
SQL-Rank: A Listwise Approach to Collaborative Ranking

Liwei Wu 1 2 Cho-Jui Hsieh 1 2 James Sharpnack 1

Abstract

In this paper, we propose a listwise approach for

constructing user-specific rankings in recommen-

dation systems in a collaborative fashion. We

contrast the listwise approach to previous point-

wise and pairwise approaches, which are based on

treating either each rating or each pairwise com-

parison as an independent instance respectively.

By extending the work of (Cao et al., 2007), we

cast listwise collaborative ranking as maximum

likelihood under a permutation model which ap-

plies probability mass to permutations based on a

low rank latent score matrix. We present a novel

algorithm called SQL-Rank, which can accommo-

date ties and missing data and can run in linear

time. We develop a theoretical framework for ana-

lyzing listwise ranking methods based on a novel

representation theory for the permutation model.

Applying this framework to collaborative ranking,

we derive asymptotic statistical rates as the num-

ber of users and items grow together. We conclude

by demonstrating that our SQL-Rank method

often outperforms current state-of-the-art algo-

rithms for implicit feedback such as Weighted-

MF and BPR and achieve favorable results when

compared to explicit feedback algorithms such as

matrix factorization and collaborative ranking.

1. Introduction

We study a novel approach to collaborative ranking—the per-

sonalized ranking of items for users based on their observed

preferences—through the use of listwise losses, which are

dependent only on the observed rankings of items by users.

We propose the SQL-Rank algorithm, which can handle ties

and missingness, incorporate both explicit ratings and more

implicit feedback, provides personalized rankings, and is

1Department of Statistics, University of California, Davis,
CA, USA 2Department of Computer Science, University of
California, Davis, CA, USA. Correspondence to: Liwei Wu
<liwu@ucdavis.com>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

based on the relative rankings of items. To better understand

the proposed contributions, let us begin with a brief history

of the topic.

1.1. A brief history of collaborative ranking

Recommendation systems, found in many modern web ap-

plications, movie streaming services, and social media, rank

new items for users and are judged based on user engage-

ment (implicit feedback) and ratings (explicit feedback) of

the recommended items. A high-quality recommendation

system must understand the popularity of an item and infer a

user’s specific preferences with limited data. Collaborative

filtering, introduced in (Hill et al., 1995), refers to the use

of an entire community’s preferences to better predict the

preferences of an individual (see (Schafer et al., 2007) for

an overview). In systems where users provide ratings of

items, collaborative filtering can be approached as a point-

wise prediction task, in which we attempt to predict the

unobserved ratings (Pan et al., 2017). Low rank methods,

in which the rating distribution is parametrized by a low

rank matrix (meaning that there are a few latent factors)

provides a powerful framework for estimating ratings (Mnih

& Salakhutdinov, 2008; Koren, 2008). There are several

issues with this approach. One issue is that the feedback

may not be representative of the unobserved entries due to

a sampling bias, an effect that is prevalent when the items

are only ‘liked’ or the feedback is implicit because it is in-

ferred from user engagement. Augmenting techniques like

weighting were introduced to the matrix factorization objec-

tive to overcome this problem (Hsieh et al., 2015; Hu et al.,

2008). Many other techniques are also introduced (Kabbur

et al., 2013; Wang et al., 2017; Wu et al., 2016). Another

methodology worth noting is the CofiRank algorithm of

(Weimer et al., 2008) which minimizes a convex surrogate

of the normalized discounted cumulative gain (NDCG). The

pointwise framework has other flaws, chief among them is

that in recommendation systems we are not interested in

predicting ratings or engagement, but rather we must rank

the items.

Ranking is an inherently relative exercise. Because users

have different standards for ratings, it is often desirable for

ranking algorithms to rely only on relative rankings and not

absolute ratings. A ranking loss is one that only considers a

user’s relative preferences between items, and ignores the

SQL-Rank: A Listwise Approach to Collaborative Ranking

absolute value of the ratings entirely, thus deviating from the

pointwise framework. Ranking losses can be characterized

as pairwise and listwise. A pairwise method decomposes

the objective into pairs of items j, k for a user i, and ef-

fectively asks ‘did we successfully predict the comparison

between j and k for user i?’. The comparison is a binary

response—user i liked j more than or less than k—with

possible missing values in the event of ties or unobserved

preferences. Because the pairwise model has cast the prob-

lem in the classification framework, then tools like support

vector machines were used to learn rankings; (Joachims,

2002) introduces rankSVM and efficient solvers can be

found in (Chapelle & Keerthi, 2010). Much of the existing

literature focuses on learning a single ranking for all users,

which we will call simple ranking (Freund et al., 2003; Agar-

wal, 2006; Pahikkala et al., 2009). This work will focus on

the personalized ranking setting, in which the ranking is

dependent on the user.

Pairwise methods for personalized ranking have seen great

advances in recent years, with the AltSVM algorithm of

(Park et al., 2015), Bayesian personalized ranking (BPR)

of (Rendle et al., 2009), and the near linear-time algorithm

of (Wu et al., 2017). Nevertheless, pairwise algorithms im-

plicitly assume that the item comparisons are independent,

because the objective can be decomposed where each com-

parison has equal weight. Listwise losses instead assign a

loss, via a generative model, to the entire observed ranking,

which can be thought of as a permutation of the m items,

instead of each comparison independently. The listwise

permutation model, introduced in (Cao et al., 2007), can

be thought of as a weighted urn model, where items corre-

spond to balls in an urn and they are sequentially plucked

from the urn with probability proportional to φ(Xij) where

Xij is the latent score for user i and item j and φ is some

non-negative function. They proposed to learn rankings

by optimizing a cross entropy between the probability of k
items being at the top of the ranking and the observed rank-

ing, which they combine with a neural network, resulting

in the ListNet algorithm. (Shi et al., 2010) applies this idea

to collaborative ranking, but uses only the top-1 probability

because of the computational complexity of using top-k in

this setting. This was extended in (Huang et al., 2015) to

incorporate neighborhood information. (Xia et al., 2008) in-

stead proposes a maximum likelihood framework that uses

the permutation probability directly, which enjoyed some

empirical success.

Very little is understood about the theoretical performance

of listwise methods. (Cao et al., 2007) demonstrates that

the listwise loss has some basic desirable properties such

as monotonicity, i.e. increasing the score of an item will

tend to make it more highly ranked. (Lan et al., 2009)

studies the generalizability of several listwise losses, using

the local Rademacher complexity, and found that the excess

risk could be bounded by a 1/
√
n term (recall, n is the

number of users). Two main issues with this work are that

no dependence on the number of items is given—it seems

these results do not hold when m is increasing—and the

scores are not personalized to specific users, meaning that

they assume that each user is an independent and identically

distributed observation. A simple open problem is: can we

consistently learn preferences from a single user’s data if we

are given item features and we assume a simple parametric

model? (n = 1,m → ∞.)

1.2. Contributions of this work

We can summarize the shortcomings of the existing work:

current listwise methods for collaborative ranking rely on

the top-1 loss, algorithms involving the full permutation

probability are computationally expensive, little is known

about the theoretical performance of listwise methods, and

few frameworks are flexible enough to handle explicit and

implicit data with ties and missingness. This paper addresses

each of these in turn by proposing and analyzing the SQL-

rank algorithm.

• We propose the SQL-Rank method, which is motivated

by the permutation probability, and has advantages

over the previous listwise method using cross entropy

loss.

• We provide an O(iter · (|Ω|r)) linear algorithm based

on stochastic gradient descent, where Ω is the set of

observed ratings and r is the rank.

• The methodology can incorporate both implicit and

explicit feedback, and can gracefully handle ties and

missing data.

• We provide a theoretical framework for analyzing list-

wise methods, and apply this to the simple ranking and

personalized ranking settings, highlighting the depen-

dence on the number of users and items.

2. Methodology

2.1. Permutation probability

The permutation probability, (Cao et al., 2007), is a gener-

ative model for the ranking parametrized by latent scores.

First assume there exists a ranking function that assigns

scores to all the items. Let’s say we have m items, then

the scores assigned can be represented as a vector s =
(s1, s2, ..., sm). Denote a particular permutation (or order-

ing) of the m items as π, which is a random variable and

takes values from the set of all possible permutations Sm

(the symmetric group on m elements). π1 denotes the index

of highest ranked item and πm is the lowest ranked. The

SQL-Rank: A Listwise Approach to Collaborative Ranking

probability of obtaining π is defined to be

Ps(π) :=

m∏

j=1

φ(sπj
)

∑m

l=j φ(sπl
)
, (1)

where φ(.) is an increasing and strictly positive function.

An interpretation of this model is that each item is drawn

without replacement with probability proportional to φ(si)
for item i in each step. One can easily show that Ps(π)
is a valid probability distribution, i.e.

∑

π∈Sm
Ps(π) =

1, Ps(π) > 0, ∀π. Furthermore, this definition of permu-

tation probability enjoys several favorable properties (see

(Cao et al., 2007)). For any permutation π if you swap two

elements ranked at i < j generating the permutation π′

(π′
i = πj , π′

j = πi, πk = π′
k, k 6= i, j), if sπi

> sπj

then Ps(π) > Ps(π
′). Also, if permutation π satisfies

sπi
> sπi+1

, ∀i, then we have π = argmaxπ′∈Sm
Ps(π

′).
Both of these properties can be summarized: larger scores

will tend to be ranked more highly than lower scores. These

properties are required for the negative log-likelihood to be

considered sound for ranking (Xia et al., 2008).

In recommendation systems, the top ranked items can be

more impactful for the performance. In order to focus on

the top k ranked items, we can compute the partial-ranking

marginal probability,

P (k,m̄)
s (π) =

min{k,m̄}
∏

j=1

φ(sπj
)

∑m̄

l=j φ(sπl
)
. (2)

It is a common occurrence that only a proportion of the m
items are ranked, and in that case we will allow m̄ ≤ m
to be the number of observed rankings (we assume that

π1, . . . , πm̄ are the complete list of ranked items). When

k = 1, the first summation vanishes and top-1 probability

can be calculated straightforwardly, which is why k = 1 is

widely used in previous listwise approaches for collabora-

tive ranking. Counter-intuitively, we demonstrate that using

a larger k tends to improve the ranking performance.

We see that computing the likelihood loss is linear in the

number of ranked items, which is in contrast to the cross-

entropy loss used in (Cao et al., 2007), which takes expo-

nential time in k. The cross-entropy loss is also not sound,

i.e. it can rank worse scoring permutations more highly, but

the negative log-likelihood is sound. We will discuss how

we can deal with ties in the following subsection, namely,

when the ranking is derived from ratings and multiple items

receive the same rating, then there is ambiguity as to the

order of the tied items. This is a common occurrence when

the data is implicit, namely the output is whether the user

engaged with the item or not, yet did not provide explicit

feedback. Because the output is binary, the cross-entropy

loss (which is based on top-k probability with k very small)

will perform very poorly because there will be many ties

for the top ranked items. To this end, we propose a col-

laborative ranking algorithm using the listwise likelihood

that can accommodate ties and missingness, which we call

Stochastic Queuing Listwise Ranking, or SQL-Rank.

Figure 1. Demonstration of Stochastic Queuing Process—the rat-

ing matrix R (left) generates multiple possible rankings Π’s (right),

Π ∈ S(R,Ω) by breaking ties randomly.

2.2. Deriving objective function for SQL-Rank

The goal of collaborative ranking is to predict a personalized

score Xij that reflects the preference level of user i towards

item j, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. It is reasonable

to assume the matrix X ∈ R
n×m to be low rank because

there are only a small number of latent factors contributing

to users’ preferences. The input data is given in the form

of “user i gives item j a relevance score Rij”. Note that for

simplicity we assume all the users have the same number

m̄ of ratings, but this can be easily generalized to the non-

uniform case by replacing m̄ with mi (number of ratings

for user i).

With our scores X and our ratings R, we can specify our

collaborative ranking model using the permutation probabil-

ity (2). Let Πi be a ranking permutation of items for user i
(extracted from R), we can stack Π1, . . .Πn, row by row, to

get the permutation matrix Π ∈ R
n×m. Assuming users are

independent with each other, the probability of observing a

particular Π given the scoring matrix X can be written as

P
(k,m̄)
X (Π) =

n∏

i=1

P
(k,m̄)
Xi

(Πi). (3)

We will assume that log φ(x) = 1/(1 + exp(−x)) is the

sigmoid function. This has the advantage of bounding the

resulting weights, φ(Xij), and maintaining their positivity

without adding additional constraints.

SQL-Rank: A Listwise Approach to Collaborative Ranking

Typical rating data will contain many ties within each row.

In such cases, the permutation Π is no longer unique and

there is a set of permutations that coincides with rating

because with any candidate Π we can arbitrarily shuffle the

ordering of items with the same relevance scores to generate

a new candidate matrix Π′ which is still valid (see Figure 1).

We denote the set of valid permutations as S(R,Ω), where Ω
is the set of all pairs (i, j) such that Ri,j is observed. We call

this shuffling process the Stochastic Queuing Process, since

one can imagine that by permuting ties we are stochastically

queuing new Π’s for future use in the algorithm.

The probability of observing R therefore should be defined

as P
(k,m̄)
X (R) =

∑

Π∈S(R,Ω) PX(Π). To learn the scoring

matrix X , we can naturally solve the following maximum

likelihood estimator with low-rank constraint:

min
X∈X

− log
∑

Π∈S(R,Ω)

P
(k,m̄)
X (Π), (4)

where X is the structural constraint of the scoring matrix.

To enforce low-rankness, we use the nuclear norm regular-

ization X = {X : ‖X‖∗ ≤ r}.

Eq (4) is hard to optimize since there is a summation inside

the log. But by Jensen’s inequality and convexity of − log
function, we can move the summation outside log and ob-

tain an upper bound of the original negative log-likelihood,

leading to the following optimization problem:

min
X∈X

−
∑

Π∈S(R,Ω)

logP
(k,m̄)
X (Π) (5)

This upper bound is much easier to optimize and can be

solved using Stochastic Gradient Descent (SGD).

Next we discuss how to apply our model for explicit and

implicit feedback settings. In the explicit feedback setting,

it is assumed that the matrix R is partially observed and the

observed entries are explicit ratings in a range (e.g., 1 to

5). We will show in the experiments that k = m̄ (using the

full list) leads to the best results. (Huang et al., 2015) also

observed that increasing k is useful for their cross-entropy

loss, but they were not able to increase k since their model

has time complexity exponential to k.

In the implicit feedback setting each element of Rij is either

1 or 0, where 1 means positive actions (e.g., click or like)

and 0 means no action is observed. Directly solving (5)

will be expensive since m̄ = m and the computation will

involve all the mn elements at each iteration. Moreover,

the 0’s in the matrix could mean either a lower relevance

score or missing, thus should contribute less to the objective

function. Therefore, we adopt the idea of negative sampling

(Mikolov et al., 2013) in our list-wise formulation. For each

user (row of R), assume there are m̃ 1’s, we then sample ρm̃
unobserved entries uniformly from the same row and append

Algorithm 1 SQL-Rank: General Framework

Input: Ω, {Rij : (i, j) ∈ Ω}, λ ∈ R
+, ss, rate, ρ

Output: U ∈ R
r×n and V ∈ R

r×m

Randomly initialize U, V from Gaussian Distribution

repeat

Generate a new permutation matrix Π {see alg 2}
Apply gradient update to U while fixing V

Apply gradient update to V while fixing U {see alg 4}
until performance for validation set is good

return U, V {recover score matrix X}

Algorithm 2 Stochastic Queuing Process

Input: Ω, {Rij : (i, j) ∈ Ω}, ρ
Output: Π ∈ R

n×m

for i = 1 to n do

Sort items based on observed relevance levels Ri

Form Πi based on indices of items in the sorted list

Shuffle Πi for items within the same relevance level

if Dataset is implicit feedback then

Uniformly sample ρm̃ items from unobserved items

Append sampled indices to the back of Πi

end if

end for

Stack Πi as rows to form matrix Π
Return Π {Used later to compute gradient}

to the back of the list. This then becomes the problem with

m̄ = (1 + ρ)m̃ and then we use the same algorithm in

explicit feedback setting to conduct updates. We then repeat

the sampling process at the end of each iteration, so the

update will be based on different set of 0’s at each time.

2.3. Non-convex implementation

Despite the advantage of the objective function in equa-

tion (5) being convex, it is still not feasible for large-scale

problems since the scoring matrix X ∈ R
n×m leads to high

computational and memory cost. We follow a common

trick to transform (5) to the non-convex form by replac-

ing X = UTV : with U ∈ R
r×n, V ∈ R

r×m so that the

objective is,

∑

Π∈S(R,Ω)

−
n∑

i=1

m̄∑

j=1

log
φ(uT

i vΠij
)

∑m̄

l=j φ(u
T
i vΠil

)
︸ ︷︷ ︸

f(U,V)

+
λ

2
(‖U‖2F +‖V ‖2F),

where ui, vj are columns of U, V respectively. We apply

stochastic gradient descent to solve this problem. At each

step, we choose a permutation matrix Π ∈ S(R,Ω) using

the stochastic queuing process (Algorithm 2) and then up-

date U, V by ∇f(U, V). For example, the gradient with

SQL-Rank: A Listwise Approach to Collaborative Ranking

respect to V is (g = log φ is the sigmoid function),

∂f

∂vj
=
∑

i∈Ωj

m̄∑

t=1

{

− g′(uT
i vt)ui

+
✶(ranki(j) ≥ t)φ(uT

i vj)
∑m̄

l=t φ(u
T
i vΠil

)
g′(uT

i vj)ui

}

where Ωj denotes the set of users that have rated the item j
and ranki(j) is a function gives the rank of the item j for that

user i. Because g is the sigmoid function, g′ = g · (1− g).
The gradient with respect to U can be derived similarly.

As one can see, a naive way to compute the gradient of f
requires O(nm̄2r) time, which is very slow even for one it-

eration. However, we show in Algorithm 3 (in the appendix)

that there is a smart way to re-arranging the computation so

that ∇V f(U, V) can be computed in O(nm̄r) time, which

makes our SQL-Rank a linear-time algorithm (with the same

per-iteration complexity as classical matrix factorization).

3. Theory

Throughout this section, we will establish a theoretical

framework for understanding listwise ranking algorithms.

We do not consider ties and missing data and reserve this ex-

tension of the theory developed here for future work. These

tools can be employed to analyze any problem of the con-

strained form

X̂ := argmin− logPX(Π) such that X ∈ X . (6)

We will consider two main settings of listwise ranking, the

simple ranking setting where for each X ∈ X ,

Xij = β⊤zij , β ∈ R
s, ‖β‖ ≤ cb, (7)

where the feature vectors zij ∈ R
s are known, and the

personalized setting,

Xij = u⊤
i vj , ui, vj ∈ R

r, ‖U‖F ≤ cu, ‖V ‖F ≤ cv. (8)

The simple ranking setting, among other listwise programs

was considered in (Lan et al., 2009), and it was determined

that the excess risk is bounded by a 1/
√
n term. Critically,

these results assumed that the number of items m is bounded,

severely limiting their relevance to realistic recommendation

systems. It seems that we should be able to learn something

about a user’s preferences by having them rank more items,

yet the existing theory does not reflect this.

The main engine of our theoretical analysis is a generative

mechanism for listwise ranking, which demonstrates that the

permutation probability model, (1), is also the probability

of a row-wise ordering of an exponential ensemble matrix.

We demonstrate that the excess risk in the parametric setting

scales like
√
m lnm/n, achieving parametric rates in n and

sub-linear excess risk in m when the feature dimension s is

fixed. In the personalized setting, (8), we bound the excess

risk by
√

m/n lnm when the rank r is fixed, which matches

comparable results for matrix factorization up to log factors.

3.1. Generative mechanism for listwise ranking

We give an alternative generative mechanism which will

prove useful for understanding the listwise ranking objec-

tive.

Theorem 1. Consider a matrix, Y , with independent en-

tries, Yij that are drawn from an exponential distribution

with rate φ(Xij). Let Πi be the ordering of the entries of

Yi from smallest to largest, then the probability of Πi|Xi is

exactly PXi
(Πi).

The proof is in the appendix. A key aspect of this generative

mechanism is that the listwise likelihood can be written as

a function of the exponential ensemble. This allows us to

establish concentration of measure results for the listwise

loss via bounded differences.

3.2. Statistical guarantees

As a first step to controlling the excess risk, we establish a

basic inequality. This bounds the excess risk by an empirical

process term, which is a random function of X̂ and for a

fixed X̂ it has mean zero. The excess risk (the difference

in expected loss between the estimate and the truth) can

also be written as the KL divergence between the estimated

model and the true model.

Lemma 1. Consider the minimizer, X̂ , to the constrained

optimization, (6). Suppose that there exists a X⋆ ∈ X such

that Πi ∼ PX⋆
i

independently for all i = 1, . . . , n. The KL-

divergence between the estimate and the truth is bounded

D(X⋆, X̂) :=
1

n

n∑

i=1

E log
PX⋆

i
(Πi)

P
X̂i

(Πi)
(basic)

≤ − 1

n

n∑

i=1

(

log
PX⋆

i
(Πi)

P
X̂i

(Πi)
− E log

PX⋆
i
(Πi)

P
X̂i

(Πi)

)

.

Because the RHS of (basic), the empirical process term,

has mean zero and is a function of the random permutation,

we can use Theorem 1 to bound it with high probability

for a fixed X̂ . Because X̂ is random, we need to control

the empirical process term uniformly over the selection of

X̂ ∈ X . To this end, we employ Dudley’s chaining, which

gives us the following theorem (see the Supplement for the

complete proof).

Theorem 2. Assume the conditions of Lemma 1. Define the

matrix norm, for the n×m matrix Z,

‖Z‖∞,2 :=

√
√
√
√

n∑

i=1

‖Zi‖2∞

SQL-Rank: A Listwise Approach to Collaborative Ranking

and define Z = {log φ(X) : X ∈ X} where log φ is

applied elementwise. Also, let N (ǫ,Z, ‖.‖∞,2) be the ǫ-
covering number of Z in the ∞, 2 norm (the fewest number

of ǫ radius balls in the ∞, 2 norm required to cover Z).

Then, if supZ∈Z ‖Z‖∞ ≤ C (where ‖.‖∞ is the element-

wise absolute maximum), then

D(X⋆, X̂) = OP

(√
m ln(m)

n
· g(Z)

)

,

where

g(Z) :=

∫ ∞

0

√

lnN (u,Z, ‖.‖∞,2)du,

and C is bounded by a constant in n,m.

Theorem 2 bounds the KL-divergence by the geometric

quantity g(Z). For the derived corollaries, we will assume

that log φ is 1-Lipschitz, which is true when log φ is the

sigmoid function. The results do not significantly change

by increasing the Lipschitz constant, so for simplicity of

presentation we set it to be 1.

Corollary 1. Assume the conditions to Lemma 1, the simple

ranking setting (7), that log φ is 1-Lipschitz, and ‖Zij‖2 is

bounded uniformly, then

D(X⋆, X̂) = OP

(√
sm

n
lnm

)

.

Notably when n = 1 this bound is on the order of
√
m lnm.

In the event that PX⋆ is concentrated primarily on a single

permutation for this user, and we resort to random guessing

(i.e. X̂1j = 0) then the KL divergence will be close to

lnm! ≈ m lnm. So, a reduction of the KL-divergence

from order m lnm to
√
m lnm is a large improvement, and

the above result should be understood to mean that we can

achieve consistency even when n = 1 (where consistency

is measured relative to random guessing).

Corollary 2. Assume the conditions to Lemma 1, the per-

sonalized ranking setting, (8), and that log φ is 1-Lipschitz,

D(X⋆, X̂) = OP

(√
rm

n
lnm

)

.

Notably, even in the personalized setting, where each user

has their own preferences, we can achieve 1/
√
n rates

for fixed m, r. Throughout these results the OP notation

only hides the constants cb, cu, cv, and any dependence on

s, r,m, n is explicitly given. While Theorem 2 gives us a

generic result that can be applied to a large range of con-

straint sets, we believe that the parametric simple ranking

and the low-rank personalized setting are the two most im-

portant listwise ranking problems.

4. Experiments

In this section, we compare our proposed algorithm (SQL-

Rank) with other state-of-the-art algorithms on real world

datasets. Note that our algorithm works for both implicit

feedback and explicit feedback settings. In the implicit

feedback setting, all the ratings are 0 or 1; in the explicit

feedback setting, explicit ratings (e.g., 1 to 5) are given

but only to a subset of user-item pairs. Since many real

world recommendation systems follow the implicit feedback

setting (e.g., purchases, clicks, or checkins), we will first

compare SQL-Rank on implicit feedback datasets and show

it outperforms state-of-the-art algorithms. Then we will

verify that our algorithm also performs well on explicit

feedback problems. All experiments are conducted on a

server with an Intel Xeon E5-2640 2.40GHz CPU and 64G

RAM.

4.1. Implicit Feedback

In the implicit feedback setting we compare the following

methods:

• SQL-Rank: our proposed algorithm implemented in

Julia 1.

• Weighted-MF: the weighted matrix factorization algo-

rithm by putting different weights on 0 and 1’s (Hu

et al., 2008; Hsieh et al., 2015).

• BPR: the Bayesian personalized ranking method moti-

vated by MLE (Rendle et al., 2009). For both Weighted-

MF and BPR, we use the C++ code by Quora 2.

Note that other collaborative ranking methods such as

Pirmal-CR++ (Wu et al., 2017) and List-MF (Shi et al.,

2010) do not work for implicit feedback data, and we will

compare with them later in the explicit feedback experi-

ments. For the performance metric, we use precision@k for

k = 1, 5, 10 defined by

precision@k =

∑n

i=1 |{1 ≤ l ≤ k : RiΠil
= 1}|

n · k , (9)

where R is the rating matrix and Πil gives the index of the

l-th ranked item for user i among all the items not rated by

user i in the training set.

We use rank r = 100 and tune regularization parameters

for all three algorithms using a random sampled validation

set. For Weighted-MF, we also tune the confidence weights

on unobserved data. For BPR and SQL-Rank, we fix the

ratio of subsampled unobserved 0’s versus observed 1’s to

be 3 : 1, which gives the best performance for both BPR

and SQL-rank in practice.

We experiment on the following four datasets. Note that the

1https://github.com/wuliwei9278/SQL-Rank
2https://github.com/quora/qmf

SQL-Rank: A Listwise Approach to Collaborative Ranking

Table 1. Comparing implicit feedback methods on various datasets.

DATASET METHOD P@1 P@5 P@10

MOVIELENS1M

SQL-RANK 0.73685 0.67167 0.61833
WEIGHTED-MF 0.54686 0.49423 0.46123

BPR 0.69951 0.65608 0.62494

AMAZON

SQL-RANK 0.04255 0.02978 0.02158
WEIGHTED-MF 0.03647 0.02492 0.01914

BPR 0.04863 0.01762 0.01306

YAHOO MUSIC

SQL-RANK 0.45512 0.36137 0.30689
WEIGHTED-MF 0.39075 0.31024 0.27008

BPR 0.37624 0.32184 0.28105

FOURSQUARE

SQL-RANK 0.05825 0.01941 0.01699
WEIGHTED-MF 0.02184 0.01553 0.01407

BPR 0.03398 0.01796 0.01359

original data of Movielens1m, Amazon and Yahoo-music

are ratings from 1 to 5, so we follow the procedure in (Ren-

dle et al., 2009; Yu et al., 2017) to preprocess the data. We

transform ratings of 4, 5 into 1’s and the rest entries (with

rating 1, 2, 3 and unknown) as 0’s. Also, we remove users

with very few 1’s in the corresponding row to make sure

there are enough 1’s for both training and testing. For Ama-

zon, Yahoo-music and Foursquare, we discard users with

less than 20 ratings and randomly select 10 1’s as training

and use the rest as testing. Movielens1m has more ratings

than others, so we keep users with more than 60 ratings, and

randomly sample 50 of them as training.

• Movielens1m: a popular movie recommendation data

with 6, 040 users and 3, 952 items.

• Amazon: the Amazon purchase rating data for musical

instruments 3 with 339, 232 users and 83, 047 items.

• Yahoo-music: the Yahoo music rating data set 4 which

contains 15, 400 users and 1, 000 items.

• Foursquare: a location check-in data5. The data set

contains 3, 112 users and 3, 298 venues with 27, 149
check-ins. The data set is already in the form of “0/1”

so we do not need to do any transformation.

The experimental results are shown in Table 1. We find

that SQL-Rank outperforms both Weighted-MF and BPR in

most cases.

4.2. Explicit Feedback

Next we compare the following methods in the explicit

feedback setting:

• SQL-Rank: our proposed algorithm implemented in

Julia. Note that in the explicit feedback setting our

3http://jmcauley.ucsd.edu/data/amazon/
4https://webscope.sandbox.yahoo.com/

catalog.php?datatype=r&did=3
5https://sites.google.com/site/

yangdingqi/home/foursquare-dataset

algorithm only considers pairs with explicit ratings.

• List-MF: the listwise algorithm using the cross entropy

loss between observed rating and top 1 probability

(Shi et al., 2010). We use the C++ implementation on

github6.

• MF: the classical matrix factorization algorithm in (Ko-

ren, 2008) utilizing a pointwise loss solved by SGD.

We implemented SGD in Julia.

• Primal-CR++: the recently proposed pairwise algo-

rithm in (Wu et al., 2017). We use the Julia implemen-

tation released by the authors7.

Experiments are conducted on Movielens1m and Yahoo-

music datasets. We perform the same procedure as in im-

plicit feedback setting except that we do not need to mask

the ratings into “0/1”.

We measure the performance in the following two ways:

• NDCG@k: defined as:

NDCG@k =
1

n

n∑

i=1

DCG@k(i,Πi)

DCG@k(i,Π∗
i)
,

where i represents i-th user and

DCG@k(i,Πi) =
k∑

l=1

2RiΠil − 1

log2(l + 1)
.

In the DCG definition, Πil represents the index of the

l-th ranked item for user i in test data based on the

learned score matrix X . R is the rating matrix and

Rij is the rating given to item j by user i. Π∗
i is the

ordering provided by the ground truth rating.

• Precision@k: defined as a fraction of relevant items

among the top k recommended items:

precision@k =

∑n

i=1 |{1 ≤ l ≤ k : 4 ≤ RiΠil
≤ 5}|

n · k ,

here we consider items with ratings assigned as 4 or

5 as relevant. Rij follows the same definitions above

but unlike before Πil gives the index of the l-th ranked

item for user i among all the items that are not rated

by user i in the training set (including both rated test

items and unobserved items).

As shown in Table 2, our proposed listwise algorithm SQL-

Rank outperforms previous listwise method List-MF in both

NDCG@10 and precision@1, 5, 10. It verifies the claim

that log-likelihood loss outperforms the cross entropy loss if

we use it correctly. When listwise algorithm SQL-Rank

is compared with pairwise algorithm Primal-CR++, the

performances between SQL-Rank and Primal-CR++ are

quite similar, slightly lower for NDCG@10 but higher for

6https://github.com/gpoesia/listrankmf
7https://github.com/wuliwei9278/ml-1m

SQL-Rank: A Listwise Approach to Collaborative Ranking

Table 2. Comparing explicit feedback methods on various datasets.

DATASET METHOD NDCG@10 P@1 P@5 P@10

MOVIELENS1M

SQL-RANK 0.75076 0.50736 0.43692 0.40248
LIST-MF 0.73307 0.45226 0.40482 0.38958

PRIMAL-CR++ 0.76826 0.49365 0.43098 0.39779
MF 0.74661 0.00050 0.00096 0.00134

YAHOO MUSIC

SQL-RANK 0.66150 0.14983 0.12144 0.10192
LIST-MF 0.67490 0.12646 0.11301 0.09865

PRIMAL-CR++ 0.66420 0.14291 0.10787 0.09104
MF 0.69916 0.04944 0.03105 0.04787

precision@1, 5, 10. Pointwise method MF is doing okay in

NDCG but really bad in terms of precision. Despite having

comparable NDCG, the predicted top k items given by MF

are quite different from those given by other algorithms uti-

lizing a ranking loss. The ordered lists based on SQL-Rank,

Primal-CR++ and List-MF, on the other hand, share a lot

of similarity and only have minor difference in ranking of

some items. It is an interesting phenomenon that we think

is worth exploring further in the future.

4.3. Training speed

To illustrate the training speed of our algorithm, we plot

precision@1 versus training time for the Movielen1m

dataset and the Foursquare dataset. Figure 2 and Figure 3

(in the appendix) show that our algorithm SQL-Rank is

faster than BPR and Weighted-MF. Note that our algorithm

is implemented in Julia while BPR and Weighted-MF are

highly-optimized C++ codes (usually at least 2 times faster

than Julia) released by Quora. This speed difference makes

sense as our algorithm takes O(nm̄r) time, which is linearly

to the observed ratings. In comparison, pair-wise model

such as BPR has O(nm̄2) pairs, so will take O(nm̄2r) time

for each epoch.

Figure 2. Training time of implicit feedback methods.

4.4. Effectiveness of Stochastic Queuing (SQ)

One important innovation in our SQL-Rank algorithm is

the Stochastic Queuing (SQ) Process for handling ties. To

illustrate the effectiveness of the SQ process, we compare

our algorithm with and without SQ. Recall that without SQ

Table 3. Effectiveness of Stochastic Queuing Process.

METHOD P@1 P@5 P@10

WITH SQ 0.73685 0.67167 0.61833
WITHOUT SQ 0.62763 0.58420 0.55036

means we fix a certain permutation matrix Π and optimize

with respect to it throughout all iterations without gener-

ating new Π, while SQ allows us to update using a new

permutation at each time. As shown Table 3 and Figure 4

(in the appendix), the performance gain from SQ in terms

of precision is substantial (more than 10%) on Movielen1m

dataset. It verifies the claim that our way of handling ties

and missing data is very effective and improves the ranking

results by a lot.

4.5. Effectiveness of using the Full List

Another benefit of our algorithm is that we are able to mini-

mize top k probability with much larger k and without much

overhead. Previous approaches (Huang et al., 2015) already

pointed out increasing k leads to better ranking results, but

their complexity is exponential to k so they were not able

to have k > 1. To show the effectiveness of using permu-

tation probability for full lists rather than using the top k
probability for top k partial lists in the likelihood loss, we

fix everything else to be the same and only vary k in Equa-

tion (5). We obtain the results in Table 4 and Figure 5 (in

the appendix). It shows that the larger k we use, the better

the results we can get. Therefore, in the final model, we set

k to be the maximum number (length of the observed list.)

Table 4. Comparing different k on Movielens1m data set using 50

training data per user.

k NDCG@10 P@1 P@5 P@10

5 0.64807 0.39156 0.33591 0.29855
10 0.67746 0.43118 0.34220 0.33339
25 0.74589 0.47003 0.42874 0.39796
50 (FULL LIST) 0.75076 0.50736 0.43692 0.40248

5. Conclusions

In this paper, we propose a listwise approach for collabo-

rative ranking and provide an efficient algorithm to solve

it. Our methodology can incorporate both implicit and ex-

plicit feedback, and can gracefully handle ties and missing

data. In experiments, we demonstrate our algorithm out-

performs existing state-of-the art methods in terms of top

k recommendation precision. We also provide a theoretical

framework for analyzing listwise methods highlighting the

dependence on the number of users and items.

SQL-Rank: A Listwise Approach to Collaborative Ranking

Acknowledgements

JS is partially supported by NSF DMS-1712996. CJH

acknowledge the support by NSF IIS-1719097, Google

Cloud and Nvidia.

Side Note by Liwei Wu: SQL in SQL-Rank is not only

the abbreviation for Stochastically Queuing Listwise, but

also name initials of Liwei’s girlfriend ShuQing Li. Special

thanks for her support.

References

Agarwal, S. Ranking on graph data. In Proceedings of the

23rd international conference on Machine learning, pp.

25–32. ACM, 2006.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learning

to rank: from pairwise approach to listwise approach.

In Proceedings of the 24th international conference on

Machine learning, pp. 129–136. ACM, 2007.

Chapelle, O. and Keerthi, S. S. Efficient algorithms for

ranking with svms. Information Retrieval, 13(3):201–

215, 2010.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An

efficient boosting algorithm for combining preferences.

Journal of machine learning research, 4(Nov):933–969,

2003.

Hill, W., Stead, L., Rosenstein, M., and Furnas, G. Recom-

mending and evaluating choices in a virtual community

of use. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems, pp. 194–201. ACM

Press/Addison-Wesley Publishing Co., 1995.

Hsieh, C.-J., Natarajan, N., and Dhillon, I. Pu learning

for matrix completion. In International Conference on

Machine Learning, pp. 2445–2453, 2015.

Hu, Y., Koren, Y., and Volinsky, C. Collaborative filtering

for implicit feedback datasets. In Data Mining, 2008.

ICDM’08. Eighth IEEE International Conference on, pp.

263–272. Ieee, 2008.

Huang, S., Wang, S., Liu, T.-Y., Ma, J., Chen, Z., and Vei-

jalainen, J. Listwise collaborative filtering. In Proceed-

ings of the 38th International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp.

343–352. ACM, 2015.

Joachims, T. Optimizing search engines using clickthrough

data. In Proceedings of the eighth ACM SIGKDD inter-

national conference on Knowledge discovery and data

mining, pp. 133–142. ACM, 2002.

Kabbur, S., Ning, X., and Karypis, G. Fism: factored

item similarity models for top-n recommender systems.

In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp.

659–667. ACM, 2013.

Koren, Y. Factorization meets the neighborhood: a mul-

tifaceted collaborative filtering model. In Proceedings

of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 426–434.

ACM, 2008.

Lan, Y., Liu, T.-Y., Ma, Z., and Li, H. Generalization

analysis of listwise learning-to-rank algorithms. In Pro-

ceedings of the 26th Annual International Conference on

Machine Learning, pp. 577–584. ACM, 2009.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and

Dean, J. Distributed representations of words and phrases

and their compositionality. In Advances in neural infor-

mation processing systems, pp. 3111–3119, 2013.

Mnih, A. and Salakhutdinov, R. R. Probabilistic matrix fac-

torization. In Advances in neural information processing

systems, pp. 1257–1264, 2008.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Järvinen, J., and

Boberg, J. An efficient algorithm for learning to rank

from preference graphs. Machine Learning, 75(1):129–

165, 2009.

Pan, W., Yang, Q., Duan, Y., Tan, B., and Ming, Z. Transfer

learning for behavior ranking. ACM Transactions on

Intelligent Systems and Technology (TIST), 8(5):65, 2017.

Park, D., Neeman, J., Zhang, J., Sanghavi, S., and Dhillon, I.

Preference completion: Large-scale collaborative ranking

from pairwise comparisons. In International Conference

on Machine Learning, pp. 1907–1916, 2015.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-

Thieme, L. Bpr: Bayesian personalized ranking from

implicit feedback. In Proceedings of the twenty-fifth

conference on uncertainty in artificial intelligence, pp.

452–461. AUAI Press, 2009.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S.

Collaborative filtering recommender systems. In The

adaptive web, pp. 291–324. Springer, 2007.

Shi, Y., Larson, M., and Hanjalic, A. List-wise learning

to rank with matrix factorization for collaborative filter-

ing. In Proceedings of the fourth ACM conference on

Recommender systems, pp. 269–272. ACM, 2010.

Talagrand, M. The generic chaining: upper and lower

bounds of stochastic processes. Springer Science & Busi-

ness Media, 2006.

SQL-Rank: A Listwise Approach to Collaborative Ranking

Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B.,

Zhang, P., and Zhang, D. Irgan: A minimax game for

unifying generative and discriminative information re-

trieval models. In Proceedings of the 40th International

ACM SIGIR conference on Research and Development in

Information Retrieval, pp. 515–524. ACM, 2017.

Weimer, M., Karatzoglou, A., Le, Q. V., and Smola, A. J.

Cofi rank-maximum margin matrix factorization for col-

laborative ranking. In Advances in neural information

processing systems, pp. 1593–1600, 2008.

Wu, L., Hsieh, C.-J., and Sharpnack, J. Large-scale col-

laborative ranking in near-linear time. In Proceedings

of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 515–524.

ACM, 2017.

Wu, Y., DuBois, C., Zheng, A. X., and Ester, M. Collab-

orative denoising auto-encoders for top-n recommender

systems. In Proceedings of the Ninth ACM International

Conference on Web Search and Data Mining, pp. 153–

162. ACM, 2016.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. List-

wise approach to learning to rank: theory and algorithm.

In Proceedings of the 25th international conference on

Machine learning, pp. 1192–1199. ACM, 2008.

Yu, H.-F., Bilenko, M., and Lin, C.-J. Selection of negative

samples for one-class matrix factorization. In Proceed-

ings of the 2017 SIAM International Conference on Data

Mining, pp. 363–371. SIAM, 2017.

