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Abstract

In this paper, we propose a listwise approach for
constructing user-specific rankings in recommen-
dation systems in a collaborative fashion. We
contrast the listwise approach to previous point-
wise and pairwise approaches, which are based on
treating either each rating or each pairwise com-
parison as an independent instance respectively.
By extending the work of (Cao et al., 2007), we
cast listwise collaborative ranking as maximum
likelihood under a permutation model which ap-
plies probability mass to permutations based on a
low rank latent score matrix. We present a novel
algorithm called SQL-Rank, which can accommo-
date ties and missing data and can run in linear
time. We develop a theoretical framework for ana-
lyzing listwise ranking methods based on a novel
representation theory for the permutation model.
Applying this framework to collaborative ranking,
we derive asymptotic statistical rates as the num-
ber of users and items grow together. We conclude
by demonstrating that our SQL-Rank method
often outperforms current state-of-the-art algo-
rithms for implicit feedback such as Weighted-
MF and BPR and achieve favorable results when
compared to explicit feedback algorithms such as
matrix factorization and collaborative ranking.

1. Introduction

We study a novel approach to collaborative ranking—the per-
sonalized ranking of items for users based on their observed
preferences—through the use of listwise losses, which are
dependent only on the observed rankings of items by users.
We propose the SQL-Rank algorithm, which can handle ties
and missingness, incorporate both explicit ratings and more
implicit feedback, provides personalized rankings, and is
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based on the relative rankings of items. To better understand
the proposed contributions, let us begin with a brief history
of the topic.

1.1. A brief history of collaborative ranking

Recommendation systems, found in many modern web ap-
plications, movie streaming services, and social media, rank
new items for users and are judged based on user engage-
ment (implicit feedback) and ratings (explicit feedback) of
the recommended items. A high-quality recommendation
system must understand the popularity of an item and infer a
user’s specific preferences with limited data. Collaborative
filtering, introduced in (Hill et al., 1995), refers to the use
of an entire community’s preferences to better predict the
preferences of an individual (see (Schafer et al., 2007) for
an overview). In systems where users provide ratings of
items, collaborative filtering can be approached as a point-
wise prediction task, in which we attempt to predict the
unobserved ratings (Pan et al., 2017). Low rank methods,
in which the rating distribution is parametrized by a low
rank matrix (meaning that there are a few latent factors)
provides a powerful framework for estimating ratings (Mnih
& Salakhutdinov, 2008; Koren, 2008). There are several
issues with this approach. One issue is that the feedback
may not be representative of the unobserved entries due to
a sampling bias, an effect that is prevalent when the items
are only ‘liked’ or the feedback is implicit because it is in-
ferred from user engagement. Augmenting techniques like
weighting were introduced to the matrix factorization objec-
tive to overcome this problem (Hsieh et al., 2015; Hu et al.,
2008). Many other techniques are also introduced (Kabbur
et al., 2013; Wang et al., 2017; Wu et al., 2016). Another
methodology worth noting is the CofiRank algorithm of
(Weimer et al., 2008) which minimizes a convex surrogate
of the normalized discounted cumulative gain (NDCG). The
pointwise framework has other flaws, chief among them is
that in recommendation systems we are not interested in
predicting ratings or engagement, but rather we must rank
the items.

Ranking is an inherently relative exercise. Because users
have different standards for ratings, it is often desirable for
ranking algorithms to rely only on relative rankings and not
absolute ratings. A ranking loss is one that only considers a
user’s relative preferences between items, and ignores the
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absolute value of the ratings entirely, thus deviating from the
pointwise framework. Ranking losses can be characterized
as pairwise and listwise. A pairwise method decomposes
the objective into pairs of items j, k for a user ¢, and ef-
fectively asks ‘did we successfully predict the comparison
between j and k for user ¢?°. The comparison is a binary
response—user ¢ liked j more than or less than k—with
possible missing values in the event of ties or unobserved
preferences. Because the pairwise model has cast the prob-
lem in the classification framework, then tools like support
vector machines were used to learn rankings; (Joachims,
2002) introduces rankSVM and efficient solvers can be
found in (Chapelle & Keerthi, 2010). Much of the existing
literature focuses on learning a single ranking for all users,
which we will call simple ranking (Freund et al., 2003; Agar-
wal, 2006; Pahikkala et al., 2009). This work will focus on
the personalized ranking setting, in which the ranking is
dependent on the user.

Pairwise methods for personalized ranking have seen great
advances in recent years, with the AItSVM algorithm of
(Park et al., 2015), Bayesian personalized ranking (BPR)
of (Rendle et al., 2009), and the near linear-time algorithm
of (Wu et al., 2017). Nevertheless, pairwise algorithms im-
plicitly assume that the item comparisons are independent,
because the objective can be decomposed where each com-
parison has equal weight. Listwise losses instead assign a
loss, via a generative model, to the entire observed ranking,
which can be thought of as a permutation of the m items,
instead of each comparison independently. The listwise
permutation model, introduced in (Cao et al., 2007), can
be thought of as a weighted urn model, where items corre-
spond to balls in an urn and they are sequentially plucked
from the urn with probability proportional to ¢(X;;) where
X is the latent score for user 4 and item j and ¢ is some
non-negative function. They proposed to learn rankings
by optimizing a cross entropy between the probability of k
items being at the top of the ranking and the observed rank-
ing, which they combine with a neural network, resulting
in the ListNet algorithm. (Shi et al., 2010) applies this idea
to collaborative ranking, but uses only the top-1 probability
because of the computational complexity of using top-k in
this setting. This was extended in (Huang et al., 2015) to
incorporate neighborhood information. (Xia et al., 2008) in-
stead proposes a maximum likelihood framework that uses
the permutation probability directly, which enjoyed some
empirical success.

Very little is understood about the theoretical performance
of listwise methods. (Cao et al., 2007) demonstrates that
the listwise loss has some basic desirable properties such
as monotonicity, i.e. increasing the score of an item will
tend to make it more highly ranked. (Lan et al., 2009)
studies the generalizability of several listwise losses, using
the local Rademacher complexity, and found that the excess

risk could be bounded by a 1/y/n term (recall, n is the
number of users). Two main issues with this work are that
no dependence on the number of items is given—it seems
these results do not hold when m is increasing—and the
scores are not personalized to specific users, meaning that
they assume that each user is an independent and identically
distributed observation. A simple open problem is: can we
consistently learn preferences from a single user’s data if we
are given item features and we assume a simple parametric
model? (n =1,m — o0.)

1.2. Contributions of this work

We can summarize the shortcomings of the existing work:
current listwise methods for collaborative ranking rely on
the top-1 loss, algorithms involving the full permutation
probability are computationally expensive, little is known
about the theoretical performance of listwise methods, and
few frameworks are flexible enough to handle explicit and
implicit data with ties and missingness. This paper addresses
each of these in turn by proposing and analyzing the SQL-
rank algorithm.

e We propose the SQL-Rank method, which is motivated
by the permutation probability, and has advantages
over the previous listwise method using cross entropy
loss.

e We provide an O(iter - (|2|r)) linear algorithm based
on stochastic gradient descent, where (2 is the set of
observed ratings and r is the rank.

e The methodology can incorporate both implicit and
explicit feedback, and can gracefully handle ties and
missing data.

e We provide a theoretical framework for analyzing list-
wise methods, and apply this to the simple ranking and
personalized ranking settings, highlighting the depen-
dence on the number of users and items.

2. Methodology

2.1. Permutation probability

The permutation probability, (Cao et al., 2007), is a gener-
ative model for the ranking parametrized by latent scores.
First assume there exists a ranking function that assigns
scores to all the items. Let’s say we have m items, then
the scores assigned can be represented as a vector s =
(s1, 82, .-, Sm ). Denote a particular permutation (or order-
ing) of the m items as 7, which is a random variable and
takes values from the set of all possible permutations Sy,
(the symmetric group on m elements). 7 denotes the index
of highest ranked item and m,, is the lowest ranked. The
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probability of obtaining 7 is defined to be

H zl_J <sm> M

where ¢(.) is an increasing and strictly positive function.
An interpretation of this model is that each item is drawn
without replacement with probability proportional to ¢(s;)
for item 4 in each step. One can easily show that Ps(7)
is a valid probability distribution, i.e. > s Ps(m) =
1, Ps(w) > 0,Vr. Furthermore, this definition of permu-
tation probability enjoys several favorable properties (see
(Cao et al., 2007)). For any permutation 7 if you swap two
elements ranked at ¢ < j generating the permutation 7’
(i = mj, T = Wi, T = T,k F 0, 9), if s, > sp;
then Ps(m) > Ps(n’). Also, if permutation 7 satisfies
Sx, > Sm,..» Vi, then we have 7 = argmax,eg,, Ps(7).
Both of these properties can be summarized: larger scores
will tend to be ranked more highly than lower scores. These
properties are required for the negative log-likelihood to be
considered sound for ranking (Xia et al., 2008).

In recommendation systems, the top ranked items can be
more impactful for the performance. In order to focus on
the top k ranked items, we can compute the partial-ranking
marginal probability,

min{k,m}
m B(8x; )
T . C
j=1 Zl =J (Sﬂl)

It is a common occurrence that only a proportion of the m
items are ranked, and in that case we will allow m < m
to be the number of observed rankings (we assume that
m1,...,Tm are the complete list of ranked items). When
k =1, the first summation vanishes and top-1 probability
can be calculated straightforwardly, which is why k = 1 is
widely used in previous listwise approaches for collabora-
tive ranking. Counter-intuitively, we demonstrate that using
a larger k tends to improve the ranking performance.

2

We see that computing the likelihood loss is linear in the
number of ranked items, which is in contrast to the cross-
entropy loss used in (Cao et al., 2007), which takes expo-
nential time in k. The cross-entropy loss is also not sound,
i.e. it can rank worse scoring permutations more highly, but
the negative log-likelihood is sound. We will discuss how
we can deal with ties in the following subsection, namely,
when the ranking is derived from ratings and multiple items
receive the same rating, then there is ambiguity as to the
order of the tied items. This is a common occurrence when
the data is implicit, namely the output is whether the user
engaged with the item or not, yet did not provide explicit
feedback. Because the output is binary, the cross-entropy
loss (which is based on top-k probability with k very small)
will perform very poorly because there will be many ties

for the top ranked items. To this end, we propose a col-
laborative ranking algorithm using the listwise likelihood
that can accommodate ties and missingness, which we call
Stochastic Queuing Listwise Ranking, or SQL-Rank.
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ing matrix R (left) generates multiple possible rankings IT’s (right),
IT € S(R, 2) by breaking ties randomly.

2.2. Deriving objective function for SQL-Rank

The goal of collaborative ranking is to predict a personalized
score X;; that reflects the preference level of user 4 towards
item j, where 1 <7 <nand1 < j < m. Itis reasonable
to assume the matrix X € R™*" to be low rank because
there are only a small number of latent factors contributing
to users’ preferences. The input data is given in the form
of “user 7 gives item j a relevance score I2;;”. Note that for
simplicity we assume all the users have the same number
m of ratings, but this can be easily generalized to the non-
uniform case by replacing m with m; (number of ratings
for user 7).

With our scores X and our ratings R, we can specify our
collaborative ranking model using the permutation probabil-
ity (2). Let II; be a ranking permutation of items for user ¢
(extracted from R), we can stack Iy, . . . II,,, row by row, to
get the permutation matrix IT € R™*", Assuming users are
independent with each other, the probability of observing a
particular II given the scoring matrix X can be written as

PE™ ) = T PE™ (). 3)

We will assume that log ¢(z) = 1/(1 + exp(—=x)) is the
sigmoid function. This has the advantage of bounding the
resulting weights, ¢(X;;), and maintaining their positivity
without adding additional constraints.
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Typical rating data will contain many ties within each row.
In such cases, the permutation II is no longer unique and
there is a set of permutations that coincides with rating
because with any candidate II we can arbitrarily shuffle the
ordering of items with the same relevance scores to generate
a new candidate matrix IT" which is still valid (see Figure 1).
We denote the set of valid permutations as S(R, €2), where {2
is the set of all pairs (4, j) such that R; ; is observed. We call
this shuffling process the Stochastic Queuing Process, since
one can imagine that by permuting ties we are stochastically
queuing new II’s for future use in the algorithm.

The probability of observing R therefore should be defined
as PU™(R) = > nes(r,) Px (II). To learn the scoring
matrix X, we can naturally solve the following maximum
likelihood estimator with low-rank constraint:

T (k m)
)1(1161121{ log Z P )
[ES(R,Q)

where X is the structural constraint of the scoring matrix.
To enforce low-rankness, we use the nuclear norm regular-
ization X = {X : || X|. <7}

Eq (4) is hard to optimize since there is a summation inside
the log. But by Jensen’s inequality and convexity of — log
function, we can move the summation outside log and ob-
tain an upper bound of the original negative log-likelihood,
leading to the following optimization problem:

S log P (1) (5)

MeS(R,Q)

min —
Xex

This upper bound is much easier to optimize and can be
solved using Stochastic Gradient Descent (SGD).

Next we discuss how to apply our model for explicit and
implicit feedback settings. In the explicit feedback setting,
it is assumed that the matrix R is partially observed and the
observed entries are explicit ratings in a range (e.g., 1 to
5). We will show in the experiments that k = m (using the
full list) leads to the best results. (Huang et al., 2015) also
observed that increasing k is useful for their cross-entropy
loss, but they were not able to increase k since their model
has time complexity exponential to k.

In the implicit feedback setting each element of R;; is either
1 or 0, where 1 means positive actions (e.g., click or like)
and 0 means no action is observed. Directly solving (5)
will be expensive since m = m and the computation will
involve all the mn elements at each iteration. Moreover,
the 0’s in the matrix could mean either a lower relevance
score or missing, thus should contribute less to the objective
function. Therefore, we adopt the idea of negative sampling
(Mikolov et al., 2013) in our list-wise formulation. For each
user (row of R), assume there are m 1’s, we then sample pm
unobserved entries uniformly from the same row and append

Algorithm 1 SQL-Rank: General Framework
Input: Q, {R;; : (4,7) € 2}, A € RT, ss, rate, p
Output: U € R"™*"™ and V € R"™*™
Randomly initialize U, V' from Gaussian Distribution
repeat
Generate a new permutation matrix IT {see alg 2}
Apply gradient update to U while fixing V
Apply gradient update to V while fixing U {see alg 4}
until performance for validation set is good
return U, V {recover score matrix X }

Algorithm 2 Stochastic Queuing Process
Imput: Q, {R;; : (¢,7) € Q}, p
Output: IT € R*"*™
fori=1tondo
Sort items based on observed relevance levels R;
Form II; based on indices of items in the sorted list
Shuffle II; for items within the same relevance level
if Dataset is implicit feedback then
Uniformly sample pm items from unobserved items
Append sampled indices to the back of II;
end if
end for
Stack II; as rows to form matrix II
Return IT {Used later to compute gradient}

to the back of the list. This then becomes the problem with
m = (1 4+ p)m and then we use the same algorithm in
explicit feedback setting to conduct updates. We then repeat
the sampling process at the end of each iteration, so the
update will be based on different set of 0’s at each time.

2.3. Non-convex implementation

Despite the advantage of the objective function in equa-
tion (5) being convex, it is still not feasible for large-scale
problems since the scoring matrix X € R™*" leads to high
computational and memory cost. We follow a common
trick to transform (5) to the non-convex form by replac-
ing X = UTV: with U € R"™",V € R"™™ so that the
objective is,

> ZZlogZU))%(nU%nvn%),

MMeS(R,Q) i=1j=1

CAD

where u;,v; are columns of U, V respectively. We apply
stochastic gradient descent to solve this problem. At each
step, we choose a permutation matrix IT € S(R, ) using
the stochastic queuing process (Algorithm 2) and then up-
date U,V by Vf(U,V). For example, the gradient with
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respect to V' is (g = log ¢ is the sigmoid function),

o= Y { ot
Uj 1€Q; t=1
1(rank;(j) > t)p(ulv;) ,, = , }
S oy C

where ); denotes the set of users that have rated the item j
and rank; (7) is a function gives the rank of the item j for that
user . Because g is the sigmoid function, ¢’ = ¢ - (1 — g).
The gradient with respect to U can be derived similarly.

As one can see, a naive way to compute the gradient of f
requires O(nm?r) time, which is very slow even for one it-
eration. However, we show in Algorithm 3 (in the appendix)
that there is a smart way to re-arranging the computation so
that Vy f(U, V) can be computed in O(nmr) time, which
makes our SQL-Rank a linear-time algorithm (with the same
per-iteration complexity as classical matrix factorization).

3. Theory

Throughout this section, we will establish a theoretical
framework for understanding listwise ranking algorithms.
We do not consider ties and missing data and reserve this ex-
tension of the theory developed here for future work. These
tools can be employed to analyze any problem of the con-
strained form

X := argmin —log Px (II) such that X € X.  (6)

We will consider two main settings of listwise ranking, the
simple ranking setting where for each X € X,

Xij=B"2;,B R, 8] < e, (7)

where the feature vectors z;; € R® are known, and the
personalized setting,

Xij = uj vj,ui,v; ER U < cu, |[VIF < cor (8)

The simple ranking setting, among other listwise programs
was considered in (Lan et al., 2009), and it was determined
that the excess risk is bounded by a 1/4/n term. Critically,
these results assumed that the number of items m is bounded,
severely limiting their relevance to realistic recommendation
systems. It seems that we should be able to learn something
about a user’s preferences by having them rank more items,
yet the existing theory does not reflect this.

The main engine of our theoretical analysis is a generative
mechanism for listwise ranking, which demonstrates that the
permutation probability model, (1), is also the probability
of a row-wise ordering of an exponential ensemble matrix.
We demonstrate that the excess risk in the parametric setting
scales like \/m In m/n, achieving parametric rates in n and

sub-linear excess risk in m when the feature dimension s is
fixed. In the personalized setting, (8), we bound the excess
risk by \/m/n In m when the rank r is fixed, which matches
comparable results for matrix factorization up to log factors.

3.1. Generative mechanism for listwise ranking

We give an alternative generative mechanism which will
prove useful for understanding the listwise ranking objec-
tive.

Theorem 1. Consider a matrix, Y, with independent en-
tries, Y;; that are drawn from an exponential distribution
with rate ¢(X;;). Let I1; be the ordering of the entries of
Y; from smallest to largest, then the probability of 11;| X; is
exactly Px, (IL;).

The proof is in the appendix. A key aspect of this generative
mechanism is that the listwise likelihood can be written as
a function of the exponential ensemble. This allows us to
establish concentration of measure results for the listwise
loss via bounded differences.

3.2. Statistical guarantees

As a first step to controlling the excess risk, we establish a
basic inequality. This bounds the excess risk by an empirical
process term, which is a random function of X and for a
fixed X it has mean zero. The excess risk (the difference
in expected loss between the estimate and the truth) can
also be written as the KL divergence between the estimated
model and the true model.

Lemma 1. Consider the minimizer, X, to the constrained
optimization, (6). Suppose that there exists a X* € X such
that I1; ~ Pxy independently for all i = 1,...,n. The KL-
divergence between the estimate and the truth is bounded

N 1 < Px~(11;)
D(X*,X):=—)» Elog ———= (basic)
1 & Px+(1I1;) Px+(11;)
< —= log =—+——~ — Elog —~——= | .

Because the RHS of (basic), the empirical process term,
has mean zero and is a function of the random permutation,
we can use Theorem 1 to bound it with high probability
for a fixed X. Because X is random, we need to control
the empirical process term uniformly over the selection of
X € X. To this end, we employ Dudley’s chaining, which
gives us the following theorem (see the Supplement for the
complete proof).

Theorem 2. Assume the conditions of Lemma 1. Define the
matrix norm, for the n X m matrix Z,

n
> lZill%
i=1

1Z]loc,2 =
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and define Z = {logp(X) : X € X} where log ¢ is
applied elementwise. Also, let N (e, Z,||.||c0,2) be the e-
covering number of Z in the 0o, 2 norm (the fewest number
of € radius balls in the oo, 2 norm required to cover Z).
Then, if supzez || Z]|oc < C (Where ||.||oo is the element-
wise absolute maximum), then

D(X*, X)=0p (\/W

n

912).

where

9(2) = /OOO VN (@, 2, e 2)de

and C'is bounded by a constant in n, m.

Theorem 2 bounds the KL-divergence by the geometric
quantity g(Z). For the derived corollaries, we will assume
that log ¢ is 1-Lipschitz, which is true when log ¢ is the
sigmoid function. The results do not significantly change
by increasing the Lipschitz constant, so for simplicity of
presentation we set it to be 1.

Corollary 1. Assume the conditions to Lemma 1, the simple
ranking setting (7), that log ¢ is 1-Lipschitz, and || Z;;||2 is
bounded uniformly, then

D(X*,X) = 0p <\/Zﬂlnm>.

Notably when n = 1 this bound is on the order of v/m Inm.
In the event that Px« is concentrated primarily on a single
permutation for this user, and we resort to random guessing
(.e. le = 0) then the KL divergence will be close to
Inm! &~ mlnm. So, a reduction of the KL-divergence
from order m Inm to /m Inm is a large improvement, and
the above result should be understood to mean that we can
achieve consistency even when n = 1 (where consistency
is measured relative to random guessing).

Corollary 2. Assume the conditions to Lemma 1, the per-
sonalized ranking setting, (8), and that log ¢ is 1-Lipschitz,

D(X*, X)=Op (ﬁlnm) .

Notably, even in the personalized setting, where each user
has their own preferences, we can achieve 1/4/n rates
for fixed m,r. Throughout these results the Op notation
only hides the constants ¢, ¢, ¢, and any dependence on
s,r,m,n is explicitly given. While Theorem 2 gives us a
generic result that can be applied to a large range of con-
straint sets, we believe that the parametric simple ranking
and the low-rank personalized setting are the two most im-
portant listwise ranking problems.

4. Experiments

In this section, we compare our proposed algorithm (SQL-
Rank) with other state-of-the-art algorithms on real world
datasets. Note that our algorithm works for both implicit
feedback and explicit feedback settings. In the implicit
feedback setting, all the ratings are 0 or 1; in the explicit
feedback setting, explicit ratings (e.g., 1 to 5) are given
but only to a subset of user-item pairs. Since many real
world recommendation systems follow the implicit feedback
setting (e.g., purchases, clicks, or checkins), we will first
compare SQL-Rank on implicit feedback datasets and show
it outperforms state-of-the-art algorithms. Then we will
verify that our algorithm also performs well on explicit
feedback problems. All experiments are conducted on a
server with an Intel Xeon E5-2640 2.40GHz CPU and 64G
RAM.

4.1. Implicit Feedback

In the implicit feedback setting we compare the following
methods:

e SQL-Rank: our proposed algorithm implemented in
Julia !,

e Weighted-MF: the weighted matrix factorization algo-
rithm by putting different weights on 0 and 1’s (Hu
et al., 2008; Hsieh et al., 2015).

e BPR: the Bayesian personalized ranking method moti-
vated by MLE (Rendle et al., 2009). For both Weighted-
MF and BPR, we use the C++ code by Quora 2,

Note that other collaborative ranking methods such as
Pirmal-CR++ (Wu et al., 2017) and List-MF (Shi et al.,
2010) do not work for implicit feedback data, and we will
compare with them later in the explicit feedback experi-

ments. For the performance metric, we use precision@k for
k = 1,5, 10 defined by

i {1 <1<k: R, =1}

precision@k =
n-k

€))

where R is the rating matrix and II;; gives the index of the
[-th ranked item for user ¢« among all the items not rated by
user ¢ in the training set.

We use rank » = 100 and tune regularization parameters
for all three algorithms using a random sampled validation
set. For Weighted-MF, we also tune the confidence weights
on unobserved data. For BPR and SQL-Rank, we fix the
ratio of subsampled unobserved 0’s versus observed 1’s to
be 3 : 1, which gives the best performance for both BPR
and SQL-rank in practice.

We experiment on the following four datasets. Note that the

"https://github.com/wuliwei9278/SQL-Rank
https://github.com/quora/qmE
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Table 1. Comparing implicit feedback methods on various datasets.

DATASET METHOD P@1 P@5 P@10
SQL-RANK 0.73685 0.67167 0.61833

MOVIELENSIM  WEIGHTED-MF  0.54686 0.49423 0.46123
BPR 0.69951 0.65608 0.62494

SQL-RANK 0.04255 0.02978 0.02158

AMAZON WEIGHTED-MF  0.03647 0.02492 0.01914
BPR 0.04863 0.01762 0.01306

SQL-RANK 0.45512 0.36137 0.30689

YAHOO MUSIC WEIGHTED-MF  0.39075 0.31024 0.27008
BPR 0.37624 0.32184 0.28105

SQL-RANK 0.05825 0.01941 0.01699

FOURSQUARE WEIGHTED-MF  0.02184 0.01553 0.01407
BPR 0.03398 0.01796 0.01359

original data of Movielenslm, Amazon and Yahoo-music
are ratings from 1 to 5, so we follow the procedure in (Ren-
dle et al., 2009; Yu et al., 2017) to preprocess the data. We
transform ratings of 4, 5 into 1’s and the rest entries (with
rating 1,2, 3 and unknown) as 0’s. Also, we remove users
with very few 1’s in the corresponding row to make sure
there are enough 1’s for both training and testing. For Ama-
zon, Yahoo-music and Foursquare, we discard users with
less than 20 ratings and randomly select 10 1’s as training
and use the rest as testing. Movielens1m has more ratings
than others, so we keep users with more than 60 ratings, and
randomly sample 50 of them as training.

e MovielensIm: a popular movie recommendation data
with 6,040 users and 3, 952 items.

e Amazon: the Amazon purchase rating data for musical
instruments  with 339, 232 users and 83, 047 items.

e Yahoo-music: the Yahoo music rating data set * which
contains 15,400 users and 1, 000 items.

e Foursquare: a location check-in data®. The data set
contains 3, 112 users and 3, 298 venues with 27,149
check-ins. The data set is already in the form of “0/1”
so we do not need to do any transformation.

The experimental results are shown in Table 1. We find
that SQL-Rank outperforms both Weighted-MF and BPR in
most cases.

4.2. Explicit Feedback

Next we compare the following methods in the explicit
feedback setting:

e SQL-Rank: our proposed algorithm implemented in
Julia. Note that in the explicit feedback setting our

*http://jmcauley.ucsd.edu/data/amazon/

*nttps://webscope.sandbox.yahoo.com/
catalog.php?datatype=r&did=3

Shttps://sites.google.com/site/
yangdinggi/home/foursquare-dataset

algorithm only considers pairs with explicit ratings.

e List-MF: the listwise algorithm using the cross entropy
loss between observed rating and top 1 probability
(Shi et al., 2010). We use the C++ implementation on
github®.

e MF: the classical matrix factorization algorithm in (Ko-
ren, 2008) utilizing a pointwise loss solved by SGD.
We implemented SGD in Julia.

e Primal-CR++: the recently proposed pairwise algo-
rithm in (Wu et al., 2017). We use the Julia implemen-
tation released by the authors’.

Experiments are conducted on MovielensIm and Yahoo-
music datasets. We perform the same procedure as in im-
plicit feedback setting except that we do not need to mask
the ratings into “0/1”.

We measure the performance in the following two ways:

o NDCGQE: defined as:

1 < DCG@k (i, ;)
NDCGQE = — Y —— 20
n ; DCGQk (i, IT¥)’

where ¢ represents i-th user and
DCG@k(i,11;) Z

In the DCG definition, II;; represents the index of the
l-th ranked item for user 7 in test data based on the
learned score matrix X. R is the rating matrix and
R;; is the rating given to item j by user ¢. II7 is the
ordering provided by the ground truth rating.

e Precision@k: defined as a fraction of relevant items
among the top k£ recommended items:

Yo {1 <1<k:4< R, <5}
n-k ’

precision@Qk =

here we consider items with ratings assigned as 4 or
5 as relevant. R;; follows the same definitions above
but unlike before IT;; gives the index of the [-th ranked
item for user 7 among all the items that are not rated
by user ¢ in the training set (including both rated test
items and unobserved items).

As shown in Table 2, our proposed listwise algorithm SQL-
Rank outperforms previous listwise method List-MF in both
NDCG@10 and precision@1, 5,10. It verifies the claim
that log-likelihood loss outperforms the cross entropy loss if
we use it correctly. When listwise algorithm SQL-Rank
is compared with pairwise algorithm Primal-CR++, the
performances between SQL-Rank and Primal-CR++ are
quite similar, slightly lower for NDCG @10 but higher for

*https://github.com/gpoesia/listrankmf
"https://github.com/wuliwei9278/ml-1m
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Table 2. Comparing explicit feedback methods on various datasets.

DATASET METHOD NDCG@10 P@1 P@5 P@10
SQL-RANK 0.75076 0.50736  0.43692  0.40248

MOVIELENS IM LisT-MF 0.73307 0.45226 0.40482 0.38958
PRIMAL-CR++ 0.76826 0.49365 0.43098 0.39779

MF 0.74661 0.00050 0.00096 0.00134

SQL-RANK 0.66150 0.14983 0.12144 0.10192

YAHOO MUSIC LisT-MF 0.67490 0.12646  0.11301 0.09865
PRIMAL-CR++ 0.66420 0.14291 0.10787 0.09104

MF 0.69916 0.04944  0.03105 0.04787

precision@1, 5, 10. Pointwise method MF is doing okay in
NDCG but really bad in terms of precision. Despite having
comparable NDCG, the predicted top k items given by MF
are quite different from those given by other algorithms uti-
lizing a ranking loss. The ordered lists based on SQL-Rank,
Primal-CR++ and List-MF, on the other hand, share a lot
of similarity and only have minor difference in ranking of
some items. It is an interesting phenomenon that we think
is worth exploring further in the future.

4.3. Training speed

To illustrate the training speed of our algorithm, we plot
precision@1 versus training time for the Movielenlm
dataset and the Foursquare dataset. Figure 2 and Figure 3
(in the appendix) show that our algorithm SQL-Rank is
faster than BPR and Weighted-MF. Note that our algorithm
is implemented in Julia while BPR and Weighted-MF are
highly-optimized C++ codes (usually at least 2 times faster
than Julia) released by Quora. This speed difference makes
sense as our algorithm takes O(nsmr) time, which is linearly
to the observed ratings. In comparison, pair-wise model
such as BPR has O(nim?) pairs, so will take O(nm?r) time
for each epoch.

08 Implicit feedback for Movielenslm Dataset: training per user = 50
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Figure 2. Training time of implicit feedback methods.
4.4. Effectiveness of Stochastic Queuing (SQ)
One important innovation in our SQL-Rank algorithm is
the Stochastic Queuing (SQ) Process for handling ties. To

illustrate the effectiveness of the SQ process, we compare
our algorithm with and without SQ. Recall that without SQ

Table 3. Effectiveness of Stochastic Queuing Process.

METHOD P@1 P@5 P@10
WITH SQ 0.73685 0.67167 0.61833
WITHOUT SQ 0.62763 0.58420 0.55036

means we fix a certain permutation matrix II and optimize
with respect to it throughout all iterations without gener-
ating new II, while SQ allows us to update using a new
permutation at each time. As shown Table 3 and Figure 4
(in the appendix), the performance gain from SQ in terms
of precision is substantial (more than 10%) on Movielenlm
dataset. It verifies the claim that our way of handling ties
and missing data is very effective and improves the ranking
results by a lot.

4.5. Effectiveness of using the Full List

Another benefit of our algorithm is that we are able to mini-
mize top k probability with much larger k£ and without much
overhead. Previous approaches (Huang et al., 2015) already
pointed out increasing k leads to better ranking results, but
their complexity is exponential to k so they were not able
to have £ > 1. To show the effectiveness of using permu-
tation probability for full lists rather than using the top &
probability for top k partial lists in the likelihood loss, we
fix everything else to be the same and only vary k in Equa-
tion (5). We obtain the results in Table 4 and Figure 5 (in
the appendix). It shows that the larger k£ we use, the better
the results we can get. Therefore, in the final model, we set
k to be the maximum number (length of the observed list.)

Table 4. Comparing different k£ on Movielenslm data set using 50
training data per user.

k NDCG@10 P@1 P@5 P@10
5 0.64807 0.39156  0.33591 0.29855
10 0.67746 0.43118 0.34220 0.33339
25 0.74589 0.47003 0.42874 0.39796
50 (FULL LIST) 0.75076 0.50736 0.43692 0.40248

5. Conclusions

In this paper, we propose a listwise approach for collabo-
rative ranking and provide an efficient algorithm to solve
it. Our methodology can incorporate both implicit and ex-
plicit feedback, and can gracefully handle ties and missing
data. In experiments, we demonstrate our algorithm out-
performs existing state-of-the art methods in terms of top
k recommendation precision. We also provide a theoretical
framework for analyzing listwise methods highlighting the
dependence on the number of users and items.
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