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Abstract

In this paper, we explore statistical versus computational trade-off to address a basic ques-
tion in the application of a distributed algorithm: what is the minimal computational
cost in obtaining statistical optimality? In smoothing spline setup, we observe a phase
transition phenomenon for the number of deployed machines that ends up being a simple
proxy for computing cost. Specifically, a sharp upper bound for the number of machines is
established: when the number is below this bound, statistical optimality (in terms of non-
parametric estimation or testing) is achievable; otherwise, statistical optimality becomes
impossible. These sharp bounds partly capture intrinsic computational limits of the dis-
tributed algorithm considered in this paper, and turn out to be fully determined by the
smoothness of the regression function. We name the asymptotic analysis on such split-and-
aggregation estimation/inference as “splitotic” theory. As a side remark, we argue that
sample splitting may be viewed as an alternative form of regularization, playing a similar
role as smoothing parameter.
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1. Introduction

In the parallel computing environment, divide-and-conquer (D&C) method distributes data
to multiple machines, and then aggregates local estimates computed from each machine
to produce a global one. Such a distributed algorithm often requires a growing number of
machines in order to process an increasingly large dataset. A practically relevant question is
“how many processors do we really need in this parallel computing?” or “shall we allocate all
our computational resources in the data analysis?” Such questions are related to the minimal
computational cost of this distributed method (which will be defined more precisely later).

The major goal of this paper is to provide some “theoretical” insights, namely, a splitotic
theory, for the above questions from a statistical perspective. Specifically, we consider a
classical nonparametric regression setup:

yl:f(l/N)—l-el,lZO,l,...,N—l, (1)
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where ¢;’s are iid random errors with E{¢;} = 0 and Var(¢;) = 1, in the following distributed
algorithm:

Subset 1 (n) et fi
Entire Data (N) Divide,  Subset 2 (m) "= />
Subset s (n) A fs
Superﬂ machine Aggreﬂgate
Oracle Estimﬁte D&C EstimateA
denoted as fn f=(1/s) Zj’:l i

We assume that the total sample size is IV, the number of machines is s and the size of each
sub-sample is n. Hence, N = s X n. Each machine produces an individual smoothing spline
estimate f; to be defined in (3) (Wahba (1990)).

A known property of the above D&C strategy is that it can preserve statistical efficiency
for a wide-ranging choice of s (as demonstrated in Figure 1), say logs/log N € [0,0.4],
while largely reducing computational burden as log s/log N increases (as demonstrated in
Figure 2). An important observation from Figure 1 is that there is an obvious blowup
for mean squared errors of f when the above ratio is beyond some threshold, e.g, 0.8 for
N = 10000. Hence, we are interested in knowing whether there exists a critical value of
log s/log N in theory, beyond which statistical optimality no longer exists. For example,
mean squared errors will never achieve minimax optimal lower bound (at rate level) no
matter how smoothing parameters are tuned. Such a sharpness result partly captures
the computational limit of the particular D&C algorithm considered in this paper, also
complementing the upper bound results in Shang and Cheng (2015); Zhang et al. (2015);
Zhao et al. (2016).

Our first contribution is to establish a sharp upper bound of s under which f achieves
the minimax optimal rate N™/(2m+1) where m represents the smoothness of fy. By “sharp”
upper bound, we mean the largest possible upper bound for s to gain statistical optimality.
This result is established by directly computing (non-asymptotic) upper and lower bounds
of mean squared error of f. These two bounds hold uniformly as s diverges, and thus imply
that the rate of mean squared error transits once s reaches the rate N2™/2m+1) which we
call as phase transition in divide-and-conquer estimation. In fact, the choice of smoothing
parameter, denoted as A, also plays a very subtle role in the above phase transition. For
example, A is not necessarily chosen at an optimal level when s attains the above bound as
illustrated in Figure 3.

Our second contribution is a sharp upper bound of s under which a simple Wald-type
testing method based on f is minimax optimal in the sense of Ingster (1993). It is not
surprising that our testing method is consistent no matter s is fixed or diverges at any rate.
Rather, this sharp bound is entirely determined by analyzing its (non-asymptotic) power.
Specifically, we find that our testing method is minimax optimal if and only if s does not
grow faster than N@m—1)/m+1) - Again we observe a subtle interplay between s and X as
depicted in Figure 3.

One theoretical insight obtained in our setup is that a more smooth regression function
can be optimally estimated or tested at a shorter time. In addition, the above Figure 3
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Figure 1: Mean-square errors (MSE) of f based on 500 independent replications under different choices of
N and s. The values of MSE stay at low levels for various choice of s with log s/log N € [0,0.7].
True regression function is fo(z) = 0.6bs0,17(2) 4+ 0.4b3,11(2) with ba, a, the density function for
Beta(ai,az2).
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Figure 2: Computing time of f based on a single replication under different choices of s when N = 10, 000.

The larger the s, the smaller the computing time.

implies that s and A play an interchangeable role in obtaining statistical optimality. There-
fore, we argue that it might be attempting to view sample splitting as an alternative form
of regularization, complementing the use of penalization in smoothing spline. In practice,
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Figure 3: Two lines indicate the choices of s < N* and A\ < N7 leading to minimaz optimal estimation
rate (left) and minimaz optimal testing rate (right). Whereas (a,b)’s outside these two lines lead

to suboptimal rates. Results are based on smoothing spline regression with reqularity m > 1.

we propose to select A via a distributed version of generalized cross validation (GCV); see
Xu et al. (2017).

In the end, we want to mention that our theoretical results are developed in one-
dimensional models under fixed design. This setting allows us to develop proofs based
on exact analysis of various Fourier series, coupled with properties of circulant Bernoulli
polynomial kernel matrix. The major goal of this work is to provide some theoretical in-
sights in a relatively simple setup, which are useful in extending our results to more general
setup such as random or multi-dimensional design. Efforts toward this direction have been
made by Liu et al. (2017) who derived upper bounds of s for optimal estimation or testing
in various nonparametric models when design is random and multi-dimensional.

2. Smoothing Spline Model

Suppose that we observe samples from model (1). The regression function f is smooth in
the sense that it belongs to an m-order (m > 1) periodic Sobolev space:

(o) [e.e]
s™(I) = {Z fvpu(:) ng’%/ < OO} )
v=1 v=1
where I :=[0,1] and for £ =1,2,...,
or—1(t) = V2cos(2mkt), @o(t) = V2sin(2rkt),
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Yok—1 = Yok = (21k)*™.
The entire dataset is distributed to each machine in a uniform manner as follows. For

j=1,...,s, the jth machine is assigned with samples (Y; ;,; ;), where
is—s+75—1
Yij = Yis—stj—1 and t;; = — N J
for i =1,...,n. Obviously, t1,...,tn; are evenly spaced points (with a gap 1/n) across L.
At the jth machine, we have the following sub-model:
Yij = f(tij) + ey, i=1,...,n, (2)

where €; ; = €;s—s+j—1, and obtain the jth sub-estimate as

f:=arg min /; .
f] g Fesm (D ],n,)\(f)
Here, /; , » represents a penalized square criterion function based on the jth subsample:

n

1 A
Lina(F) = 5 > (Vi = f(tiy))* + §J(f, I (3)
i=1
with A > 0 being a smoothing parameter and J(f,g) j}l )dt1

3. Minimax Optimal Estimation

In this section, we investigate the impact of the number of machines on the mean squared
error of f. Specifically, Theorem 3.1 provides an (non-asymptotic) upper bound for this
mean squared error, while Theorem 3.2 provides a (non-asymptotic) lower bound. Notably,
both bounds hold uniformly as s diverges. From these bounds, we observe an interesting
phase transition phenomenon that f is minimax optimal if s does not grow faster than
N2m/(2m+1) and an optimal A < N~2m/(2m+1) ig chosen, but the minimax optimality breaks
down if s grows even slightly faster (no matter how A is chosen). Hence, the upper bound
of s is sharp. Moreover, A does not need to be optimal when this bound is attained. In
some sense, a proper sample splitting can compensate a sub-optimal choice of .

In this section, we assume that ¢;’s are iid zero-mean random variables with unit vari-
ance. Denote mean squared error as

MSEy, (f) == Egp{llf = foll3},

where || fll2 = 4/ [; f(t)2dt. For simplicity, we write Ey, as E later. Define h = AL/(2m),

Theorem 3.1 (Upper Bounds of Variance and Squared Bias) Suppose h > 0, and N is
divisible by n. Then there exist absolute positive constants by,,c, > 1 (depending on m
only) such that

B B B 3 mnh 1
BT~ BB < b (3w [ ) @)
1L}~ folla < ems/TGo) O + 2 £ N-1) o)
for any fired 1 < s < N.

1. For simplicity, we denote J(f, f) = J(f) later.
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From (17) and (18) in Appendix, we can tell that f — E{f} is irrelevant to fo. So is
the upper bound for the (integrated) variance in (4). However, this is not the case for the
(integrated) bias || E{f} — foll2, whose upper bound depends on fy through its norm J(fp).
In particular, the (integrated) bias becomes zero if fj is in the null space, i.e., J(fo) = 0,
according to (5).

Since

MSEy, (f) = B{|If — B{F}I3} + IE{f} — fol3, (6)
Theorem 3.1 says that

mnh
MSEf, (f) < bm <N—1 + (Nh)—l/0 mwd:p) + A J(fo)A+n2m+ N7YH. (7)

When we choose h < N~1/m+1) and n=2m = O()\), it can be seen from (7) that f is
minimax optimal, i.e., ||f — foll2 = Op(N~"/m+1))  Obviously, the above two conditions
hold if

A\ = Nme/(2m+1) and s = O(sz/(Qerl)). (8)

From now on, we define the optimal choice of A as N—27/(2m+1) " denoted as A,; according

to Zhang et al. (2015). Alternatively, the minimax optimality can be achieved if s =<
N2m/m+1) and nh = o(1), ie., A = o(\,). In other words, a sub-optimal choice of A
can be compensated by a proper sampling splitting strategy. See Figure 3 for the subtle
relation between s and A. It should be mentioned that A, depends on N (rather than n)
for achieving optimal estimation rate. In practice, we propose to select A via a distributed
version of GCV; see Xu et al. (2017).

Remark 3.1 Under random design and uniformly bounded eigenfunctions, Corollary 4 in
Zhang et al. (2015) showed that the above rate optimality is achieved under the following
upper bound on s (and A = \,)

§ = O(N(mel)/(2m+1)/log N)

For example, when m = 2, their upper bound is N%%/log N (versus N°® in our case). We
improve their upper bound by applying a more direct proof strategy.

To understand whether our upper bound can be further improved, we prove a lower
bound result in a “worst case” scenario. Specifically, Theorem 3.2 implies that once s is
beyond the above upper bound, the rate optimality will break down for at least one true

Jo.

Theorem 3.2 (Lower Bound of Squared Bias) Suppose h > 0, and N is divisible by n.
Then for any constant C > 0, it holds that

sup [|E{f} — foll3 = Clamn™™ —8N1),
foeS™ (D)
J(fo)<C

where an, € (0,1) is an absolute constant depending on m only, for any fized 1 < s < N.
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It follows by (6) that

sup MSEj(f) > sup [E{f}— foll3 > Clamn™>" —8N"1). 9)
JoeS™(I) foeS™(I)
J(fo)<C J(fo)<C

It is easy to check that the above lower bound is strictly slower than the optimal rate
N—2m/@2m+1) if ¢ orows faster than N2™/(2m+1) no matter how A is chosen. Therefore, we
claim that N2™/(2m+1) ig a sharp upper bound of s for obtaining an averaged smoothing
spline estimate.

In the end, we provide a graphical interpretation for our sharp bound result. Let s = N¢
for 0 <a<1land A= N~"for 0 <b< 2m. Define p;(a), p2(a) and p3(a) as

Upper bound of squared bias: N~"1(®) = X4 p=2m 4 N~

Lower bound of squared bias: N 7@ = max{n_2m —~ NY 0},
mnh
1

Upper bound of variance: N7 =< N~1 4 (Nh)~1 / dx,

o (L+a2m)?
based on Theorems 3.1 and 3.2. A direct examination reveals that
p1(a) = min{2m(1 —a),1,b}
2m(l —a), a> (2m—1)/(2m)
p2(a) = { 00, a < (2m—1)/(2m)
p3(a) = max{a,(2m —b)/(2m)}

Figure 4 displays p1, pa, p3 for A = N=2m/(2m+1) 1t can be seen that when a € [0, 2m/(2m+
1)], upper bounds of squared bias and variance maintain at the same optimal rate N—27/(2m+1),
while the exact bound of squared bias increases above N—27/(2m+1) when a € (2m/(2m +
1),1). This explains why transition occurs at the critical point a = 2m/(2m+1) (even when
the upper bound of variance decreases below N~2™/Cm+1) when a € (2m/(2m + 1),1)).

It should be mentioned that when X # N—27/Cm+1) ‘i e b =£ 2m/(2m + 1), suboptimal
estimation almost always occurs. More explicitly, b < 2m/(2m+1) yields p1(a) < 2m/(2m+
1) for any 0 < @ < 1. While b > 2m/(2m + 1) yields p2(a) < 2m/(2m + 1) for any
2m/(2m + 1) < a < 1; yields p3(a) < 2m/(2m + 1) for any 0 < a < 2m/(2m + 1). The
only exception is a = 2m/(2m + 1) which yields p; = p2 = p3 = 2m/(2m + 1) for any
b>2m/(2m+1).

Remark 3.2 As a side remark, we notice that each machine is assigned with n =< N1/(2m+1)
samples when s attains its upper bound in the estimation regime. This is very similar as
the local polynomial estimation where approzimately N/ 2™+ Jocal points are used for
obtaining optimal estimation (although we realize that our data is distributed in a global
manner).

Remark 3.3 Under repeated curves with a common design, Cai and Yuan (2011) observed
a similar phase transition phenomenon for the minimax rate of a two-stage estimate, where
the rate transits when the number of sample curves is nearly N2™/2m+1)  This coincides
with our observation for s. However, the common design assumption, upon which their
results crucially rely, clearly does not apply to our divide-and-conquer setup, and our proof
techniques are significantly different. Rather, Theorems 3.1 and 3.2 imply that the results in
Cai and Yuan (2011) may still hold for a non-common design.
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Figure 4: Plots of pi(a), p2(a), p3(a) versus a, indicated by thick solid lines, under X = N—2m/Gm+1)
p1(a), p2(a) and ps(a) indicate upper bound of squared bias, lower bound of squared bias and
upper bound of variance, respectively. p2(a) is plotted only for (2m — 1)/(2m) < a < 1; when
0<a< (2m—1)/(2m), p2(a) = oo, which is omitted.

4. Minimax Optimal Testing

In this section, we consider nonparametric testing:
Hy:f=0 v.s. Hy:feS™I)\{0}. (10)

In general, testing f = fy (for a known fy) is equivalent to testing f. = f — fo = 0. So (10)
has no loss of generality. Inspired by the classical Wald test (Shao (2003)), we propose a
simple test statistic based on the f as

T = [IFI13-

We find that testing consistency essentially requires no condition on the number of machines
no matter it is fixed or diverges at any rate. However, our power analysis, which is non-
asymptotically valid, depends on the number of machines in a nontrivial way. Specifically,
we discover that our test method is minimax optimal in the sense of Ingster (Ingster (1993))
when s does not grow faster than N@m=1/(4m+1) anq X is chosen optimally (different from
A«, though), but it is no longer optimal once s is beyond the above threshold (no matter how
A is chosen). This is a similar phase transition phenomenon as we observe in the estimation
regime. Again, we notice an optimal choice of A may not be necessary if the above upper
bound of s is achieved.

In this section, we assume that the model errors ¢; ;’s are #d standard normal for
technical convenience. In fact, our results can be generalized to likelihood ratio test without
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assuming Gaussian errors. This extension is possible (technically tedious, though) since
likelihood ratio statistic can be approximated by T ) through quadratic expansion; see
Shang and Cheng (2013).
Theorem 4.1 implies the consistency of our proposed test method with the following
testing rule:
dNA = I( TN — BNAl > 21—a/20N 1),

where pn \ == Ep,{Tn}, 012\,/\ = Varg,{Tn} and 21_q /2 is the (1 —a/2) x 100 percentile
of N(0,1). The conditions required in Theorem 4.1 are so mild that our proposed testing
is consistent no matter the number of machines is fixed or diverges at any rate.

Theorem 4.1 (Testing Consistency) Suppose that h — 0, n — oo when N — oo, and
limy_,00 nh exists (which could be infinity). Then, we have under Hy,

TN — BN

45 N(0,1), as N — .
ONA

Our next theorem analyzes the non-asymptotic power of T}y , in which we pay particular
attention to the impact of s on the separation rate of testing, defined as

Ay = \/A +n72m 4oy ).
Let B={f € S™I) : J(f) < C} for a positive constant C.

Theorem 4.2 (Upper Bound) Suppose that h — 0, n — oo when N — oo, and limy_,o, nh
exists (which could be infinity). Then for any € > 0, there exist Ce, N > 0 s.t. for any
N >N,
inf P =1)>1—e¢. 11
inf  Priona=1)21-¢ (11)
Ifll2>Cedn a

Under assumptions of Theorem 4.1, it can be shown that (see (55) in Appendix)

n r s
2 _ T if limy_onh =0,
INA = { s A limy e nh > 0, (12)

Given a range of A leading to limy_,oo nh > 0, we have by (12) that dy ) = /A + (Nh/2)—1.
An optimal choice of A (satisfying the above requirement) is Ay := N —4m/(Am+1) gince it
leads to the optimal separating rate dy , := IV —2m/(4m+1). gee Ingster (1993). Meanwhile,
the constraint limy_,oc nh > 0 (togethef with the choice of A,.) implies that

5 — O(N(4m71)/(4m+1)). (13)

The above discussions illustrate that we can always choose A, to obtain a minimax optimal
testing (just as in the single dataset Shang and Cheng (2013)) as long as s does not grow
faster than N(4m—1/(4m+1) Tn the case that imy_,oo nh = 0, the minimax optimality can
be maintained if s =< N@#m=1)/@m+1) "p — (1) and nh = o(1). Such a selection of s gives
us a lot of freedom in choosing A that needs to satisfy A = o(\.). A complete picture in
depicting the relation between s and A is given in Figure 3.

We further discover in Theorem 4.3 that the upper bound (13) turns out to be sharp.
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Theorem 4.3 (Lower Bound) Suppose that s > N@m=D/Gm+D) “p 5 0 n — oo when
N — o0, and limy_,oo nh exists (which could be infinity). Then there exists a positive
sequence Sy with limy_,o By, = 00 s.1.

lim sup inf Pr(pny=1) < a (14)

N—o0 feB
Il fll2=BnAdy 5

Recall that 1 — « is the pre-specified significance level.

Theorem 4.3 says that when s > N@m—1/(4m+1) “the test ¢ N, is no longer powerful even
when ||f|l2 > d}y ,. In other words, our test method fails to be optimal. Therefore, we
claim that N@m=1/(m+1) i o sharp upper bound of s to ensure our testing to be minimax
optimal.

Remark 4.1 As a side remark, the existence of limy_.o nh can be replaced by the following
weaker condition under which the results in Theorems 4.1, 4.2 and 4.3 still hold:

Condition (R) : either lim nh =0 or inf nh > 0.
N—o0 N>1

Condition (R) aims to exclude irreqularly behaved s such as in the following case where s
vibrates too much along with N :

(15)

. N N s odd,
T N2, N is even,

where h < N~¢ for some ¢ > 0, by,bs € [0,1] satisfy by + ¢ > 1 and by + ¢ < 1. Clearly,
Condition (R) fails under (15).

5. Discussions

This paper offers “theoretical” suggestions on the allocation of data. In a relatively sim-
ple distributed algorithm, i.e., in m-order periodic splines with evenly spaced design, our
recommendation proceeds as follows:

e Distribute to
s = N2m/(2m+1)

machines for obtaining an optimal estimate;

e Distribute to
s = NUm—1)/(am+1)

machines for performing an optimal test.

However, data-dependent formulae are still needed in picking a right number of machines in
practice. This might be possible in light of Figure 3 indicating that sample splitting could
be an alternative form of tuning. As for the choice of A, we prove that it should be chosen
in the order of N even when each subsample has size n. Hence, a distributed version of
the generalized cross validation method is applied to each sub-sample; see Xu et al. (2017).

10
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Another theoretically interesting direction is how much adaptive estimation (where m is
unknown) can affect the computational limits.
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6. Appendix

Proofs of our results are included in this section.

6.1 Proofs in Section 3

Proof [Proof of Theorem 3.1] We do a bit preliminary analysis before proving (4) and (5).
It follows from Wahba (1990) that (S™(I),J) is a reproducing kernel Hilbert space with
reproducing kernel function

Zcpl, You(y QiCOSQ’R’/{(B— )),x,ye]l.

(2mk)2m
k=1

For convenience, define K,(-) = K(z,-) for any x € I. It follows from the representer
theorem (Wahba (1990)) that the optimization to problem (3) has a solution

n
fi=> Gk, j=12,..,s, (16)
=1

where ¢; = (C1j,...,¢n )T =n NS+ ML) 7Y, Y = (Yi, ..., Yo )T, L is n x n identity
matrix, and X; = [K(t;j,ty ;j)/n|i<ii<n. It is easy to see that X1 = 3y = --- = X;. For
convenience, denote > = 1. Sirnilarly, define

wu(@)eu(y) gp 2. cos(2mk(z —y))
v v -
E 2E1 2k , x,y el

For 1 <j <s,let Q; = [K' (t”, j)/nli<ii<n. It is easy to see that 3 = Qy = -+ = Q.
For convenience, denote 2 = 1, and let ®,; = (¢u(tij), .- pu(tng))-
It is easy to examine that

© S B, (5 + L)LY

Foo_ 7=1 J
fo= Z N, 1 2%
v=1
_ i D51 Pu (B + L) (fo + €)) an
ot N’}/V SOV’

11
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and o 5 ( -1
_ D, (B N,y
E — ]—1 5] 5J 1
=3 - v, (18)
v=1
where fOJ = (fO(tl,j)a ey fo(tn’j))T and Gj = (El,j, RN Gn’j)T.
We now look at ¥ and Q2. For 0 <1 <n —1, let
2 i cos(2mkl/n)
C — S ——
: n i (2mk)2m
cos(2mkl/n)
do= 5 Z (2mk)dm -
Since ¢ =c¢p_jand dy =d,_; for [ =1,2,...,n— 1, ¥ and Q are both symmetric circulant
of order n. Let € = exp(2my/—1/n). £ and ¥ share the same normalized eigenvectors as
1
Ty = %(1,57",627, e INT =01, 0 — 1.

Let M = (x0,21,...,2n—1). Denote M* as the conjugate transpose of M. Clearly, M M* =
I, and X, Q) admits the following decomposition

Y = MAM*, Q= MAM*, (19)

where A, = diag(Ac0, Ae1,- -5 Aen—1) and Ag = diag(Ag 0, Ad1,-- -, Adn—1) With Aoy =
co+eiet .+ cn_le(”*l)l and A\g; = dop + diet + ...+ dn_la(”*
Direct calculations show that

2 —, =0,
Aci = 1Zk ' QWIm)Z << (20)
Yt P T ko G 1 SI<n- 1L
2Y 02 T =0,
Ady = 0 121671 (2rkn)t L 1<I< 1 (21)
2 k=1 (o= T 2ok=0 Ergminee L SI<n -1
It is easy to examine that
Ao = 2, (2mrn) 2™, Ado = 2y (2m) T4, (22)
and for 1 <[l <n-—1,
1 1
., =
O G P oy  PZT (e T
> 1 > 1
+ 2 2r(kn — P ; 2n(kn 1 PP
1 1
A pu—
W= DD T (2l
> 1 Nt 1
23
+§ 2 (kn — [)]im +; 2 (ken + 1)]Am” (23)

12
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and for &, =Y 00 k72 ¢ = S kT dpy =Y n KT, = D0, kM,

S S
27 (kn — )]2m

1

k=1

1
<

M8

Ay (270) 74

B
[|

2
1

IN

M8

d,, (2n)
1

T

For simplicity, we denote I = E{|f — E{f}|I3}

MSE;, (f) = I + I1.

Proof of (4)

13

27 (kn +1))?™

27 (kn — 1)]im

27 (kn + 1)]*m

< G (2mn) 2™,

< Em(27rn)72m,

< dpp (2m) 4™,

< dp (2m) ~4m,

and IT = |[E{f} — foll3. Hence,
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Using (19) — (23), we get that

o~ 1 {0 (B + M) e )
r= Yy
N3

v=1
X Yo trace((B 4 Aly) o], (3 + M) )

- L7 N?;

v=1

= NQZtrace(E—i—)\I 12 v ’]/ 2+)\In)_1>

— N2Ztrace (Z+ ML) QS + ML)

= %trace( <A —|—AI) lAd(A +AI> ]_M*)
_ 1 = Adl
N = (A4 Acp)?
< 2d,,
~  N(2¢y + (2mn)?mN)?
n—1
7 VN~ 2m(n —1))~*" + (2xl)~*
14 dp)N"! (
+( + ) ; ()\ + (27T(n — l))—?m 4 (27Tl)_2m)2
2d,m,
<
= N(26m + (27n)2mN)?
)N~ @2rl) =4 4+ (2m(n — 1))~
+2(1 4 dp)N7? Z . "
20 7 - (271)—4m
= = 40+ dNT Y
2mA)? —2m)2
N(2¢m + (2mn)?™mA) S (A + (27l)—2m)
2d,m, 21 +d,) [™ 1
< B ———

< b, (2 +1/m1d
= N Nk 1+ 22my2™ )

where by, > 1 is an absolute constant depending on m only. This proves (4).
Proof of (5)
Throughout, let n = exp(2my/—1/N). For 1 < j,1 < s, define

OO(pT

5, = 72 0, o
9 22, COS (27rl<: (%—%))

, = = =0,1,...,n—1.
9j,l,r nk_l (27l'k)2m , T 07 ) )T

14
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It can be shown that ¥,; is a circulant matrix with elements 0;;0,051,...,0j1n—1, there-
fore, by Brockwell and Davis (1987) we get that

Y= MA;; M, (24)

where M is the same as in (19), and A;; = diag(\ji,0, Aji1s-- -5 Njin—1), With X, for
r=1,...,n — 1, given by the following

Ajlr = Ef%lﬁ

s o5 )

I €
2
t=0 k=1 (277]‘?) m
n (2mk)2m
_ n- (gn—m)(G-1) + i n(qn—i—r)(] 1) (25)
q:l 27T qn_r p 27‘(‘ qn_|_r,n 2m

and for r = 0, given by

n—1
AjLo = E:Uj,l,t

n—1 ktpk(j-1) +Zn Lokt k(1)

2.1=0
Z (27rk)2m

nqn(J—l) + =)

_ ; e (26)
Forp>0,1<v<n,0<r<n—1and1<j<s, define
Apwrj = izs: N8y )10 Bpwrs = izs: ML PG ) 1
By direct calculation, we have for 1 <v <n —1,
Dopniny-1pzr = V02 (NI 40 = ) 4y~ = ) )
Dopnio)iTr = /—n/2 (n“’"*“’“‘”l (r+v=mn)—n TN = 7‘)) :
(27)
and
Oopnin)—1%r = /n/2I(r=0) (W(pﬂ)n(l*l) + Uf(pﬂ)n(lfl)) )

Dopnimyatr = /=n/20(r = 0) (y@FInI=D = rOni=D), (28)

15
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Let I(-) be an indicator function. Then we have for p > 0,1 < j<sand1 <wv,r <n-—1,

1< .
szvzrvj = ; Z Ajvlﬂr'xT@%j(pn-‘r’U),l
=1
1 5 2 gy lan=n)G-h 2 plantn)G=D
= ——\/=n/2 e e
NV TPLN L =P 2 Bl P

y (,7—<pn+v><z—1) I(r+v = n) — p®n 0D — v))

—(pn+tv)(5—1)
_ Ui
- 2| > 27 (ulN + pn + v)2m

u>—p/s

I(r+v=n)

pPrtv)G=1)

B Z 27 (uN — pn —v)]?™

u>(p+1)/s

- (ont)G-1)

+ Z 2m
> lor)/s 27 (uN — pn — v)]

I(r+v=nmn)

pPrtv)G-1)

B uzz—:p/s r(uN +pn o) Y

* 17T
= apvvxrq)Q(pn—i-v),j’ (29)

1 1
Whefle U = Douz—p/s Br@NTpro T 2uz@1)/s Pr@i—pr—opm orp 2 0, 1 < <
mn— 1.

For v = n, similar calculations give that

- (Prtn)(i-1)
ulN + pn + n)]?>m

Bpnrj = —v/-n/2I(r=0)| > o

u>—p/s
pPntn)(i=1)

- Z — _ 2m
s (rre)/s 27 (uN — pn —n)]

- o) G-1) () (G—1)

+ > Y 2
us(prayye 2N —pr =m0 Rr(ulN A pn )P

= ap,nx:q)g(pn—l-n),j? (30)

1 1
where apn =3 > /s raNaprrm]EE T 2u(p+2)/s EraN—promp 100 P 2 0,

16
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Similarly, we have p > 0, 1 <j<sand 1 <wv,r <n-—1,

= (on+0)(G=1)

Aper = /2 ug/s 27 (uN + pn + v)PmI(T To=mn)
(pn+0)(j-1)
+u>(§1)/s [%(L\If) = pnj — o =)
+ Z [27r(z;\;pi+;:j__1:)]2m I(r+v=nmn)
u>(p+1)/s
- >Z/ 27‘(’(17](:;”:27(1]—:)1))] (r="0) | = @yt ®spniy-rye (81
u>—p/s
and for v = n,
— (o) (—1)
Apnry = Vnf2(r u;/s S o T
> [zﬂ(:z(\zrmj ;): —1:1)]% o [2W<Zz\;pi+;:j—2)]2m
u>(p+2)/ u>(p+2)/s
I e Rt @)

u>—p/s

It is easy to check that both (29) and (31) hold for » = 0. Summarizing (29)-(32), we have
that for p>0,1<j<s,1<v<nand0<r<n-1,

AP»UJ",]' = Gpoly (1)2(pn+v) 1,50

Bp,v,?”,j = OGpody (pZ(pn—‘rv) (33)

To show (5), let fj = (E{f(ti))},- -, E{f(tn)})T, for 1 < j < s. It follows by (18)
that

s i >t P (B4 M) Moy
N,

— Z( Z :](I)z/l> (E—f—)\[n)_lf[),l

l/
v=1

T
P, ;

= - Z Y508+ ML) "My,
=1

1 S
= - D MA; (A + ML) My,
=1

17
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together with (33), leading to that

* £ 1 - — *
M, = ;ZAJ-J(ACJFALI) Ly,
=1

1 s X *HT
s 2i—1 Aj10%6®,
>\+)\c,0

o
= 2.0
u :
p=1 32 A L
AAen—1

1 s X *FHT
5 2 i=1 Aj,l,Owo‘DQ(pnﬂ)ﬂ,l

0o n A0
_ fO .
- 2(pn+v)—1 :
p:O v=1 % Z?:l )\jalvnflx’tl—l(pg‘(pn+v)fl,l
)\+)\c,n—1
3 I N0TE RS g
o n AAc,0
0 .
+ E E f2(pn+v) :
p=0v=1 FD I Aj,l,ﬂ/—lw271¢2T(pn+v),z
)\+)\c,n71
Ap..0.5 Bp.v.,0.5
© n AAc,0 o n AAc,0
_ 0 0 .
= DD Lpniu + 222 Fotomt
p:() v=1 Ap,'u,nfl,j p:O v=1 Bp,'u,nfl,j
>\+>\c,n71 >\+>\c,n—1
ap v * [T
o 7 Mo L0L2(pm+0) 1,5
_ 0 .
= 2D Lt :
p:() v=1 ap,v * T
3 aen—t n-1P2pntu)-1,5
ap v * /(T
~ n M0 0P2(pn+0) 5
0 .
+ E E f2(pn+v) :
p:(] v=1 ap v * T
)\+)\c,n71 ':Un_l (I)Q(pn+v)’j
On the other hand,
o
* R 0 * 1T
M, = Y fimral,
p=1
o n © n
— 0 * g1 0 x5 T
= D2 Fano) 1 M oy 15+ DD Loy M ot
p=0v=1 p=0v=1
*HT *H1
oo n xoq)Q(PnJr’U)*lvj oo n :EO(I)Q(anrU)’j
_ 0 0 .
= 2D Lt +2_ 2 Sani)
Tn1P3pn )15 Tn1Papnru) 4

18
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Therefore,
[o'e) n bp,v,oxaq)g(er»v)fl,j
_ 0 ]
M*(f] - foaj) = ZZfZ(anrv)fl :
p=0 v=1 bp,vﬂ—lx;klflq)g(pn—&-fu)—l,j

*F/1
bp0.0%0Po (40

DD folonsw) : , (34)

=0 v=1 * T
P bp,v,nflﬂfn—lq)z(

pn+v),j

where by, = )\ip)’\zm —1l,forp>0,1<v<nand0<r<n-1.

It holds the trivial observation bysig v, = bgor for k>0, 0<g<s—-1,1<v <n
and 0 < r < n — 1. Define Cgﬂ" = ZZO:O(fg(kN+gn+nfr)fl B \/jlfg(kN+gn+nfr)) and
Dy, = ZZO:O(fS(kNWnH)_l + \/jlfg(kN+gn+T)), for0<g<s—land0<r<n-—1. Also
denote C,, and Dy, as their conjugate. By (27) and (28), and direct calculations we get
that, for 1 <j<sand 1 <r<n-1,

[e.o]

n n

_ 0 * ;1 0 x =T

Ojr = Z( fQ(pn+v)1bp’v»rxrq’2<pn+v)1,j+Zf2<pn+v>bp»wwr‘%(pnm,j)
p=0 \v=1 v=1

- 3 —(pn4+n—r)(j—
- \EZ [(f Sontnr)1 — V=L o) opnrgn” T
p=0

+(fg(pn+r)fl tv _lfg(anrr))bp,rarn(pn—i_r)(j_l)} ) (35)
leading to that

s

POLEEENEDY
Jj=1 J=1

2
+(fg(pn+r>7l + \/jlfg(lm+r))bp,r,Tn<pn+r)<]7l)} '

Z [(fg(pm%ir)il _ /,lfg(pwrnir))bp’niryrn*(PnJrnfr)(jfl)
p=0

s s—1 2
n —(gn+n—r)(j— n+r)(j—
_ 5 E (Cg,rbg,nfT,H? (gn+n—r)(i—1) +Dg,rbg,r,r77(g +r)(J 1))
j=1"g=0

s—1 s
- g Z Z(Cg,rbg,nfhr777<gn+nir)<j71)+D9,Tbgmr77(gn+r>(jil))

9,9'=0j=1

X(Cg’mbg’,n—nrn(g Gy + Dg’,rbg’,r,rn7<g n+r)<j71))

N - .
) Z(|Cg,r| by n—r,r + CgrDs—1-g,rbgn—rrbs—1-grr
g=0
+Dg,'rCsflfg,'rbg,r,rbsflfg,nfr,r + ‘Dg,’r‘|2b§,r,r)
s—1
N 2
= E Z |Cg,'rbg,nf'r,'r + Dsflfg,'rbsflfg,'r,r| (36)
g=0
s—1
< N (Corlbgnrr +1Dsmtmg b1 g.0r)
g=0
s—1
= NZ(|CQJ‘|2b§,n7T,r + ‘Dgﬂ"|2b§,hr)'
g=0

19
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It is easy to see that for 0 < g<s—land 1 <r<n-—1,

Corl® = Zfz (kN+gn+n—r) Zfz (kN+gntn—r))’
o
< (S50t gntn—r)—1|” F 1 I50entgnin—r |V EN + gn+n —r)*"
=3
XZ (kN +gn+n—r) 2™
k=0

Mg

(|fg(k:N+gn+n—r)—1|2 + |fg(kN+gn+n—r) |2)(k7N +gn+n— T)2m

k=0
X anz 1 (gn +mn —r)~2m, (37)
and
Dy, > < Z(|f§(k1\/+gn+r)|2 + |fg(kN+gn+T)—1|2)(kN +gn+1)*"
k=0 - .
X g 1(gn+r) m, (38)

For1 < g < s—1, we have agn—r < A¢r, which further leads to |bg | < 2. Meanwhile,
by (20), we have

0 < Ay —agy < (2m(n— 1)) 72" + 26, (270) "2 < (14 26,,) (27 (n — 7)) 2™,

Then we have

’b ’ . A+ )\c,r — ap,r
0,r,r )\+)\c,r
A+ (1 +2¢,)(2r(n —r))~2m
= A+ 2mr)72m 4+ 27(n — 1)) 72
_ A+ (2n(n —r))"2m
<
< (14 2m) A+ (27r)~2m 4 (27(n — 7)) —2m’
leading to
+ (2m(n — 1)) ’
72m 2 < 72m 2
Orr = (1+26m) <)\—|— 27 ( n—r)) —2m (27r7“) 2’”)
- + (2n(n —7))~?
< 2m 2 m 2
- Iz < 27Tn—r)) 2m 4 (27p)—2m >
< (2m)P" (14 26m)* (A + (7n) 72™). (39)

The last inequality can be proved in two different cases: 2r < n and 2r > n. Similarly, it
can be shown that (n — ) "3, .. < (2m)*"(1 4 2¢,)*(A + (wn) ™).

20
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Then we have by (37)—(39) that

n— n—1s—1 oo

1s—1
Z Z ’D977"2b2,r,r < Z Z |f2 (kN+gn-r)| 2+ |f2(kN+gn+r )N +gn+1)*"
r=1 0

=1 g= r=1 g=1 k=0
om n—1 oo
X — T(gn+7)” 2 (S enam | ey 2 ) (BN + 1)
r=1 k=0
2m  _
a1’ Yo

n—1s—1 oo

< >‘ + n_Qm Z Z Z(|f§(kN+gn+r)|2 + ’fQO(kN+gn+r)—1|2)
r=1 g=0 k=0
x (27 (kN + gn 4 7))*™, (40)
where ¢, = max{(2m) 2" ;32 (1 + 2¢,,)? 522 }. Similarly, one can show that
n—1s—1 n—1s—1 oo
Z |Cg77’|2b2,n—r,r < )‘ + n—2m Z Z Z ’fg(kNJrgnJrr) ’2 + ’fg(kNJrgnJrr)fl ’2)
r=1 g=0 r=1 g=0 k=0
x (27 (kN + gn 4 1))*™ (41)
Combining (40) and (41) we get that
n—1 s n—1s—1 oo
Z Z 6, < 2d,(A+n"*"N Z Z Z(|fg(kzv+gn+r)|2 + |fg(kN+gn+r)—1|2)
=1 j—1 r=1 g=0 k=0
x (27 (kN + gn +1))*™. (42)

To the end of proof of (5), by (34) we have for 1 < j <'s,

0 * 1T 0 * 1T
Z (Z Fapn-+0)-159.0.020 P2 ()15 + Z / 2(pn+v)bpvvvoxoq’z(pnw),j)
p=0 \v=1

v=1

0 * 751 0 Y
- Z (f2(pn+n)—1bp7n70x0(1>2(pn+n)—1,j + f2(pn+n)bpynaon(bQ(pn—l-n),j)
=0

[e.e]
n _ i
N \[22 |(FBmem1 = V=L bpanon™ B0 D
p=0

+(fg (pntn)—1 TV 71fg(zm+n))bpvnﬁon(pﬂ)n(j_l)]

- \/> [ f2(kN+gn+n)—1 - \/jlfg(kN+gn+n))bg7n707]_(9”+”)(j—1)
g=0 Lk=0
+ Z f2(k;N+gn+n 1t \/7](‘2 kN+gn+n))bg " On(gn+n)(3 1)]
n
\/g Cyobgmon 9MU=D £ Dby, ot 1)] , (43)
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which, together with Cauchy-Schwartz inequality, (37)-(38), and the trivial fact |bg 0| < 2
for 0 < g <s—1, leads to

Z 0,0 < n Z | Z Cy0bgnon~ @t G=1) |2 in Z |S" Dynbynon @t ‘2

j=1 g¢=0 j=1 g=0
s—1 s—1
= N Z |Cg,0‘2b§,n,0 + Z |Dg,n‘2b2,n,0
g=0 g=0
s—1 oo
< 2,07 N YN (S ungneny 1 foenrgnin|?) X @m(RN + gn +n))*"
g=0 k=0

(44)

Combining (42) and (44) we get that

s n n—1s—1
SO EB{Mtig) = folti))® = DD 16
7j=11i=1 r=0 g=0

n s—1 oo

< 2¢,(A+nTTN Z Z Z(|f§(k1v+gn+i)\2 + |fg(kN+gn+i)—1\2)

=1 g=0 k=0
x (21 (EN 4 gn +1i))*™ = 2¢,, (A + n2™)N J(fo). (45)

Next we will apply (45) to show (5). Since fj is the minimizer of ¢;, x(f), it satisfies
for 1 <j <s,

1< ~ ~
n > (Yij = Ji(tig)Ke,, + Afj = 0.
=1

Taking expectations, we get that
1 — ~ ~
- > (B{fi}tig) — foltig) K, + AE{f;},
i=1

therefore, E{f;} is the minimizer to the following functional

(1) = 5 () — foltia))? + 5 7).
=1

Define g; = E{f;} Since £y;(g;) < o;(fo), we get

n

1

2n 4
=1

A
2

(95(t45) ~ folta)? + 37(05) < S T(fo).

This means that J(g;) < J(fo), leading to
1<~ (m I~ (m
152202 < < D g™ e < VT (o). (46)
j=1 i=1

22
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Note that E{f} = %2221 g;. Define g(t) = (E{f}(t) — fo(t))®.. By (Eggermont and
LaRiccia, 2009, Lemma (2.24), pp. 58), (46) and m > 1 we get that

=z
IA

+ = g1/ - / lg<t>dt'

l

1 S s
;/ EZgj(t) — fo()] x \é N AOERAOIL
0 =1 =1

Il
o

2 1 1<
< NH*Zgj—fonXH*ZQ;—]%Hz
%= 5=

2 1<~ (m m 8J(f,
213 — gmg < B (47)

IN

j=1
Combining (45) and (47) we get that

IE{f} — foll3 < & J(fo)(A+n 2™+ N1,

2
m

where ¢, = max{8,2c/,}. This completes the proof of (5). [ |

Proof [Proof of Theorem 3.2] Suppose fo = >0, flp, with f0 satisfying

’fo|2: Cn'@2r(n+7r)"2m, v=2n+r)—1,1<r<n/2
Y 0, otherwise.

It is easy to see that J(fp) = Zlgrgn/Q |f§)(n+r)_l|2(27r(n +7))?m < C.

Consider the decomposition (34) and let d;, be defined as in (35) and (43). It can
be easily checked that C;, = 0 for 1 < r < n/2 and 0 < g < s — 1. Furthermore, for
1<r<n/2,

Aep — a1y = Y _@r(un+1)2" 4+ @r(un — 1)) 72" = > (2m(uN +n+ 1)) 7"
u=0 u=1 u=0

- Z(Qw(ul\f —n =) > (2mr) T2,
u=1

Therefore,

b2 . A+ )\c,'r — Q1 2
1rr )\+ )\077"

A+ (2mr)=2m ?
<)\ o+ cm)(27rr)_2m> SN TCETIE

(49)
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Using (36) and (49), we have

S s Nn—

1
S (F—f0)"(F—foy) = 102

j=1 j=1r=0

> > el
r<n

1<r<n/2 j=1

N

§ 2

= Z 5 |Cg,rbg,nfr,r + Dsflfgzrbsflfgzrvr
1<r<n/2 = g=0

s—1
- E |D |2b2
- 9 s—1—g,r s—1—g,r,r
1<r<n

/2 g=0

N «
= Z QZ‘DQT g,r,r

1<r<n/2 g=0

AV

N
> Z ’Dl T| bl R
1§r§n/2
N
s NS
2 2(n+r)—1
8(1 + m) 1<r<n/2
NC

n~?" = q,, NCn™2",

16(3m)27 (1 + )2

m < 1 is an absolute constant depending on m only. Then the

conclusion follows by (47). Proof is completed. [ |

where a,, =

6.2 Proofs in Section 4
Proof [Proof of Theorem 4.1] For 1 < j,1 < s, define

o @V D,
Q= - Z L,
v=1
N 9 X cos (27rl<: (% — ]N;l»
Ojlr - (k)i ,r=0,1,...,n—1.
k=1
Clearly €2;; is a circulant matrix with elements ¢;;0,01,...,0;j1n—1. Furthermore, by
arguments (24)—(26) we get that
Q= MT; M*, (50)

where M is the same as in (19), and I';; = diag(d;,0,0;0,1,---,0;1n-1), With &;;,, for
r=1,...,n— 1, given by the following

e n —(gn—r)(G-1) gn+r)(G—1)

o0 (
n
5 :E R E 51
Jbr p [27T(qn—r +q [27(qn + 1) 4""“ (51)
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and for r = 0, given by - , ,
nqn(rl) + nfqn(rl)

Si0=> — . (52)
2 2nam)
Define A = diag((Z + A\,) "L, ..., (S 4+ A,)~ ) and
Q1 Qa2 o Qg
S I
Qs,l QS,Q te Qs,s

Note that B is N x N symmetric. Under Hy, it can be shown that

o S — 2
2 D=1 Pua(E+ ML) 1€l>
178 = 3 =

v

v=1
1@, 0,
- e () e
]l 1 o w

_ N Z (2 4+ L) (2 + ML) e
7,l=1

1 T 1 T
_ ABAe = —€TA
Ns© €T NS 2E

where € = (e],...,€el)T and A = ABA.
This implies that Ty \ = € Ae/(Ns) with uy \ = trace(A)/(Ns) and 012\,7)\ = 2trace(A?)/(Ns)?.
Define U = (TN,A - MN,A)/UN,)\- Then for any t € (—1/2, 1/2),

log E{exp(tU)} = log E{exp(te’ Ae/(Nson )} —tunr/onn
1
= —ilogdet(IN—QtA/(NsaN’A)) _tHN,/\/O'N,)\
= ttrace(A)/(Nson,) + t*trace(A%)/((Ns)*o% )

+O(t3trace(A3)/((Ns)3a?v \)) — v oN A
= t2/2 4+ O(t3trace(A®)/((Ns)3 O'N \))-

It remains to show that trace(A%)/((Ns)30%; ) = o(1) in order to conclude the proof.
In other words, we need to study trace(A?) (used in 0]2\,7 ,) and trace(A3). We start from
the former. By direct calculations, we get

trace(A?) = trace(A2BA%B)

s s
= Z trace Z M(A.+ )\In)_QFl,j (Ae + )\In)_21—‘j’lM*

= Ztraee ((Ac+)\I) QFZJ(A + \,) Z Z )\|5J,lﬂ“‘

A
gl=1 jl=1r= 0 +Acr)
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For1 <g<sand 0<r<n-—1, define

[e.9]
=2 — 7
p=0 27 (pN +gn r)]dm

Using (51) and (52), it can be shown that for r =1,2,...,n — 1,

s s 2
Z Ag,mfgn(jfl) + ZAgm_m(g*l)n(j*l)

S

Z|5j,l,r’2 = Z

g,l=1 gl=1"'g=1 g=1
S S S
—(g—d' i1 —q' j—l1
= Z Z Ag Ay =900 4 Z AgnrAgp_yn 997G
=1 \g,g'=1 9,9'=1

id S
3 Ay Ag TGN ST A A ot DG
9,9'=1 g,9'=1

S S
= §° Z A -+ 2 Z Ag nr + 252 Z AgrAsii—gn—r
= g:l

S
D D
g=1
Since ,
S S o0 1 1
> A= 12 >
g,r _ 4 - - Im’
g=1 g=1 \p=0 27 (pN + gn —r)]*™ [27(n — r)]¥™
we get that

n—1 _2 s
Z § = + n—r
trace(Az) Z (Zg_l Zg 1 g )

— ()‘ + )‘cn“)
n—1 — 4+ 1 -

> 2 [2m(n—r) (27r)8m

Z S TE . A + /\C ,,,)
1

252 (27r7»)8m
> %2 e
~ (24 26,)* Z A+ ¢ )4

1<r<n/2 2mr)2m

. 32 Z 1
- =Y 2m)4
8(1+ ¢m) 1< (14 (27rh)?m)

52 nh/2 1
> hl/ ——dx.
8(1+ &)t h (14 (2mx)2m)4

Meanwhile, (53) indicates that for 1 <r <mn —1,

Z 1600 < 2522,4 +2522Agn »

=1
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From (54) we get that for 1 <r <mn —1,

ZAQT ~ (2n n—v"))gm7

where ¢, > 0 is a constant depending on m only.
Similar analysis to (53) shows that

> I6i0l? = >

2
A, O(UQN(j—l) + n—gn(j—l))

Gl=1 gi=11g=1
s—1
— 2522A§0+2s > AgoAsgo+25° A2,
g=1 g=1
< 4822A < ps? (2mn)~ 8m

Therefore,

2
4s Zgl g0+222291 +Egl gn—r

t A2) <
race(A%) < A+ Aeo)? PESWNE
2
S dems Tzl 27rrh )2m)4

nh
1
< dey 2h—l/ S S——
= %6ms o (L+ (2mz)2m)i ™

By the above statements, we get that

n :
2 _ 2 2 _ N2 if nh — 0,
oy = 2trace(A%)/(Ns)® < { V if limy nh > 0.

To the end, we look at the trace of A3. By direct examinations, we have
trace(A?) = trace(ABAQBAQBA)
— Z trace ( D M (Ae+ M) Tju(Ae + ML)~y M)
7,k=1

XM (A + NL,)~ Fk,jM*)

= Z trace ((AC + )\In)_2Fj,l(Ac + AIn)‘QFl,k(AC + )\In)_2Fk,j)

7,k 1=1
s
. Z Z ],l,rdlkr(sk,]r
7,k,l=17=0 )\+)\
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Forr=1,2,...,n —1, it can be shown that
% (i (27:2::(—7“ +q§3 27 Zq:(:- ]:“)
(Set e Satie) o

We next proceed to show that for 1 <r <n —1,

96m am \? 1 1
Z O3t OkrOhir < fo 7 <4m— 1) ’ ((2w(n—r))12m " (2m~)12m>' (57)

l,j,k=1
Using the trivial fact that A, < 43{”1 X (2w(gn£r))4m’ the first term in (56) satisfies
n —qin(j—1) n —q2n(j n —qan(j—1)

]gmzl 2m(qin — 1)) 4mz (27 (gan — 1)) 47”2 (27 (gsn —r))*m
EA] 1

— Z Z Agl Tn—gﬂl(j—l) Z Agg Tn—gzn(l—k) Z Ag3 Tn—ggn(k—j)
Jilk=1g1=1 ge=1 g3=1

S S

= Z A917TA9277’A93J‘ Z n_gln(j_l)n_gw(l_k)77_g3n(k_j)
91,92, 93*1 j,l,k—l

— Z Ay, + Ay, Agngn% g1)n(j—1) 277(91 g2)n(l—1) Z (92—g3)n(k—1)
91,92,93=1 k=1

_ 3 3
= S Z Agr
g=1

4m 3
<
< (w21) *X o
__l2m 4m 33 1
= Lm—1\4m—1) ° @n(n—r)zm’

Similarly, one can show that all other terms in (56) are upper bounded by

12m am \? 1 L1
12m—1\am—1) ° \@rln—r))2m " 2rr)izm )

Therefore, (57) holds. It can also be shown by (52) and similar analysis that

S
> 050001k00k40 < 87 (2mn) 12 (58)
j7l7k:1
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Using (57) and (58), one can get that

S

trace(A3) = Z Z J»lﬂ“(slkﬂskd,

1,j,k=1r=0 (A+Acr)
12!n + 1127n %
< 3 Z 2m(n— r) (27r) + 83 (2mn)
~ )\ + )\c r) ()\ + )\C,O)lzm
<Y e
~ — 1+ (27rh)2m)6

nh 3 .
1 s°n ifnh —0
< 31 —1 s — ) )
S sh /0 0+ @rz)?)s " {53h_1, iflimy nh >0, O

Combining (55) and (59), and using the assumptions n — oo, h — 0, we get that

n—1/2 if nh — 0,

3 < ; _
trace( AV S { e rmien g, =l

Proof is completed. u

Proof [Proof of Theorem 4.2] Throughout the proof, we assume that data Y7,...,Yx are
generated from the sequence of alternative hypotheses: f € B and || f|2 > Cedn . Define
£; = (f(t1;),-, f(tn;))T for 1 < j < s. Then it can be shown that

o0
NsTyy = Ns) f7

= > VIS4 M) TS+ M)
g l=1

= > VI M(Ac+ M) 7'Tji(Ae + ML) T MY,
g l=1

= > fM(Ac+ ML) Ty (A + ML) M,
g l=1

S
+ DM (A + ML) T i(Ae + ML) T M g
=1

+ 3 € M(Ae+ ML) 7 'Tu(Ac + ALy) My
gl=1

+ ) €] M(Ae+ ML) 'Tyu(Ae + ML) Mg
g l=1
= N1 +Tr+13+ 1T} (60)
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Next we will analyze all the four terms in the above. Let f =Y 72 fup,. For 0 <r <
n—1and 1 <[ <s, define d;, = 2;f;. Then it holds that

0 n 0 n
dir =D Ponry- 127 Papminy 11+ D D Fatomto) ¥ oo 1
p=0v=1 p=0v=1

Using (27) and (28), we get that for 1 <r <n —1,

oo n—1
n —\pn—+v — n—+v _
Ay = sz2(pn+v)—l (\/Q) (77 Ert0)=D7(r 4+ 0 = n) + PPN (= v))
p=0 v=1
oo n—1
n —(pn—+v — n-+v _
+sz2(pn+v) <—\/;> (77 Ert0) =D (p 4o = n) — PPN = U))
p=0v=1
00
n —\pn—n—r -
- \/gz |:(f2(pn+n—7‘)—1 -V _1f2(pn+n—r))77 (prt UG
p=0
+(fa(pnar)—1 + \/jlfQ(pn+T))n(pn+T)(l_1):| ) (61)

and for r = 0,

dl,O = Z f2 (pn+n) 1x0(1) 2(pn+n)—1,1 + Z f2 (pn+n) $0‘1)2(pn+n)

p=0 p=0
n o
= \/QZ |:(f2(pn+n)—1 -V _1f2(pn+n))77_(pn+n)(l_l)
p=0
+(f2(pn+n)—1 + v _1f2(pn+n))77(pn+n)(l_1)} : (62)
We first look at Tp. It can be examined directly that
T, = Z (d;0,- .. djn1)dia 0j.0 Ojidin—1 x (d dpn1)"
1 3,05+« bjn—1 g ()\‘i‘)\c’O)Z,“" ()\+)\C7n71)2 1,0+ -+ U n—1

=1

n—1
8 1.rdird T
_ ZZ;[ 1 95,L,rty,rdi ‘ (63)

r=0 ()\ + Acﬂ“)

Using similar arguments as (29)—(33), one can show that forp > 0,1 <v <n,0<r<n-1
and 1 <j <s,

7251“’37 @y 2pntv)-10 = Dpolr ®2(pn+v) INE

=1
where
1 1
- ZUZ—P/S (27T(uN+pn+l{))4m + ZUZ(F-Fl)/S (27r(uprnfv1))4"”’ forl<v<n-—1,
pv _
Zuz—p/s (2m(uN+pn+n))dm + ZUZ(]ZH—Q)/S (27 (uN—pn—n))dm> for v =n.
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By (64), we have
Z 6j,l,radl,r - Z dj T Z 6] l 'rdl r
ji=1 =1
= Z dJ T Z 6] Lr (Z Z f2(pn+v) lmrq)2(pn+v) 1,1
j=1

p=0v=1
+ Z Z f2(pn+v)x:q)g(pn+v),l>
p=0v=1
= Zd, (ZZprn+v) lza,lrmr(pr'nA»v) 1,1
p=0v=1
+ Z Z f2(pn+'u) Z 63 l 7xr¢2(pn+v) l>
p=0v=1
= Szd] r (ZZfZ(pn+v) 1bp,vx q)Q(pn-H)) 1,7 + ZZfz(pn-‘—v)bp,vxr(pQ(pn-&-v),]> :
p=0v=1 p=0v=1

It then follows from (61) and (62), trivial facts bs_1—g, = bgn—r and Cgp—p = Dy,
(both Cy, and Dy, are defined similarly as those in the proof of Theorem 3.1, but with fo
therein replaced by f), and direct calculations that for 1 <r <n—1

o)

- g sn - / n+n—r)(j—
Z J'J,de,rdlﬂ‘ = ? Z |:(f2(pn+n—r)—l + _1f2(pn+n—r))77(p + )G-1)

4ii=1 j=1p=0

+(f2(pn+’r)—1 -V _1f2(pn+r))n_(pn+T)(j_1)i|

/ —(pn+n—r)(j—1
X Z |:(f2(pn+n77')71 - 71f2(pn+n77-))bp,n7r77 (pnt =1

p=0
+(f2(pn+'r)—1+ /_1f2(pn+r))bp’Tn(PnJrr')(jfl)}

N s s—1 oo B .
5 Z |:(f2(kN+gn+n—r)—1 + v _1f2(kN+gn+n—r))7](gn+n nG-b
k=0

1
Jj=1g=0 k=

+(fo(kN4gntr)—1 — V _1f2(kN+gn+r))n_(gn+T)(j_1)]

s—

X
_

0o
Z |:(f2(kN+gn+n7r)71 -V _1f2(kN+gn+nfr))bk5+g,n7'rn_(gn+n_r)(]_1)
9=0 k=0

+(f2(kN+gn+r)71 + V 71f2(kN+gn+r))bks-&-g,rn(gn#»r)(jil)]

s

= 5 Z [E%n(gnw)(jl) +§D9,T7Ign(j1):|
F — -

|=

j=1

s—1
S R SO
g=0

g=0
Ns s—1 s—1
= 7 (Z bg,'nfr‘c(g,r‘2 + Z bsflfg,'rcg,rDsflfg,r
g=0 g=0

s—1 -
+st l—g,n— 'ngrCs 1— gr+zbgT|D9T|>

g=0 g=0
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which leads to

nzl Z]l 1 (5],l,7"dj rdlr ]\[Snil Z;;l bgﬂ“‘cs 1—gir 4 Dg,r|2

= 65
— A+ Aer)? 2 ot (A4 Aer)? (65)

Since J(f) < C, equivalently, > o0 | (f2,_; + f3,)(27v)*™ < C, we get that
Y By +f3) 2 IfI3 - C@2mn)—2m. (66)

1<r<n/2

Meanwhile, for 1 < r < n/2, using similar arguments as (40) and (41) one can show that
there exists a constant ¢, relying on C and m s.t.

o (o) 2
|Cs—1,+ Do, > = <f27“—1 + Z Jo(kN+N—r)—1 T Z f2(kN+r)—1>

k=0 k=1

(o) o0 2
+ <f27“ + Z J2(kN+r) — Z f2(kN+N—r)>

k=1 k=0

v

1 —2m
§(f22r71 + f227"71) - clmN 2 ) (67)
and

|Cs_1.0 + Do | *(2mr)™

< Z Jo(en+N—r) Z foen+n—r))?
+(Z Fa(en-r)-1) Z Faknan)? | (2mr)2™
k=0
< <4Zf22(kN+Nr)1(27T(kN + N =)™y " @2r(kN + N —r))~"
k=0 k=0
4 fognen—n TN + N =)™y (2r (kN + N —r))~>"
- k=0
4D [ v -1 RN 7)™ Y (2w (kN + 1)) 72"
k=0 k=0
+4Zf22(kN+r)(27T(kN 4 7))*m Z(Qﬂ'(k)N + 7’))2m> x (2mr)2m
k=0 k=0
= ( om — 1 Z f2(kN+N r-1 + /3 (kN4+N—r)) YkN+N— +(27(N —r))~2m
k_

8m = m m
R e— Y Fstensry—1 + Fogn ) Vw4 (2mr) 72 ) x (2mr)?
k=0

32



COMPUTATIONAL LIMITS OF A DISTRIBUTED ALGORITHM

which, together with the fact N > 2r for 1 <r < n/2, leads to that

Z |Cs—1. + Do [*(2mr)?™ < . (68)
1<r<n/2

Furthermore, it can be verified that for 1 <r < n/2,

)‘z,'r - boﬂ“ (27T?”)_2m < ((27T7.)72m —+ (27‘(’(77, B T))72m + Em(Qﬂ.n)izm)Z B (27T7n)74m (27T7“)_2m
A+ Aer) - ((27mr)=2m + (27(n — 1)) ~2m)2
< ¢nm, (69)
which leads to that
A derl s gry-am . 2oy Dor o oy oam
O+ rep)2 NI WR PR A+ A2
< 2\ +d,nm, (70)

Then, using (63)—(65) and (66)—(70) one gets that

T Ns 3 bo,|Cs—1, + Do

Y

2
2 1<r<n/2 A+ Aer)
Ns A+ Aer)?—b
T2 Z |Cs—1, + DO,T|2 - Z ( (A _T_’T))\ )2 = [Cs1r + DOJ‘|2
1<r<n/2 1<r<n/2 or
> E l||f||2— /—2m N—Qm_ / 2\ /. —2m > C/N 71
= 2 2 — CpM Cm Cm( + ¢y ) = SON, N\, ( )

2

where the last inequality follows by [|f||3 > 4C"(A +n=2"™ + o)) for a large constant C’
satisfying 2C" > 2¢/, + (/). To achieve the desired power, we need to enlarge C’ further.
This will be described later. Combining (71) with (55) and (71) we get that

Ty > s uniformly for f € B with ||f||3 > 4C'd?\,7)\. (72)

Terms T5 and T3 can be handled similarly. To handle Tb, note that 75 = f/ A€, where
f= (.. )7 e = (e],...,€l)T, and A is defined in the proof of Theorem 4.1. We

r s

need to establish A < sIy. Define an arbitrary a = (af,...,al)T € RN, where each a;

) s

is an (real) m-vector. Let & = M*a; and & = (¢1,...,¢0)T. For simplicity, put & =

33



Z. SHANG & G. CHENG

(&5.05+ -+ &n—1)T for 1 < j < s. Then based on (52) and (51), we have
a’Aa = 5*[(/\ + ML) T (A + ML) <<

- Z > &t G ;j” N

r=0 j,l=1

n—1g ((27r(ni7.))4m + (2#7})47”) ijl ‘fj,r|2
; A+ Aeyr)?
253 g1 W >im1 €0l
()\ + )\070)2

IN

n—1 s

< 53 S g = s = sala,
r=0 j=1
therefore, A < sIy. This leads to that, uniformly for f € B with || f||3 > 4C’d%v7)\, E T3} =
fT A%f < sT). Together with (72), we get that

sup Py (|T2| > 5*1/2T11/251/2> <e. (73)
feB
[ fll2>2vC"dn

Note that (73) also applies to T3. By Theorem 4.1, (T4/(Ns)—pna)/on,x is Op(1) uniformly
for f. Therefore, we can choose CL > 0s.t. Pr(|Tu/(Ns)—puny|/ony > CL) < eas N — oo.

It then follows by (71), (72) and (73) that for suitable large C’ (e.g., C" > 2(Cl4-21_q/2)),
uniformly for f € B with ||f|l2 > 2v/C"dy »,

Py (|TN,,\ — pNAl/oN A > Z1—a/2) <3¢, as N — oo.

Proof is completed. |

Proof [Proof of Theorem 4.3]

Define By = | N?/(4m+1)| | the integer part of N2/(*m+1) We prove the theorem in two
cases: limy nh > 0 and nh = o(1).

Case I: limy nh > 0.

In this case, it can be shown by s > N(@#m—1)/(4m+1) (equivalently n < By, leading
to Byh > nh hence Byh — o0) that n=h=4m+1/2N <« (By/n)%". Choose g to be an
integer satisfying

n~mp A2 N « O < (By /n)5™. (74)
Construct an f = > >, f,p, with
fQ_ %(27?(9714—7’))*27”, v=2gn+r)—-1,r=12,....,n—1, (75)
Vo 0, otherwise.

It can be seen that

Z f2 (gntr)— (27 (gn + 7“)) =C, (76)

34



COMPUTATIONAL LIMITS OF A DISTRIBUTED ALGORITHM

and

n—1
Hf”% = Zf22(gn+r)fl
r=1

C n—1
= Z(27r(gn +r))7m
r=1
> C(2r(gn+n)) "™ = By N4/t (77)

where 8%, = C[By/(2m(gn + n))]*™. Due to (74) and n < By, we have gn +n < 2By,
which further implies By — 00 as N — oo.
Using the trivial fact bs_2_gn = bgn for 0 < g < s — 2, one can show that

s s—1
[ Ns
Z 6jyl,0dj70dl70 = 2 Z ‘C ’0| bg n+ Z Cs 2— g’OC ’Obg n +Cs 10bs 1n
7,l=1 g'=0 q'=0
s—2
+ Z Ds_2_g/7an/7nbg/7n + Dg—l,nbsil’n
9'=0
s—1
< 2Ns Y [Cyolbyn =0, (78)
g'=0

where the last equality follows by a trivial observation Cy o = 0. It follows by (78), (63)
and (65) that

Ns ' Z;';lo by +|Cs—1-g/r + D' s |

T =

2 (A+Acvr)2
n—1 8 1 n—1 s 1 2
by |Casi_y o by | Dyt |
< Ns + Ns ’
- Z )\+)\cr)2 Z A+/\cr)2
n—1 5 1 n—1 s 1 2
bs 1—g’' ,n— T‘Cg n— r‘ bg T’DQ’T‘
= N + Ns ’
° Z O+ Aoy )2 Z )\ F )2

B 2N nzl 5 1 bg T“Dg’,T" N Z ng2 gn+r (79)
N /\+>\c,r)2 )\+>\w) ’

where the last equality follows from the design of f, i.e., (75). Now it follows from (79) and
the fact by, < ¢, (2m(gn + 7“))*4’”, for some constant ¢/, depending on m only, that

Ll (2n(gn 4 )T < (2r(gn +r))"2m

T, < .
P — (A+/\c,r)2
_ 2Nsc,C nzjl (2m(gn + 7)) o™
- n—1 —1 ()\ + )\c,r)z
< 2d,C21) M Ns(gn) " mh4 « shTV? < Nsoy .y, (80)
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where the last “<” follows from (12).
By (73) we have that

ITs + T3] = T{25/20p, (1) = op, (sh™V/*) = 0p, (Nso.»).

Hence, by (60) and Theorem 4.1 we have

Ty —pny - Ti+To+ T3 n Ty/(Ns) — pnx
TN Nsonx ONA
T4/(Ns)—
_ Ta/(Ns) = op, (1) —4 N(0,1).
ONA
Consequently, as N — oo
inf Pp(pna=1) < Pr(dpnp=1) = «

f*eB
[ £*l2>Bn 3 N —2m/ (4m+1)
This shows the desired result in Case 1.

Case II: nh = o(1).

The proof is similar to Case I although a bit technical difference needs to be emphasized.
Since n < By, it can be shown that Nn=2™~1/2 « (By/n)%". Choose g to be an integer
satisfying

N?’L_2m_1/2 < g6m < (BN/n)Gm (81)

Let f = >0, fupy with f, satisfying (75). Similar to (76) and (77) one can show that
J(f) = C and | f|? > [3]2V7>\N_4m/(4m+1), where 83, = C[Bn/(2n(gn +n))]*™. Tt is clear
that By — 0o as N — oo. Then similar to (78), (63), (65) and (80) one can show that

f
T, < 2NSZ g;if];*“) !
C’V’

2Nscl,C « Z * (27(gn + r))~om
(A4 Ae,r)?

< 2d,0(2m) 2" Nsg=6mp—2m

< sn'? =< Nsonx,

n—1

where the last line follows by (81) and (12). Then the desired result follows by arguments
in the rest of Case I. Proof is completed. |

References

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer, New York,
1987.

T. T. Cai and M. Yuan. Optimal estimation of the mean function based on discretely
sampled functional data: Phase transition. Annals of Statistics, 39:2330-2355, 2011.

36



COMPUTATIONAL LIMITS OF A DISTRIBUTED ALGORITHM

P. P. B. Eggermont and V. N. LaRiccia. Mazimum Penalized Likelihood Estimation: Volume
II. Springer, Series in Statistics, 2009.

Yu I. Ingster. Asymptotically minimax hypothesis testing for nonparametric alternatives
i—iii. Mathematical Methods of Statistics, 2;3;4:249-268; 85—114; 171-189, 1993.

M. Liu, Z. Shang, and G. Cheng. How many machines can we use in parallel computing?
Preprint, 2017.

Z. Shang and G. Cheng. Local and global asymptotic inference in smoothing spline models.
Annals of Statistics, 41:2608-2638, 2013.

Z. Shang and G. Cheng. A Bayesian Splitotic Theory for Nonparametric Models, 2015.

J. Shao. Mathematical Statistics. Springer Texts in Statistics. Springer, New York, 2nd
edition, 2003.

G. Wahba. Spline Models for Observational Data. STAM, Philidelphia, 1990.

G. Xu, Z. Shang, and G. Cheng. Optimal tuning for divide-and-conquer kernel ridge re-
gression with massive data. arxiv. preprint, 2017.

Y. Zhang, J. C. Duchi, and M. J. Wainwright. Divide and conquer kernel ridge regres-
sion: A distributed algorithm with minimax optimal rates. Journal of Machine Learning
Research, 16:3299-3340, 2015.

T. Zhao, G. Cheng, and H. Liu. A partially linear framework for massive heterogeneous
data. Annals of Statistics, 44:1400-1437, 2016.

37



	Introduction
	Smoothing Spline Model
	Minimax Optimal Estimation
	Minimax Optimal Testing
	Discussions
	Appendix
	Proofs in Section 3
	Proofs in Section 4


