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Abstract—We survey elliptic curve implementations from sev-

eral vantage points. We perform internet-wide scans for TLS

on a large number of ports, as well as SSH and IPsec to

measure elliptic curve support and implementation behaviors,

and collect passive measurements of client curve support

for TLS. We also perform active measurements to estimate

server vulnerability to known attacks against elliptic curve

implementations, including support for weak curves, invalid

curve attacks, and curve twist attacks. We estimate that 0.77%

of HTTPS hosts, 0.04% of SSH hosts, and 4.04% of IKEv2

hosts that support elliptic curves do not perform curve validity

checks as specified in elliptic curve standards. We describe how

such vulnerabilities could be used to construct an elliptic curve

parameter downgrade attack called CurveSwap for TLS, and

observe that there do not appear to be combinations of weak

behaviors we examined enabling a feasible CurveSwap attack

in the wild. We also analyze source code for elliptic curve

implementations, and find that a number of libraries fail to

perform point validation for JSON Web Encryption, and find

a flaw in the Java and NSS multiplication algorithms.

1. Introduction

In 2015, Nick Sullivan outlined a theoretical parame-
ter downgrade attack against TLS versions 1.0–1.2 which
he named CurveSwap [45]. The main observation behind
CurveSwap is that in the TLS handshake, the client’s list of
supported elliptic curves is not authenticated until the client
finished message, and is authenticated only by the negotiated
Diffie-Hellman secret. Thus if a man-in-the-middle attacker
were able to precompute or solve an elliptic curve discrete
log online for some curve, they could downgrade the con-
nection to use that weak curve, allowing them to decrypt
or modify the encrypted communications. The attack was
inspired by the FREAK [11] and Logjam [6] cipher suite
downgrade attacks against TLS.

In his 31C3 presentation, Sullivan concluded that the
weakest commonly supported curve was sect163k, sup-
ported by 4.3% of sampled clients and 0.13% of the Alexa
top 100,000 web sites. Since a 160-bit elliptic curve discrete
log has yet to be publicly demonstrated, let alone computed
within a TLS handshake timeout, the attack appeared to
remain theoretical.

In this paper, we evaluate the feasibility of a practi-
cal CurveSwap attack by exploring the protocol-level and
implementation-level attack surface of elliptic curve usage in
TLS, IPsec, SSH, and JSON Web Encryption (JWE). There

are a number of potential vulnerabilities in elliptic curve
implementations that taken in combination could enable a
CurveSwap attack, including support for curves of small
order, point validation failures, and twist insecurity. We per-
formed extensive passive and active measurements of these
behaviors and implementation choices among clients and
servers. Among our scans, we found populations of servers
that accept invalid curve points years after flaws have been
publicly disclosed and patched in common libraries, little
vulnerability to twist attacks, and significant populations of
hosts that repeat public key exchange values both across
IP addresses and across multiple scans. However, these
behaviors were not present in combinations that would lead
to an effective attack for vulnerable curves. Ultimately we
conclude that TLS, IPsec, and SSH do not appear to be
vulnerable on any significant scale to a feasible CurveSwap
attack based on the vectors we evaluated.

Some protocol designs are much more resistant to
CurveSwap-style downgrade attacks than others. We observe
that the design of SSH and TLS 1.3, where the server
uses their long-term authentication key to sign the entire
handshake, are much more resistant to parameter downgrade
attacks like CurveSwap than earlier versions of TLS.

Our survey of elliptic curve support for TLS, IPsec,
and SSH gives a snapshot of elliptic curve deployments in
2017. The NIST-standardized curve secp256r1 is the most
widely supported curve in our measurements, while support
for other curves in our data was in general lower, with a
long tail of more unusual standardized curves. Curve support
varied wildly by protocol. We found small but nontrivial
support for a number of 160-bit curves that only offer 80
bits of security, although only a negligible number of clients
or servers preferred these curves over stronger curves. We
were surprised to discover that very few hosts supported
secp224r1 on any protocol, many hosts failed to respect a
client’s selection of elliptic curves, and that essentially no
TLS hosts servers supported custom curves.

We also extensively examined source code, and dis-
covered several vulnerabilities. The JWE protocol standard
fails to mention that implementations need to perform curve
validity checks, and we discovered a number of JWE li-
braries that were vulnerable to a classic invalid curve attack
allowing an attacker to recover the private key, including
Cisco’s node-jose, jose2go, Nimbus JOSE+JWT and jose4j.
We also discovered flaws in NSS and Java’s scalar point
multiplication routines that could cause them to output
incorrect results given certain inputs, although these flaws
do not appear to be exploitable.



1.1. Our Contributions

In this paper, we perform a broad survey of elliptic curve
cryptography on the public Internet. The maze of different
standards, curves, and implementation choices for elliptic
curve cryptography makes a holistic evaluation of our cryp-
tographic infrastructure quite challenging. We measure the
landscape of elliptic curve implementations on the Internet
with passive and active measurements, describe known and
new attack vectors against ECC, and examine source code
to find implementation vulnerabilities.

• Active Measurements We perform Internet-wide
scans of TLS, SSH, and IPsec servers to measure
elliptic curve support and implementation behaviors.

• Passive Measurements We measure TLS client sup-
port and preferences for elliptic curves.

• Protocol Analysis We explore analogues of
CurveSwap for IPsec and SSH. We also survey at-
tacks against elliptic curves and evaluate their impact
on the CurveSwap attack for TLS.

• Source Code Analysis We extensively examined
source code and found widespread invalid curve
vulnerabilities in JWE libraries, as well as flawed
scalar multiplication routines in Java and NSS.

Although some elliptic curve implementations have
fallen victim to known implementation pitfalls, for TLS,
SSH, and IPsec, most hosts appear to resist known attacks.
We conclude that protocol designers should continue to build
in defense in depth.

1.2. Disclosure and Mitigations

In February 2017 we submitted bug reports to the
developers of several libraries implementing JSON Web
Encryption (JWE, RFC 7516) that were vulnerable to invalid
curve attacks, including Cisco’s node-jose, jose2go, Nimbus
JOSE+JWT and jose4j. They have all acknowledged the
issue and released a patch. We also described the nature
of the invalid curve attack applied to JWE in a blog post
[38]. We reported the NSS vulnerability to Mozilla in March
2017. NSS fixed the issue in the 3.31 release. We reported
the Java vulnerability to Oracle in March 2017. Oracle
issued a patch that fixes the issue on July 18, 2017. We
also disclosed these vulnerabilities to the public in a blog
post [39].

2. Preliminaries

Elliptic curve cryptography can be used for key ex-
change, asymmetric encryption, or for signatures. Among
widely implemented public key primitives, elliptic curves
offer the best resistance to cryptanalytic attacks on classical
computers, and as a result can be used with smaller key sizes
than RSA or finite field based discrete logarithm schemes.
In this paper, we focus on elliptic curve Diffie-Hellman key
exchange.

2.1. Elliptic Curve Cryptography

A number of standards exist defining elliptic curves for
use in cryptography. In 2000, the Certicom SECG published
the SEC 2 specification [40] giving parameters for 33 elliptic
curves of varying sizes and properties. Several of these
curves were later standardized by NIST, ISO, and ANSI un-
der different names. Other proposals for curves include the
Oakley elliptic curve groups [37], the Brainpool curves [33],
and more recent constructions such as Curve25519 [8],
Curve41417 [9], and Curve448 [24].

2.1.1. Prime curves. An elliptic curve E(Fp) over a prime
finite field Fp with p 6= 2 is the set of points P = (x, y) 2 F
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p

that are solutions to some equation E over Fp, together with
an extra point O, the point at infinity. It is possible to define
an addition law, so that these points form a group.

Such curves are often specified in Weierstrass form E :
y2 = x3 + ax + b (mod p) where a, b 2 Fp are domain
parameters that define the curve. Every elliptic curve over a
finite field Fp of a prime order can be converted to this form.
Some widely-used examples of prime curves are the NIST
curves from FIPS 186-4 [30] and the Brainpool curves [33].

Cryptographic applications typically work within a
cyclic subgroup of prime order n. This group will be gen-
erated by a base point G 2 E(Fp).

One can compute an element kG of this group using
a scalar-by-point multiplication algorithm. The underlying
hardness assumption in most elliptic curve cryptography
is the elliptic curve discrete logarithm problem: given an
elliptic curve E(Fp), a generator G, and a point P it is hard
to find a k satisfying P = kG. The best known algorithms
for solving the elliptic curve discrete logarithm problem run
in square root time in the order of the subgroup generated
by the elliptic curve’s generator.

2.1.2. Binary curves. Elliptic curves over characteristic
2 finite fields F2m are specified as the set of points
P = (x, y) 2 F

2

2m
that are solutions to the equation

E : y2 + xy = x3 + ax2 + b in F2m .
Recent progress on the elliptic curve discrete logarithm

problem for small-characteristic fields has raised concern
about the security of binary curves, although there are not
yet any subexponential time attacks against curves stan-
dardized for use in the network protocols we study in this
paper [23], [42].

The SEC 2 standard [40] includes parameters for a num-
ber of binary curves. The Oakley elliptic curve groups [37]
are also binary curves.

2.1.3. Domain parameters. An elliptic curve group is de-
fined by a set of domain parameters which consist of the
following values: q, an integer that defines the order of the
finite field Fq of the curve; a and b, the coefficients of the
curve equation; G, a generator of a subgroup of prime order
on the curve; n, the order of the subgroup that G generates;
and h, the cofactor, which is equal to the number of curve
points w divided by n.



2.2. ECDH Key Exchange

In this paper, we are primarily interested in elliptic curve
Diffie-Hellman key exchange. To negotiate a shared secret
using ECDH, Alice generates a random private key ka,
generates her public value Qa = kaG, and sends Qa to
Bob. Bob generates a random private key kb, generates his
public value Qb = kbG, and sends Qb to Alice. Alice can
then compute the shared secret as P = kaQb and Bob can
compute it as P = kbQa. Real-world protocols then use P
to derive symmetric keys that Alice and Bob use to establish
an authenticated and encrypted communication channel.

2.2.1. Scalar-by-point multiplication algorithms. The
most important operation on elliptic curves for the crypto-
graphic algorithms we study in this paper is scalar-by-point
multiplication. That is, given a point P on an elliptic curve
and an integer k, compute the curve point kP .

Point representation. Elliptic curve points can be
represented in many different forms. The canonical repre-
sentation uses affine coordinates, where a point on the curve
is represented by a pair of integers (x, y) that satisfy the
curve equation. This is called uncompressed point format.
However, this representation requires an expensive field
inversion operation to add two elliptic curve points.

Most applications of elliptic curves use only the x-
coordinate of a point. A valid x-coordinate could correspond
to two possible y coordinates of points on the curve, the
point (x, y) or the point (x,�y); these can be recovered
from x using the curve equation. Thus a point can be
uniquely represented by sending only the x-coordinate and
the sign of the y-coordinate; this is called compressed

format.
Double and add. The simplest algorithm to com-

pute scalar-by-point multiplication is double-and-add. This
algorithm iteratively applies the group addition law and a
doubling procedure. There are a number of variants of this
algorithm, such as sliding windows. However, this algorithm
has the drawback that it is not secure against side channel
attacks. It also requires both the x and y coordinates of the
input points.

Montgomery ladder. Some elliptic curves can also
be specified in Montgomery form [34]: E : By2 = x3 +
Ax2 + x. An advantage of this form is that it allows a very
fast algorithm for scalar-by-point multiplication using only
the x coordinate, the Montgomery ladder.

The single-coordinate version of the Montgomery ladder
algorithm for scalar-by-point multiplication requires fewer
arithmetic operations than standard Weierstrass scalar-by-
point multiplication methods and offers better side channel
resistance [29], [36]. Curve25519, introduced by [8], is
specified in Montgomery form, as are Curve41417 [9] and
Curve448 [24] (the Goldilocks curve).

Brier-Joye. It is possible to compute an x-coordinate
only scalar multiplication for Weierstrass-form elliptic
curves using the Brier-Joye ladder [15]. This algorithm is
constant time and has good side channel resistance. Unfor-
tunately, it is slow.

2.3. Invalid Point Attacks

For most curves, ECDH implementations must validate
that the public key exchange messages they receive are valid
points on the correct elliptic curve, otherwise they may be
vulnerable to a variety of attacks.

2.3.1. Small subgroup attacks. Small subgroup attacks
against prime-field Diffie-Hellman were described by Lim
and Lee [32]. In this type of attack, the cryptographic
domain parameters specify a subgroup within a larger group.
If the cofactor of the order of the correct subgroup has small
prime factors pi, an adversary could send a key exchange
that lies in a subgroup of order pi instead of the correct sub-
group and use the victim’s response to deduce the victim’s
secret modulo pi. The attacker can then repeat this attack for
different primes and use the Chinese remainder theorem to
reconstruct the victim’s secret modulo the product of these
primes.

Elliptic curves that are standardized for cryptographic
use are typically chosen to have small cofactors to limit the
number of elements of small order on the curve and to limit
the checks required to protect against these small subgroup
attacks [8]. NIST recommends a maximum cofactor for
various curve sizes [30]. The NIST curves specified in
FIPS 186-4 have cofactor 1, 2, or 4. Curves in Montgomery
form always have a cofactor that is a multiple of 4 [34].

One can also protect against this type of attack by
checking that a received point P has the correct group order
by checking that nP = O. Alternatively, one can use ECDH
with cofactor multiplication, in which both parties multiply
their Diffie-Hellman shared secret by h [41].

2.3.2. Invalid curve attacks. A double-and-add-based im-
plementation of scalar multiplication that does not validate
key exchange values is vulnerable to a much more severe
invalid curve attack. In an invalid curve attack, the attacker
sends an elliptic curve point of small order that lies on a
different curve. This attack is due to Antipa et al. [7].

In a Weierstrass-form curve, textbook double-and-add
algorithms are independent of the curve parameter b, so an
attacker can search for values b0 such that a curve E0 :
y2 = x3+ax+ b0 has points Pi = (xi, yi) of small order qi
and send them to the victim. If the victim does not verify
that the received key exchange value and computed shared
secret are on the correct curve and has the correct order,
the victim’s response may allow the attacker to compute the
victim’s secret key modulo qi.

In contrast to the Lim-Lee attack for prime-field Diffie-
Hellman where an attacker is limited to the prime factors
of the cofactor of the correct subgroup, the attacker in this
elliptic curve scenario has much more leeway in choosing
curves that have points of suitably small coprime order.

This attack can be prevented if an implementation val-
idates that the points it receives lie on the correct curve.
This attack is also somewhat mitigated by scalar-by-point
multiplication algorithms that use only the x-coordinate,
although these may be vulnerable to twist attacks, described
below.



2.3.3. Curve twist attacks. A Weierstrass curve of the form
E : y2 = x3 + ax + b mod p is related to a twisted curve,
E0 : dy2 = x3 + ax+ b.

Any x-coordinate has an associated pair of y coordinates
that are either on the original curve or some twisted curve.
If d is a quadratic residue, i.e., if there is a w with w2 =
d mod p, then E and E0 are isomorphic mod p and thus have
equivalent security. If d is a quadratic non-residue, E0 is not
isomorphic to E and the curve orders satisfy |E| + |E0| =
p+ 2. This is called a nontrivial quadratic twist.

An implementation that uses a single-coordinate ladder
such as the Montgomery ladder might be vulnerable to a
form of invalid curve attacks in which the attacker sends
an x-coordinate that lies on a weak twist of the correct
curve. This type of attack is due to Foque, Lercier, Réal,
and Valette [21].

The NIST-standardized curves secp192r1 and secp224r1
have weak twists that reduce the cost of such an attack to 248

and 259, respectively [10], [21]. The binary curves ec2n 155
and ec2n 185 also have weak twists which reduce the attack
cost to 233 and 247, respectively. secp256r1 and secp384r1
have secure twists. Recent curve constructions such as
Curve25519 were explicitly designed to have strong twists
and not require an additional validation step. Otherwise,
implementations must verify that the received coordinate lies
on the correct curve.

2.3.4. Curve downgrade attacks. In a curve downgrade
attack, a man-in-the-middle adversary interferes with a
connection to cause the communicating parties to choose
a weaker curve than they would otherwise negotiate. In
Section 5, we present the CurveSwap attack against TLS,
and study the feasibility of similar curve downgrade attacks
against SSH and IPsec.

2.4. ECC in TLS

Elliptic curve use in TLS versions 1.2 and earlier is
specified by RFC 4492 [13]. Elliptic curves can be used in
static elliptic curve Diffie-Hellman (ECDH) and ephemeral
ECDH (ECDHE) key exchange, and ECDSA signatures. In
this paper, we focus on ECDHE key exchange.

Clients declare support for elliptic curves by including
ECHD(E) cipher suites in their list of supported cipher
suites and via the supported elliptic curves and the supported
points format extensions in the client hello message. This
message consists of a list of supported elliptic curves sorted
by client preference, and a list of the point formats that the
client can parse. The list of supported elliptic curves can
include 25 of the named curves specified in SEC 2 [40],
and can also indicate support for arbitrary explicit prime or
binary curves.

If the server chooses an ECDHE cipher suite, the server
key exchange message includes an indication of the server’s
chosen curve (either named or a set of parameters for an
explicit curve), the server’s public key exchange value given
as the encoding type and a byte string representing an elliptic
curve point, and a digital signature on these two values

using the server’s certificate key. Servers typically select
the most secure elliptic curve supported by the client, but
may be configured to respect client preference. If the server
has a preferred list of curves and the client supports an
overlapping set of curves, any connection between the two
will use the preferred curve of the server.

The client key exchange message includes the client’s
public key exchange value on the negotiated curve, which
specifies the encoding type and a byte string representing
an elliptic curve point.

The premaster secret is computed as the x-coordinate of
the ECDH shared secret elliptic curve point. The premaster
secret is then used to derive a set of encryption and authenti-
cation keys. The client uses the derived keys to authenticate
the entire handshake in the client finished message, and the
server does the same in the server finished message.

In TLS 1.3, only (EC)DHE key exchange methods are
allowed, the keying material is derived from the hash of
the entire transcript of the handshake as described in RFC
7627 [12], and the server signs the hash of the transcript with
its certificate key, which prevents any type of downgrade
attack other than a full man-in-the-middle attack by an
attacker who has compromised the server’s private certificate
key.

2.5. ECC in SSH

Elliptic curve use in SSH is specified by RFC 5656 [44].
Elliptic curves can be used in ECDH or ECMQV key
exchange and ECDSA for digital signatures. In the SSH
handshake, both client and server send a list of supported
encryption algorithms in their KEXINIT message, and nego-
tiate an algorithm from among the algorithms both support.
Supported curves are listed as separate cipher choices for
key exchange and signature algorithms. RFC 5656 spec-
ifies that SSH implementations must support secp256r1
(nistp256), secp384r1 (nistp384), and secp521r1 (nistp521),
and lists 9 additional curves from NIST and SEC2 standards
as recommended. Point compression is optional.

If client and server negotiate an ECDH key exchange
with a specific curve, the client sends its public key ex-
change value first. The server then responds with its long-
term public host key, its public ECDH key exchange value,
and a digital signature using the server’s host key over the
client and server KEXINIT messages, the server’s public
host key, the client and server key exchange messages, and
the negotiated shared secret. SSH uses ECDH with cofactor
multiplication to derive the shared secret.

2.6. ECC in IPsec

IPsec uses the Internet Key Exchange (IKE) protocol
to negotiate an encrypted and authenticated session. There
are two versions of the IKE protocol, IKEv1 and IKEv2.
Both rely on Diffie-Hellman key exchange over a set of
fixed, standardized groups to negotiate a shared secret.
Cremers [17] carried out an automated analysis of the key



Number of hosts that support. . .

Proto Port Date BASE ECDHE secp224r1 secp256r1 secp384r1 secp521r1 x25519 b-pool256r1

TLS 443 11/2016 38.6M 24.8M 643.4K (2.6%) 24.1M (97.0%) 5.7M (22.9%) 2.5M (10.2%) 0 (0.0%) 980.1K (3.9%)
443 08/2017 41.0M 28.8M 811.6K (2.8%) 25.0M (86.9%) 9.1M (31.6%) 2.2M (7.7%) 740.7K (2.6%) 2.4M (8.4%)

SSH 22 11/2016 14.5M 7.9M 0 (0.0%) 7.7M (97.8%) 7.5M (95.6%) 7.5M (95.4%) 6.1M (77.2%) 0 (0.0%)

IKEv1 500 11/2016 1.1M 215.4K 143.8K (66.8%) 211.8K (98.3%) 206.8K (96.0%) 152.8K (71.0%) 0 (0.0%) 0 (0.0%)

IKEv2 500 11/2016 1.2M 101.1K 4.1K (4.1%) 98.2K (97.1%) 98.0K (96.9%) 240 (0.2%) 0 (0.0%) 0 (0.0%)

TABLE 1. SERVER SUPPORTED CURVES—BASE GIVES THE NUMBER OF HOSTS THAT WE WERE ABLE TO NEGOTIATE ANY KEY EXCHANGE WITH

AND ECDHE GIVES THE NUMBER THAT SUPPORT ECDHE KEY EXCHANGE. PERCENTAGE SUPPORT FOR EACH CURVE IS WITH RESPECT TO ECDHE.

agreement protocols in IKEv1 and IKEv2 and found a
number of vulnerabilities.

The original IKEv1 protocol specified two optional bi-
nary curves, ec2n 155 (Oakley Group 3), a 155-bit binary
curve, and ec2n 185 (Oakley Group 4), a 185-bit binary
curve, among the four groups for Diffie-Hellman key ex-
change. (The other two were 768-bit and 1024-bit primes
for prime field Diffie-Hellman.) Additional optional binary
and prime curves, including the curves from SEC 2, NIST,
and Brainpool, have been registered with IANA for IKEv1
and IKEv2 over the course of several RFCs, including RFC
5903 [22], RFC 5114 [31], and RFC 6932 [25].

RFC 2409 specifies that the key exchange value for
Oakley groups 3 and 4 consists of the x-coordinate, and
the y-coordinate is derived as necessary and not used to
derive the shared key. However, RFC 4753 specifies that
implementations should send both x and y as the Diffie-
Hellman public value and use both in the shared secret.

2.6.1. IKEv1. IKEv1 is specified in RFC 2409. There are
two types of handshakes, Main Mode, which requires six
messages to establish the connection, and Aggressive mode,
which requires three. In main mode, the initiator sends
a Security Association (SA) payload, which specifies a
collection of cipher suites and Diffie-Hellman groups they
support. The responder sends its own SA payload contain-
ing its selected cipher suite. The initiator and responder
then send key exchange messages for the chosen group.
Both parties are then able to compute shared key mate-
rial, called SKEYID. The computation of SKEYID depends
on the authentication method. When signatures are used
for authentication, SKEYID = prf(Ni|Nr, kikrP ) where
kikrP is the negotiated Diffie-Hellman secret. For the other
two authentication methods, public-key encryption and pre-
shared key, SKEYID does not depend on the negotiated
Diffie-Hellman shared secret, and instead is derived from
the cookie or the pre-shared key respectively. Each party
authenticates itself by sending an authentication message
(AUTH) derived from a hash of SKEYID, the public Diffie-
Hellman key exchange messages, the cookies, the initiator’s
security association, and initiator and responder IDs. In
main mode, these authentication messages are encrypted and
authenticated using keys derived from the negotiated Diffie-
Hellman secret.

In aggressive mode, it is not possible to negotiate the

group for Diffie-Hellman. The initiator sends SA and KE
messages together, and the responder sends its SA, KE, and
AUTH messages together. The initiator finally responds with
its AUTH message. The authentication messages are not
encrypted.

2.6.2. IKEv2. IKEv2 combines the SA and KE messages
into a single message. The initiator provides a best guess
ciphersuite for the KE message. If the responder accepts
that proposal and chooses not to renegotiate, the responder
replies with a single message containing both SA and KE
payloads. Both parties then send and verify AUTH mes-
sages, starting with the initiator. The authentication mes-
sages are encrypted using session keys derived from the
SKEYSEED value which is derived from the negotiated
Diffie-Hellman shared secret. The standard authentication
modes use public-key signatures over the handshake values.

3. Related Work

Bos et al. [14] surveyed elliptic curve adoption rates in
2014, and found that approximately 10% of TLS and SSH
hosts supported elliptic curve cipher suites. The ICSI Cer-
tificate Notary [27] publishes ongoing statistics on observed
SSL/TLS ciphersuites in connections originating from ten
research institutes, and reports that at least 88% of connec-
tions used ECDHE key exchange in July/August 2017.

Jager, Schwenk, and Somorovsky [28] manually exam-
ined ECDH implementations in eight popular TLS libraries
in 2015, and found that three of them failed to validate
elliptic curve points, leading to full private key recovery
for Oracle’s default Java JSSE TLS implementation and
BouncyCastle. Their analysis was only performed in local
test environments. We are unaware of prior work measuring
elliptic curve point validation.

Valenta et al. [46] studied prime-field Diffie-Hellman
implementations in TLS, SSH, and IPsec in 2016 using
both internet-wide scans and source code examination, and
found that most examined implementations did not validate
subgroup order. Springall, Durumeric, and Halderman [43]
measured DHE and ECDHE key exchange reuse among
Alexa Top 1 Million domains and found that 1.5% of
HTTPS domains supporting ECDHE repeated the same key
exchange value in multiple scans, and noted one service that
repeated the same key exchange value for 61 days.



4. Elliptic Curve Measurements

In this section, we present our measurements of elliptic
curve implementations for TLS, SSH, and IPsec.

4.1. Server Curve Support and Preferences

The popularity of different curves varies depending on
the protocol. In this section, we describe measurements we
performed to understand server curve support for various
common ports and protocols, to give a snapshot of elliptic
curve deployments.

4.1.1. Server scanning methodology. We performed our
scans between November 2016 and August 2017 from the
University of Pennsylvania. We used the Zmap [20] Internet-
wide scanning tool to perform 10% scans of the IPv4 address
space. We extended the Zgrab protocol parser for TLS and
SSH to include support for the numerous curves we tested,
and used our own Zgrab module for IKEv1 and IKEv2.

For most of our measurements, we scanned a random
10% sample of the public IPv4 Internet on a selection of
common ports for TLS, SSH, and IPsec. Unless otherwise
specified, the results we present in this paper are extrapola-
tions of our 10% scans to the full IPv4 space, to simplify
comparison with other measurements.

For each scan, we first perform a Zmap scan of a
randomly selected set of hosts to detect whether a particular
port was live. Then, we perform repeated scans of the set of
responding hosts using the Zgrab protocol module to detect
fine-grained behaviors and support for various cryptographic
parameters.

In a TLS and IKE ECDH key exchange, a curve can
only be negotiated if it is supported by both the client and
the server. To measure support for the elliptic curves shown
in Table 1 for TLS, we use Zgrab to perform multiple TLS
handshakes, each only offering a single curve at a time in
the supported curves extension. For IKE, we offer a security
association that includes a curve together with a variety of
popular cipher proposal options. In SSH, both the client and
server send the list of curves they support, so we can gather
curve support from a single scan.

In order to get a baseline measure of support for each
protocol, we used scans offering a variety of parameters. The
Censys project [18] performs regular 100% TLS and SSH
scans using Zmap, so we used their scans from November
2016 and August 2017 as a baseline for support for those
protocols. We performed our own 100% IKEv1 and IKEv2
baseline scans.

4.1.2. Server measurement limitations. The survey of
Durumeric et al. [19] provides a view of Internet-wide scan-
ning, documenting both the advantages and limitations of the
approach. In short, scanning does not allow us to measure
hosts that are behind firewalls or are otherwise configured to
reject scanning attempts, or hosts whose network operators
have requested to be excluded from our scans. Our scans
are further restricted to IPv4 hosts, as scanning the IPv6

space efficiently remains an open problem. Despite these
limitations, Internet scanning remains an invaluable tool for
network operators and defensive security research.

Due to the large number of scans required to measure
the selected combinations of server behaviors for our study,
we chose to limit each scan to only 10% of the public
IPv4 space instead of performing full IPv4 scans. However,
we do not expect this to limit the statistical accuracy of
our measurements, although we may occasionally miss rare
server behaviors.

4.1.3. Server curve support. ECDH is widely supported
by TLS and SSH hosts. We find that 64% of HTTPS hosts
and 54% of SSH hosts support ECDH key exchange. As a
comparison, Bos et al. [14] report that 7.2% of 30 million
HTTPS hosts and 13.8% of 12 million SSH hosts that
responded to a ZMap scan in October 2013 supported some
form of ECDH key exchange. Adoption of ECDH using
common curves for IKE appears to be significantly slower.

Table 1 shows the result of 10% scans extrapolated to
full IPv4 scans. We omitted Curve25519 from the November
2016 TLS and IPsec scans since support for this curve was
not standardized at the time of the scans. However, we
performed additional TLS scans in August 2017 to provide
up-to-date numbers on Curve25519 deployment.

The NIST curves secp256r1, secp384r1, and secp521r1
were the most commonly supported curves among servers,
but support for each curve varies widely by protocol.
secp256r1 was the most popular curve among TLS on port
443, SSH, and IPsec. Support for secp224r1 was surprisingly
rare, except for IKEv1. There is a long tail of curve support
for other curves in the IANA registries for each protocol; in
Section 6.1.2 we give measurements for a number of weak
curves.

We performed 10% IKEv1 and IKEv2 scans offering
the binary curves ec2n 155 and ec2n 185, but did not
detect any hosts that were willing to negotiate these curves.
We found two IKE implementations that documented sup-
port for these Oakley groups for backwards-compatibility:
MikroTik [4] and OpenBSD’s iked [5]. We verified that
OpenBSD’s implementation does indeed support these bi-
nary curves by running our scans against an OpenBSD 6.12
instance running in a VM.

TLS also allows servers to specify a custom
curve using arbitrary explicit prime curves and arbi-
trary explicit char2 curves. We also performed 10% TLS
scans requesting these custom curves, and received no re-
sponses on any of the tested ports.

We give full scan data in Appendix B for additional TLS
ports.

4.2. Client Curve Support and Preferences

4.2.1. Client data methodology. We study client prefer-
ences using a sample of client hellos provided by Cloudflare,
a popular web performance and security service.

Cloudflare acts as a reverse proxy for web services:
when a client connects to a site that uses Cloudflare, a TLS



Supported Curves User Agents Operating Systems Count

23,24,25
FireFox/46.0-49.0, FitbitMobile/2.28, IE/11.0,
uservoice-android-1.2.4, Safari/9.0, Tinder/63105

Win7, Win8,
Win10, iOS

1.5M (35.9%)

29,23,24 Chrome/50.0-54.0
Win7, Win8, Win10,
Mac OSX, Chrome OS

909.0K (21.7%)

23,24 IE/11, Edge/13.0, Chrome/47.0-51.0
WinVista, Win7,
Win8, Win10

661.7K (15.8%)

14,13,25,11,12,24,9,10,22,23,8,6,
7,20,21,4,5,18,19,1,2,3,15,16,17

uservoice-android-1.2.4, Picsart/3.0, okhttp/3.2.0,
Playstation/4, Netscape/4.0, Python-urllib/2.7

Win7, Win10, Other 621.3K (14.8%)

25,24,23 SamsungBrowser/2.0-2.1, Wget/1.12 Android, Other 184.4K (4.4%)

23,25,28,27,24,26,
22,14,13,11,12,9,10

Chrome/47.0-53.0, Deluge/1.3.12, Plex Music
Agent/1.0, qBittorrent/3.3.7, Transmission/2.84

Win7, Win8,
Win10, Other

40.1K (1.0%)

empty libhttp/3.50, libhttp/4.01, Chrome/25.0 Linux, PlayStation/4 24.9K (0.6%)

TABLE 2. CLIENT SUPPORTED CURVES EXTENSIONS WITH USER AGENTS—WE SHOW THE RANKED LIST OF THE MOST COMMON SUPPORTED

CURVES LISTS ALONG WITH THE USER AGENTS AND OPERATING SYSTEMS OF THE CLIENTS FOR A SAMPLE OF 4,187,201 CLIENT HELLOS

COLLECTED FROM CLOUDFLARE. THE MAPPING OF CURVE IDS IN THE SUPPORTED CURVES LIST TO CURVE NAMES IS MAINTAINED BY IANA [26].

connection is established with a geographically proximal
server operated by Cloudflare. This server handles incoming
HTTP requests from the client. If a request is for a resource
that is cached by Cloudflare, that resource is returned to
the client in the response; if the resource is not cached, the
Cloudflare server forwards the request to the origin server
to obtain a response, which is then returned to the client.

We examined the contents of the TLS client hello to-
gether with the client’s HTTP user agent string from a uni-
form sample of incoming HTTPS connections to Cloudflare
servers around the world over an approximately 5 minute
period on October 17, 2016. 99.4% of the 4.2M client
hellos in the sampled traffic included the supported curves
extension. At the time of the measurement, Cloudflare was
used as an HTTP/HTTPS reverse proxy for over six million
domains.

4.2.2. Client measurement limitations. The client dataset
that we gathered, while insightful, has multiple limitations.
First, the request samples are skewed toward users who were
awake and active during the collection period. Collection
over a longer period of time might produce a distribution
that is more representative of all users. Second, since our
data is a raw sample of Cloudflare requests, popular Cloud-
flare customers are overrepresented in our dataset. Thus,
the composition of the data is likely not representative of
the web as a whole. We were unable to obtain captured
requests from other data sources at the same scale for com-
parison. Finally, a nontrivial number of requests are from
non-browser traffic, including requests from API clients,
automated scripts, mobile applications, crawlers, and other
bots. This adds depth to the dataset, but means that the
dataset does not necessarily reflect the stereotypical view
of web traffic as coming exclusively from human-controlled
web browsers.

4.2.3. Client curve support. Table 2 summarizes several
of the most common orderings of the supported curves

list among sampled clients, using the IANA IDs for each
curve. We used Browscap [1] to map software versions to
the provided user agent strings. The most common curve
preference ordering requests the NIST curves secp256r1,
secp384r1, secp521r1 in increasing order of strength, which
was provided by a variety of clients. The second most
common curve preference ordering in our sample preferred
Curve25519, from recent versions of Chrome. The next most
common client curve preference ordering in our sample,
apparently requested by various APIs, requests most of the
curves from SEC 2 in decreasing order of strength.

4.3. Repeated Key Exchange Values

For performance reasons, a common behavior among
servers is to reuse the same key exchange value for multiple
connections, to avoid the need to recompute this value for
each client. To detect this behavior, we scan each server
twice in rapid succession and check if the key exchange
value changes. In Table 3, we offer secp256r1 as the key
exchange value, and collect the key exchange values in the
server responses.

22% of hosts on TLS port 443 (primarily HTTPS)
repeated the same key exchange value in successive scans.
2.6% of TLS port 443 hosts served a non-unique key ex-
change value that was shared by at least one other host in
the same scan. This could be due to shared hosting providers
configured with ephemeral-static key exchange, or random
number generation issues.

4.4. Other Observations

Our scans uncovered some other interesting server be-
haviors.

4.4.1. TLS servers ignoring client supported curves. We
found that some TLS servers appear to ignore the curves



Repeats. . .

Proto Port secp256r1 Across Hosts By Host

TLS 443 24.0M 638.7K (2.7%) 5.5M (22.9%)

SSH 22 7.5M 0 (0.0%) 0 (0.0%)

IKEv1 500 168.5K 210 (0.1%) 540 (0.3%)

IKEv2 500 95.1K 800 (0.8%) 1.9K (1.9%)

TABLE 3. REPEATED KEY EXCHANGES—IN NOVEMBER 2016, WE

SCANNED A RANDOMLY SELECTED 10% OF IPV4 ADDRESSES TWICE IN

RAPID SUCCESSION, OFFERING CURVE SECP256R1. Across Hosts GIVES

THE NUMBER OF HOSTS THAT SENT THE SAME KEY EXCHANGE VALUE

AS ANOTHER HOST WITHIN A SINGLE SCAN, AND By Host SHOWS THE

NUMBER OF HOSTS THAT SENT THE SAME KEY EXCHANGE VALUE IN

BOTH SCANS.

Client Supported Curve Server Key Exchange Hosts

brainpoolp256r1 secp256r1 849.4K
brainpoolp256r1 secp384r1 428
brainpoolp256r1 secp521r1 47
secp224r1 secp256r1 850.0K
secp224r1 secp384r1 474
secp224r1 secp521r1 46
secp256r1 secp384r1 506
secp256r1 secp521r1 49
secp384r1 secp256r1 849.9K
secp384r1 secp521r1 45
secp521r1 secp256r1 849.7K
secp521r1 secp384r1 429

TABLE 4. SERVERS IGNORING CLIENT SUPPORTED CURVES—IN

OUR SCANS, WE FOUND THAT SOME SERVERS RESPONDED WITH THE

SAME CURVE REGARDLESS OF CLIENT’S LIST OF SUPPORTED CURVES.
RFC 4492 STATES THAT A SERVER MUST NOT NEGOTIATE THE USE OF

AN ECC CIPHER SUITE IF IT IS NOT ABLE TO COMPLETE AN ECC
HANDSHAKE WITH THE PARAMETERS OFFERED BY THE CLIENT [13].

sent in the client supported curves extension, and instead
reply with the same curve regardless of whether or not the
client indicated support. Across all of the TLS scans we
performed in November 2016, we found that 25%, or 8.5M
distinct hosts out of 34.6M total hosts returned a server key
exchange value specifying a curve that was not present in the
client supported curves extension. In Table 4, we show the
number of hosts that responded to our scans with an unsup-
ported curve. It appears that these hosts always attempt to
negotiate either secp256r1, secp384r1, or secp521r1 rather
than terminate the connection when the client offers a curve
that they do not support.

In order to understand whether this might be a vulner-
ability, we experimentally compared responses when our
scanner client offered a point on secp256r1 versus the curve
that was originally specified by the client. No servers who
sent a point on an incorrect curve accepted a point on the
curve that the client originally requested.

4.4.2. Scalar multiplication algorithms. We also per-
formed scans offering points on the twist of the curve. As
discussed in Section 2.2.1, TLS implementations do not

appear to use single-coordinate ladders for point multipli-
cation, and thus reject points on the twist of the curve. We
suspect that hosts that accept invalid curve points but do not
accept points on the twist as the client key exchange value
are using a mixed-Jacobian scalar-by-point multiplication
algorithm, which would cause points on the twist to fail
with an arithmetic error but would succeed for points on an
invalid curve. However, as shown in Table 7, small numbers
of SSH and IKE hosts accepted key exchange values on
the twist, suggesting that they may use single-coordinate
ladders.

4.4.3. Echo servers. In our IPsec scans, we found that some
of the repeated server key exchange values that we observed
could be attributed to servers that simply echoed back the
same static key exchange value and nonce that we offered
in the scan. There were 30 IKEv1 hosts and 25 IKEv2 hosts
that exhibited this behavior. These hosts appear to simply
echo back an identical copy of any data that they receive.
We omit these hosts from the results presented in Table 3.

5. CurveSwap Attack

The CurveSwap attack was introduced by Nick Sulli-
van in 2015 [45]. It is a theoretical attack targeting the
curve negotiation to be performed against TLS deployments.
Similar in spirit to the FREAK [11] and Logjam [6] at-
tacks, CurveSwap allows a man-in-the-middle to trigger a
downgrade attack to force a connection to use the weakest
elliptic curve that both parties support. The CurveSwap
attack is a parameter negotiation downgrade attack, and can
be performed if both client and server support an elliptic
curve for which an attacker can break ECDH, either by
solving the discrete log or other means. The existence of
this attack reduces the overall security of a connection to
the security of the weakest elliptic curve supported by both
parties.

5.1. CurveSwap for TLS

As explained in Section 2.4, a TLS client and server
use the supported curves extension [13] to specify which
curves each party supports in order to negotiate an elliptic
curve group for use in key establishment. The CurveSwap
attack demonstrates that in TLS 1.2 and earlier, a man-
in-the-middle that can break ECDH for the weakest curve
supported by both parties can compromise a connection.

In Figure 1, we depict the CurveSwap attack in a TLS
handshake. To mount a CurveSwap attack, the attacker needs
to be in a position to man in the middle a connection.
When the client sends its client hello message to the server,
the attacker replaces it with a client hello message where
the client cipher suite list contains only ECDHE cipher
suites, and the supported curves extension only contains
weak curves.

The server will then reply with its ECDHE public key
exchange value on the attacker’s chosen weak curve. The
attacker passes this message back to the client without



Client C MitM Server S

cr, [CIPHERS, . . .], [CURVES, . . .] cr, [ECDHE], [WEAK]

sr, [ECDHE], certS , sign(skS , [cr|sr|kbG]), with kbG on WEAK

kaG

(ms, kc, ks) = kdf(kakbG, cr|sr) (ms, kc, ks) = kdf(kakbG, cr|sr)b = dlog(kbG)
(ms, kc, ks) = kdf(kakbG, cr|sr)

finished(ms, [logC ]) finished(ms, [log0
C
])

finished(ms, [logS ])finished(ms, [log0
S
])

MitM knows kc, ks used for authenticated encryption

Figure 1. The CurveSwap attack. A man-in-the-middle can force TLS clients to use the weakest curve that both the client and server support. Then, by
computing the discrete log on the weak curve, the attacker can learn the session key and arbitrarily read or modify message contents.

modification. The client then replies with its key exchange
value on the weak curve. The attacker then computes the
elliptic curve discrete log of either the client or server’s
key exchange message to compute the client or server’s
ephemeral private key. At this point, all parties, including
the attacker, can then compute the master secret and the
session keys. The attacker then intercepts the client and
server finished messages and replaces them with finished
messages corresponding to the other party’s view of the
handshake. After the compromised handshake, the client and
server have a set of shared session keys that are known to the
attacker, allowing the attacker to arbitrarily read and modify
messages.

CurveSwap is a vulnerability in the TLS protocol itself,
and affects TLS 1.0, 1.1 and 1.2. For these TLS versions,
this vulnerability is mitigated somewhat by the TLS Session
Hash and Extended Master Secret Extension, described in
RFC 7627 [12]. RFC 7267 specifies that the premaster secret
is computed from the entire transcript of the handshake, so
in the case of an attempted parameter downgrade attack of
this form, the attacker would be forced to man in the middle
the entire connection instead of merely downgrading it. The
CurveSwap attack is mitigated entirely in TLS 1.3, because
the server sends a certificate verify message that includes a
signature of the entire handshake transcript hash. In order to
downgrade the connection, the attacker would need to forge
this signature.

5.2. CurveSwap for SSH

In SSH, the server uses its long-term host key to sign
the entire handshake, including both client and server lists
of cipher suites and the negotiated Diffie-Hellman shared
secret. Thus a CurveSwap-style attack would require the
attacker to compromise the server’s host key and learn the

Diffie-Hellman shared secret. Such a powerful attack does
not seem to have any advantage over a complete man-in-
the-middle attack.

5.3. CurveSwap for IKE

In IKEv1 aggressive mode, it is not possible for the
parties to negotiate the Diffie-Hellman group, so a group
downgrade attack using aggressive mode is not possible. We
note that for the pre-shared key and public-key encryption
authentication methods, however, the AUTH messages in
aggressive mode do not depend on the negotiated Diffie-
Hellman shared secret.

In IKEv1 main mode, both the initiator and responder
include the initiator’s security association (but not the re-
sponder’s security association) in their AUTH messages,
which are encrypted using the negotiated Diffie-Hellman
shared secret. An attacker would thus need to learn the
Diffie-Hellman shared secret online in addition to compro-
mising the authentication methods used by both parties.
There are offline brute-force attacks against pre-shared keys
in aggressive mode; documents leaked by Edward Snowden
also reference attacks allowing the NSA to learn pre-shared
keys in some situations [47], [48], [49].

In IKEv2, authentication is done by having each party
sign or MAC their own security association and key ex-
change messages together with each party’s nonces. The
initiator and responder’s authentication messages are both
encrypted and authenticated using the Diffie-Hellman shared
secret. Thus a CurveSwap-style downgrade attack would
require the attacker to learn the initiator’s authentication
secret and to learn the Diffie-Hellman shared secret in order
to forge the initiator’s authentication message online.



6. Vulnerability Measurements

We performed a number of large-scale measurements
of elliptic curve deployments with a focus on insecure
implementation choices that might leave clients or servers
vulnerable to CurveSwap.

6.1. Brute-forcing Small Curves

The Internet Assigned Numbers Authority (IANA) main-
tains a registry of valid curves for TLS, which includes
several curves at the 80-bit security level [26].

6.1.1. CurveSwap via small curves. The CurveSwap attack
allows a man in the middle to downgrade a TLS handshake
to use the weakest curve that both the client and the server
support. 280 computational work is likely within range
for advanced government-level adversaries. However, this
amount of computation is quite significant, and is unlikely
to be feasible within the timeout of a live TLS handshake
in the near future.

However, the widespread use of static-ephemeral key
exchange by servers means that a server might reuse its
key exchange value for a long enough period to allow an
attacker to pre-compute the server’s secret exponent for
a weak curve. The attacker could then use its knowledge
of the server’s secret exponent for this particular curve to
downgrade any clients who support this curve, even if they
would normally not prefer it, to this weak curve, and thus
be able to decrypt or modify messages during the session.

6.1.2. Weak curve and ephemeral-static measurements.
Table 5 shows support statistics for several weak curves,
with the number of servers that repeat key exchange values
when scanned twice in rapid succession.

We performed additional scans of hosts that initially re-
peated key exchange values to test the lifespan of ephemeral-
static keys. Scanning with curve secp160k1, only 5 hosts
responded with the same key exchange value as they did
initially after five hours, and only 2 hosts returned the same
key exchange value after 25 hours.

We also measure client implementations, and find that
a significant number of clients offer weak curves in the
supported curves extension. In Table 6, we show that in
a sample of over 4 million client hellos collected from
Cloudflare, over 16% indicate support for a curve with 80-
bit security, opening up these clients to potential CurveSwap
attacks. The user agents of these clients indicate that they
are mostly API clients rather than browsers.

6.2. Invalid Curve Attacks

6.2.1. CurveSwap via an invalid curve attack. We now
consider the scenario in which a man-in-the-middle at-
tempts to learn the server secret through an invalid curve
attack before initiating a CurveSwap attack. In this case,
a CurveSwap attack would allow the attacker to force a
connection to use a curve for which it already knows

Repeats. . .

CurveID Support Across Hosts By Host

ECDHE Hosts 41.0M – –
sect163k1 271.7K 2.1K (0.8%) 9.7K (3.6%)
sect163r1 267.8K 230 (0.1%) 7.1K (2.6%)
sect163r2 271.8K 2.1K (0.8%) 10.1K (3.7%)
secp160k1 274.9K 250 (0.1%) 7.7K (2.8%)
secp160r1 276.2K 290 (0.1%) 8.1K (2.9%)
secp160r2 266.9K 360 (0.1%) 7.2K (2.7%)

TABLE 5. TLS SERVER SUPPORT FOR WEAK CURVES—IN AUGUST

2017, WE SCANNED A RANDOMLY SELECTED 10% OF TLS HOSTS TO

MEASURE SUPPORT FOR WEAK CURVES. WE SCANNED EACH HOST

TWICE FOR EACH CURVE TO DETECT SERVERS USING

EPHEMERAL-STATIC KEYS. THE BASELINE SCAN SHOWS THE NUMBER

OF HOSTS WITH WHICH WE WERE ABLE TO NEGOTIATE ANY CURVE.
THE REPEAT PERCENTAGES ARE WITH RESPECT TO THE SUPPORT

SCANS FOR EACH CURVE.

CurveID Support

sect163k1 685.6K (16.4%)
sect163r1 682.1K (16.3%)
sect163r2 682.1K (16.3%)
secp160k1 682.6K (16.3%)
secp160r1 682.6K (16.3%)
secp160r2 682.6K (16.3%)

TABLE 6. TLS CLIENT SUPPORT FOR WEAK CURVES—FROM A

SAMPLE OF 4,187,201 CLIENT HELLOS COLLECTED FROM

CLOUDFLARE IN OCTOBER 2016, OVER 16% OFFER WEAK CURVES IN

THE CLIENT HELLO SUPPORTED CURVES EXTENSION.

the server’s ephemeral-static key. Servers are vulnerable
to invalid curve attacks when they both fail to validate
key exchange parameters and reuse the same ephemeral-
static key for multiple connections. If a victim supports a
variety of curves, some which are vulnerable to invalid curve
attacks, and some which are not, this attack would allow the
attacker to downgrade the victim to a vulnerable curve for
which they can learn the server’s secret.

6.2.2. Measuring invalid curve attacks. We performed
extensive measurements to measure the prevalence of imple-
mentations vulnerable to invalid curve attacks, and present
the results in Table 7. In the end, our scans found evidence
of key exchange validation failure and of key reuse, but no
hosts that both failed to validate and repeated keys either
across hosts or across scans. Thus we do not find evidence
of servers vulnerable to invalid curve key recovery attacks.

To test if servers properly validate received client key
exchange values, we performed a key exchange using an
element of order 5 on an invalid curve for secp256r1. We
give the coordinates of this point and the equation of the
generator in Appendix A. Table 7 shows the number of hosts
that appeared to accept invalid curve points for the protocols
that we scanned.

Since we send an invalid curve point of order 5, the
shared secret for the session will be limited to one of five
curve elements: (x1, y1), (x1,�y1), (x2, y2), (x2,�y2), and



infinity. For TLS, SSH, and IKE, only the x-coordinate of
the curve element is used as the shared secret for computing
the session MAC, so a client sending an invalid point on
this curve would have a 2/5 chance of guessing the value
correctly by choosing x1 or x2 as the shared secret.

In TLS, a client can reach the end of the handshake
without authenticating, so in our scans we counted the
number of hosts that accepted our client finished message
and responded with a server finished message. Thus, we
expect the number of hosts that are not properly validating
to be 5/2 times as large as the number of hosts that respond
with a server finished message. Since Table 7 indicates that
0.31% of HTTPS hosts on port 443 accepted our guessed
client finished with our invalid curve point, we estimate that
0.77% of HTTPS hosts fail to perform proper validation.

For SSH and IKE, our scanning methodology does not
allow us to reach the end of the handshake without authen-
ticating as a valid client, so we count the number of servers
that fail to immediately indicate an error upon receipt of
an invalid key exchange value. This does not require us to
correctly guess the shared secret, so there is no need to scale
the results as for TLS. This also does not account for hosts
that perform validation checks later in the handshake, so the
numbers presented are an overestimate. In the case of the
SSH scans, we show the number of hosts that respond with
an ssh key exchange ecdh reply message after receiving
the invalid client public value. All of the SSH hosts that
responded to these scans had a protocol banner indicating
either “Cerberus”, “VShell”, or “SshServer”. Manually in-
stalling CerberusFTPServer 8.0, we were able to replicate
this behavior, and found that the server correctly logged an
invalid key exchange value in its server logs. This appears to
be in violation to RFC 5656, which specifies that the server
should validate the client key exchange before sending its
own key exchange value.

6.3. Twist Attacks

6.3.1. CurveSwap via twist attacks. We now investigate
an attack vector that exploits the fact that there are several
standardized curves with weak twist security. For example,
an invalid curve attack using the twist for secp224r1 can be
used to recover the secret key in only 258.4 work, compared
to its expected 112-bit security level [10].

Consider a server that uses a single-coordinate ladder
for scalar-by-point multiplication, such as the Montgomery
or Brier-Joye ladders. Single-coordinate ladders operate on
only the x-coordinate of the key exchange value, making it
impossible to specify a point on an invalid curve [15], [34].
However, an attacker can send an x-coordinate that does
not correspond to a point on the negotiated curve, but does
lie on the twist of the curve. If the server employs a single-
coordinate ladder for scalar-by-point multiplication, then the
server will compute the shared secret as a point on the twist
of the curve. For curves with a weak twist, the attacker can
send low-order points on the twist, and carry out a small
subgroup attack to reconstruct the server’s ephemeral-static
key. To prevent this attack, an additional check is required

Proto Port Twist Invalid InvalidRepeat

TLS 25 0 (0.0%) 40 (0.0%) 0 (0.0%)
110 0 (0.0%) 20 (0.0%) 0 (0.0%)
143 0 (0.0%) 0 (0.0%) 0 (0.0%)
443 0 (0.0%) 75.5K (0.3%) 0 (0.0%)
465 0 (0.0%) 260 (0.0%) 0 (0.0%)
563 0 (0.0%) 10 (0.0%) 0 (0.0%)
587 0 (0.0%) 0 (0.0%) 0 (0.0%)
636 0 (0.0%) 150 (0.1%) 0 (0.0%)
853 0 (0.0%) 20 (1.1%) 0 (0.0%)
989 0 (0.0%) 0 (0.0%) 0 (0.0%)
990 0 (0.0%) 230 (0.1%) 0 (0.0%)
992 0 (0.0%) 10 (0.0%) 0 (0.0%)
993 0 (0.0%) 8.1K (0.3%) 0 (0.0%)
994 0 (0.0%) 10 (0.4%) 0 (0.0%)
995 0 (0.0%) 6.7K (0.2%) 0 (0.0%)

8443 0 (0.0%) 19.2K (1.5%) 0 (0.0%)

SSH 22 4.1K (0.1%) 3.3K (0.0%) 0 (0.0%)

IKEv1 500 530 (0.2%) 500 (0.2%) 0 (0.0%)

IKEv2 500 4.1K (4.0%) 4.1K (4.0%) 0 (0.0%)

TABLE 7. INVALID KEY EXCHANGES—IN NOVEMBER 2016, WE

SCANNED A RANDOMLY SELECTED 10% OF IPV4 ADDRESSES

OFFERING ORDER 5 POINTS ON AN INVALID CURVE AND ON THE TWIST

OF CURVE SECP256R1. WE SHOW THE NUMBER OF HOSTS FOR WHICH

HANDSHAKE NEGOTIATION IS SUCCESSFUL. AS DESCRIBED IN

SECTION 6.2.2, WE ESTIMATE THAT THE NUMBER OF VULNERABLE

TLS HOSTS IS 5/2 TIMES LARGER THAN THE NUMBERS REPORTED IN

THE TABLE. FOR SSH AND IKE, THESE NUMBERS ARE AN UPPER

BOUND ON THE NUMBER OF VULNERABLE HOSTS.

to ensure that the specified x-coordinate lies on the curve,
and not the twist of the curve.

There are a number of curves with weak twists that bring
twist attacks into feasible range [10], [21]. Notably, in ad-
dition to the NIST-standardized secp224r1, brainpoolp256t1
also has a weak twist, with an attack cost of 244. secp256r1
is secure against twist attacks with an attack cost of 2120.

6.3.2. Measuring twist attacks. To test for this behavior,
we perform scans sending a point in the subgroup of order
5 on the twist of secp256r1 as the client key exchange
value. We chose secp256r1 because it has the highest sup-
port among the protocols we studied. We give the point
coordinates and the twist equation in Appendix A. The scan
results, presented in Table 7, indicate that no hosts accepted
points on the twist of the curve. To test if point compression
influenced server behavior, we performed an additional 10%
scan of TLS on port 443 sending a compressed point of
order 5 on the twist of secp256r1, and found that no hosts
accepted this key exchange value.

We suspect that hosts accepting invalid curve points
but not accepting points on the twist as the client key
exchange value are using a mixed-Jacobian scalar-by-point
multiplication algorithm, which would cause points on the
twist to fail with an arithmetic error but would succeed for
points on an invalid curve.



Library Language ECDH
Support

Status

cjose C/C++ No –
jose-jwt Haskell No –
jose4j Java Yes fixed v0.5.5
Nimbus JOSE+JWT Java Yes fixed v4.34.2
Apache CXF Java Yes not vuln.
json-jwt Ruby No –
phpOIDC PHP No –
jose-php PHP No –
js-jose Javascript No –
go-jose Go Yes fixed v1.0.4
jose2go Go Yes fixed v1.3
node-jose node.js Yes fixed v0.9.3

TABLE 8. JWE LIBRARIES—WE MANUALLY INSPECTED THE

SOURCE CODE OF SEVERAL LIBRARIES IMPLEMENTING JSON WEB

ENCRYPTION, AND FOUND THAT MANY WERE VULNERABLE TO A

CLASSIC INVALID CURVE ATTACK.

7. Source Code Analysis

We examined a number of libraries to understand their
elliptic curve implementations, and found multiple vulnera-
bilities. We also described our findings in a blog post [38].

7.1. Failure to Validate in JSON Web Encryption

Standards and Implementation

We examined the source code of many libraries imple-
menting RFC 7516, JSON Web Encryption (JWE), focusing
on the Key Agreement with Elliptic Curve Diffie-Hellman
Ephemeral Static (ECDH-ES) algorithms. The complete list
of libraries that we examined is available in Table 8. We
found that many of these libraries were vulnerable to a
classic invalid curve attack as described in Section 2.3.2.
This would allow an attacker in the role of a sender to
completely recover the secret key of the receiver. Almost
all the implementations we examined failed to validate that
the received public key, contained in the JWE Protected

Header, is on the curve. Although they did not validate
the recieved public key before performing the scalar multi-
plication, some of the libraries that we examined (Nimbus
JOSE+JWT, jose4j) were protected from the invalid curve
attack by Java’s BouncyCastle or up-to-date Java Sun JCA
elliptic curve library, which includes a check that the re-
sult of the scalar multiplication is on the curve. However,
libraries implemented in languages without this additional
check, such as Cisco’s node-jose and jose2go, were com-
pletely vulnerable. As shown in Table 8, we reported the
vulnerabilities to library maintainers to ensure that imple-
mentations included the check that incoming public keys
are on the agreed-upon curve. The go-jose vulnerability was
found and reported by Nguyen [35].

7.2. Bug in NSS/Java in Elliptic Curve Addition

Both NSS and Java use the 5-bit window NAF method
for scalar-by-point multiplication from [16]. Both imple-

mentations missed a critical if/else statement that lead
the calculations to produce incorrect results on some inputs.
In particular, there exist values of the scalar for which the
algorithm would yield the point at infinity as a result while
the actual correct result should be a finite value. We were
unable to figure out a way to exploit this flaw.

We disclosed these flaws to Mozilla and Oracle in
March 2017. The flaw was patched by including the missing
if/else statement [2], [3].

8. Discussion

Although we found some vulnerable, buggy, and non-
compliant elliptic curve behavior in most of the protocols we
measured, the fact that these behaviors do not appear to lead
to a full CurveSwap attack is good news. (The exception is
JWE, where the invalid curve attacks are devastating and do
not require a parameter downgrade.)

8.1. Complexity of Curve Support

We observe that there are a large number of curves that
are supported in the protocols we studied, some of them dat-
ing from much earlier in the study of elliptic curves before
different varieties of implementation attacks were as well
understood. While having many curve sizes or parameter
types would seem to give protocols and implementations
room to adapt their speed and security needs, support for
many of these curves risks becoming a liability if attacks on
some classes improve enough to allow a feasible CurveSwap
attack in TLS or other protocols. In addition, enumerating
the current state of different attacks on each curve is quite
complex. [10]

While recent curve constructions such as Curve25519
are designed to be as resistant to implementation mistakes
as possible, the move to “new” algorithms such as single-
coordinate ladders, which appear from our data not to be
widely implemented for most curves, will likely result in
the discovery of new bugs of the type we discovered in
NSS/Java.

8.2. Protocol Security

The recent spate of cipher downgrade, transcript mis-
match, and message forwarding attacks against TLS has
highlighted the need for protocol-level protections against
these types of man-in-the-middle attacks. Fortunately, TLS
1.3 includes multiple layers of handshake downgrade protec-
tion, including client and server authentication of the entire
transcript hash using long-term secrets when possible, and
computing session keys from the entire transcript. We note
that the SSH protocol builds in such protection by having
the server sign the entire transcript, as does IKE when using
signature authentication. We hope that the community’s
improved understanding of protocol security means that
downgrade attacks are a thing of the past.
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Appendix A.

Invalid Curve and Twist Points

We tested for curve validation in secp256r1 by using a gener-
ator of a subgroup of order 5 on the curve y2 = x3+ax+(b−1)
with a and b as specified in [40] for secp256r1. The coordinates
of our generator were

x = BFD3 5739 ED4B 4D93 8C91 E835 7C7E C4C4 1DE9 FDFC

1669 88EB D1DF A09C 7959 6661

y = 8949 2141 E9E8 1674 9798 62D9 FC62 21C4 A672 B890

33E0 7B86 DA40 D67D 5C0F 53E3

We tested for twist validation in secp256r1 by sending a point
of order 5 on the twist y2 = x3 + a0x+ b0 with

a
0 = 8EB0 E29E C8A5 CCCB 65B9 936F B5B2 67E6 57D4 83DB

CDC0 2A88 8A7F 72E8 935B B316

b
0 = 2F9B 5262 887E 1766 8BBA F58E 54B8 2E42 C72E D167

21BD 3325 DEB7 9B62 ADE7 4BD6

The coordinates of our generator were

x = 8FB5 0654 3387 E96C D244 8468 9BF6 CC0C F383 4F33

D8CD 6442 4B11 7D3B ECA1 E0B5

y = E042 260E 3A00 30A5 5B46 8D2A DEBA D3D4 B613 373C

0C38 FCD8 5434 C2B8 B7F7 C1EA

Appendix B.

Extended Scans on Multiple Ports

We extended our scans to a variety of ports where TLS is used
to secure services such as IMAP, POP3, SMTP, LDAP, and more.

Repeats. . .

Proto Port secp256r1 Across Hosts By Host

TLS 25 375.8K 590 (0.2%) 21.9K (5.8%)
110 126.3K 190 (0.2%) 290 (0.2%)
143 120 0 (0.0%) 0 (0.0%)
443 24.0M 638.7K (2.7%) 5.5M (22.9%)
465 2.6M 156.1K (6.1%) 60.3K (2.3%)
563 45.5K 36.4K (79.8%) 37.7K (82.7%)
587 310.4K 160 (0.1%) 160 (0.1%)
636 119.5K 39.1K (32.7%) 77.7K (65.0%)
853 1.7K 40 (2.4%) 840 (50.6%)
989 1.8K 80 (4.4%) 1.1K (61.3%)
990 245.6K 24.1K (9.8%) 39.3K (16.0%)
992 28.4K 40 (0.1%) 980 (3.5%)
993 771.3K 55.0K (7.1%) 83.2K (10.8%)
994 2.2K 100 (4.5%) 1.0K (45.9%)
995 717.1K 57.4K (8.0%) 79.6K (11.1%)

8443 1.3M 49.3K (3.9%) 274.6K (21.7%)

SSH 22 7.5M 0 (0.0%) 0 (0.0%)

IKEv1 500 168.5K 210 (0.1%) 540 (0.3%)

IKEv2 500 95.1K 800 (0.8%) 1.9K (1.9%)

TABLE 9. REPEATED KEY EXCHANGES—SEE TABLE 3.

Proto Port Twist Invalid InvalidRepeat

TLS 25 0 (0.0%) 40 (0.0%) 0 (0.0%)
110 0 (0.0%) 20 (0.0%) 0 (0.0%)
143 0 (0.0%) 0 (0.0%) 0 (0.0%)
443 0 (0.0%) 75.5K (0.3%) 0 (0.0%)
465 0 (0.0%) 260 (0.0%) 0 (0.0%)
563 0 (0.0%) 10 (0.0%) 0 (0.0%)
587 0 (0.0%) 0 (0.0%) 0 (0.0%)
636 0 (0.0%) 150 (0.1%) 0 (0.0%)
853 0 (0.0%) 20 (1.1%) 0 (0.0%)
989 0 (0.0%) 0 (0.0%) 0 (0.0%)
990 0 (0.0%) 230 (0.1%) 0 (0.0%)
992 0 (0.0%) 10 (0.0%) 0 (0.0%)
993 0 (0.0%) 8.1K (0.3%) 0 (0.0%)
994 0 (0.0%) 10 (0.4%) 0 (0.0%)
995 0 (0.0%) 6.7K (0.2%) 0 (0.0%)

8443 0 (0.0%) 19.2K (1.5%) 0 (0.0%)

SSH 22 4.1K (0.1%) 3.3K (0.0%) 0 (0.0%)

IKEv1 500 530 (0.2%) 500 (0.2%) 0 (0.0%)

IKEv2 500 4.1K (4.0%) 4.1K (4.0%) 0 (0.0%)

TABLE 10. INVALID KEY EXCHANGES—SEE TABLE 7.



Number of hosts that support. . .

Proto Port Date BASE ECDHE secp224r1 secp256r1 secp384r1 secp521r1 x25519 b-pool256r1

TLS 25 11/2016 – 1.0M 420 (0.0%) 1.0M (99.7%) 3.1K (0.3%) 220 (0.0%) 0 (0.0%) 0 (0.0%)
110 11/2016 – 182.7K 270 (0.1%) 176.7K (96.7%) 125.3K (68.6%) 113.6K (62.2%) 0 (0.0%) 580 (0.3%)
143 11/2016 – 130 0 (0.0%) 130 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
443 11/2016 38.6M 24.8M 643.4K (2.6%) 24.1M (97.0%) 5.7M (22.9%) 2.5M (10.2%) 0 (0.0%) 980.1K (3.9%)
443 08/2017 41.0M 28.8M 811.6K (2.8%) 25.0M (86.9%) 9.1M (31.6%) 2.2M (7.7%) 740.7K (2.6%) 2.4M (8.4%)
465 11/2016 – 2.7M 21.6K (0.8%) 2.7M (99.9%) 230.4K (8.4%) 213.2K (7.8%) 0 (0.0%) 2.0K (0.1%)
563 11/2016 – 45.7K 60 (0.1%) 45.7K (99.9%) 2.9K (6.3%) 1.6K (3.6%) 0 (0.0%) 280 (0.6%)
587 11/2016 – 836.9K 20 (0.0%) 836.6K (100.0%) 330 (0.0%) 40 (0.0%) 0 (0.0%) 0 (0.0%)
636 11/2016 – 121.0K 2.8K (2.3%) 120.8K (99.8%) 43.5K (36.0%) 10.7K (8.8%) 0 (0.0%) 1.1K (0.9%)
853 11/2016 – 1.8K 60 (3.4%) 1.7K (97.2%) 1.2K (66.5%) 400 (22.7%) 0 (0.0%) 240 (13.6%)
989 11/2016 – 1.9K 30 (1.6%) 1.8K (98.9%) 1.3K (69.9%) 280 (15.1%) 0 (0.0%) 140 (7.5%)
990 11/2016 – 246.4K 1.3K (0.5%) 243.7K (98.9%) 202.1K (82.0%) 184.1K (74.7%) 0 (0.0%) 690 (0.3%)
992 11/2016 – 28.5K 300 (1.1%) 28.5K (99.8%) 27.7K (97.1%) 26.8K (93.9%) 0 (0.0%) 300 (1.1%)
993 11/2016 – 2.9M 31.8K (1.1%) 772.8K (26.5%) 2.6M (89.0%) 380.2K (13.0%) 0 (0.0%) 97.9K (3.4%)
994 11/2016 – 2.5K 100 (4.0%) 2.3K (94.3%) 1.6K (63.2%) 510 (20.6%) 0 (0.0%) 260 (10.5%)
995 11/2016 – 2.8M 24.5K (0.9%) 717.9K (25.9%) 2.5M (89.0%) 359.5K (13.0%) 0 (0.0%) 88.6K (3.2%)
8443 11/2016 – 1.3M 102.4K (7.9%) 1.3M (98.9%) 406.9K (31.5%) 159.5K (12.4%) 0 (0.0%) 22.1K (1.7%)

SSH 22 11/2016 14.5M 7.9M 0 (0.0%) 7.7M (97.8%) 7.5M (95.6%) 7.5M (95.4%) 6.1M (77.2%) 0 (0.0%)

IKEv1 500 11/2016 1.1M 215.4K 143.8K (66.8%) 211.8K (98.3%) 206.8K (96.0%) 152.8K (71.0%) 0 (0.0%) 0 (0.0%)

IKEv2 500 11/2016 1.2M 101.1K 4.1K (4.1%) 98.2K (97.1%) 98.0K (96.9%) 240 (0.2%) 0 (0.0%) 0 (0.0%)

TABLE 11. SERVER SUPPORTED CURVES—SEE TABLE 1.


