adaptations of text classification to source

code, and seek to quantify the affect of these adaptations.

Therefore, we ask the following Research Questions (RQs):

RQ1 What is the difference in baseline performance from

the case when text descriptions are available, to when

only source code is available?

RQ2 What is the difference in our proposed approach’s

performance from the case when text descriptions

are available, to when only source code is available?

RQ3 What is the effect of the word embeddings on the

performance of the neural network-based approach?

To be clear, “our proposed approach” means the

neural-based approach with the code-description embedding

(nn+cd). The baselines are described in the next subsection.

The rationale behind RQ1 is that the baseline text classi-

fication algorithms were designed for natural language text,

and may not be applicable off-the-shelf to source code due

to the vocabulary problem which has long been recognized in

software engineering research (see Section I). The rationale

behind RQ2 is that our proposed approach is also likely to

suffer a performance penalty when classifying code-only data,

but we seek to quantify this penalty and compare it to the

baseline performance. One way to view RQ1 and RQ2 is as

establishing a likely lower and upper bound for performance

expectations: in a real-world scenario, if a practitioner has a

set of projects to classify, some projects may have text descrip-

tions while other do not. Finally, the rationale behind RQ3 is

that one key difference between our approach and off-the-shelf

text classification is how we create a word embedding, and we

seek to quantify the effect of that embedding.

B. Baselines

We use two baselines in this paper: 1) a bag of words linear

regression (BoW+LR) classifier, and 2) a neural network-based

classifier using a word embedding trained on Wikipedia.

We use the BoW+LR classifier for two reasons. First, a

consensus has formed in the text classification literature that

it is a strong baseline across a wide variety of datasets [26].

Second, the two most closely-related papers on the topic of

software categorization ([1] and [5]) both use a linear classifier

and a bag of words representation of software. We used a

vocabulary size of the top 1.8k terms, which was the highest

that would fit into the 64gb of memory in our workstation, and

is slightly more than the 100 per category used by Linares et.

al [1]. In the previous work, the project was represented as a

matrix of all words in the project. However, in pilot studies,

we found that performance in this configuration was extremely



low (10-15% F1-measure) when EEL was not applied to the

testing set (please note caveats in Section III-A). So to provide

the best apples-to-apples comparison, we “swapped in” the

BoW+LR algorithm for the NN-based one we propose in our

approach: the BoW+LR algorithm received exactly the same

training data as the NN approaches, including our function

representation and our voting mechanism. Then we tested

using the same testing data. We felt that this setup would

isolate the effects of the algorithm from other factors such as

pre-processing and data representation.

We use an NN-based classifier with the Wikipedia-trained

word embedding (nn+w, Section V-B) as a second baseline.

The neural architecture we propose using is unique only in

small ways: a huge variety of neural text classifiers exists,

and as noted in Section V, we built an architecture that

characterizes architectures that have been shown to have

good performance. What makes our approach novel overall

is the adaptations for code data, one of the most important

of which is the procedure for creating a code-description

word embedding. We consider the NN-based classifier with

the Wikipedia embedding to be a representative state-of-the-

art NN-based text classifier, and to isolate the effects of the

embedding versus other adaptations such as pre-processing, we

conduct experiments in which we change only the embedding.

C. Datasets

We use the three datasets described in Section IV: the

standard dataset of six categories, the challenge dataset of

sixteen categories, and the libs dataset of six categories.

The standard and challenge datasets use the category pro-

vided by the Debian packages repository as a goldset of labels

for the projects. We train all models on the same training

sets, to isolate the effects of the models from the effects of

variations in the dataset. We reiterate from Section IV that the

holdout/test sets are used only during our experiments in this

and the next section; we never use them during training.

The libs dataset does not include category labels of its

own (they are all labeled in the repository as libs), despite

the diverse nature of the dataset. To obtain labels for the

libs holdout set, we hired six professional programmers via

UpWork to label every project in the holdout set. We built a

web interface that showed the programmers the project name,

description, and website link, as well as a list of the top 19

(20 minus libs) categories in the repository. We allowed the

programmers to chose from a list of 19 categories instead of

only the top six, to help ensure that they were not “forced”

to select a category for a project when the project may not

actually be a good fit for those top six. The programmers

selected a primary and up to two secondary categories for each

project. The programmers required on average 2.24 hours.

Once all six programmers had completed labeling the

projects, we selected a category label for a project by taking

the most-common primary label. We then chose only the

projects with a label from the top six categories. For 72%

of projects, at least three of the six programmers chose the

same primary label (there were no ties). We consider this an

encouraging sign for the reliability of our labeling, considering

that the programmers were from around the world, chose from

20 categories, and worked independently. We do not use the

secondary label at this time, but metrics such as top-n precision

or analogs to pyramid precision [58] are an area of future work.

D. Metrics

We use Precision, Recall, and F1 Score to quantify perfor-

mance. In general, we use the F1 Score as the key indicator

of model quality, since it reflects both precision and recall.

Technically, we calculated all three metrics using the classifi-

cation report functionality in sklearn version 0.19.1, which

computes all three metrics for each category, as well as an

overall score weighted by the size of each category in the test

set. This overall score is the main one we report in this paper,

but full output is available in our online appendix.

E. Methodology

Our methodology to answer RQ1 is to train a BoW+LR

model and a nn+w (neural network + Wikipedia embedding)

model using the same dataset, and then run two experiments

with this model. In one, we use the co (code-only) test data,

and in another we use the cd (code-description) test data. Note

that both test sets have the same functions; the only difference

is whether the text description data is available to the model

during testing. We always use the code-description data and

the code-only data from the training set during training.

Our methodology to answer RQ2 is similar to our methodol-

ogy for RQ1, except that we use our proposed approach instead

of the baselines. The idea is to change only one variable at a

time; in this case, the classification algorithm.

Finally, our methodology for RQ3 is to use the same

experimental setup, except to change only the embedding. We

conduct experiments with the same datasets, changing only

between the Wikipedia embedding, the code-only embedding,

and the code-description embedding.

F. Threats to Validity

Like any paper, this evaluation carries threats to validity.

One threat in this paper is the selection of dataset. Due

to the computational expense of training and testing each

word embedding and model configuration, we pre-select a

holdout/test and training set rather than conducting an e.g.

10-fold cross-validation. While this is the typical strategy in

text classification (such as in [53] as mentioned in Section IV),

it does open up a threat to validity in that results may vary

if a different holdout set were used. We attempted to mitigate

this threat by conducting experiments over three datasets.

Another threat to validity is the selection of labels for

projects. There is likely to be overlap in the categories (e.g.,

between net and web), or a project could be miscatego-

rized in the goldset, so it is possible that some projects are

categorized correctly by the models, even if that prediction

is calculated as a miss. We tried to mitigate this threat by

using both reference labels from Debian packages, as well as

a manually-labeled libs dataset that we held out completely

from training and testing with the reference labels.





description data. On the standard dataset, F1 score for nn+cd

was 53 for code-only, compared to 65 for lr code-description.

The challenge dataset results are more mixed. While nn+cd

does obtain the highest F1 score on both co and cd groups

among the neural-based approaches, the lr baseline actually

has the highest performance, though by a small margin. Given

the threat to validity we mention in the previous section of

avoiding cross-validation due to computational expense, it is

difficult to draw a strong conclusion from the challenge set.

Also, we note that the performance penalty for nn+cd is

roughly 50% on the challenge dataset, similar to the baseline.

Remarkably, we observe little difference between nn+cd

performance on the libs dataset. As with baseline performance,

we surmise that the reason is that the libraries are used by

the end-user programs, which means that the training set will

include function names of the libraries in the code-only data;

the high-level descriptions may not add much information.

C. RQ3: Effects of Embeddings

We found evidence that the embeddings had an important

impact on the performance of the neural-based approach –

specifically, that nn+cd was the best performing approach

overall. Comparing nn+cd to nn+w, we observe an increase

of 3 points on F1 score on the cd standard dataset, and

an increase of 5 points on the co standard dataset. The

performance increase for nn+co and nn+cd over nn+w is

larger on the code-only data, probably because the embeddings

include words from the code, while the Wikipedia embedding

is less likely to have the same vocabulary as is used in code.

We will demonstrate an example of the benefits conferred by

the embeddings in the next section, but for now we observe

an increase in performance, which is larger on code-only data.

The difference between the embeddings is clearer on the

libs dataset. F1 score for nn+cd is 72 with text descriptions,

compared to 48 for nn+w. With code-only, nn+cd achieves

66 F1 score versus 52 for nn+w.

But as with RQ2, it is difficult to make strong conclusions

from the challenge dataset when comparing the embeddings.

The nn+cd configuration (our proposed approach) does per-

form slightly better, but the improvement is large only when

comparing nn+cd to nn+w. While an area of future work

is verifying the difference on multiple holdout sets (time

permitting), our interpretation is that the challenge dataset is

near the edge of the capability of the algorithms we discuss.

One possible reason is that all approaches (lr included)

are picking up on the “easy” clues for each class, while

missing more subtle details. One remedy may simply be to

include more training data (perhaps by oversampling instead

of undersampling during corpus preparation, Section IV), but

it seems likely that work will need to be done in designing

classification models sensitive to the specifics of software.

Overall, we find that nn+cd is the best performer, at least

by a small margin, in all situations except code-only on the

standard set, where it is ahead on precision but lags nn+co

on recall by one point (a very small difference).

VIII. DISCUSSION/CONCLUSION

In this paper, we proposed several adaptations to off-the-

shelf neural-based text classification to the domain of software

categorization. To summarize, these adaptations are:

• Represent projects as functions, and assign each function

the label of the project from which it originated.

• Model functions as a sequence of tokens with minimal

pre-processing (Section V-A).

• Train a word embedding based on a combination of code

and high-level descriptions (Section V-B).

• Use convolutional and recurrent neural layers with the

parameters we found via a grid search.

• Train the neural model with both code-only and code-

description examples of the same functions.

• Use a voting mechanism to produce project predictions

from the model’s function predictions (Section V-D).

There are numerous areas of future work, including cus-

tomized neural architectures for different software data, im-

proved voting mechanisms, experiments with different pre-

processing techniques, and variations on embedding strat-

egy. Nonetheless, in experiments with both reference data

from Debian user-end programs (the standard and challenge

datasets), plus manually-annotated programming libraries, we

found improvement over off-the-shelf applications of text

classification, as well as a baseline from previous software

maintenance literature (RQ2). We observed that performance

for all approaches, but especially the baseline approaches, was

heavily influenced by the presence of high-level text data:

when only code data was available, performance was far lower

(RQ1). We also found that our proposed code-description

embedding was an important contributor to the success of our

approach (RQ3).

To begin understanding why the code-description embed-

ding achieved higher performance, consider the example func-

tion in Figure 5. This function belongs to stardict, which

is a dictionary program categorized in the reference under

utils. The nn+cd approach correctly predicted the category

for this function, but the nn+w approach predicted the function

to be part of the science category. Keep in mind that

the only difference between these two models is the word

embedding: all parameters and training data were the same.

Figure 4 shows a heatmap of the activation of the convolu-

tional neural layer for both approaches. The horizontal axis is

250 wide: one column for each filter (the parameter value 250

for number of filters was selected after grid search tuning).

The vertical axis is 60 tall: one row for each term (recall

that we used a sequence length of 60). Area A in both heat

maps corresponds to terms 25, 26, and 27. The nn+w model

activates heavily across these terms, which as seen in Figure 5,

correspond to the phrase “compute levenshtein distance.” In

particular, the word “levenshtein” leads to significant activa-

tion, which implies that that word is an important influencer

of the network’s decision.

“Levenshtein” is an unusual word in the code corpus,

occurring only a handful of times. However, in the Wikipedia





REFERENCES

[1] M. Linares-Vásquez, C. McMillan, D. Poshyvanyk, and M. Grechanik,
“On using machine learning to automatically classify software applica-
tions into domain categories,” Empirical Software Engineering, vol. 19,
no. 3, pp. 582–618, 2014.

[2] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and D. Lo, “Cataloging
github repositories,” in Proceedings of the 21st International Conference

on Evaluation and Assessment in Software Engineering, ser. EASE’17.
New York, NY, USA: ACM, 2017, pp. 314–319. [Online]. Available:
http://doi.acm.org/10.1145/3084226.3084287

[3] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik,
“Categorizing software applications for maintenance,” in Proceedings of

the 2011 27th IEEE International Conference on Software Maintenance,
ser. ICSM ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 343–352. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2011.
6080801

[4] S. Ugurel, R. Krovetz, and C. L. Giles, “What’s the code?: Automatic
classification of source code archives,” in Proceedings of the Eighth

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ser. KDD ’02. New York, NY, USA: ACM, 2002,
pp. 632–638. [Online]. Available: http://doi.acm.org/10.1145/775047.
775141

[5] T. Wang, H. Wang, G. Yin, C. X. Ling, X. Li, and P. Zou, “Mining
software profile across multiple repositories for hierarchical categoriza-
tion,” in Software Maintenance (ICSM), 2013 29th IEEE International

Conference on. IEEE, 2013, pp. 240–249.

[6] W. Frakes, R. Prieto, C. Fox et al., “Dare: Domain analysis and reuse
environment,” Annals of software engineering, vol. 5, no. 1, pp. 125–
141, 1998.

[7] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented product line
engineering,” IEEE software, vol. 19, no. 4, pp. 58–65, 2002.

[8] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 2012 International

Conference on Software Engineering, ser. ICSE 2012. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 364–374. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337267

[9] F. Thung, D. Lo, and L. Jiang, “Detecting similar applications with
collaborative tagging,” in Software Maintenance (ICSM), 2012 28th

IEEE International Conference on. IEEE, 2012, pp. 600–603.

[10] T. Wang, G. Yin, X. Li, and H. Wang, “Labeled topic detection of
open source software from mining mass textual project profiles,” in
Proceedings of the First International Workshop on Software Mining.
ACM, 2012, pp. 17–24.

[11] Y. Wu, Y. Yao, F. Xu, H. Tong, and J. Lu, “Tag2word: Using tags to
generate words for content based tag recommendation,” in Proceedings

of the 25th ACM international on conference on information and

knowledge management. ACM, 2016, pp. 2287–2292.

[12] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet al-
location for automatic categorization of software,” in Mining Software

Repositories, 2009. MSR’09. 6th IEEE International Working Confer-

ence on. IEEE, 2009, pp. 163–166.

[13] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory
of aspects as latent topics,” in ACM Sigplan Notices, vol. 43, no. 10.
ACM, 2008, pp. 543–562.

[14] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “Mudablue: An
automatic categorization system for open source repositories,” Journal

of Systems and Software, vol. 79, no. 7, pp. 939–953, 2006.

[15] S. Vargas-Baldrich, M. Linares-Vásquez, and D. Poshyvanyk, “Auto-
mated tagging of software projects using bytecode and dependencies
(n),” in Automated Software Engineering (ASE), 2015 30th IEEE/ACM

International Conference on. IEEE, 2015, pp. 289–294.

[16] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in Proceedings of the

15th international conference on Software Engineering, ser. ICSE ’93.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1993, pp.
482–498. [Online]. Available: http://dl.acm.org/citation.cfm?id=257572.
257679

[17] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of 25th

International Conference on Software Engineering, 2003, pp. 125–135.

[18] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and
reuse,” in Proceedings of the 31st International Conference on

Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 232–242. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070524

[19] GitHub, “Introducing topics,” Jan. 2017, https://blog.github.com/2017-
01-31-introducing-topics/.

[20] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[21] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 763–773.

[22] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” arXiv preprint

arXiv:1709.06182, 2017.

[23] P. Sandhu, “Approaches for categorization of reusable software compo-
nents,” Journal of Computer Science, vol. 3, no. 5, pp. 266–273, 2007.

[24] Y. Kim, S.-j. Cho, S. Han, and I. You, “A software classification scheme
using binary-level characteristics for efficient software filtering,” Soft

Computing, vol. 22, no. 2, pp. 595–606, 2018.

[25] C.-Z. Yang and M.-H. Tu, “Lacta: An enhanced automatic software cate-
gorization on the native code of android applications,” in Proceedings of

the international multiconference of engineers and computer scientists

(IMECS 2012), vol. 1, 2012.

[26] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Short Papers-

Volume 2. Association for Computational Linguistics, 2012, pp. 90–94.

[27] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of
topic models when mining software repositories,” Empirical Software

Engineering, vol. 21, no. 5, pp. 1843–1919, 2016.

[28] X. Cai, J. Zhu, B. Shen, and Y. Chen, “Greta: Graph-based tag assign-
ment for github repositories,” in Computer Software and Applications

Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 1. IEEE, 2016,
pp. 63–72.

[29] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th international conference on

software engineering. ACM, 2016, pp. 404–415.

[30] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on github,” in Software Analysis, Evolution and

Reengineering (SANER), 2017 IEEE 24th International Conference on.
IEEE, 2017, pp. 13–23.

[31] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering. ACM, 2016, pp. 631–642.

[32] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code
similarity analysers,” Empirical Software Engineering, pp. 1–56, 2017.

[33] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata,
and C. Sutton, “Autofolding for source code summarization,” IEEE

Transactions on Software Engineering, vol. 43, no. 12, pp. 1095–1109,
2017.

[34] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software

Engineering, vol. 42, no. 2, pp. 103–119, 2016.

[35] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-
tracking study of java programmers and application to source code
summarization,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1038–1054, 2015.

[36] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), vol. 2, 2017, pp.
287–292.

[37] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear, natural
identifiers from obfuscated js names,” in Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 683–693.

[38] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Bug lo-
calization with combination of deep learning and information retrieval,”
in Program Comprehension (ICPC), 2017 IEEE/ACM 25th International

Conference on. IEEE, 2017, pp. 218–229.



[39] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on
bug reports,” in Proceedings of the 34th International Conference on

Software Engineering. IEEE Press, 2012, pp. 14–24.
[40] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical

model-based bug localization,” in ACM SIGSOFT Software Engineering

Notes, vol. 30, no. 5. ACM, 2005, pp. 286–295.
[41] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location

in source code: a taxonomy and survey,” Journal of software: Evolution

and Process, vol. 25, no. 1, pp. 53–95, 2013.
[42] C. Mills, “Automating traceability link recovery through classification,”

in Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering. ACM, 2017, pp. 1068–1070.
[43] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, “Program

understanding and the concept assignment problem,” Communications

of the ACM, vol. 37, no. 5, pp. 72–82, 1994.
[44] F. Sebastiani, “Machine learning in automated text categorization,” ACM

computing surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.
[45] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural

networks for text classification.” in AAAI, vol. 333, 2015, pp. 2267–
2273.

[46] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Short Papers

- Volume 2, ser. ACL ’12. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2012, pp. 90–94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2390665.2390688

[47] V. John, “A survey of neural network techniques for feature extraction
from text,” arXiv preprint arXiv:1704.08531, 2017.

[48] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B.
Gutierrez, and K. Kochut, “A brief survey of text mining: Classification,
clustering and extraction techniques,” arXiv preprint arXiv:1707.02919,
2017.

[49] M. K. Raju, S. T. Subrahmanian, and T. Sivakumar, “A comparative
survey on different text categorization techniques,” International Journal

of Computer Science and Engineering, vol. 5, no. 3, pp. 1612–1618,
2017.

[50] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical

methods in natural language processing, 2013, pp. 1631–1642.
[51] K. Lang, “Newsweeder: Learning to filter netnews,” in Proceedings of

the Twelfth International Conference on Machine Learning, 1995, pp.
331–339.

[52] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,
“Portfolio: Searching for relevant functions and their usages in millions
of lines of code,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 22, no. 4, p. 37, 2013.
[53] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional

networks for text classification,” in Advances in neural information

processing systems, 2015, pp. 649–657.
[54] A. Gude, “Python2vec,” Mar. 2016, https://gab41.lab41.org/python2vec-

word-embeddings-for-source-code-3d14d030fe8f.
[55] C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-lstm neural network for text

classification,” arXiv preprint arXiv:1511.08630, 2015.
[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[57] B. Neate, W. Irwin, and N. Churcher, “Coderank: A new family of soft-
ware metrics,” in Software Engineering Conference, 2006. Australian.
IEEE, 2006, pp. 10–pp.

[58] G. Murray and G. Carenini, “Summarizing spoken and written con-
versations,” in Proceedings of the Conference on Empirical Methods

in Natural Language Processing. Association for Computational
Linguistics, 2008, pp. 773–782.


	Introduction
	Problem and Overview
	Background and Related Work
	Related Work
	Neural Text Classification

	Corpus Preparation
	Our Approach
	Function Representation
	Training a Word Embedding
	Neural Classification Model
	Voting Mechanism

	Evaluation
	Research Questions
	Baselines
	Datasets
	Metrics
	Methodology
	Threats to Validity

	Evaluation Results
	RQ1: Baseline Performance
	RQ2: Proposed Approach Performance
	RQ3: Effects of Embeddings

	Discussion/Conclusion
	Reproducibility
	References

