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ABSTRACT

The spectrum of a network or graph G = (V, E) with adjacency
matrix A, consists of the eigenvalues of the normalized Laplacian
L=1-D"'"2AD"1/2 This set of eigenvalues encapsulates many
aspects of the structure of the graph, including the extent to which
the graph posses community structures at multiple scales. We study
the problem of approximating the spectrum, A = (41, ...,4y), of
G in the regime where the graph is too large to explicitly calculate
the spectrum. We present a sublinear time algorithm that, given the
ability to query a random node in the graph and select a random
neighbor of a given node, computes a succinct representation of
an approximation 1= (/T], . ,/T|V|), such that ||/T— Al < €|V
Our algorithm has query complexity and running time exp(O(1/¢)),
which is independent of the size of the graph, |V|. We demonstrate
the practical viability of our algorithm on synthetically generated
graphs, and on 15 different real-world graphs from the Stanford
Large Network Dataset Collection, including social networks, aca-
demic collaboration graphs, and road networks. For the smallest of
these graphs, we are able to validate the accuracy of our algorithm
by explicitly calculating the true spectrum; for the larger graphs,
such a calculation is computationally prohibitive. The spectra of
these real-world networks reveal insights into the structural sim-
ilarities and differences between them, illustrating the potential
value of our algorithm for efficiently approximating the spectrum
of large large networks.
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1 INTRODUCTION

Given an undirected graph G = (V, E), its normalized Laplacian
matrix is defined as L = I — D"1/2AD~1/2, where D is the diagonal
matrix with entries D; ; given by the degree of the ith vertex, and
A is the adjacency matrix of the graph. It is not hard to see that L
is positive semidefinite and singular, with eigenvalues 0 = A1 <
A2 < ... £ Ay, whose sum is trace(L). Many structural and
combinatorial properties of graphs are exposed by the eigenvalues
(and eigenvectors) of the associated graph Laplacian, L. For example,
as was quantified in a recent series of works [12, 16, 21], the value
of the ith eigenvalue provides insights into the extent to which the
graph admits a partitioning into i components. Hence the spectrum
provides a detailed sense of the community structures present in
the graph at multiple scales. Macroscopic features of the spectrum
also provide information about the graph structure—for example,
the extent to which the spectrum is symmetric about the middle
eigenvalue Ay, corresponds to whether the graph tends to be
locally bipartite, versus, for example, having many triangles.

Inspecting the spectrum of a graph also serves as a approach to
evaluating the plausibility of natural generative models for families
of graphs (see, e.g. [6]): for example, if the spectrum of random
power-law graphs does not closely resemble the spectrum of the
Twitter graph, it suggests that a random power-law graph might
be a poor model for the Twitter graph.

Given the structural information contained in the spectrum of a
graph’s Laplacian, it seems natural to ask the following question:
How much information must one collect about a graph in order to
accurately approximate its spectrum?

1.1 Our results

We give the first sublinear time approximation algorithm for com-
puting the spectrum of a graph G = (V, E). Our algorithm assumes
that we can sample vertices uniformly at random from V and that
we can also query for a random neighbor of a vertex v € V. (Many
graph data structures efficiently support these two operations.)
Equivalently, this model corresponds to assuming that we can per-
form a random walk in G, as well as randomly restart such a walk.
For a desired error parameter, € € (0, 1), our algorithm performs
exp(O(1/¢€)) such queries to the graph—independent of the graph
size, |V|—then performs a computation taking time poly(1/¢), and
outputs an approximation A of the spectrum A of the normalized



Laplacian of G (see Definition 3.1 for the formal definition of the
normalized Laplacian).

The spectrum of G consists of |V| numbers, and our algorithm
will instead output a succinct representation of this spectrum, hav-
ing size only O(1/¢). We now describe the sense in which this
succinct description approximates the true spectrum. Note that the
true spectrum can be regarded as a discrete distribution over [0, 2],
the “spectral distribution,” which places mass 1/|V| at each value
Ai. Our algorithm will output a succinct representation of the spec-
trum, consisting of only O(1/¢) numbers, which approximates this
distribution in the Wasserstein metric. Specifically, the L; distance
between the cumulative distribution function of the distribution
returned by our algorithm, will have ¢; distance at most ¢ from
the cumulative distribution function of the true spectral distribu-
tion. The representation output by our algorithm corresponds to
approximating each of the 1/e quantiles of the spectrum—i.e. an
approximation of the |V |th smallest eigenvalue, the 2¢|V|th small-
est, the 3¢|V|th smallest, etc. If desired, this succinct representation
can then be trivially converted in time |V| into a length |V| vector

e —A}-‘ <€V
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THEOREM 1.1. For any €,8 > 0, given the ability to 1) select a
uniformly random node from a graph G = (V, E), and 2) for any node,
query a uniformly random neighbor of that node, with runtime and
number of queries bounded by exp(O(1/€))log(1/5) one can output
a succinct representation of the normalized Laplacian of G, which,
with probability at least 1 — 8, approximates the true spectrum to
additive error € in Wasserstein (earth-mover) distance.

Our algorithm for approximating the spectrum is based on ap-
proximating the first O(1/€) “spectral moments”, the quantities
ﬁ lell /lf for integers € = 1,2,.... These moments are traces
of matrix powers of the random walk matrix of G, allowing us to
approximate them by estimating the return probabilities of length
¢ random walks. Given accurate estimates of the spectral moments,
the spectrum can then be recovered by solving a moment-inverse
problem, namely recovering a distribution whose moments closely
match the estimated spectral moments.

Complementing the strong theoretical result of Theorem 1.1, we
empirically demonstrate the practicality of the proposed algorithm,
both on a series of synthetically generated graphs, as well as on
15 real-world networks, including road networks, collaboration
networks, and social networks. The similarities and differences
between the spectra for these networks reveals rich insights into
these graphs. We discuss these experiments, and the insights that
they reveal, in Section 5.2.

Finally, beyond the general result of Theorem 1.1 which requires
a number of walks that is exponential in the inverse of the desired
accuracy, €, we also give an algorithm with an improved depen-
dence that applies to planar graphs of bounded degree (such as
road networks), and generalizations of planar graphs. This result
is mainly of conceptual and theoretical interest, and we did not
investigate the empirical properties of the resulting algorithm.

THEOREM 1.2. For a graph G of maximum degree d that is planar,
or that does not contain a forbidden minor, H, one can approximate

the spectrum of G to Wasserstein (Kantorovich/earth-mover) distance
) . . 4\ Olog(1/¢)
€ with queries and computation time (Z) .

The proof of this improved result for bounded degree planar
graphs requires two tools. The first is the observation that the
earth mover distance between the spectra of two graphs is at most
twice the graph edit distance (the number of edges that must be
added/removed to transform one graph into the other). The second
tool is an algorithmic gadget called a “planar partitioning oracle”
which allows a planar graph of degree at most d to be partitioned
into connected components of size O(d/e?), while removing only
en edges from the graph. Given such a decomposed graph, the
spectrum can then be pieced together from approximations of the
spectra of the various pieces.

1.2 Related work

Since the 1970’s, spectral graph theory has flourished and led to
the development and understanding of rich connections between
structural and combinatorial properties of graphs, and the eigen-
values and eigenvectors of their associated graph Laplacians (see
e.g. [3]). From an algorithmic standpoint spectral methods provide
useful tools that have been fruitfully employed to solve a num-
ber of graph problems including graph coloring, graph searches
(e.g. web search), and image partitioning [22, 23]. In terms of the
structural interpretations of the eigenvalues, it is easy to see that
the multiplicity of the zero eigenvalue is exactly the number of
connected components of a graph. Cheeger’s inequality gives a ro-
bust analog of this statement, showing a correspondence between
the value of the second eigenvalue, and the extent to which the
graph can be partitioned into two pieces. Very recently, a series of
works [12, 16, 21] developed a “higher order” Cheeger inequality,
quantifying a correspondence between the ith eigenvalue and the
extent to which the graph admits a partitioning into i components.

There has been a great deal of work characterizing the spec-
trum of various models of random graphs, including Erdos-Renyi
graphs [5], and graphs that attempt to model the properties exhib-
ited by real-world graphs and social networks, including random
power-law graphs, small-world graphs, and scale-free networks (see
e.g. [2, 6]). One way of testing the plausibility of such models is by
comparing their spectrum to those of actual real-world networks,
though one challenge is the computational difficulty of computing
the spectrum for large graphs, which, in the worst case, requires
time cubic in the number of nodes of the graph.

Beyond the graph setting, there is a significant body of work
from the statistics community on estimating the spectrum of the
covariance matrix of a high-dimensional distribution, given access
to independent samples from the distribution [1, 4, 9, 14, 15, 19].
As with a graph, the eigenvalues of the covariance matrix of a
distribution contain meaningful structural information about the
distribution in question, including quantifying the amount of low-
dimensional structure. Recently, [10] showed that the spectrum of
the covariance of a distribution can be accurately recovered given a
number of samples that is sublinear in the dimension, by leveraging
a method-of-moments approach that directly estimates the low-
order moments of the true spectral distribution. While that work is
in the rather different setting of estimating the covariance spectrum



of a distribution, and the results have a completely different form
than the results of this work (i.e. they require O(d'~€) samples to
estimate a d-dimensional distribution to error €,) they share the
same high level approach of 1) approximating the spectral moments,
and 2) solving the moment-inverse problem to return a vector or
distribution whose moments match the approximated moments.
The moment estimators in the two works are unrelated, though we
can use the same (fairly standard) linear-programming approach to
the moment-inverse problem leveraged in that work.

Finally, there is a wealth of work on computing approximate
spectral decompositions of matrices (and tensors) in time that is sub-
linear in the size of the matrix in question (see e.g. [7, 11, 24, 26, 27]).
While superficially similar to our goal, this line of work proceeds by
sampling columns (generally either uniformly at random or via im-
portance sampling) from the matrix in question, and the techniques
apply to settings where the matrix in question is close to low-rank
or has other structure; these approaches are not applicable to our
problem of recovering an approximation of the entire spectrum.
(For a concrete example, given a graph corresponding to a large
rectangular grid, the submatrix generated as an intermediate step
in these approaches will have almost all columns completely empty,
and will not recover the equally-spaced “linear” spectrum of such a

graph.)

1.3 Preliminaries and Notation

Let A be an n X n real-valued matrix. A value A is called an eigen-
value of A, if there exists a vector v such that Av = Av. If Ais a
symmetric matrix then its eigenvalues and eigenvectors are real.
If A = QAQ! where A is a diagonal matrix, we say that A has
an eigendecomposition. The entries on the diagonal of A are the
eigenvalues and the columns of Q the eigenvectors of A. If A is
symmetric and real-valued it always has an eigendecomposition of
the form A = QAQT , ie. Qisan orthogonal matrix (Q™! = o7

Two matrices A and B are similar, if they can written as A =
PBP~! for an n X n invertible matrix P. Similar matrices have the
same eigenvalues. We may assume w.l.o.g. that the eigenvalues
satisfy A1 > Az > - -+ > Ay, (Where each eigenvalue appears with its
algebraic multiplicity) and refer to this sorted list of eigenvalues as
the spectrum. A matrix is stochastic, if its columns are non-negative
reals that sum up to 1.

Throughout, we will also view this list of eigenvalues as a dis-
tribution, consisting of n equally-weighted point masses at values
A, ..., Ap. We refer to this distribution as the normalized spectral
measure or spectral distribution. We will be concerned with recover-
ing this spectral distribution in terms of the Wasserstein-1 distance
metric (i.e. “earth mover distance”). We denote the earth mover
distance between two real-valued distribution p and q by Wi(p, q);
this distance represents the minimum, over all schemes of “moving”
the probability mass of p to yield distribution g, where the cost per
unit probability mass of moving from probability x to y is |x — y|.

The task of learning the spectral distribution in earth mover dis-
tance is closely related to the task of learning the sorted vector of
eigenvalues in 1 distance. This is because the ¢; distance between
two sorted vectors of length n is exactly n times the earth mover
distance between the corresponding point-mass distributions. Simi-
larly, given a distribution, Q, that is close to the spectral distribution

11, in Wasserstein distance, one can transform Q into a length n
vector whose ¢1 distance is at most n - W1(Q, pt3). (See Lemma 2.5.)

In the remainder of this paper we will assume that Aisann X n
real-valued stochastic matrix with real eigenvalues of absolute value
at most 1 and n linearly independent eigenvectors. In particular, we
can write A = QAQ~!. We use e; to denote the i-th vector of the
standard basis of R".

2 APPROXIMATING THE SPECTRUM OF A
STOCHASTIC MATRIX

In this section we consider the task of approximating the spectrum
of a stochastic matrix, A, given a certain query access to informa-
tion about A. Our results on estimating the spectrum of a graph
Laplacian, which we give in Section 3, will follow from the results
of this section, as learning the spectrum of a graph’s Laplacian
is equivalent to learning the spectrum of the stochastic matrix
corresponding to a random walk on the graph in question.

2.1 Model of computation

To cleanly reason about the properties of the proposed algorithm,
it will be useful to formalize the way we can access the matrix in
question, and count each such access as taking one unit of time. We
will assume that we can access matrix A as follows: Given a number
J, we can obtain a value C(j) € {1,...,n} distributed according
to the j-th column of matrix A. This type of access to A allows us
to perform a random walk on A. We note that the time it takes to
actually implement such an oracle depends on how the graph is
represented in memory. If the graph is stored via adjacency lists
then the oracle can be implemented in time O(deg) per oracle call; if
the neighboring vertices are stored as arrays and the node degrees
are also stored, this oracle can be implemented in a constant number
of arithmetic operations per call. (In our experiments, we represent
the graphs in this latter form.)

2.2 Approximating the spectral moments

We proceed via the method of moments: we first obtain accurate
estimates of the low-order moments of the spectral distribution,
and then leverage these moments to yield the spectral distribution.

Definition 2.1. Let A= QAQ™! be a stochastic n x n matrix with
real eigenvalues 1 > A, > --- > A1 > —1. The {-th moment of the
spectrum of A is defined as % _ Af.

We will leverage the fact that the trace of a matrix A equals n
times the first moment and the trace of Al = QA!Q™! equals n
times the i-th spectral moment, i.e. Tr(A?) = " AL

At the same time, we can also view the trace of A as the sum of
return probabilities of a random walk using the transition probabil-
ities of A, i.e.

Tr(AY)

|
1=
-y
=
K

n
= Z Pr[i-step Rand. Walk from j returns to j].

- =
—_

Next we note that we can view

1 . . .
- Zl SJ,SnPr[z—step Random Walk from j returns to j]



as the expected return probability of a random walk starting at j,
where j is chosen uniformly at random from {1, ..., n} and transi-
tions probabilities are given by matrix A. Thus, given access to A
as described in Section 2.1, the following algorithm can be used as
an unbiased estimator for the spectral moments:

APPROXSPECTRALMOMENT(A, £, s):
fori=1tos
pick j € {1, ..., n} uniformly at random
w=j
for k =1to ¢ do
Let w’ be drawn from the distribution of the
w-th column of A
w=w
if w=jthen X; =1lelse X; =0
return 1 - 3% X;

The following lemma follows directly from a Hoeffding bound
on the sum of independent 0/1 random variables.

LEMMA 2.2. Forparameterse,§ € (0, 1), fix an integers > %e‘z In(2/6).

Given access to the column distributions of a stochastic n X n matrix
A= QAQ’1 with real eigenvalues1 > Ap, ..., > A1 = —1, with prob-
ability at least 1 — &, algorithm APPROXSPECTRALMOMENT(A, £, s)
approximates the {-th spectral moment of A to within an additive
error €. Furthermore, the runtime is O(s{).

2.3 Approximating the spectrum from its
moments

Given accurate approximations of the first £ moments of a distri-
bution, how accurately can one recover the distribution? In the
case were the distribution in question is supported on a bounded
interval—in our case, supported on the range [—1, 1] as the eigen-
values of a stochastic matrix lie in this interval—the distribution
can be recovered to Wasserstein distance (i.e. L1 distance between
the cumulative distribution functions) at most O(1/¢), plus a term
that depends linearly on the magnitude of the approximation errors
and exponentially on the number of moments, ¢. This result follows
from the dual definition of Wasserstein distance, as the supremum
over Lipschitz-1 functions, f, of the discrepancy in the expected
value of f with respect to the two distribution, and the fact that
any Lipschitz-1 function can be approximated to L, error O(1/¢)
via a degree ¢ polynomial whose coefficients are bounded in magni-
tude by an exponential function of ¢. The following fact, from [25],
summarizes this recoverability:

PROPOSITION 2.3 (THEOREM 3 IN [25], SEE ALSO ProOP. 1 IN [10]).
Given two distributions with respective density functions p,q sup-
ported on [—1, 1] whose first { moments are @ = (a1, ...,ap) and
B = (B1,...,Pr), respectively, the Wasserstein distance, Wi(p, q),
between p and q is bounded by:

4
2
Wilp.a) < 3 ) lei = il

The above proposition holds in a worst-case sense—there are
certainly sets of moments that robustly determine the distribution
to higher accuracy. For example, if the first two moments happen to
be 0, then the distribution is fully determined (it is the point mass at

0), and no additional moments are necessary. For many of the real-
world networks we considered empirically, our recovery seems to
be significantly better than what the theory would suggest—likely
due to this sort of phenomena.

Proposition 2.3 asserts that every distribution whose first k mo-
ments closely match those of the spectral distribution will be a
close approximation (in the Wasserstein sense). Hence, algorithmi-
cally, one simply needs to find one such distribution. The following
classical linear programming approach recovers the distribution
(supported on a fine discrete mesh), whose moments match the
approximated moments as closely as possible.

MOMENTINVERSE:
Inputs: Vector & consisting of the first £ approximate moments
for a distribution supported on the interval [a, b], and a param-
eter € > 0.
Output: Distribution p.
(1) Definex= xy, ..., x; withx; = a+ieand t = [%‘l
(2) Let p* = (pg, - ... py) be the solution to the follow-
ing linear program, which should be interpreted as a
distribution with mass p; at location x;:

14

minimize Z
p

i=1

t

A i
ai—ij-xj

Jj=0

) M
subject to ij =1, andp; >0 Vje{0,1,...,¢}.
J=0
(3) Return the distribution corresponding to p*, namely
that assigns mass p;.' to location x;.

Note that the constraints of the linear program in the MomentIn-
verse algorithm—that the entries of p sum to 1 and are non-negative—
ensure that the vector corresponds to a distribution. The objective
function asserts that, among distributions supported on values in
x, the returned distribution minimizes sum of the discrepancies
between the estimated moment vector, and the moments of the
returned distribution.

2.4 Approximating the spectrum of A

We now assemble the above components to characterize the ability
to recover the spectral distribution of a stochastic matrix:

THEOREM 2.4. Given access to the column distributions of a sto-
chasticnxn matrix A = QAQ ™! with real eigenvalues1 > Ay, ..., A1 >
—1, with probability 1 — § we can approximate the spectrum of A with
additive error € in Wasserstein distance with running time and query
complexity e0/e) log(1/6).

Proor. Throughout, for clarity, we omit all constant factors and
use ‘big-O’ notation to indicate that we are suppressing an absolute
constant. We will first run Algorithm ApproxSpectralMoment to
recover approximations of the first £ = O(1/¢), and choose s >
exp(O(1/€))log(2¢/5) = exp(O(1/¢)) log(1/5) such that Lemma 2.2
guarantees that each of the first £ spectral moments are recovered
to error at most 1/exp(O(1/€)), with failure probability at most
d/¢ each, and hence via a union bound, the total failure probability
across all £ moments is at most 8. Let & denote these £ approximated



moments, and let a denote the true moments. Assume the constant
in the exp(O(1/€)) term of s is chosen such that, with probability
atleast1- 8, X4, |a; — di| < €/3%.

Given these moments, we now analyze the performance of Mo-
mentInverse given as input &, the interval [—1, 1], and the discretiza-
tion parameter €3 = 1/exp(O(1/€)). We must argue that there exists
a good feasible point for the linear program—namely a distribu-
tion supported on x whose moment closely match &. Given the
existence of such a distribution, it follows that the linear program
must return a distribution whose moments are at most this distance
from &, as the linear program returns the distribution of closes
moments. To prove the existence of such a point, consider the true
distribution p whose moments are «, that has been discretized so as
to be supported at the ez-spaced grid points specified by the vector
x. Note that this discretization can alter the ith moment by at most
1—(1 - €2), and hence for an appropriately chosen constant in the
assignment of €2 = 1/exp(O(1/€)) and the fact that we care about
only the first £ = O(1/€) moments, it follows that the sum of the
discrepancies due to rounding can be bounded by 1/exp(O(1/¢)).

Hence, MomentInverse will return a distribution p* whose mo-
ments have discrepancy at most 1/exp(O(1/¢)) from the moments
of the true spectral distribution, and hence the distance between
the recovered distribution and p is bounded by Proposition 2.3
as 0(217;5) + 301/€/exp(0(1/6)). Picking the constant in the big-O
notation appropriately yields the theorem.

Finally, note that the computation time is bounded by the collec-
tion of the exp(O(1/€))log(1/6) random walks, and solving the lin-
ear program on exp(O(1/€)) variables, which takes time polynomial
in the number of variables, and hence is bounded by exp(O(1/¢)),
as claimed. O

While the MomentInverse algorithm returns a distribution p
described via exp(O(1/€)) numbers, we note that there is a simple
algorithm, computable in O(n exp(O(1/€)) time, that will convert p
into a vector v of length n, with the property that the Wasserstein
distance between the spectral distribution p and the distribution
associated with v (consisting of n equally-weighted point masses
at the locations specified by v) is at most the distance between p
and p.

DISCRETIZESPECTRUM(n, q):
Input: Distribution q consisting of a finite number of point
masses, integer n.
Output: Vector v = (vy, . . ., Up).
(1) Let fg : [0, 1] — R be defined to be the non-decreasing
function with the property that for X drawn uniformly
at random from the interval [0, 1], the distribution of

fq(X)is q.
(2) Set
=B |f0IX e[, 4
vi 4 n’'n'|’
and return v = (vy, . . ., Uy).

LEMMA 2.5. Consider a distribution p that consists of n equally
weighted point masses. Let q be any distribution consisting of a finite
number of point masses, and let q., denote the distribution consisting
of n equally weighted point masses located at the values specified
by the vector v returned by running Algorithm DiscretizeSpectrum

on inputs n and q. Then the Wasserstein distance between p and g,
satisfies

Wi(p, qv) < Wi(p,q).

Proor. Let p1,...,pn with p; < p;y1 denote the support of
distribution p. Observe that the earth moving scheme of minimal
cost that yields distribution p from distribution g consists of moving
the 1/n probability mass in distribution g corresponding to the
(scaled) conditional distribution f;(X) conditioned on X € [% %]
to location p;. Let q; denote the ith such conditional distribution.
Since, W1(p, qu) = % Z;’:l |pi — i, it suffices to analyze |p; — vj|
independently for each i. To conclude, note that the contribution
of g; to the Wasserstein distance is simply % Zxesupp(qy) | = pil -

qi(x) > % Ipi = xesupp(qn X qi(x)) = %|pi — vj|, where for x €

supp(q;), we use the shorthand g;(x) to denote the amount of mass
that distribution q; places on value x. O

3 APPROXIMATING THE SPECTRUM OF
GRAPH LAPLACIANS

In this section we describe how to leverage the results of Section 2.4,
namely how to accurately approximate the spectrum of a stochastic
matrix, to recover the spectrum of a graph Laplacian, establishing
Theorem 1.1.Let G = (V,E), V = {1, ..., n} be an undirected graph
and let A be its adjacency matrix. We assume that we have access
to data structure that, given an a vertex v, can return a uniformly
distributed neighbor of .

Definition 3.1. The normalized Laplacian of a graph G with adja-
cency matrix A is definedas Lg =1 - D™12AD71/2 where Dis a
diagonal matrix whose entries are the vertex degrees.

PROOF OF THEOREM 1.1. Let M = AD™! be the transition matrix
of a random walk on G, i.e. M; ; = @ whenever there is an
edge between vertex i and j and where deg(j) denotes the degree
of vertex j. Note that M = DY/2(I = Lg)D™!/2 and so M is similar
to the real valued symmetric matrix I — L. Thus, M is a stochastic
matrix that can be written as QAQ ™! and the i-th largest eigenvalue
Ai of Lg corresponds to an i-th smallest eigenvalue 1 — A; of M (in
particular, the eigenvalues are real).

Hence an approximation A=X1,..., Xy of the spectrum of M

; it 1G = 3G G
with error € can be mapped to an approximation AG = A%, ..., 1§

of the spectrum of L that has error € by setting AAIG =1-4;
yielding Theorem 1.1. O

4 AN IMPROVED ALGORITHM FOR
BOUNDED DEGREE PLANAR GRAPHS

In this section we describe an improved algorithm for bounded
degree planar graphs and, more generally, minor-closed bounded-
degree graphs, establishing Theorem 1.2. We need two main tools
to obtain this result. The first one is a lemma that shows that the
Wasserstein distance between the spectra of graphs is at most twice
the graph edit distance.

LEmMA 4.1. LetG = (V,E) and H = (V, E’) be two graphs. Then
[V]- Wi(A, 1) < 2GAH,



where GAH denotes the number of edges that need to be changed
to transform G into an isomorphic copy of H and A and A’ are the
spectra of G and H, respectively.

Proor. We first recall the variational characterization of eigen-
values for a symmetric n X n matrix Q:

A¢(Q) = min{A|3k — subspace F c R" s.t. Vx € F x'QOx < Ax"x}

Let U c RY be the subspace of functions that vanish on the vertices
incident to at least an edge that is in one of the graphs G and H
only. By assumption, the codimension of U is at most GAH. Now,
it is easy to see that the (normalized) Laplacian quadratic forms
Lg and Ly coincide on U. For 0 < A < 2, let fg(4) (resp. fr(A)) be
the fraction of eigenvalues of G (resp. H) that are below A. From
the variational principle, for a given A, there is a fG(A)|V|-subspace
W c RV such that Vx € W x!Lgx < Ax’x. The subspace W N U is
atleast fG(4)|V|—-GAH dimensional and because the two quadratic
forms coincide on it, it witnesses that fg(1)|V| > f6(A)|V| - GAH
using the variational principle. By symmetry, | fg — fi| < GAH/|V]|.

Since fg and fp coincide outside [0, 2], we see that / lfe—ful <
2GAH/|V|. The latter integral is the area between the graphs of
fi and fi. Now, switching axes, these graphs become the graphs
of the inverse cumulative distribution functions of the spectral
measures of G and H. Since the Wasserstein distance is the Ly
distance between (inverse) cumulative distribution functions, the
result follows. O

The second tool is an algorithmic gadget called a “planar parti-
tioning oracle”. It is well known that by applying the planar sepa-
rator theorem [20] multiple times one can partition a planar graph
with maximum degree d into connected components of size O(d/€?)
by removing en edges from the graph. A planar partitioning oracle
provides local access to such a partition.

Definition 4.2 ([8] ). We say that O is an (e, k)-partitioning oracle
for a class C of graphs if given query access to a graph G = (V, E)
in the adjacency-list model, it provides query access to a partition
P of V. For a query about v € V', O returns P[v]. The partition has
the following properties:

e P is a function of the graph and random bits of the oracle. In
particular, it does not depend on the order of queries to O.

e For every v € V, |P[v]| < k and P[v] induces a connected
graph in G.

o If G belongs to C, then [{(v,w) € E : P[v] # Plw]}| <
epsilon|V| with probability 9/10.

We will leverage a partitioning oracle by Levi and Ron:

THEOREM 4.3 ([18]). For any fixed graph H there exists an (e, 0(d?/€?))-

partition-oracle for H-minor free graphs that makes (d/e)©(109(1/€))
queries to the graph for each query to the oracle. The total time com-

plexity of a sequence of q queries to the oracle is g log g-(d /) O18(1/€))

The partitioning oracle provides us access to a partition of a
minor-closed graph G = (V, E) into small connected components.
This partition is obtained by removing at most en edges. Let us call
the graph that consists of these connected components H(V, E’). By
our first lemma the spectra of G and H have Wasserstein distance
at most €. This means that if we can approximate the spectrum of a
graph with small connected components, then we can also estimate

the spectrum of a minor-closed bounded degree graph using the
partitioning oracle from above.

We now provide a simple algorithm that samples eigenvalues
from the spectrum of a graph with small connected components.

SMALLCCSPECTRUM(H = (V, E)):

Input: Graph H = (V, E) with small connected components.
Output: A random eigenvalue of the normalized Laplacian of
H.

(1) Sample a vertex v € V uniformly at random
(2) Compute the connected component C(v) of v

(3) Return a random eigenvalue of the normalized Lapla-
cian of C(v)

LEMMA 4.4. Algorithm SmallCCSpectrum samples a random eigen-
value from H. If all connected components are of size at most t then
the running time of the algorithm is O(t3).

Proor. First we observe that the spectrum of H is the union of
the spectrum of its connected components. Indeed, given an eigen-
value with corresponding eigenvector of a connected component
C(v) of H we observe that extending the eigenvector with 0 will
yield an eigenvector of H with the same eigenvalue.

Next we observe that the algorithm returns a uniformly dis-
tributed eigenvalue of H. Let us fix an eigenvalue A; belonging to
connected component C. The probability to sample A; is the proba-
bility to sample a vertex from the connected component (which is
[V(C)|/|V]) times the probability that A; is sampled from the |V (C)|
eigenvalues of the connected component, which is 1/|V(C)|. Hence
the probability to sample 4; is 1/|V]. O

Theorem 1.2. Let G be a family of graphs of maximum degree at

most d that does not contain a forbidden minor H. Then one can

approximate the spectrum of G in Wasserstein distance up to an
. o 4\ Oog(1/€)

additive error of € in time (E) .

Proor. The approximation guarantee follows from the relation
between edit distance and Wasserstein distance and when we esti-
mate the spectrum using polynomially (in 1/€) many calls to algo-
rithm SmallCCSpectrum. The running time then follows from the
running time of the planar partitioning oracle (where the additional
factors in 1/€ are absorbed by the O-notation in the exponent). O

5 EXPERIMENTS

In this section we demonstrate the practical viability of our spec-
trum estimation approach on both real-world and synthetically
generated graph. As our approach is the first proposed algorithm
for estimating the spectrum that runs in time sublinear in the size of
the graph (and actually runs in time independent of the size of the
graph), there is no natural performance comparison to run. Instead,
we first demonstrate that the performance in practice scales as a
function of the number of random walk used to estimate the spectral
moments, and not as a function of the graph size. We then investi-
gate the spectra of 15 undirected network datasets that are publicly
available on the Stanford Large Network Dataset Collection [17].



All experiments were run in Matlab on a MacBook Pro laptop.
For each network, we ran our spectrum estimation algorithm 20
times and averaged the 20 returned spectra. Each of the spectra
was obtained by simulating s independent random walks of length
20 steps each, and then leveraging the APPROXSPECTRALMOMENT
algorithm of Section 2.2 to estimate the first 20 spectral moments.
The synthetic experiments illustrate the effect of varying the num-
ber of walks, s. For the real-world networks, the number of random
walks was set to s =10,000. The moment estimates were then pro-
vided as input to the MOMENTINVERSE algorithm, which returned
an approximation to the spectrum supported on a mesh of ¢ =1,000
equally spaced points in the interval [0, 2]; hence the linear program
of the MomentInverse algorithm has 1,000 variables and could be
solved easily. The reason for repeating the spectrum approxima-
tion algorithm several times and averaging the returned spectra
was due to the tendency of the linear program to output sparsely
supported spectra—perhaps due to the particular instabilities of
Matlab’s linear program solver. Empirically, averaging several of
these runs seemed to yield a very consistent spectrum (that agreed
closely with the ground truth for those networks on which we
could compute the exact spectrum).

5.1 Synthetic Experiments

We evaluated our approach on synthetic graphs generated accord-
ing to the Lancichinetti-Fortunato-Radicchi (LFR) random network
generator, provided by [13]. We considered graphs of a variety of
sizes from 100 nodes to 20,000 nodes, and with average degree ei-
ther 15 or 30. For each parameter setting, we generated an instance
of the random graph on which we ran our recovery algorithm, and
varied the number of random walks from 20 to 2 million. For each
setting, we evaluated the average Wasserstein recovery error (with
respect to the actual spectrum), averaged over 20 independent trials.

Figure 1 depicts the result of these tests, showing that 1) the
average recovery error is essentially independent of the graph size,
and depends only on the number of walks, and 2) the error scales
roughly as the inverse of the logarithm of the number of walks,
which is consistent with the theory suggested by Theorem 1.1,
which shows that exp(O(1/€)) walks are sufficient to obtain error
€.

5.2 Experiments on Real-World Networks

We also applied our approach to 15 publicly available real-world
networks. These datasets include three road networks (ranging from
1M nodes to 1.9M nodes), six co-authorship networks including
the DBLP collaboration network (317k nodes, 1M edges), and six
social networks including small portions of Facebook (4k nodes,
88k edges), Twitter (81k nodes, 1.7M edges), and Google+ (107k
nodes, 13M edges), as well as the LiveJournal social graph, (4M
nodes, 34M edges), Orkut (3M nodes, 117M edges), and a portion
of the Youtube user follower graph (1M nodes, 2.9M edges).

For the smaller networks—those with < 50k nodes, we computed
the exact spectrum in addition to running our spectrum estimation
algorithm. In all cases, our reconstruction achieved an earthmover
distance at most 0.03 from the actual spectrum. For the larger
networks, it was computationally infeasible to compute the exact
spectrum.

Discussion of Network Spectra: The recovered spectra of the
fifteen graphs considered are depicted in Figure 2. Each plot de-
picts a representation of the vector of eigenvalues, sorted from
largest to smallest. The true spectrum (red points) consisting of
|V| eigenvalues is depicted on the same axes as the approximated
spectrum (blue points) corresponding to the sorted list of recovered
1,000-quantiles. (If the recovered quantiles had no error, then the
two plots would be identical, up to the discrepancy in granularity
which is not apparent at this resolution.)

The emphasis of this work is the proposal of an efficient algo-
rithm for recovering the spectrum, as opposed to a detailed analysis
of the structural implications of the observed spectra of the graphs
considered. Nevertheless, the spectra exhibit several striking phe-
nomena worth discussing.

The most immediate observations are that the spectra of the
different classes of network look quite distinct, with the road net-
works exhibiting very distinctive linear spectra, the collaboration
networks looking fairly similar to each other, and the social net-
works looking anti-symmetric about their midpoints and looking
more varied. We now discuss some of the structural insights into
these networks that can be gleaned from the spectra.

In hindsight, the linearity of the spectra of the road networks
should not be unexpected. Many portions of road networks resem-
ble rectangular grids, and, for a random walk on such a grid, the
probability of returning to the origin after ¢ timesteps will scale as
1/t for even t (and will be 0 for odd t). These return probabilities
correspond to the moments of a uniform distribution supported on
the interval [—1, 1], which is then translated to the uniform distribu-
tion over [0, 2] when the spectrum of the Laplacian is obtained from
that of the corresponding stochastic matrix. Hence, for these road
networks, the linear spectrum implies that, locally, the networks
tends to behave like rectangular grids. Keep in mind that this sort
of insight into these road networks could not have been readily
gleaned from the first several eigenvalues, or other standard graph
parameters.

LFR Benchmark Networks
Error vs. Runtime 1/Error vs. # Random Walks

0.14 50 [ [ —— n=100,deg=15
- n=1000,deg=15
n=100 n=10000,deg=15
0.12 n=1000 ——— 1-20000,deg15
n=10000 40 n=100,deg=30
Nn=20000 n=1000,deg=30
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Figure 1: Plots showing the error (left) and 1/error (right) of the spec-
trum recovered by our algorithm, versus the runtime (left) and log
(# rand walks) used to estimate the spectral moments (right). Each
line represents the results for one graph, with size ranging from
n = 100 to n =20,000 nodes. Both plots demonstrate that the per-
formance is independent of the graph size, as claimed. The plot on
the right, depicting the inverse of the error, is consistent with The-
orem 1.1 suggesting that the error scales as 1/log(#walks).



About half of the real-world spectra are close to being anti-
symmetric about the middle eigenvalue (particularly the road net-
works and the social networks—but not the collaboration networks
which all exhibit a downward curvature at the middle eigenvalue
rather than an inflexion point). This symmetry implies that the
odd-moments of the corresponding stochastic matrix are very close
to near to zero; namely that odd-length random walks tend to not
return to their origin. In the case of the road networks, this makes
sense as the networks are essentially locally bi-partite. [The road
networks have large grid-like portions.] For other highly symmetric
spectra, such as the LiveJournal, Google+, and Orkut, it is likely
that almost all of the walks that do return to their origin, do so
because they retrace their steps (and hence require an even length
path to return), implying that much of the graph behaves locally
like a tree or expander.

In contrast to the anti-symmetric spectra of some of the social
networks, the collaboration networks have significant downward
curvature about the middle eigenvalue. This implies that the net-
works have significant low-order odd moments (i.e. short random
walks of odd length do return to their origin). This implies that
there are likely to be many low degree nodes involved in small
dense clusters, which give rise to significant return probabilities of
length 3 or 5 walks returning. (This, of course, makes perfect sense
for collaboration networks.)

One final point about the collaboration networks is that they all
have rather similar spectra, despite the DBLP network having a fac-
tor of 15 more nodes and edges than some of the other collaboration
graphs. This nicely illustrates the phenomena that certain classes
of graph have spectra that approach a limiting shape, independent
of their size.

The spectra of the social networks appear more diverse. One
notable feature—particularly of the Google+, Orkut, and YouTube
graphs is the significant number of eigenvalues that are extremely
close to 1. These eigenvalues correspond to eigenvectors near the
kernel of the adjacency matrix, and hence indicate that these ad-
jacency matrices are close to being significantly rank deficient. In
contrast, Facebook, Twitter, and LiveJournal do not have the abun-
dance of eigenvalues very near 1, perhaps suggesting that the nodes
tend to be more unique (i.e. everyone has some friends that are not
expected).

The spectrum of the Youtube graph is the most curious, and
seems to be consistent with the presence of two types of nodes:
those for whom random walks return as if they were part of a
regular grid, and nodes who contribute to the ~ |V|/2 eigenvalues
equal to 1 for whom random walks almost never return to their
origin.
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Figure 2: Plots of the results of running our spectrum estimation algorithm on 15 graphs that are publicly available from the Stanford Large
Network Dataset Collection. Each plot depicts the sorted vector of eigenvalues (in decreasing order) of the scaled Laplacian of the graph.
Viewing the x-axis of each plot as ranging from 0 to 1, for the plot corresponding to a graph G = (V, E), a point at location (x, y) corresponds
to saying that the (x - |V|)th largest eigenvalue is y. For the graphs with < 50k nodes, the true spectrum (red) is superimposed on the estimated
spectrum (blue). All experiments were run in Matlab on a MacBook Pro laptop, and the estimated spectra required less than 5 minutes of

computation time per graph. Matlab code is publicly available from our websites.
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