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1. Introduction
The demise of Dennard scaling has ushered in an era of un-

precedented and ever-increasing heterogeneity, in pursuit of
increasing performance via specialization. While CMOS scal-
ing is believed to be approaching its end, continued increases
in the number of transistors available on a chip have made
specialized hardware an attractive alternative to increasing
core counts or cache sizes. GPUs are commonplace in many
computing domains [7, 14, 16, 17, 19, 24, 48], FPGAs are
arriving in the cloud [15, 18, 34, 40]; smart storage [20, 43]
and networking hardware [8, 32] are commercially available.

This proliferating menagerie of diverse computing re-
sources is both a boon and burden for the application pro-
grammer. When specifying a computation, an application
programmer must now specify not just the algorithm, but
must account for device characteristics and orchestrate data
movement to the device(s).

Work on this problem, to date, has focused on improving
the programmability of these systems, in particular by elimi-
nating the need for the application programmer to perform
the complex interactions required to move data between dis-
joint physical memory spaces. Abstractions and techniques
for data movement are well-explored in hardware [4–6], and
software [12, 23, 28, 33, 41, 45, 46]. A common model is
separating the control plane, responsible for specifying what
data movement is allowed (e.g., by configuring DMA engines
and configuring protections), from a data plane, which actu-
ally moves or manipulates the actual data as the computation
proceeds. Traditionally, the control plane is the realm of the
OS.

The fundamental issue is that many accelerators, such as
GPUs, cannot run an OS, and control plane activities are
delegated to run on a host CPU. The CPU then becomes a
choke point on the critical path for data movement in the
system. This paper provides data to show that this is the case.

Even if one pushes some control plane functionality
onto the accelerators [28, 45, 46], current proposals are not
sufficient to ensure efficient data movement. Consider a data
transfer between GPU memory and CPU system memory.
If the control plane is run on the CPU, a feature-rich, out-
of-order core with a great deal of silicon devoted to ILP-

Figure 1: TMNT Control Flow.
Note: Transporters shown as 2 blocks as a visual convenience

1. NIC sends interrupt to CPU about incoming request 2. CPU figures out
kernels that each accelerator needs to run, the data dependencies between
them, etc., and then offloads the plan to TRANSPORTER 3. TRANSPORTER

tells Storage to send required data to GPU. 4. Storage acknowledges
completion 5. TRANSPORTER schedules processing of data on GPU 6. GPU
acknowledges completion 7. TRANSPORTER triggers reply on NIC 8. NIC
acknowledges completion 9. TRANSPORTER notifies completion to CPU

and MLP-enhancing mechanisms is being squandered on
simple data movement tasks, such as configuring DMAs.
Alternatively, one could run the control plane on the GPU, but
the massive internal parallelism is frittered away on copying
data over the bus. In both cases, the hardware brought to
bear on the problem would be better used on computation
for which it is well-tuned, and simple data movement tasks
preempt other useful work on that hardware.

This paper argues for separating transport — the actual
physical management of data, from the rest of the control
plane by adding simple hardware specialized purely for
this task, called TRANSPORTERS. TRANSPORTERS facilitate
offloading accelerator scheduling, data movement, and inter-
accelerator communication and co-ordination, through a
management protocol called TALK TO MY NEIGHBORS
TRANSPORT (TMNT ).

TMNT abstracts away the management of transport,
(e.g., memory/buffer management, data copying, and cache-
coherence) allowing the application programmer and OS
developer to express their computation in higher level abstrac-
tions, such as a Data Flow Graph (DFG). The TRANSPORTER
hardware then assumes the scheduling of tasks on accelera-
tors, pipelining of accelerators, and enforcing access control.
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(a) Traditional Control Flow.
1. NIC sends interrupt to CPU about incoming request 2. CPU issues DMA
request to read data from storage 3. Storage sends interrupt to CPU 4. CPU
initiates GPU processing 5. GPU interrupts CPU about finished task 6. CPU

initiates network transfer on NIC 7. NIC interrupts CPU

(b) Traditional Data Flow.
1. Move request packets from NIC to Memory 2. CPU loads request packets 3.
CPU requests data from Storage 4. Move data to GPU for processing 5. Move
results from GPU to memory 6. Read results to CPU 7. Send reply packets to

NIC

Figure 2: Control and Data Flow on a Traditional System

TRANSPORTERS may be implemented on the bus hub (e.g.,
Gen-Z’s hub) or as a cache-coherent side-core [29, 31] on
the CPU die. Figure 1 shows the control flow for serving a
request on an image-resize server that uses a GPU, a smart
storage device, a smart NIC, and TRANSPORTERS.

In the remainder of this paper, we motivate the need for
such a system by enumerating the challenges that designing
a multi-accelerator system poses, with particular attention to
performance and programming. We quantify the potential
performance gains left on the table by current systems,
and conclude with a design sketch of TRANSPORTERS and
TMNT .

2. Motivation
We posit that in the near future, systems that leverage

multiple accelerators will be fairly common. As an example,
consider a system that is made up of several different accel-
erators: a Storage NXU, a Network NXU and a GPU — all
of which are commercially available today [8, 20, 32, 43].
NXUs [46] are accelerators that operate near some I/O re-
source; near indicating that these compute units are closer
than the CPU — they may be loosely-coupled with the I/O
device, e.g., implemented as an FPGA that is on the same
device, or in a more tightly integrated fashion, e.g., CPUs on
the same die as the Flash/NVM like in Willow [43].

These devices operate as ”Slaves” to the host CPU in
the archetypal Master-Slave model of managing I/O devices,
i.e., all data movement and control flow is controlled by
the ”Master”. Data that is effectively exchanged between two
accelerators must first be copied to the system’s main memory
before it can be copied into another accelerator. Control flow
is, similarly, carried out in a synchronous manner by the
software running on the CPU.

To illustrate the drawbacks of the Master-Slave model on
multi-accelerator systems, we present two motivating exam-

ples that use GPU offload in the cloud, possibly orchestrated
with other accelerators. First, consider a GPU-based image
resizing workload at a web-service, such as Flickr [42, 46],
which responds to an image request by reading a base image
from storage and producing a resized version using a GPU.
Second, consider image similarity search, in which requests
perform image classification on the GPU, and the results
are compared against a database in storage. These scenarios
feature network and storage I/O as well as acceleration on
specialized hardware.

In both of these examples, the sequence of events on a
traditional system looks something like the data and control
flow illustrated in Figures 2a and 2b, respectively. A request
arrives over the network, packets are copied to the system’s
main memory, and an interrupt is delivered to the CPU (or
the CPU polls the NIC). The CPU loads the request packets,
performs some computation to determine the data it needs
from storage, and issues the read request. The data is then
DMA’d from storage into system memory. The CPU then
launches a GPU kernel to perform computation on the data
loaded from storage, and orchestrates movement of the data
from system memory to the GPU’s memory. Once the GPU
finishes running the kernel, it sends an interrupts to the CPU,
which then proceeds to copy the results from GPU memory
to system memory. At this point the requested service is
complete; the CPU moves the result to the NIC and the reply
packets are sent out.

Consider the same workload running on a system with
storage and network NXUs. Data that should effectively be
flowing directly between the NXUs must first bounce through
main memory, and control flow must be mediated on the
CPU, leading to synchronous inter-device stalls to evaluate
relatively simple and static policies.

When programming a system with multiple accelerators to
perform a specific task, as in the examples outlined above, a
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Figure 3: TMNT Data Flow.
Note: Transporters shown as 2 blocks as a visual convenience

1. Move request packets from NIC to Memory 2. CPU loads request packets
3. Move data from Storage to GPU for processing
4. Move results from GPU to NIC to be sent out

dataflow programming model is a natural fit. Each accelerator
can be modeled as a node in a Data Flow Graph (DFG) that
consumes input from another node and/or produces data that
is then input for another node.

Figure 3 shows the improved data flow for the examples
described above on a multi-accelerator system. For example,
steps 3 and 4 in Figure 2b can be replaced by a single step
where data from the Storage NXU is directly moved to the
GPU, as shown in Step 3 of Figure 3. Similarly, Steps 5, 6
and 7 in Figure 2b are replaced by Step 4 in Figure 3. In this
case, the processed data from the GPU is moved directly to
the Network NXU, which has instructions on replying to the
user.

A key challenge to implementing a dataflow programming
model in current systems is the lack of autonomy for the
nodes. Rather, control flow in current systems is centralized
and synchronous, which results in the well studied problem
of the control plane being intertwined with the data plane.
Prior work [13, 44, 49, 50, 52] has shown how to move data
between accelerators with the least number of hops on current
systems, even adaptively transferring to system memory as
an optimization when the accelerator’s memory is full, or the
bus is busy, but decentralizing control flow remains an open
problem.

3. Challenges
Any system designed to simplify accelerator program-

ming must overcome several key challenges, 3 of which are
described below. For each challenge, we observe how it can
be addressed by separating out the transport layer.
Challenge #1: Abstracting low-level data placement and
movement details without sacrificing performance.

Current models for programming accelerators (primarily
GPGPUs) demand too much of the application programmer.
In addition to tuning the computation to fit the model sup-
ported by the accelerator, the developers must also worry
about the physical placement and movement of data. If the
workload operates on a large dataset, the programmer must
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partition the data into chunks that will fit into the accelerator.
In order to extract the maximal throughput from the system,
the programmer must also manually schedule data movement
such that it overlaps with computation on the GPGPU.

Current solutions to this challenge, such as NVIDIA’s Uni-
fied Memory [35] and AMD’s Heterogeneous System Archi-
tecture [33], address programmability of memory movement,
but not performance. In Unified Memory, the GPU kernel
operates in the same virtual address space as the CUDA ap-
plication on the CPU. For data that should be shared between
the GPU and CPU, the application uses a custom allocator,
cudaMallocManaged. The CUDA framework assumes
control of the physical location of these pages, migrating
them to and from the GPU, driven by demand paging. Unified
memory also frees the application programmer from parti-
tioning their dataset to fit into the device’s memory; GPU
kernels can access larger data sets (up to the size of main
memory) just as they would in a CPU program.

Unfortunately, Unified Memory typically results in worse
performance compared to hand-written memcpy; Unified
Memory also causes spikes in CPU utilization. GPUs are
massively parallel processors that work in lock-step through
a program [30]. For example, the Nvidia P100 device, that we
use as an experimentation platform has 3584 CUDA cores [1].
Relying on demand-paging means that, at any given moment,
some of these 3584 cores may be stalled while the offending
page is being faulted in. When the the GPGPU kernel takes
a page-fault, an interrupt is raised on the CPU to request the
migration of the faulting frame. This interrupt is delivered
to a handler registered by the CUDA framework, the UVM-
Handler. The UVM-Handler services this request and initiates
the transfer of the faulting frame to the GPU. We measured
the average time to fault-in a page on the P100 GPU to be
~170 µs, whereas the average time to transfer a 4KiB page
on the same x16 PCIe 3.0 bus is ~0.128 µs.

In order to understand the performance impact of us-
ing unified memory, we measured total execution time, and
CPU utilization when running a micro-benchmark which al-
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Figure 5: Execution time for rodinia benchmarks on
the NVIDIA P100.

locates a configurable number of pages of memory, writes
1024 4-byte floating point numbers to each page in a pre-
processing step, runs a kernel on the GPU that computes
round(pow(log(x), 2)) on each of the numbers — a simple, if
somewhat nonsensical, computation that is easily paralleliz-
able, and then verifies that each of the numbers is the correct
expected value in a post-processing step on the CPU.

All experiments were carried out on a machine with
2 24-core Intel Xeon CPU E5-2650 v4 CPUs, 128 GiB
of 2400MHz DDR4 DRAM, and 4 NVIDIA P100 GPUs
connected via x16 PCIe 3.0 (although only one was used
for our experiments). The P100 is a Pascal generation GPU
with 16GiB of HBM2 memory. The system ran Ubuntu
16.04.3 LTS with a stock GNU/Linux 4.4.0-112-generic
x86 64 kernel, and used the CUDA 9.1 framework. We ran
the micro-benchmark in 3 different memory management
configurations: MemCpy: where memory is explicitly moved
to and from the accelerator using cudaMemcpy(), UVM:
memory movement is managed by the Unified Memory
handler, with no pre-fetch hints, and UVM with pre-fetch:
memory is managed by the unified memory handler, but pre-
fetch hints are provided where appropriate.

Figure 4 shows the end-to-end run time of the micro-
benchmark, when run on differing sizes of input data (40
MB, 400 MB, and 4000 MB). The run time data presented
is averaged across 100 iterations. For each data size, the run
time is normalized to that of the memcpy configuration. We
observe that unified memory performs worse than memcpy in
all cases. While there is some speedup in the memory alloca-
tion phase from using the new cudaMallocManaged allocator,
and from eliminating the copy-in and copy-out phases when
using unified memory, these gains are significantly dwarfed
by the extra time spent paging-in the data accessed during
each processing stage. We observe that the UVM-Handler at-
tempted to speculatively move data around (with and without
pre-fetch hints), but it was not enough.

Figure 5 shows the run time for applications in the Ro-
dinia [16] GPU benchmark suite when run using explicit
memcpy and unified memory, normalized to memcpy. For

a majority of the applications, unified memory negatively
impacts their run time.

While schemes like unified memory are a step forward in
simplifying the programming of accelerators, especially when
the workload needs to access a larger data set than will fit in
the accelerator’s memory, this simplicity comes at a cost in
performance. Given the monetary cost of the accelerators, and
the computationally-intensive nature of the workloads that
rely on such accelerators, application developers are reluctant
to adopt Unified Memory [3]. Any system attempting to
solve the programmability issue must also ensure that the
performance impact of their scheme is minimal, or their
solution will see poor adoption.
Observation: Manual memcpy is fast because programmers
understand when data is going to be needed better than a
framework like CUDA can infer. Frameworks that abstract
away memory management should leverage this knowledge
by providing programmers the means to express said relation-
ships at a higher level of abstraction.
Challenge #2: Performance isolation of accelerators.
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Figure 6: CPU Utilization when running a micro-benchmark
that accesses 4000 MiB of data, touching each page 1024
times on the CPU in pre- and post- processing steps, and on
the GPU.

Unified memory relies on CPU code to move data, which
leads to spikes in CPU utilization. Figure 6 shows the CPU uti-
lization while running one iteration of our micro-benchmark
on 4000 MiB of data. We see that the UVM-Handler con-
sumes 100% of cycles on 1 CPU core whenever data needs
to be moved (~15% of the total run time of the micro-
benchmark). Although we have little insight into what the
UVM-Handler does during the time it occupies the CPU,
our educated guess, both from reading the CUDA spec [36]
and observing externally visible effects, is that there is some
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bookkeeping about the physical location of frames, as well
as, data movement and heuristic-based pre-fetch.

Worse, funneling data movement through the CPU can
cause one accelerator to delay otherwise unrelated data move-
ment for a different accelerator. Because the software on the
CPU manages data movement for accelerators synchronously,
the CPU becomes a bottleneck for data movement. This prob-
lem has been observed independently in systems that incorpo-
rate high-throughput I/O devices [37]. Attempting to build a
dataflow-style pipeline composed of several high-throughput
accelerators will likely exacerbate this situation even further.
System software must ensure that there is performance isola-
tion between accelerators.
Observation: Performance isolation becomes an issue when
the control planes of otherwise independent devices are all
bound together on a shared resource. Decentralization of
control (autonomy) is key to performance isolation.
Challenge #3: Memory protection.

Hardware support for memory protection among accel-
erators remains primitive despite significant research ef-
fort [10, 11, 22, 25, 26, 38, 39, 51]. It remains to be seen
if the situation will improve in the future.

IOMMUs have typically been used to enforce memory
protection on traditional I/O devices, by mapping only those
parts of memory that an I/O device should have access to for
the given task. This model imposes high overheads for NXUs
as it requires expensive round trips to the OS running on the
CPU for access control.

Prior work [46] has made the case for taking advantage of
the coherent-shared memory between the host CPU and their
accelerators [33]. The idea is to decompose the application
into services running on accelerators in a single address space.
Applications can communicate by independently invoking
services on other accelerators via shared memory message
passing. This addresses the programmability challenge by ab-
stracting away the details of access control, communication,
and co-ordination (implemented by a combination of hard-
ware and Library OSes [27]). The downside of this model is
that it foregoes fault isolation.

In order to be able to pipeline accelerators in an efficient
manner, the system needs to enable accelerators to enforce
policies, but not make policy decisions.
Observation: Control is made up of two parts: Policy and
Enforcement. Policy must remain centralized; Decentralizing
enforcement grants enough autonomy to remove the CPU
bottleneck, while preserving memory protection.

4. Design
In order to achieve programmability and performance in a

multi-accelerator system, we envision a new system design
wherein application programmers represent their program as a
sequence of tasks that can be delegated to various accelerators,

explicitly outlining the relationships between these tasks —
this is known as a plan. New on-fabric hardware, called
TRANSPORTERS, “execute” this plan, managing the various
accelerators on the system, as necessary (e.g., data movement,
communication, scheduling, and access control). In order to
provide the same security guarantees as current systems, the
plan is verified by the OS, and any necessary access privileges
are pre-authorized.

Figure 1 shows the above changes in action for the image-
resize example. In terms of the control/data plane framework,
the data plane entirely resides on the TRANSPORTERS; the
control plane is spread across both the CPU and the TRANS-
PORTERS. Policy decisions are made by the application pro-
gram and the OS, but are enforced on the TRANSPORTER.

A natural place to implement the TRANSPORTER is on the
switches of the bus that connects the CPU to the remaining
devices in the system, giving the TRANSPORTER a great
vantage point to observe and control the movement of data
between devices. In the simplest mode of operation (when
the attached devices do not support the TMNT protocol),
TRANSPORTERS build on the idea of a Copy Engine [9, 21,
47, 53] to relieve the duties of managing data movement
from the CPU. When TMNT -capable devices are present,
TRANSPORTERS turn the otherwise passive bus into an active
bus that can be programmed to provide services, such as pre-
fetch, connection negotiation, buffer management, etc., to the
attached devices.

We envision TALK TO MY NEIGHBORS TRANSPORT
(TMNT ) to be a management-layer protocol that enables
the TRANSPORTER to orchestrate accelerators into a pipeline
by managing task scheduling, access control, movement of
data, and inter-accelerator co-ordination. TMNT enables the
TRANSPORTER to effect finalized plans, offloaded to it by
the OS, using the attached accelerators. The TRANSPORTER
should be able to control devices using the legacy interfaces
available today (command queues, ring buffers, etc.). Modi-
fying accelerators to include support for the TMNT protocol
may provide more performance opportunity.

Concretely, we envision TMNT as an extension to
GenZ [5], a newly proposed inter-connect standard that
introduces the notion of memory-centric communication, i.e.,
all devices perform loads and stores on memory locations that
may be physically distributed on various devices, including
main memory, GPU memory, and self-controlled NVM. This
standard was primarily developed to allow memory resources
to control themselves independent of processor-specific id-
iosyncrasies, thereby eliminating a common choke-point on
current systems — the CPU chipset. GenZ inter-connects are
packet-switched, passive, and backwards compatible with
PCIe [2], the most commonly used inter-connect today. Lay-
ering TMNT on top of the GenZ protocol enables the system
to take advantage of the data-path independence that GenZ
provides.
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