
Detecting Speech Act Types in DeveloperQuestion/Answer
Conversations During Bug Repair

Andrew Wood
University of Notre Dame
Notre Dame, Indiana 46556

awood7@nd.edu

Paige Rodeghero
Clemson University

Clemson, South Carolina 29634
prodegh@clemson.edu

Ameer Armaly
Google

Mountain View, California 94043
aarmaly@nd.com

Collin McMillan
University of Notre Dame
Notre Dame, Indiana 46556

cmc@nd.edu

ABSTRACT

This paper targets the problem of speech act detection in conversa-
tions about bug repair. We conduct a łWizard of Ozž experiment
with 30 professional programmers, in which the programmers fix
bugs for two hours, and use a simulated virtual assistant for help.
Then, we use an open coding manual annotation procedure to iden-
tify the speech act types in the conversations. Finally, we train and
evaluate a supervised learning algorithm to automatically detect
the speech act types in the conversations. In 30 two-hour conver-
sations, we made 2459 annotations and uncovered 26 speech act
types. Our automated detection achieved 69% precision and 50%
recall. The key application of this work is to advance the state of
the art for virtual assistants in software engineering. Virtual assis-
tant technology is growing rapidly, though applications in software
engineering are behind those in other areas, largely due to a lack
of relevant data and experiments. This paper targets this problem
in the area of developer Q/A conversations about bug repair.

CCS CONCEPTS

· Software and its engineering→ Maintaining software;

KEYWORDS

speech acts, virtual assistant, bug repair, classification

ACM Reference format:

AndrewWood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. 2018.
Detecting Speech Act Types in Developer Question/Answer Conversations
During Bug Repair. In Proceedings of 12th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, Lake Buena Vista, Florida, USA, 4ś9

Nov., 2018 (ESEC/FSE 2018), 12 pages.
https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE 2018, 4ś9 Nov., 2018, Lake Buena Vista, Florida, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION

łSpeech Actsž are spoken or written actions meant to accomplish
a task [8, 77, 85]. A classic example of a speech act is ‘I now pro-
nounce you husband and wife’ ś the speech itself is an action with
consequences [78]. Naturally, most speech acts in life are less im-
pactful (‘let’s go to the movies’ or ‘please tell me how to find my
classroom’), though the principle is the same. Speech acts are key
components of conversations that guide the what the speakers do.

While research in sociology has studied speech acts for decades [8,
77], there has been an increase in interest due to the growth of
virtual assistants. Virtual assistants such as Cortana [51], Google
Now [32], Siri [5], etc., try to carry on a conversation with a human,
to try to serve that person’s request ś asking for a restaurant recom-
mendation, or the time of day. And while human conversation can
seem effortless at times, in fact there are several key steps that we
do without even being aware [26, 38, 56, 86]: we detect when speech
acts occur, we comprehend the speech act as being a particular type
of act (e.g., an information request, a command, a clarification), and
craft an appropriate response. We understand naturally that the
type of act will depend on the context of the conversation, and that
a piece of dialog may be of more than one type. Virtual assistants
must be carefully designed to mimic this process: the first step is to
detect speech acts and classify them by type.

Designing a virtual assistant to detect and classify speech acts
requires examples of conversations from which to learn what those
speech acts are. These conversations must be related to the task
for which the assistant is being designed. For example, a study by
Whittaker et. al [90] targets dialog systems for restaurant recom-
mendations, and therefore collects 24 examples of conversations
in which a human asks for restaurant recommendations. Kerly et.

al [40] targets automated tutoring systems, and to do so collects 30
examples of tutoring sessions for a specific subject area. The data
collected for one application domain is generally not applicable to
other domains.

One key, accepted strategy for collecting examples of conversa-
tions is a user simulation in a łWizard of Ozž experiment [22, 67].
In a Wizard of Oz experiment, human participants interact with a
machine that the participants believe to be automated. In reality, the
machine is controlled by human experimenters. The participants
are asked to use the machine for a particular purpose (e.g., they

ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan

ask for a restaurant recommendation). The idea is that the exper-
imenters can collect simulated conversations that closely reflect
real-world use. Analysis of the conversations reveals what speech
acts the participants make, and clues as to how to detect them.

Today, virtual assistants are possible due to major efforts in un-
derstanding human conversation, though these efforts have largely
been confined to everyday tasks. While virtual assistants for soft-
ware engineering have been envisioned for decades [8, 77], progress
is limited, largely due to three problems that we target in this paper:
1) there are very few experiments with data released of software
engineering conversations, 2) the speech act types that software
engineers make are not described in the relevant literature, and 3)
there are no algorithms to automatically detect speech acts.

In this paper, we conduct a Wizard of Oz experiment in the
context of bug repair. We then manually annotate the data from
this experiment to find the speech act types and build and evalu-
ate a detector for these speech acts in conversations. Our target
problem domain is a virtual assistant to help programmers during
bug repair. We chose bug repair because it is a common software
engineering task, and because, as previous studies have shown,
bug repair is a situation in which programmers are likely to ask
questions [43, 82]. We recruited 30 professional programmers to fix
bugs for two hours each, while providing an interface to a Wizard
of Oz simulated virtual assistant. The programmers interacted with
the simulated virtual assistant for help on the debugging task. We
then manually annotated each conversation with speech act types
in an open coding procedure (see Section 5). Finally, we trained a
learning algorithm to detect speech acts in the user’s side of the
conversations, and evaluated its performance (Sections 7 - 9).

Across 30 two-hour conversations, we made 2459 annotations
and discovered 26 speech act types. Our automated speech act de-
tection algorithm achieved an average of 69% precision and 50%
recall. By releasing this corpus, we contribute one of very few
WoZ corpora, which are especially rare in the domain of Software
Engineering [79]. We release all data, including conversations, an-
notations, and our detection algorithm source code via an online
appendix (Section 11), to promote reproducibility and assist future
research in software engineering virtual agents.

2 PROBLEM, SIGNIFICANCE, SCOPE

The problem we target in this paper is that models of developer
conversations are not described in the literature. Certainly, strong
efforts in the area of program comprehension have made inroads
into our understanding of the types of information that program-
mers need and how programmers make sense of software problems.
However, the łnuts and boltsž of actual conversations among pro-
grammers are still not well-understood.

A key component of those nuts and bolts are łspeech actsž (as
defined in the previous section), and our goal is to automatically de-
tect these speech acts in conversations. But detection of speech acts
is useful beyond pure academic interest: advancements in program-
mer tool support depend on improved detection of programmer
intent. Numerous software engineering tools depend on natural
language interfaces, such as code search engines, navigation tools,
traceability tools, and our target context of automated virtual as-

sistant technology. The situation we envision is that a programmer

asks an automated virtual assistant a question in lieu of a fellow
human programmer, and the virtual assistant is expected to provide
an answer to that question. A fundamental part of answering these
questions is to detect the types of statements, comments, etc., that
programmers make when asking and clarifying their questions.

Throughout this paper, we refer to a 2011 book by Rieser and
Lemon [67] as both motivation for and rationale behind our work.
The book provides an excellent summary of the design decisions
required for building dialog systems and reflects the significant
momentum in years of research on virtual agents ś one key theme
is that using Wizard of Oz studies to inform data-driven dialog
system construction is a highly effective strategy. They point out
that while it is possible to design a virtual assistant using manually-
crafted assumptions about user behavior, the existence of annotated,
simulated dialog (via a WoZ study) provides an immense boost to
the flexibility and effectiveness of virtual agent design. One benefit
is from the increased knowledge scientists gain from studying the
dialog, while another benefit is from the ability to use supervised
and reinforcement learning algorithms to łteach the computerž
correct behavior, even with relatively sparse data.

In this paper, we contribute the dataset, our manual annotation
of the dataset, and our analysis of those annotations to the commu-
nity as a foundation for building better software engineering virtual
agents. This contribution alone is significant, considering that a re-
cent survey by Serban et al. [79] found only four publicly-available
WoZ datasets (more are held privately) suitable for building dialog
systems ś and none related to Software Engineering. However, we
take a further step towards a working virtual agent by building
a classifier to automatically label the dataset; in essence, this is a
detector for speech act type using supervised learning (as chapter
7 of [67] highlights, supervised learning is often the first technique
tried for speech act type detection, prior to resorting to more com-
plex approaches).

Note that in our manual annotation process, we annotated the
entire conversation (both łMadeline’sž and the study participants’
side). However, during the speech act type detection, we only pre-
dict the type of speech acts from the participants’ side of the con-
versation. This is because during the manual annotation process,
we study not only the participants, but the wizards’ actions also:
this is for the purpose of laying a groundwork for conversation
flow analysis in future work, in addition to the academic interest
presented in this paper. But, during speech act detection, the realis-
tic scenario is that a virtual assistant would never need to classify
its own conversation, since it would already know the speech act
types it generated itself. It would only need to detect the speech
act type of the human user.

3 BACKGROUND

This section describes four key technologies related to and un-
derpinning our work in this paper: automated virtual assistants,
conversation analysis and modeling, studies of program compre-
hension, and text classification.

3.1 Automated Virtual Assistants

Automated virtual assistants such as Siri, Cortana, and Google Now
are claiming an increasing role in computing for everyday tasks.

Detecting Speech Act Types During Developer Q/A ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA

They simplify duties such as planning meals and finding music, and
are part of a broader trend towards automated productivity services.
Virtual assistants for software engineering have been envisioned for
decades [13, 69], with the dream being a system that can mimic the
answers that human teammates would give, such as a system able
to generate łOn-Demand Developer Documentationž as responses
to source code queries [70].

We (the software engineering research community) are still far
away from this dream. Nevertheless, advancements are being made
in that direction. Recently, Bradley et al. [14] built Devy, a virtual
agent to help automate programmer tasks. Devy differs from our
work in that we seek to understand the structure of programmers’
conversations, to build a system to help programmers learn and
recall information, rather than automate tasks. Pruski et al. [61] cre-
ated TiQi, a technique that answers database query questions in the
form of unstructured dialog. Ko and Myers [44] created Whyline,
which answers questions about program output. Escobar-Avila et
al. [24] answered unstructured questions by connecting questions
to software engineering video tutorials. A majority of current ef-
forts focus on understanding unstructured software engineering
data; for a more complete survey we direct readers to Arnaoudova et
al. [7]. But what holds back progress at the moment is an incom-
plete understanding of how programmers communicate ś it is not
possible to build a tool that participates in this communication
without understanding the nature of that communication. This un-
derstanding can only be completed with conversation analysis and
modeling.

3.2 Conversation Analysis and Modeling

Conversation analysis and modeling is the task of extracting mean-
ing from human written or verbal communication. It usually in-
volves creating a representation of a type of conversation (e.g.,
restaurant recommendations, or technical support calls [67]), and
then using that representation to predict the flow of the conversa-
tion. A łflowž of a conversation is how people tend to put infor-
mation in conversations, for example one conversation participant
asking łdoes that make sense?ž if the other participant is silent after
receiving new information. Conversations are typically broken up
by turns [26, 38, 56, 76, 86]. A turn begins every time a speaker be-
gins speaking and can encompass multiple sentences. Conversation
analysis and modeling is what allows automated virtual assistants
to create human-like conversations.

Conversation modeling has its roots in sociology [26, 38, 56,
76, 86] and psychology [33], where researchers studied the factors
behind conversation flow and form. These often employ qualitative
analysis methods to isolate human factors such as social rank or
fatigue. After a significant investment in the 1990s, quantitative
analysis procedures have been developed to model and predict
the types of information that human conversations include, in
order to create interactive dialog systems. Work in this area has
flourished, with representative work including: [23, 25, 34, 53, 54,
65, 88]. For example, work by Lemon [48, 67] models restaurant
recommendation conversations as a Markov Decision Process, in
which each turn is one of six possible states.

A typical strategy in conversation modeling for discovering
speech acts is user simulation, in which participants in a study

are told that they are interacting with a dialog system, which is ac-
tually a human acting like a dialog system via a chat program [2, 75].
The simulation results in a transcript of a conversation between
a human participant and an idealized virtual assistant (simulated
by the researcher). The transcript is an extremely valuable source
of information on how the human participant expects to inter-
act with a machine and how the machine should respond. While
rare in Software Engineering, these studies are not unheard of:
Goodrum et al. [31] perform a WoZ study to discover what re-
quirements knowledge programmers need, related conceptually to
requirements-gathering WoZ studies proposed earlier [89].

3.3 Studies of Program Comprehension

This paper could be broadly classified as a study in program compre-
hension ś how programmers comprehend and communicate about
software development and behavior. Typically questions asked by
program comprehension literature relate to the mental and physi-
cal processes that developers follow [36, 46]. Examples of mental
processes include targeting how code is connected [45, 52, 81, 83].
Physical processes include taking of notes [3] and patterns of move-
ments of the eyes [73, 80]. Notably, Roehm et al. [74] point out that
programmers łtry to avoidž program comprehension, and look for
short cuts whenever possible. This finding is in line with several
others that suggest that tool support for comprehension should
provide information incrementally and at as high a level as possible,
and avoid too many low-level details [27, 49, 84]. Our vision in this
paper is to build a foundation for software engineering virtual assis-
tants, to provide information in the order and at the time requested
by programmers during a dialog.

3.4 Text Classification

Text classification is an intensely-studied area in machine learn-
ing, and text classification techniques have seen extensive use in
software engineering. A recent book by Aggarwal and Zhai [1] sur-
veys text classification and mining techniques generally. Software
engineering applications are so prevalent that we cannot list them
all here, though representative examples include [4, 41, 50, 71]. We
use text classification as a component of our speech act detection.

4 USER SIMULATIONS

In this section, we describe our user simulation study. In general, a
user simulation is an imitation of a conversation between a human
and a machine ś instead of a real machine, a researcher stands in for
the machine without the human being aware of it [22]. In this paper,
our user simulation is the interaction between our participants and
an imitated software program. Participants believed the program
could automatically assist programmers with tasks. They were
informed their participation in this study was helping to improve a
virtual assistant program for programmers. However, there was no
actual virtual assistant producing answers to the questions asked
by the participants. We manually answered every question.

4.1 Methodology

We based our methodology on previous studies of bug repair in soft-
ware engineering [30, 39, 42] and previous łWizard of Ozž studies in
sociology [22]. We asked the programmers to remotely participate
in the study using a provided Ubuntu 64-bit virtual machine and the

ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan

Microsoft Skype application on their local machine. We instructed
the participants to fix bugs from pre-installed open source Java
projects contained within an Eclipse IDE [29] workspace on the
provided virtual machine. We instructed the participants to fix as
many bugs as they could within a pre-defined two-hour time frame.
During that time, we gave the participants one bug at a time, one
bug per project. We asked the participants to avoid using the Inter-
net to search for solutions or answers to any questions that they
might have, and to instead direct their questions to a automated
virtual assistant named łMadelinež through the Skype platform.
Note that this involved two key design decisions informed by Rieser
and Lemon’s guide on WoZ studies for dialog systems (chapter 6
of [67]): First, we used the written text chat only, no voice, to limit
the scope of the study to developer Q/A conversations instead of
introducing the possibility of voice transcription errors (it is nec-
essary to deliberately add noise to WoZ studies involving voice to
simulate actual noise, and we felt this would add too many variables
considering the already complicated nature of debugging). Second,
we restricted access to internet resources. While this may seem to
create an unrealistic situation (since programmers frequently use
Stackoverflow, etc.), it was necessary in order to learn how pro-
grammers might use a virtual agent, due to a bias in which people
might not try a new technology simply because it is unfamiliar, and
to avoid biases introduced by external tools. These restrictions are
often a łnecessary evilž in WoZ experiments ś for example, 94%
of papers surveyed by Riek [66] placed substantive restrictions on
participant behavior and resources.

During each study, two to three of the authors collaborated at all
times to respond to the participants. At least one of the authors had
previously fixed the bugs given to the participants. This allowed
for quick and intelligent responses to the participants, giving the
illusion that Madeline produced responses automatically. This de-
ception, typical of the łWizard of Ozž strategy [21] was necessary
to ensure the authenticity of the responses. The participants were
explicitly told that they were communicating with an automated
system supervised by humans (Madeline). The participants were
told to interact with Madeline through Skype conversations, and
also to share their screens for quality assurance purposes. In reality,
screen sharing provided the means to prepare responses in real time
and was critical for imitating a fully autonomous system. Following
Rieser and Lemon’s WoZ process for dialog systems (again, chapter
6 of [67]), we did not restrict wizards to a script or set of predefined
speech act types, since a goal of our study was to understand what
the programmers needed rather than test a predefined script.

4.2 Participants

We recruited 30 professional programmers to participate in our
study. These programmers were recruited through email and an
online freelance website called Upwork [87]. The programmers
work at various companies such as IBM, GolfNow, and Hyland
Software, while some work as freelancers full time. Note that the
programmers recruited are not students, but professionals working
in industry. Each programmer recruited had familiarity with Java
before participating in the study. Overall, the participants had an
average of 5.5 years of experience with Java. The maximum number
of years of Java experience was 12 and the minimum was one.

4.3 Threats to Validity

As with most studies, this project has a few threats to validity.
First, since each experiment was two hours long (not including any
technical problems), it is possible that the participants experienced
fatigue. This is compounded with any fatigue that they already
experienced from their normal work schedule. This was mitigated
by using a large pool of participants. Another threat came from
technical problems with screen sharing. The only issue with this,
however, was a possible reduction in response speed, but we saw no
noticeable reductions in any of the studies. Either through technical
problems or participants forgetting to save them, a few screen
shares were unable to be stored. However, these stored recording
were not actually used in analysis. Finally, another threat to validity
was our lack of control over whether participants actually refrained
from searching for answers over the Internet rather than asking our
simulated virtual assistant. Participants could have used another
device to search the web. We did not notice any extended lapses in
questions or work time from any participants, though, so we believe
most participants followed our searching instructions correctly.

Project Name: 2048
Bug Report: The game board becomes unresponsive.

public GamePane(int size, BasePane basePane)

{

this.size = size;

this.basePane = basePane;

setScore(0);

this.tileSize = tileSizes[size];

this.moveTime = 100 * 4 / size;

setPrefSize(size * tileSize, size * tileSize);

setLayoutX(175 - (size * tileSize) / 2);

setLayoutY(175 - (size * tileSize) / 2);

setStyle("-fx-background-color: #FFFFFF;");

addTile();

... [Irrelevant code cut for paper space limitations]

Thread focusField = new Thread(new Runnable()

{

@Override

public void run()

{

while(!Thread.currentThread().isInterrupted()) {

if(!isFocused()) {

try { Thread.sleep(100); }

catch (InterruptedException e) {

e.printStackTrace();

}

requestFocus();

}}}});

focusField.setDaemon(true);

focusField.start();

}

Figure 1: A description of a bug in the ł2048ž project with source

code. Participants received full copies of the source code, however

parts have been omitted for space limitations in this figure.

Detecting Speech Act Types During Developer Q/A ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA

4.4 Data Collection

We provided each participant with an Ubuntu 64-bit virtual ma-
chine. We asked the participants to download the virtual machine
ahead of the study. Inside the virtual machine, we provided Eclipse
with all the buggy projects. We also provided a screen recording
program called SimpleScreenRecorder [9]. We asked each partic-
ipant to start the screen recording at the beginning of the study
and leave the software running until the study had completed. The
participants then saved and sent the screen recording file to us.
We then collected the Skype transcript created by the study and
removed all identifying information from the conversations. Some
participants also sent back the project files of the fixed bugs, but
these files were not used in our analysis.

4.5 Bugs

The 20 Java bugs come from 17 different open source projects. The
project domains include a Pacman game, a calender application,
and a PDF file merger. We also selected bugs from commonly used
Java libraries such as OpenCSV [57] and Apache Commons IO [28].
We chose the bugs based on four criteria:

(1) The bugs had to be simple enough that they could be solved
in a few hours, but complicated enough to take at least 20
minutes to solve.

(2) We had to be able to understand the bugs well enough to
give meaningful answers to questions during the simulation.

(3) The user had to be able to reproduce the bug easily.
(4) The bugs had to be solvable without obscure domain knowl-

edge.

All of the bugs were previously solved, and we had the actual
solutions on hand throughout each study. However, we also dis-
cussed other solutions to the bugs before the user simulations. This
is because some of the bugs could be fixed in a variety of ways. The
bugs were presented individually and randomized for each study.
An example of a bug given to the participants is as follows:

The bug in the source code above occurs when a user tries to
make a move with the arrow keys. The source of the bug is the
result of an incorrect fusion of a third party library used for graph-
ics (JavaFX) and the structural design of the project. The project
contains multiple panes which house buttons performing different
types of actions. For the sake of simplicity, consider there to be
only two panes; one that displays the board and is controlled by the
arrow keys (the łgame panež), and another that allows users to save
and load games (the łfile panež). Both of these panes are vying for
focus, but for the game to be played, the łgame panež must always
have focus. To ensure this, the project’s implementation spawns a
deamon thread that almost constantly requests focus for the łgame
pane.ž The bug comes from the fact that JavaFX only allows for
one thread, called the łevent thread,ž to make changes to the UI.
When creating the deamon thread, the developer uses the łThreadž
type to request focus, which JavaFX interprets as modifying the UI.
This causes an exception to be raised, and for the game to become
unresponsive to the arrow keys.

One solution to this bug is to use JavaFX safe data types to per-
form the action of the deamon thread. During studies, participants
were only provided with the buggy projects and the bug description.
We (pretending to be Madeline), while aware of solutions, would in

no form łgivež a solution to the participants, but would only react
to questions asked. Participants were incentivized to search the
source project for the files containing bugs, as questions designed to
tease solutions out of Madeline were met with vague and unhelpful
responses (i.e. łI am unsurež). A complete list of bugs can be found
at our online appendix (see Section 11).

4.6 Experiences & Lessons Learned

In this section, we discuss our experiences and lessons learned
while conducting the user simulation study. We do this to provide
some guidance to software engineering researchers who might do
studies similar to ours in the future. One of the biggest lessons
we learned was to confirm that the virtual machine we provided
worked on the participant’s machine before the study started. In
roughly half of the studies, we found ourselves fixing problems
on the participants’ machines and spending, on average, an extra
20 minutes fixing the issues. This was problematic, as the studies
took up more time than originally anticipated, which threw off our
original study schedule. We also learned that additional information
should be advertised (beyond the scope of the study) to allow for
smooth experiments, such as experience with virtual machines or
experience with the Eclipse IDE.

Another lesson learned was how to effectively schedule remote
studies. Many participants were unable to participate in the study
until they returned home from their jobs in the evening. Some had
families and wanted to participate in the study even later, once their
children were in bed. Many of our participants were in different
time zones, there were days where we would schedule studies at 8
am, 1 pm, and 10 pm in our time zone. We learned, over time, to
hire participants overseas where their evening was our work day.

5 ANNOTATIONS

In this section, we describe our process for annotating the speech
acts from the data collected during the user simulation studies (see
Section 4.4). Essentially, our goal is to 1) determine what the speech
acts are and 2) to determine what parts of the conversations are
associated with those speech act types. We also discuss our research
questions, the rationale for asking them, and provide annotation
examples.

5.1 Research Questions

The research objective of this section is to determine how program-
mers would use a virtual assistant to assist them in fixing a source
code bug. We seek to see what types of questions programmers
would ask a virtual assistant and if those types of questions are
consistent across multiple programmers.

RQ1 Do different programmers ask the virtual assistant similar
questions for the same bugs?

RQ2 What types of questions did programmers ask during bug
repair?

RQ3 What type of questions did programmers most frequently
ask?

The rationale behind RQ1 is that if programmers ask for help, and if
they ask similar questions for the same bug, it is possible to create a
speech acts classification system given training data. We group the

ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan

Figure 2: The annotation labels of all 30 transcripts and the occurrences for each label. Each turn can have multiple labels (speech act type).

questions to create labels for the training data in RQ2. Finally, we
investigate the most common uses of a potential virtual assistant
in RQ3 to advise future virtual assistant implementations.

5.2 Methodology

We used a manual open coding qualitative analysis process [11]
adapted from the social sciences to create labels for the conver-
sations we collected. (Though for the purposes of this paper, we
follow Rastkar et al. [63] in referring to łcodingž as łannotatingž
to prevent conceptual conflicts between sociological coding and
computer coding.) Qualitative annotation is becoming more com-
mon in software engineering literature [20, 35, 55, 62, 72], and it is
important to recognize that while standards and principles exist,
the nature of qualitative analysis is that each annotation procedure
is slightly different based on the needs and circumstances of the
study. In this paper, we followed the recommendations of Rieser
and Lemon in a 2011 book on creating dialog systems from WoZ
data [67], with one exception noted below.

A metaphor for open coding is unsupervised learning, in that
the human annotators do not begin with a set of labels: our goal
is to discover those labels from the data, and then assign them to
the turns in our data. Practically speaking, we did this in three
rounds. The first round of annotation consisted of łlabel creationž
where we created labels as we saw fit and did not have a pre-
determined list to choose from. The second round consisted of łlabel
pruningž where we decided what labels could be safely removed
or merged. The second round became necessary the more progress
was made in the first round, and was due to the complexity of
compressing sometimes vague and complex English text down
into its major concepts. The result of label pruning was a set of
well defined and disjoint descriptions of English text describing
our examples. The third and final stage of annotating involved re-
examining the annotations but instead searching for spelling errors
or other small mistakes. This round had the effect of ensuring
labels were consistent and resolving labels that represented the
same concept but used different terminology (i.e. synonyms), or
were spelled incorrectly.

During any annotation process, and especially an open process
in which we do not begin with labels, the bias of the human an-
notator becomes a major concern. The degree of bias is known as
the łreliabilityž of the data, and it is an extremely controversial

research topic. One possibility is to follow the lead of Carletta [15]
in calculating Kappa agreement from multiple annotators, and only
accepting agreement above a certain threshold; if agreement cannot
be achieved, the argument goes, thenmore annotators are necessary.
While this is a common procedure, it is by no means universally
accepted. As Craggs and McGee Wood point out, łone must decide
for oneself, based on the intended use of [an annotation] scheme,
whether the observed level of agreement is sufficientž [18]. Like-
wise, they łsuggest that if a coding scheme is to be used to generate
data from which a system will learn to perform similar coding, then
we should be ‘unwilling to rely on imperfect data’.ž

At the same time, it is not an option to merely add more and
more annotators until agreement is achieved. There has long been
a recognized split between expert and naive annotators [15, 58]. It
is not proper to allow naive annotators to have majority rule over
the experts. To be an expert annotator in our study, a person would
need to have 1) knowledge of the bugs solved in our study so they
can understand the conversations, and 2) not been a participant in
the study. Only the first and second authors were both qualified
and available (manual annotation is weeks of effort).

Rieser and Lemon faced a similar situation, and solved it by
having a discussion between two annotators for all disagreements,
followed by independent decision-making and calculation of Kappa
(page 110 of [67]). We differ from this procedure in that we consider
our situation to be more łunwilling to rely on imperfect dataž due
to the fact that our research questions in Section 5.1 and our predic-
tion training in Section 7 could be affected by errors. Therefore, for
this paper, we had two experts annotate all data and solve every dis-
agreement through discussion as disagreements occurred, followed
by mutual decision-making, resulting in one set of annotations.
While this mutual process makes it impossible to calculate a relia-
bility metric, we felt it was more important to maximize correctness
of the annotations.

6 ANNOTATIONS RESULTS

In this section, we present the results from our annotation process.
We also provide annotation examples following the results. We note
that the programmers asked on average 12.8 questions throughout
the two hour user simulation study. A select few did not ask more
than three, however, these participants were outliers. The highest

Detecting Speech Act Types During Developer Q/A ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA

number of questions asked during a user simulation study was 54
and the lowest number of questions asked during a study was 3.

6.1 RQ1: Programmers asking similar questions

We found that programmers asked similar questions to one an-
other. Of all the questions asked by the programmers, the ones
that were consistent across the majority of participants included
confirmationQuestions, clarificationQuestions, and apiQuestions.
Of these three types of questions, clarificationQuestion was asked
the most by all programmers. It was asked a total of 204 times,
which comprised 53.1% of all questions asked by programmers.
There were various types of clarification questions asked. Some of
the clarification questions included questions about what the bug
report said, what questions Madeline could and could not answer,
and clarifying answers from Madeline. The participants also asked
clarification questions to confirm their understanding of the task
that they were to complete for the study.

6.2 RQ2: Types of questions being asked

We found that programmers asked a variety of questions that ranged
from system type questions to API and documentation types. An
example of an API question is:

"What methods are in eventyhandler(?)"

We also found many programmers asked implementation questions:

"What are valid values for the int direction

in PacPlayer.java?"

After finishing the annotation process, we were able to narrow
down the question annotation types into 10 categories. The cat-
egories are: syntax, parameter, documentation, API, clarification,
implementation, bug report, confirmation, clarification, and sys-
tem questions. Figure 2 lists the number of occurrences for each of
the speech act types. In Section 6.4 we go into detail with a short
example of an annotated conversation. We also provide all of the
annotations on our online appendix (see Section 11).

6.3 RQ3: Most frequent questions being asked

We found programmers asked a few questions significantly more
than others. In Figure 2, the speech act type łstatementž has the
most occurrences. We would like to point out that there was an-
other, more popular type of question; the łsetupž speech act. Since
this speech act type is not relevant to the study itself, this speech act
type was removed from our corpus. łclarificationQuestionž has the
highest occurrence out of any question type. This label appeared
204 times throughout all 30 transcripts. Many of the participants
asked clarification questions on the bugs and on the responses
Madeline gave. Madeline asked clarification questions as well when
we needed more information from a participant to answer a ques-
tion. Sometimes the participants would ask questions that needed
more detail so that Madeline could answer the question. The sec-
ond highest occurrence annotation label for a question type was
łAPIquestion.ž This label occurred 94 times in the transcripts. This
makes sense as programmers were not allowed to use the inter-
net during the bug repair task and were unfamiliar with the given
source code.

6.4 Annotation Examples

We annotated over two thousand speech acts during the annotation
process. To further explain the previous sections, we provide an ex-
ample of one of the annotations. Throughout the data, participants
askedAPI questions, documentation, and implementation questions.
Below is a section of a developer conversation. This section of the
conversation includes implementation questions and clarification
questions. At the end of each speech act, there is the annotation label
for that speech act. The annotation is in bold text and is in brack-
ets. The speech acts begin with łPž or łMž denoting the speaker
as a łparticipantž or łMadeline - Virtual Assistantž respectively.

P: So the bug is that the PacPlayer does not face right
when the key is released, but it is supposed to?
[clarificationQuestion]

M: Yes. He also disappears. [clarificationAnswer]

P: Does he disappear because the alive bool is set
to false at the wrong time [implementationQuestion]

M: I am unsure [unsureAnswer]

Throughout the annotation process, we found similar results
to the previous example. However, we found programmers asked
varying amounts of questions throughout the bug repair task. This
was evident once deep into the annotation process. It appeared that
the more senior a participant was, the less the participant asked
for help from the virtual assistant. There are three interpretations
we derive from these observations. First, the programmers possibly
did not want to ask for help and instead wanted to solve the bug
without help. Second, it is possible that the programmers did not
feel comfortable asking questions. Finally, the programmers may
have assumed that there was no automated virtual assistant and,
therefore, did not ask questions.

We found that programmers often made a statement before ask-
ing a question. It appeared the participants were explaining their
thought process before asking a question. This occurred about 20%
of the time in the user simulation studies. An example of this is:

participant: first I tried łsudo apt-get install default-jrež

participant: it told me it depends on default-jre-headless
and openjdk-7-jre

participant: is it possible to set a command line ar-
gument for start up of the program?

Here, the participant makes multiple statements before asking
Madeline a question. We did not ask participants to łthink aloudž
during this study. However, we observed this phenomenon through-
out the user simulations and annotation process.

7 PREDICTING SPEECH ACT TYPE

Our approach for predicting the speech act type is, essentially, a
text classifier based on Logistic Regression. Recall the use case that
we envision in Section 2: a virtual assistant receives a message, and
needs to classify that message into one of several categories, so that

ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan

it can respond appropriately. Our idea is to train a prediction model,
then use that prediction model to classify incoming messages.

7.1 Labeled Training Data

Supervised machine learning algorithms depend on labeled train-
ing data. We use the labels from Section 6.2. In that section, we
manually annotated every turn in every conversation as belonging
to one of the speech act types we identified. In this section, we
use that data (however, only turns from the participants’ side of
the conversation, not łMadeline’sž, to match the use case of the
virtual agent classifying incoming messages) to train a classifier
to annotate the turns automatically. Note that this is a multi-label
classification problem, because an łexamplež consists of a turn an-
notated with a list of all the speech act types to which that turn
belongs. Each speech act turn type is a label, so each turn may
belong to many labels.

7.2 Attributes

We use two types of attributes. First, we treat the problem as text
classification, where each word is an attribute. We calculate the
attributes as a binary łbag of wordsž. For each example, the set of at-
tributes includes either a one or zero for each word, depending on if
that word occurs in the text of the turn or not. Recent industry-track
papers [6, 19] came to the conclusion that to maximize potential
industrial impact, researchers should prioritize simplicity, and only
move to more complex approaches when absolutely necessary. We
stuck to binary bag of words for this reason. We also did not do stop
word removal or stemming. We defer word count normalization
(e.g. TF/IDF), NLP-based solutions, advanced preprocessing tech-
niques, etc., to our future work. As we will explain in Section 9.1,
the simple approach already achieves reasonable performance.

Second, we used three shallow features identified by related lit-
erature [55, 63, 71]. This related literature actually identifies over
twenty shallow features that complement or replace text classifi-
cation, but many of these are not applicable in our context. For
example, many rely on computing entropy over a whole conver-
sation after the fact. That is not possible in our context because
we can only know incoming message and previous messages, not
future messages. The three features we used are: slen, the number
of words in the message normalized over all previous messages,
wc, the number of words not normalized, and ppau, the number of
seconds between the message and the previous message.

7.3 SMOTE

We use SMOTE [17] to overcome the problem of unbalanced data.
Some of the user speech acts we identified only have a few examples
(e.g. we only found eight examples for the parameterQuestion

type). That presents a problem because the learning process will
inevitably classify no turns in that type, and still seem to achieve
very high accuracy. SMOTE works by synthesizing examples in
small classes from the known examples in those classes. The result
is that the small classes are filled with synthesized examples until
the data are balanced. SMOTE has been widely used to resolve
situations of unbalanced data generally as well as conversational
analysis [71]. In pilot studies, we compared SMOTE to duplicative
oversampling and observed slight performance improvements using

SMOTE.We used SMOTE only on the training data, to avoid biasing
the testing set.

7.4 Prediction Models

We trained a multi-label prediction model using the binary rele-

vance [64] procedure. The procedure is to create one binary clas-
sifier for every class. We used the Logistic Regression (LR) algo-
rithm [37] to create each classifier. We also tested Naive Bayes
and Support Vector Machines in pilot studies ś LR had superior
performance to Naive Bayes, and the difference between LR and
SVM was so slight as to not be worth the much longer training
time for SVM (eight hours versus four minutes). Note that while
we built a multi-label prediction model, we calculated SMOTE us-
ing a multi-class structure. That is, we ran SMOTE once for each
category, then trained each classifier, then combined the classifiers
with the binary relevance procedure. In theory it is possible to run
SMOTE in a multi-label configuration, by executing SMOTE on ev-
ery combination of labels. However, this would necessitate nn runs
of SMOTE (for n categories), which would be far more expensive.

We also performed parameter tuning for Logistic Regression
across twelve parameters and Naive Bayes across four parameters.
Parameter tuning has been recommended generally when working
with SE data [12]. Due to space requirements, we direct readers
to our online appendix and reproducibility package for complete
details (see Section 11).

7.5 Implementation Details

We used the toolkit scikit-learn [59, 60] to implement our clas-
sifiers and SMOTE (imblearn.over_sampling.SMOTE) [47].
We implemented the shallow attribute calculators ourselves, using
related work as a guide [71]. The hardware was an HP Z640 work-
station with an E1630v3 CPU and 64GB of memory. For total clarity,
we make all implementation scripts and datasets available via our
online appendix (see Section 11).

8 EVALUATION OF PREDICTIONS

This section describes our evaluation of the prediction models we
create. Essentially, we use a 5-fold cross validation procedure to
test the quality of the predictions, as well as explore where the
predictions are most accurate.

8.1 Research Questions

Our research objective is to determine what level of performance
we can expect from the prediction models, as well as to understand
which speech acts are łeasiestž to detect.

RQ4 What is the performance of our prediction models, overall
in the multi-label configuration, according to the metrics
described in Section 8.3?

RQ5 For which speech acts do the prediction models have the
highest performance?

RQ6 Which attributes are the most informative?

The rationale behind RQ4 lies in the application we intend in
Section 2: the performance of a virtual assistant will be limited by
its ability to detect what type of speech act to which an incoming
message belongs. While we do not expect perfect performance, we
need to at least have an understanding of how much inaccuracy

Detecting Speech Act Types During Developer Q/A ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA

may stem from the detection process. The rationale behind RQ5

is similar. Some speech acts are bound to be easier to detect than
others. It is helpful to know which speech acts about which we may
be confident, or others where we are less sure. In practice, it may be
necessary to return a message to the user indicating that the virtual
assistant is unsure what the user intends, and ask the user to clarify.
RQ6 is useful because the presence of some attributes may indicate
high confidence, while others may indicate low confidence.

8.2 Methodology

In general, we follow a 5-fold cross validation study design. In a
standard n-fold design for evaluating classifiers, 1/n examples are
set aside as a testing set, while the remaining (n − 1)/n examples
are used for training. The evaluation is conducted n times, once
for each nth selection of the examples as a testing set. Then, the
evaluation metrics are calculated for each łfoldž and averaged. We
chose 5 as a value for n because it ensured that our testing set would
not be too small (as it might have been with a 10-fold design), while
still maintaining multiple folds that could be averaged.

The selection of a testing set is a non-trivial exercise in a multi-
label dataset, in contrast to a single-label one. In a single-label
dataset, it is usually sufficient to randomly selected 1/n of the ex-
amples for the testing set. But in our multi-label dataset, we need to
ensure that the testing set represents the same distribution of labels
as the overall dataset. With only five folds, it is conceivable that a
random selection would give too much weight to one label, and this
overweighted selection would not be łaveraged outž over a large
number of folds. Therefore, we sampled each label in proportion
to the number of examples in that label, and confirmed that the
distribution of the labels over the testing set was as close as possible
to the distribution of labels over the entire dataset.

After we separated the testing and training data, we ran SMOTE
on the training data only. If we had executed SMOTE on the en-
tire dataset, then divided the data into testing/training groups, we
would have contaminated the testing set with information from the
training set. SMOTE synthesizes examples based on the examples it
is given. If we had run SMOTE on the entire dataset, we would have
created synthesized examples based on real examples that ended
up in testing set. Therefore, we only ran SMOTE on the training
set. This did increase the execution cost of our experiment slightly,
since we needed to execute SMOTE five times (once for each fold,
after we separated the testing set from the training set).

Note also that this methodology is conservative ś it only uses
real examples for the testing set. We use the results from this con-
servative approach to answer RQ4 and RQ5, to avoid presenting a
biased result. We also use these results to calculate other metrics
(see the next section) to answer RQ6.

8.3 Metrics

We report the metrics precision, recall, F-measure, and support to
answer RQ4 and RQ5 These are standard metrics for evaluating
classifiers and have been covered extensively elsewhere [10, 16]; for
space we do not discuss their details here.We calculate thesemetrics
for each speech act type (i.e., each label) for RQ2, and combine the
results for each speech act type to answer RQ4. We combine the
precision and recall values for each speech act type with a weighted

average, where the weights are based on the support for each speech
act type. The reason is so that the combined values reflect the size
of each label. A simple average, without the weights, would be
biased by labels that only have a few examples in the testing set.

For RQ6, we calculate F-score [68] for the attributes. F-score
(distinguished from F-measure, the harmonic mean of precision
and recall) is typically used for feature selection, to indicate which
features are the most informative.

8.4 Threats to Validity

Like all experiments, our study carries threats to validity. The main
sources of threats to validity include: the participants in the user
simulations, the bugswe asked the users to repair, and the influences
of the technology used by the participants (e.g., the IDE) on the
questions they asked. Also, it is possible that there are errors in
our manual annotation process, or in our selection of categories.
While we try to mitigate these risks by following accepted data
collection and annotation procedures, and by including a relatively
large number of participants (30) and different bugs, the threat
remains that changes in these variables could affect the performance
of our classifiers. As an additional guard against these risks, we
release all data via an online appendix for community scrutiny (see
Section 11).

9 PREDICTION EVAL. RESULTS

This section discusses our answers to RQ4-RQ6, including our sup-
porting data and rationale.

Table 1: Performance metrics calculated for each speech act

type (some speech act types have been abbreviated). Recall

that the averages are a weighted average based on the sup-

port for each speech type, see Section 8.3.

precision recall f-measure support
apiAnswer 0.93 0.76 0.83 24.6
apiQuestion 0.81 0.66 0.71 17.2
clarifAnswer 0.13 0.07 0.09 6.0
clarifQuestion 0.59 0.41 0.48 32.6
confirmation 0.88 0.8 0.83 27.0
docAnswer 0.25 0.2 0.22 3.2
implQuestion 0.52 0.21 0.28 10.6
implStatement 0.0 0.0 0.0 3.0
introduction 0.76 0.6 0.63 4.0
stmnt 0.69 0.4 0.51 49.8
systemQuestion 0.37 0.22 0.27 4.8
avg / total 0.69 0.5 0.57 16.62

9.1 RQ4: Overall Performance

The weighted average precision of from our classifiers was 69%,
while the weighted average recall was 50%, as reported in Table 1.
Thus for an arbitrary incoming message, we can expect this classi-
fier to correctly identify the speech act type of that message 69% of
the time, while identifying 50% of the speech acts types to which
the message belongs. If the classifier claims that a message of a
particular type, we can estimate that that claim will be correct
roughly 2/3rds of the time. We acknowledge that we cannot evalu-
ate whether these improve over an earlier approach, given that we

ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan

Table 2: The top 10 most-informative features for each speech act type, calculated by f-score. Most features are words, but

features with the suffix _sf are shallow features (see Section 7.2). See Section 9.3 for a deeper discussion of this table.

10 9 8 7 6 5 4 3 2 1
apiAnswer node if onfinished keyframes constructor values time timeline keyvalue keyframe
apiQuestion size method have how pane class object an does what
clarifAnswer compilation configurations word trigger supply green appear box clicking bottom
clarifQuestion need the or other wc_sf you this fix prime bug
confirmation of yes is to thanks slen_sf the thank wc_sf ok
documentAnswer byte marks later reading bytes joptionpane external input audio stream
implementQuestion face why mark eratosthenes occurs gets arraycopy reason button clicked
implementStatement signature widget funtion hidden drawing waitfor throwing paint timeout jcomponent
introduction supervised programmers today hello human am start hi study ready
statement seems what slen_sf looks fixed but works was think it
systemQuestion password there permitted lang running way programs kill eclipse how

are not aware of an earlier technique for identifying speech acts
on our data. Nevertheless, we find these results to be an encour-
aging starting point for building a virtual assistant, in light of the
somewhat bare bones text classification strategy we used (binary
bag-of-words, see Section 7). A promising area of future work, in
our view, is to adapt more advanced classification techniques.

9.2 RQ5: Speech Act Type Variations

The performance of our classifiers varied considerably across differ-
ent speech act types. At the high end, precision was over 90% and
recall over 75%. At the low end, precision and recall dipped below
around 10%. This observation is important because it means that for
some speech act types, a virtual assistant can be highly confident
that the prediction is correct. As a practical matter, a virtual assis-
tant may request the user to repeat a message in different words,
or ask for other followup information, if the classifier is not able to
place the message into a speech act type with sufficient confidence.
This observation is also important from an academic viewpoint,
because it means that programmers use different types of language
to make different types of messages. In some cases, programmers
consistently use the same language (which is what the classifier
uses to make good predictions). In other cases, programmers use
much more different language ś it makes the prediction process
more challenging, but also raises academic questions about what is
different about the language, which is an area of future work. We
begin to explore this in RQ6.

9.3 RQ6: Attribute Effects

Table 2 shows the top-10 most informative features for each speech
act type. We make two observations from this data: First, the shal-
low features are far more useful for some speech act types than
others. For example, confirmation actions are likely to be short
messages, so the word count metric (wc_sf) is informative in this
case. This observation is useful because shallow features are easy to
compute, so areas where they are informative can be predicted with
reasonable accuracy at low cost. Second, many of the words are
general enough that they are likely to be generalizable beyond the
set of bugs we chose, even though others are specific to particular
domains. For example, the speech act implementationStatement
is informed by words like łfunctionž and łsignaturež, which are
likely to be true across many programming conversations. But the
most informative feature for that action is łjcomponentž, which is a
word specific to Java and perhaps the domain of programs we study.
It is not likely to appear in every domain. Therefore, one possible

mediation is to use placeholder features that count the number of
e.g. domain-specific programming words used in a message. Also,
we note again that we used the binary bag-of-words model, which
separates the words from their contexts. An area of future work is
in NLP-based recognition such as phrases or n-grams.

10 CONCLUSION

Our paper makes three contributions to software engineering liter-
ature. First, we contribute 30 software engineering conversations
with professional developers. Second, we created a system of classi-
fication for developer speech acts. We manually detect and classify
relevant speech acts in order to contribute to the understanding
of developer question/answer conversations. We also provide this
annotation classification system on our online appendix for fu-
ture researchers to use. Third, we lay the foundation for a virtual
assistant by building an automatic speech act classification system.

11 REPRODUCIBILITY

We have made our raw data, annotations, model, and source code
available via an online appendix (https://tinyurl.com/yadfpojd) for
the research community to reproduce or use.

12 ACKNOWLEDGEMENTS

We thank and acknowledge the 30 professional developers who partici-

pated in this research study. This work is supported in part by the NSF

CCF-1452959, CCF-1717607, and CNS-1510329 grants. Any opinions,

findings, and conclusions expressed herein are the authors’ and do not

necessarily reflect those of the sponsors..

REFERENCES
[1] Charu C Aggarwal and ChengXiang Zhai. 2012. Mining text data. Springer

Science & Business Media.
[2] Hua Ai, Joel R Tetreault, and Diane J Litman. 2007. Comparing user simulation

models for dialog strategy learning. In Human Language Technologies 2007: The
Conference of the North American Chapter of the Association for Computational
Linguistics; Companion Volume, Short Papers. Association for Computational
Linguistics, 1ś4.

[3] Erik M. Altmann. 2001. Near-term memory in programming: a simulation-based
analysis. International Journal of Human-Computer Studies 54, 2 (2001), 189 ś 210.
https://doi.org/10.1006/ijhc.2000.0407

[4] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this bug?.
In Proceedings of the 28th international conference on Software engineering (ICSE
’06). ACM, New York, NY, USA, 361ś370. https://doi.org/10.1145/1134285.1134336

[5] Apple. 2018. Siri. https://www.apple.com/ios/siri/. (2018). Accessed: 2018-03-02.
[6] Ameer Armaly, John Klaczynski, and Collin McMillan. 2016. A Case Study of

Automated Feature Location Techniques for Industrial Cost Estimation. In 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME).
553ś562. https://doi.org/10.1109/ICSME.2016.76

Detecting Speech Act Types During Developer Q/A ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA

[7] Venera Arnaoudova, Sonia Haiduc, Andrian Marcus, and Giulio Antoniol. 2015.
The Use of Text Retrieval and Natural Language Processing in Software Engineer-
ing. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. 949ś950. https://doi.org/10.1109/ICSE.2015.301

[8] Kent Bach and Robert Harnish. 1979. Linguistic communication and speech acts.
(1979).

[9] Maarten Baert. 2018. SimpleScreenRecorder. http://www.maartenbaert.be/
simplescreenrecorder/. (2018). Accessed: 2018-03-02.

[10] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. 2004. A
study of the behavior of several methods for balancing machine learning training
data. ACM Sigkdd Explorations Newsletter 6, 1 (2004), 20ś29.

[11] Bruce L Berg. 2004. Methods for the social sciences. Pearson Education Inc, United
States of America.

[12] David Binkley, Daniel Heinz, Dawn Lawrie, and Justin Overfelt. 2014. Under-
standing LDA in Source Code Analysis. In Proceedings of the 22Nd International
Conference on Program Comprehension (ICPC 2014). ACM, New York, NY, USA,
26ś36. https://doi.org/10.1145/2597008.2597150

[13] Barry Boehm. 2006. A view of 20th and 21st century software engineering. In
Proceedings of the 28th international conference on Software engineering. ACM,
12ś29.

[14] Nicholas Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-Aware Conver-
sational Developer Assistants. In International Conference on Software Engineering.
ACM, 12.

[15] Jean Carletta. 1996. Assessing Agreement on Classification Tasks: The Kappa
Statistic. Comput. Linguist. 22, 2 (June 1996), 249ś254. http://dl.acm.org/citation.
cfm?id=230386.230390

[16] Rich Caruana and Alexandru Niculescu-Mizil. 2006. An Empirical Comparison
of Supervised Learning Algorithms. In Proceedings of the 23rd International Con-
ference on Machine Learning (ICML ’06). ACM, New York, NY, USA, 161ś168.
https://doi.org/10.1145/1143844.1143865

[17] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321ś357.

[18] Richard Craggs andMaryMcGeeWood. 2005. Evaluating Discourse and Dialogue
Coding Schemes. Comput. Linguist. 31, 3 (Sept. 2005), 289ś296. https://doi.org/
10.1162/089120105774321109

[19] B. Cruz, B. Jayaraman, A. Dwarakanath, and C. McMillan. 2017. Detecting Vague
Words & Phrases in Requirements Documents in a Multilingual Environment. In
Requirements Engineering Conference (RE), 2017 25th IEEE International.

[20] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work.
ACM, 1277ś1286.

[21] Nils Dahlbäck, Arne Jönsson, and Lars Ahrenberg. 1993. Wizard of Oz stud-
iesâĂŤwhy and how. Knowledge-based systems 6, 4 (1993), 258ś266.

[22] N. DahlbÃďck, A. JÃűnsson, and L. Ahrenberg. 1993. Wizard of Oz studies
âĂŤ why and how. Knowledge-Based Systems 6, 4 (1993), 258 ś 266. https:
//doi.org/10.1016/0950-7051(93)90017-N Special Issue: Intelligent User Interfaces.

[23] Sidney D’mello and Art Graesser. 2013. AutoTutor and Affective Autotutor:
Learning by Talking with Cognitively and Emotionally Intelligent Computers
That Talk Back. ACM Trans. Interact. Intell. Syst. 2, 4, Article 23 (Jan. 2013),
39 pages. https://doi.org/10.1145/2395123.2395128

[24] Javier Escobar-Avila, Esteban Parra, and Sonia Haiduc. 2017. Text Retrieval-
based Tagging of Software Engineering Video Tutorials. In Proceedings of the 39th
International Conference on Software Engineering Companion (ICSE-C ’17). IEEE
Press, Piscataway, NJ, USA, 341ś343. https://doi.org/10.1109/ICSE-C.2017.121

[25] Kate Forbes-Riley, Mihai Rotaru, and Diane J. Litman. 2008. The Relative Impact
of Student Affect on Performance Models in a Spoken Dialogue Tutoring System.
User Modeling and User-Adapted Interaction 18, 1-2 (Feb. 2008), 11ś43. https:
//doi.org/10.1007/s11257-007-9038-5

[26] Cecilia E Ford, Barbara A Fox, and Sandra A Thompson. 2002. The language of
turn and sequence. Oxford University Press on Demand.

[27] Andrew Forward and Timothy C. Lethbridge. 2002. The relevance of software
documentation, tools and technologies: a survey. In Proceedings of the 2002 ACM
symposium on Document engineering (DocEng ’02). ACM, New York, NY, USA,
26ś33. https://doi.org/10.1145/585058.585065

[28] Apache Foundation. 2018. Apache Commons IO. https://commons.apache.org/
proper/commons-io/. (2018). Accessed: 2018-03-02.

[29] Eclipse Foundation. 2018. Eclipse. https://eclipse.org/ide/. (2018). Accessed:
2018-03-02.

[30] Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk. 2012. Inte-
grated impact analysis for managing software changes. In Software Engineering
(ICSE), 2012 34th International Conference on. IEEE, 430ś440.

[31] Micayla Goodrum, Jane Cleland-Huang, Robyn Lutz, Jinghui Cheng, and Ronald
Metoyer. 2017. What Requirements Knowledge Do Developers Need to Manage
Change in Safety-Critical Systems?. In Requirements Engineering Conference (RE),
2017 IEEE 25th International. IEEE, 90ś99.

[32] Google. 2018. Google Now. https://play.google.com/store/apps/details?id=com.
google.android.launcher&hl=en. (2018). Accessed: 2018-03-02.

[33] Stevan Harnad. 1990. The symbol grounding problem. Physica D: Nonlinear
Phenomena 42, 1-3 (1990), 335ś346.

[34] Lynette Hirschman. 1998. Evaluating Spoken Language Interaction: Experiences
from the DARPA Spoken Language Program 1988ś1995. To appear. See http://www.
research. att. com/˜ walker/eval/hirschman-survey. ps (1998).

[35] Rashina Hoda, James Noble, and Stuart Marshall. 2010. Using grounded theory to
study the human aspects of software engineering. In Human Aspects of Software
Engineering. ACM, 5.

[36] Reid Holmes and Robert J. Walker. 2013. Systematizing pragmatic software
reuse. ACM Trans. Softw. Eng. Methodol. 21, 4, Article 20 (Feb. 2013), 44 pages.
https://doi.org/10.1145/2377656.2377657

[37] David W Hosmer Jr and Stanley Lemeshow. 2004. Applied logistic regression. John
Wiley & Sons.

[38] Ian Hutchby and Robin Wooffitt. 2008. Conversation analysis. Polity.
[39] Siyuan Jiang, Collin McMillan, and Raul Santelices. 2017. Do Programmers do

Change Impact Analysis in Debugging? Empirical Software Engineering 22, 2 (01
Apr 2017), 631ś669. https://doi.org/10.1007/s10664-016-9441-9

[40] Alice Kerly, Phil Hall, and Susan Bull. 2007. Bringing chatbots into education:
Towards natural language negotiation of open learner models. Knowledge-Based
Systems 20, 2 (2007), 177 ś 185. https://doi.org/10.1016/j.knosys.2006.11.014 AI
2006.

[41] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering 34, 2 (2008),
181ś196.

[42] Andrew J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in
collocated software development teams. In Software Engineering, 2007. ICSE 2007.
29th International Conference on. IEEE, 344ś353.

[43] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions About Program Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New
York, NY, USA, 151ś158. https://doi.org/10.1145/985692.985712

[44] Andrew J. Ko and Brad A. Myers. 2010. Extracting and Answering Why and Why
Not Questions About Java Program Output. ACM Trans. Softw. Eng. Methodol. 20,
2, Article 4 (Sept. 2010), 36 pages. https://doi.org/10.1145/1824760.1824761

[45] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. 2012. Blaze.
In Proceedings of the 2012 International Conference on Software Engineering (ICSE
2012). IEEE Press, Piscataway, NJ, USA, 1457ś1458. http://dl.acm.org/citation.
cfm?id=2337223.2337451

[46] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental
models: a study of developer work habits. In Proceedings of the 28th international
conference on Software engineering (ICSE ’06). ACM, New York, NY, USA, 492ś501.
https://doi.org/10.1145/1134285.1134355

[47] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets
in Machine Learning. Journal of Machine Learning Research 18, 17 (2017), 1ś5.
http://jmlr.org/papers/v18/16-365

[48] Oliver Lemon. 2011. Learning what to say and how to say it: Joint optimisation
of spoken dialogue management and natural language generation. Computer
Speech & Language 25, 2 (2011), 210ś221.

[49] T.C. Lethbridge, J. Singer, and A. Forward. 2003. How software engineers use
documentation: the state of the practice. Software, IEEE 20, 6 (2003), 35ś39.
https://doi.org/10.1109/MS.2003.1241364

[50] Tim Menzies and Andrian Marcus. 2008. Automated severity assessment of soft-
ware defect reports. In Software Maintenance, 2008. ICSM 2008. IEEE International
Conference on. IEEE, 346ś355.

[51] Microsoft. 2018. Cortana. https://www.microsoft.com/en-us/windows/cortana.
(2018). Accessed: 2018-03-02.

[52] Salman Mirghasemi, John J. Barton, and Claude Petitpierre. 2011. Querypoint:
moving backwards on wrong values in the buggy execution. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 436ś439. https:
//doi.org/10.1145/2025113.2025184

[53] Vibhu O. Mittal and Johanna D. Moore. 1995. Dynamic Generation of Follow
Up Question Menus: Facilitating Interactive Natural Language Dialogues. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’95). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 90ś97.
https://doi.org/10.1145/223904.223916

[54] Johanna D. Moore. 1994. Participating in Explanatory Dialogues: Interpreting and
Responding to Questions in Context. MIT Press, Cambridge, MA, USA.

[55] Gabriel Murray and Giuseppe Carenini. 2008. Summarizing spoken and written
conversations. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 773ś782.

[56] Toyoaki Nishida. 2007. Conversational Informatics: An Engineering Approach.
Wiley.

ESEC/FSE 2018, 4–9 Nov., 2018, Lake Buena Vista, Florida, USA Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan

[57] OpenCSV. 2017. OpenCSV. http://opencsv.sourceforge.net/. (2017). Accessed:
2017-08-20.

[58] Rebecca J Passonneau and Diane J Litman. 1993. Intention-based segmentation:
Human reliability and correlation with linguistic cues. In Proceedings of the 31st
annual meeting on Association for Computational Linguistics. Association for
Computational Linguistics, 148ś155.

[59] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12, Oct (2011), 2825ś2830.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825ś2830.

[61] Piotr Pruski, Sugandha Lohar, William Goss, Alexander Rasin, and Jane Cleland-
Huang. 2015. TiQi: answering unstructured natural language trace queries.
Requirements Engineering 20, 3 (01 Sep 2015), 215ś232. https://doi.org/10.1007/
s00766-015-0224-4

[62] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2010. Summarizing soft-
ware artifacts: a case study of bug reports. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM, 505ś514.

[63] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic summa-
rization of bug reports. IEEE Transactions on Software Engineering 40, 4 (2014),
366ś380.

[64] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. 2011. Classifier
chains for multi-label classification. Machine learning 85, 3 (2011), 333ś359.

[65] Norbert Reithinger and Elisabeth Maier. 1995. Utilizing Statistical Dialogue Act
Processing in VERBMOBIL. In Proceedings of the 33rd Annual Meeting on Associa-
tion for Computational Linguistics (ACL ’95). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 116ś121. https://doi.org/10.3115/981658.981674

[66] Laurel D Riek. 2012. Wizard of oz studies in hri: a systematic review and new
reporting guidelines. Journal of Human-Robot Interaction 1, 1 (2012).

[67] Verena Rieser and Oliver Lemon. 2011. Reinforcement learning for adaptive
dialogue systems: a data-driven methodology for dialogue management and natural
language generation. Springer Science & Business Media.

[68] C. J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-
Heinemann, Newton, MA, USA.

[69] Martin P Robillard, Walid Maalej, Robert J Walker, and Thomas Zimmermann.
2014. Recommendation systems in software engineering. Springer.

[70] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, et al. 2017. On-Demand Developer Documentation. In
Software Maintenance and Evolution (ICSME), 2017 IEEE International Conference
on. IEEE.

[71] Paige Rodeghero, Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. De-
tecting User Story Information in Developer-client Conversations to Gener-
ate Extractive Summaries. In Proceedings of the 39th International Conference
on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 49ś59.
https://doi.org/10.1109/ICSE.2017.13

[72] Paige Rodeghero, Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. De-
tecting user story information in developer-client conversations to generate
extractive summaries. In Proceedings of the 39th International Conference on Soft-
ware Engineering. IEEE Press, 49ś59.

[73] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney
D’Mello. 2014. Improving Automated Source Code Summarization via an Eye-
Tracking Study of Programmers. In Proceedings of the 36th international conference
on Software engineering (ICSE ’14). 12. To appear.

[74] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How do
professional developers comprehend software?. In Proceedings of the 2012 Inter-
national Conference on Software Engineering (ICSE 2012). IEEE Press, Piscataway,
NJ, USA, 255ś265. http://dl.acm.org/citation.cfm?id=2337223.2337254

[75] Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young.
2007. Agenda-based user simulation for bootstrapping a POMDP dialogue system.
In Human Language Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics; Companion Volume, Short
Papers. Association for Computational Linguistics, 149ś152.

[76] Emanuel A.. Schegloff. 2007. Sequence Organization in Interaction: A Primer in
Conversation Analysis I. Cambridge University Press.

[77] John Searle. 1965. What is a speech act? na.
[78] John R Searle, Ferenc Kiefer, and Manfred Bierwisch. 1980. Speech act theory and

pragmatics. Vol. 10. Springer.
[79] Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle

Pineau. 2015. A survey of available corpora for building data-driven dialogue
systems. arXiv preprint arXiv:1512.05742 (2015).

[80] Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. 2012. An eye-tracking
study on the role of scan time in finding source code defects. In Proceedings of
the Symposium on Eye Tracking Research and Applications (ETRA ’12). ACM, New

York, NY, USA, 381ś384. https://doi.org/10.1145/2168556.2168642
[81] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2008. Asking and Answering

Questions during a Programming Change Task. IEEE Trans. Softw. Eng. 34, 4 (July
2008), 434ś451. https://doi.org/10.1109/TSE.2008.26

[82] J. Sillito, G. C. Murphy, and K. De Volder. 2008. Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software Engineering
34, 4 (July 2008), 434ś451. https://doi.org/10.1109/TSE.2008.26

[83] S. E. Sim, C. L. A. Clarke, and R. C. Holt. 1998. Archetypal Source Code Searches:
A Survey of Software Developers and Maintainers. In Proceedings of the 6th
International Workshop on Program Comprehension (IWPC ’98). IEEE Computer
Society, Washington, DC, USA, 180ś. http://dl.acm.org/citation.cfm?id=580914.
858229

[84] J. Starke, C. Luce, and J. Sillito. 2009. Searching and skimming: An exploratory
study. In Software Maintenance, 2009. ICSM 2009. IEEE International Conference
on. 157ś166. https://doi.org/10.1109/ICSM.2009.5306335

[85] Amanda Stent and Srinivas Bangalore. 2014. Natural language generation in
interactive systems. Cambridge University Press.

[86] Paul Ten Have. 2007. Doing conversation analysis. Sage.
[87] UpWork. 2018. UpWork. https://www.upwork.com/. (2018). Accessed: 2018-03-02.
[88] Marilyn A. Walker, Rebecca Passonneau, and Julie E. Boland. 2001. Quantitative

and Qualitative Evaluation of Darpa Communicator Spoken Dialogue Systems.
In Proceedings of the 39th Annual Meeting on Association for Computational Lin-
guistics (ACL ’01). Association for Computational Linguistics, Stroudsburg, PA,
USA, 515ś522. https://doi.org/10.3115/1073012.1073078

[89] Kevin F. White and Wayne G. Lutters. 2003. Behind the Curtain: Lessons Learned
from aWizard of Oz Field Experiment. SIGGROUP Bull. 24, 3 (Dec. 2003), 129ś135.
https://doi.org/10.1145/1052829.1052854

[90] Steve Whittaker, Marilyn A Walker, and Johanna D Moore. 2002. Fish or Fowl: A
Wizard of Oz Evaluation of Dialogue Strategies in the Restaurant Domain.. In
LREC.

	Abstract
	1 Introduction
	2 Problem, Significance, Scope
	3 Background
	3.1 Automated Virtual Assistants
	3.2 Conversation Analysis and Modeling
	3.3 Studies of Program Comprehension
	3.4 Text Classification

	4 User Simulations
	4.1 Methodology
	4.2 Participants
	4.3 Threats to Validity
	4.4 Data Collection
	4.5 Bugs
	4.6 Experiences & Lessons Learned

	5 Annotations
	5.1 Research Questions
	5.2 Methodology

	6 Annotations Results
	6.1 RQ1: Programmers asking similar questions
	6.2 RQ2: Types of questions being asked
	6.3 RQ3: Most frequent questions being asked
	6.4 Annotation Examples

	7 Predicting Speech Act Type
	7.1 Labeled Training Data
	7.2 Attributes
	7.3 SMOTE
	7.4 Prediction Models
	7.5 Implementation Details

	8 Evaluation of Predictions
	8.1 Research Questions
	8.2 Methodology
	8.3 Metrics
	8.4 Threats to Validity

	9 Prediction Eval. Results
	9.1 RQ4: Overall Performance
	9.2 RQ5: Speech Act Type Variations
	9.3 RQ6: Attribute Effects

	10 Conclusion
	11 Reproducibility
	12 Acknowledgements
	References

