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ABSTRACT

The spectrum of a network or graph G = (V ,E) with adjacency
matrix A, consists of the eigenvalues of the normalized Laplacian
L = I − D−1/2AD−1/2. This set of eigenvalues encapsulates many
aspects of the structure of the graph, including the extent to which
the graph posses community structures at multiple scales. We study
the problem of approximating the spectrum, λ = (λ1, . . . , λ |V |), of
G in the regime where the graph is too large to explicitly calculate
the spectrum. We present a sublinear time algorithm that, given the
ability to query a random node in the graph and select a random
neighbor of a given node, computes a succinct representation of

an approximation λ̃ = (λ̃1, . . . , λ̃ |V |), such that ∥λ̃ − λ∥1 ≤ ϵ |V |.
Our algorithm has query complexity and running time exp(O(1/ϵ)),
which is independent of the size of the graph, |V |. We demonstrate
the practical viability of our algorithm on synthetically generated
graphs, and on 15 different real-world graphs from the Stanford
Large Network Dataset Collection, including social networks, aca-
demic collaboration graphs, and road networks. For the smallest of
these graphs, we are able to validate the accuracy of our algorithm
by explicitly calculating the true spectrum; for the larger graphs,
such a calculation is computationally prohibitive. The spectra of
these real-world networks reveal insights into the structural sim-
ilarities and differences between them, illustrating the potential
value of our algorithm for efficiently approximating the spectrum
of large large networks.
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1 INTRODUCTION

Given an undirected graph G = (V ,E), its normalized Laplacian
matrix is defined as L = I − D−1/2AD−1/2, where D is the diagonal
matrix with entries Di,i given by the degree of the ith vertex, and
A is the adjacency matrix of the graph. It is not hard to see that L
is positive semidefinite and singular, with eigenvalues 0 = λ1 ≤

λ2 ≤ . . . ≤ λ |V | , whose sum is trace(L). Many structural and
combinatorial properties of graphs are exposed by the eigenvalues
(and eigenvectors) of the associated graph Laplacian, L. For example,
as was quantified in a recent series of works [12, 16, 21], the value
of the ith eigenvalue provides insights into the extent to which the
graph admits a partitioning into i components. Hence the spectrum
provides a detailed sense of the community structures present in
the graph at multiple scales. Macroscopic features of the spectrum
also provide information about the graph structureÐfor example,
the extent to which the spectrum is symmetric about the middle
eigenvalue λ |V |/2 corresponds to whether the graph tends to be
locally bipartite, versus, for example, having many triangles.

Inspecting the spectrum of a graph also serves as a approach to
evaluating the plausibility of natural generative models for families
of graphs (see, e.g. [6]): for example, if the spectrum of random
power-law graphs does not closely resemble the spectrum of the
Twitter graph, it suggests that a random power-law graph might
be a poor model for the Twitter graph.

Given the structural information contained in the spectrum of a
graph’s Laplacian, it seems natural to ask the following question:
How much information must one collect about a graph in order to

accurately approximate its spectrum?

1.1 Our results

We give the first sublinear time approximation algorithm for com-
puting the spectrum of a graph G = (V ,E). Our algorithm assumes
that we can sample vertices uniformly at random from V and that
we can also query for a random neighbor of a vertex v ∈ V . (Many
graph data structures efficiently support these two operations.)
Equivalently, this model corresponds to assuming that we can per-
form a random walk in G, as well as randomly restart such a walk.
For a desired error parameter, ϵ ∈ (0, 1), our algorithm performs
exp(O(1/ϵ)) such queries to the graphÐindependent of the graph
size, |V |Ðthen performs a computation taking time poly(1/ϵ), and

outputs an approximation λ̃ of the spectrum λ of the normalized



Laplacian of G (see Definition 3.1 for the formal definition of the
normalized Laplacian).

The spectrum of G consists of |V | numbers, and our algorithm
will instead output a succinct representation of this spectrum, hav-
ing size only O(1/ϵ). We now describe the sense in which this
succinct description approximates the true spectrum. Note that the
true spectrum can be regarded as a discrete distribution over [0, 2],
the łspectral distribution,ž which places mass 1/|V | at each value
λi . Our algorithm will output a succinct representation of the spec-
trum, consisting of only O(1/ϵ) numbers, which approximates this
distribution in the Wasserstein metric. Specifically, the L1 distance
between the cumulative distribution function of the distribution
returned by our algorithm, will have ℓ1 distance at most ϵ from
the cumulative distribution function of the true spectral distribu-
tion. The representation output by our algorithm corresponds to
approximating each of the 1/ϵ quantiles of the spectrumÐi.e. an
approximation of the ϵ |V |th smallest eigenvalue, the 2ϵ |V |th small-
est, the 3ϵ |V |th smallest, etc. If desired, this succinct representation
can then be trivially converted in time |V | into a length |V | vector

λ̂1, . . . , ˆλ |V | such that
∑ |V |
i=1

���λi − λ̂i

��� ≤ ϵ |V |.

Theorem 1.1. For any ϵ,δ > 0, given the ability to 1) select a

uniformly random node from a graphG = (V ,E), and 2) for any node,

query a uniformly random neighbor of that node, with runtime and

number of queries bounded by exp(O(1/ϵ)) log(1/δ ) one can output

a succinct representation of the normalized Laplacian of G, which,

with probability at least 1 − δ , approximates the true spectrum to

additive error ϵ in Wasserstein (earth-mover) distance.

Our algorithm for approximating the spectrum is based on ap-
proximating the first O(1/ϵ) łspectral momentsž, the quantities
1
|V |

∑ |V |
i=1 λ

ℓ
i for integers ℓ = 1, 2, . . . . These moments are traces

of matrix powers of the random walk matrix ofG, allowing us to
approximate them by estimating the return probabilities of length
ℓ random walks. Given accurate estimates of the spectral moments,
the spectrum can then be recovered by solving a moment-inverse
problem, namely recovering a distribution whose moments closely
match the estimated spectral moments.

Complementing the strong theoretical result of Theorem 1.1, we
empirically demonstrate the practicality of the proposed algorithm,
both on a series of synthetically generated graphs, as well as on
15 real-world networks, including road networks, collaboration
networks, and social networks. The similarities and differences
between the spectra for these networks reveals rich insights into
these graphs. We discuss these experiments, and the insights that
they reveal, in Section 5.2.

Finally, beyond the general result of Theorem 1.1 which requires
a number of walks that is exponential in the inverse of the desired
accuracy, ϵ , we also give an algorithm with an improved depen-
dence that applies to planar graphs of bounded degree (such as
road networks), and generalizations of planar graphs. This result
is mainly of conceptual and theoretical interest, and we did not
investigate the empirical properties of the resulting algorithm.

Theorem 1.2. For a graph G of maximum degree d that is planar,

or that does not contain a forbidden minor, H , one can approximate

the spectrum ofG to Wasserstein (Kantorovich/earth-mover) distance

ϵ with queries and computation time
(
d
ϵ

)O (log(1/ϵ ))
.

The proof of this improved result for bounded degree planar
graphs requires two tools. The first is the observation that the
earth mover distance between the spectra of two graphs is at most
twice the graph edit distance (the number of edges that must be
added/removed to transform one graph into the other). The second
tool is an algorithmic gadget called a łplanar partitioning oraclež
which allows a planar graph of degree at most d to be partitioned
into connected components of size O(d/ϵ2), while removing only
ϵn edges from the graph. Given such a decomposed graph, the
spectrum can then be pieced together from approximations of the
spectra of the various pieces.

1.2 Related work

Since the 1970’s, spectral graph theory has flourished and led to
the development and understanding of rich connections between
structural and combinatorial properties of graphs, and the eigen-
values and eigenvectors of their associated graph Laplacians (see
e.g. [3]). From an algorithmic standpoint spectral methods provide
useful tools that have been fruitfully employed to solve a num-
ber of graph problems including graph coloring, graph searches
(e.g. web search), and image partitioning [22, 23]. In terms of the
structural interpretations of the eigenvalues, it is easy to see that
the multiplicity of the zero eigenvalue is exactly the number of
connected components of a graph. Cheeger’s inequality gives a ro-
bust analog of this statement, showing a correspondence between
the value of the second eigenvalue, and the extent to which the
graph can be partitioned into two pieces. Very recently, a series of
works [12, 16, 21] developed a łhigher orderž Cheeger inequality,
quantifying a correspondence between the ith eigenvalue and the
extent to which the graph admits a partitioning into i components.

There has been a great deal of work characterizing the spec-
trum of various models of random graphs, including Erdos-Renyi
graphs [5], and graphs that attempt to model the properties exhib-
ited by real-world graphs and social networks, including random
power-law graphs, small-world graphs, and scale-free networks (see
e.g. [2, 6]). One way of testing the plausibility of such models is by
comparing their spectrum to those of actual real-world networks,
though one challenge is the computational difficulty of computing
the spectrum for large graphs, which, in the worst case, requires
time cubic in the number of nodes of the graph.

Beyond the graph setting, there is a significant body of work
from the statistics community on estimating the spectrum of the
covariance matrix of a high-dimensional distribution, given access
to independent samples from the distribution [1, 4, 9, 14, 15, 19].
As with a graph, the eigenvalues of the covariance matrix of a
distribution contain meaningful structural information about the
distribution in question, including quantifying the amount of low-
dimensional structure. Recently, [10] showed that the spectrum of
the covariance of a distribution can be accurately recovered given a
number of samples that is sublinear in the dimension, by leveraging
a method-of-moments approach that directly estimates the low-
order moments of the true spectral distribution. While that work is
in the rather different setting of estimating the covariance spectrum



of a distribution, and the results have a completely different form
than the results of this work (i.e. they require O(d1−ϵ ) samples to
estimate a d-dimensional distribution to error ϵ ,) they share the
same high level approach of 1) approximating the spectral moments,
and 2) solving the moment-inverse problem to return a vector or
distribution whose moments match the approximated moments.
The moment estimators in the two works are unrelated, though we
can use the same (fairly standard) linear-programming approach to
the moment-inverse problem leveraged in that work.

Finally, there is a wealth of work on computing approximate
spectral decompositions of matrices (and tensors) in time that is sub-
linear in the size of the matrix in question (see e.g. [7, 11, 24, 26, 27]).
While superficially similar to our goal, this line of work proceeds by
sampling columns (generally either uniformly at random or via im-
portance sampling) from the matrix in question, and the techniques
apply to settings where the matrix in question is close to low-rank
or has other structure; these approaches are not applicable to our
problem of recovering an approximation of the entire spectrum.
(For a concrete example, given a graph corresponding to a large
rectangular grid, the submatrix generated as an intermediate step
in these approaches will have almost all columns completely empty,
and will not recover the equally-spaced łlinearž spectrum of such a
graph.)

1.3 Preliminaries and Notation

Let A be an n × n real-valued matrix. A value λ is called an eigen-

value of A, if there exists a vector v such that Av = λv . If A is a
symmetric matrix then its eigenvalues and eigenvectors are real.
If A = QΛQ−1 where Λ is a diagonal matrix, we say that A has
an eigendecomposition. The entries on the diagonal of Λ are the
eigenvalues and the columns of Q the eigenvectors of A. If A is
symmetric and real-valued it always has an eigendecomposition of
the form A = QΛQT , i.e. Q is an orthogonal matrix (Q−1

= QT ).
Two matrices A and B are similar, if they can written as A =

PBP−1 for an n × n invertible matrix P . Similar matrices have the
same eigenvalues. We may assume w.l.o.g. that the eigenvalues
satisfy λ1 ≥ λ2 ≥ · · · ≥ λn , (where each eigenvalue appears with its
algebraic multiplicity) and refer to this sorted list of eigenvalues as
the spectrum. A matrix is stochastic, if its columns are non-negative
reals that sum up to 1.

Throughout, we will also view this list of eigenvalues as a dis-
tribution, consisting of n equally-weighted point masses at values
λ1, . . . , λn . We refer to this distribution as the normalized spectral

measure or spectral distribution. We will be concerned with recover-
ing this spectral distribution in terms of the Wasserstein-1 distance
metric (i.e. łearth mover distancež). We denote the earth mover
distance between two real-valued distribution p and q byW1(p,q) ;
this distance represents the minimum, over all schemes of łmovingž
the probability mass of p to yield distribution q, where the cost per
unit probability mass of moving from probability x to y is |x − y |.

The task of learning the spectral distribution in earth mover dis-
tance is closely related to the task of learning the sorted vector of
eigenvalues in ℓ1 distance. This is because the ℓ1 distance between
two sorted vectors of length n is exactly n times the earth mover
distance between the corresponding point-mass distributions. Simi-
larly, given a distribution,Q , that is close to the spectral distribution

µλ in Wasserstein distance, one can transform Q into a length n

vector whose ℓ1 distance is at most n ·W1(Q, µλ). (See Lemma 2.5.)
In the remainder of this paper we will assume that A is an n × n

real-valued stochastic matrix with real eigenvalues of absolute value
at most 1 and n linearly independent eigenvectors. In particular, we
can write A = QΛQ−1. We use ei to denote the i-th vector of the
standard basis of Rn .

2 APPROXIMATING THE SPECTRUM OF A
STOCHASTIC MATRIX

In this section we consider the task of approximating the spectrum
of a stochastic matrix, A, given a certain query access to informa-
tion about A. Our results on estimating the spectrum of a graph
Laplacian, which we give in Section 3, will follow from the results
of this section, as learning the spectrum of a graph’s Laplacian
is equivalent to learning the spectrum of the stochastic matrix
corresponding to a random walk on the graph in question.

2.1 Model of computation

To cleanly reason about the properties of the proposed algorithm,
it will be useful to formalize the way we can access the matrix in
question, and count each such access as taking one unit of time. We
will assume that we can access matrixA as follows: Given a number
j, we can obtain a value C(j) ∈ {1, . . . ,n} distributed according
to the j-th column of matrix A. This type of access to A allows us
to perform a random walk on A. We note that the time it takes to
actually implement such an oracle depends on how the graph is
represented in memory. If the graph is stored via adjacency lists
then the oracle can be implemented in timeO(deд) per oracle call; if
the neighboring vertices are stored as arrays and the node degrees
are also stored, this oracle can be implemented in a constant number
of arithmetic operations per call. (In our experiments, we represent
the graphs in this latter form.)

2.2 Approximating the spectral moments

We proceed via the method of moments: we first obtain accurate
estimates of the low-order moments of the spectral distribution,
and then leverage these moments to yield the spectral distribution.

Definition 2.1. Let A = QΛQ−1 be a stochastic n × n matrix with
real eigenvalues 1 ≥ λn ≥ · · · ≥ λ1 ≥ −1. The ℓ-th moment of the
spectrum of A is defined as 1

n

∑n
i=1 λ

ℓ
i .

We will leverage the fact that the trace of a matrix A equals n
times the first moment and the trace of Ai = QΛiQ−1 equals n
times the i-th spectral moment, i.e. Tr(Ai ) =

∑n
i=1 λ

i .

At the same time, we can also view the trace of A as the sum of
return probabilities of a random walk using the transition probabil-
ities of A, i.e.

Tr(Ai ) =

n∑

j=1

eTj A
iej

=

n∑

1=1

Pr[i-step Rand. Walk from j returns to j].

Next we note that we can view
1

n

Û∑
1≤j≤n

Pr[i-step Random Walk from j returns to j]



as the expected return probability of a random walk starting at j,
where j is chosen uniformly at random from {1, . . . ,n} and transi-
tions probabilities are given by matrix A. Thus, given access to A
as described in Section 2.1, the following algorithm can be used as
an unbiased estimator for the spectral moments:

ApproxSpectralMoment(A, ℓ, s ):

for i = 1 to s
pick j ∈ {1, . . . , n } uniformly at random
w = j

for k = 1 to ℓ do

Let w ′ be drawn from the distribution of the
w -th column of A

w = w ′

if w = j then Xi = 1 else Xi = 0
return 1

s ·
∑s
i=1 Xi

The following lemma follows directly from a Hoeffding bound
on the sum of independent 0/1 random variables.

Lemma 2.2. For parameters ϵ,δ ∈ (0, 1), fix an integer s ≥ 1
2ϵ

−2 ln(2/δ ).
Given access to the column distributions of a stochastic n × n matrix

A = QΛQ−1 with real eigenvalues 1 ≥ λn , . . . , ≥ λ1 ≥ −1, with prob-
ability at least 1 − δ , algorithm ApproxSpectralMoment(A, ℓ, s)

approximates the ℓ-th spectral moment of A to within an additive

error ϵ . Furthermore, the runtime is O(sℓ).

2.3 Approximating the spectrum from its
moments

Given accurate approximations of the first ℓ moments of a distri-
bution, how accurately can one recover the distribution? In the
case were the distribution in question is supported on a bounded
intervalÐin our case, supported on the range [−1, 1] as the eigen-
values of a stochastic matrix lie in this intervalÐthe distribution
can be recovered to Wasserstein distance (i.e. L1 distance between
the cumulative distribution functions) at most O(1/ℓ), plus a term
that depends linearly on the magnitude of the approximation errors
and exponentially on the number of moments, ℓ. This result follows
from the dual definition of Wasserstein distance, as the supremum
over Lipschitz-1 functions, f , of the discrepancy in the expected
value of f with respect to the two distribution, and the fact that
any Lipschitz-1 function can be approximated to L∞ error O(1/ℓ)
via a degree ℓ polynomial whose coefficients are bounded in magni-
tude by an exponential function of ℓ. The following fact, from [25],
summarizes this recoverability:

Proposition 2.3 (Theorem 3 in [25], see also Prop. 1 in [10]).

Given two distributions with respective density functions p,q sup-

ported on [−1, 1] whose first ℓ moments are α = (α1, . . . ,αℓ) and

β = (β1, . . . , βℓ), respectively, the Wasserstein distance, W1(p,q),

between p and q is bounded by:

W1(p,q) ≤
2π

ℓ
+ ·3ℓ

ℓ∑

i=1

|αi − βi |.

The above proposition holds in a worst-case senseÐthere are
certainly sets of moments that robustly determine the distribution
to higher accuracy. For example, if the first two moments happen to
be 0, then the distribution is fully determined (it is the point mass at

0), and no additional moments are necessary. For many of the real-
world networks we considered empirically, our recovery seems to
be significantly better than what the theory would suggestÐlikely
due to this sort of phenomena.

Proposition 2.3 asserts that every distribution whose first k mo-
ments closely match those of the spectral distribution will be a
close approximation (in the Wasserstein sense). Hence, algorithmi-
cally, one simply needs to find one such distribution. The following
classical linear programming approach recovers the distribution
(supported on a fine discrete mesh), whose moments match the
approximated moments as closely as possible.

MomentInverse:
Inputs: Vector α̂ consisting of the first ℓ approximate moments
for a distribution supported on the interval [a, b], and a param-
eter ϵ > 0.
Output: Distribution p.

(1) Define x= x0, . . . , xt with xi = a+iϵ and t = ⌈b−aϵ ⌉ .

(2) Let p+ = (p+0 , . . . , p
+

t ) be the solution to the follow-
ing linear program, which should be interpreted as a
distribution with mass p+i at location xi :

minimize
p

ℓ∑

i=1

�����α̂i −
t∑

j=0

pj · x
i
j

�����

subject to
t∑

j=0

pj = 1, and pj > 0 ∀j ∈ {0, 1, . . . , t }.

(1)

(3) Return the distribution corresponding to p+, namely
that assigns mass p+j to location x j .

Note that the constraints of the linear program in the MomentIn-
verse algorithmÐthat the entries of p sum to 1 and are non-negativeÐ
ensure that the vector corresponds to a distribution. The objective
function asserts that, among distributions supported on values in
x, the returned distribution minimizes sum of the discrepancies
between the estimated moment vector, and the moments of the
returned distribution.

2.4 Approximating the spectrum of A

We now assemble the above components to characterize the ability
to recover the spectral distribution of a stochastic matrix:

Theorem 2.4. Given access to the column distributions of a sto-

chasticn×nmatrixA = QΛQ−1 with real eigenvalues 1 ≥ λn , . . . , λ1 ≥

−1, with probability 1−δ we can approximate the spectrum ofA with

additive error ϵ in Wasserstein distance with running time and query

complexity eO (1/ϵ ) log(1/δ ).

Proof. Throughout, for clarity, we omit all constant factors and
use ‘big-O’ notation to indicate that we are suppressing an absolute
constant. We will first run Algorithm ApproxSpectralMoment to
recover approximations of the first ℓ = O(1/ϵ), and choose s >
exp(O(1/ϵ)) log(2ℓ/δ ) = exp(O(1/ϵ)) log(1/δ ) such that Lemma 2.2
guarantees that each of the first ℓ spectral moments are recovered
to error at most 1/exp(O(1/ϵ)), with failure probability at most
δ/ℓ each, and hence via a union bound, the total failure probability
across all ℓmoments is at most δ . Let α̂ denote these ℓ approximated



moments, and let α denote the true moments. Assume the constant
in the exp(O(1/ϵ)) term of s is chosen such that, with probability
at least 1 − δ ,

∑ℓ
i=1 |αi − α̂i | ≪ ϵ/3ℓ .

Given these moments, we now analyze the performance of Mo-
mentInverse given as input α̂ , the interval [−1, 1], and the discretiza-
tion parameter ϵ2 = 1/exp(O(1/ϵ)).Wemust argue that there exists
a good feasible point for the linear programÐnamely a distribu-
tion supported on x whose moment closely match α̂ . Given the
existence of such a distribution, it follows that the linear program
must return a distribution whose moments are atmost this distance
from α̂ , as the linear program returns the distribution of closes
moments. To prove the existence of such a point, consider the true
distribution pwhose moments are α , that has been discretized so as
to be supported at the ϵ2-spaced grid points specified by the vector
x. Note that this discretization can alter the ith moment by at most
1− (1− ϵ2)

i , and hence for an appropriately chosen constant in the
assignment of ϵ2 = 1/exp(O(1/ϵ)) and the fact that we care about
only the first ℓ = O(1/ϵ) moments, it follows that the sum of the
discrepancies due to rounding can be bounded by 1/exp(O(1/ϵ)).

Hence, MomentInverse will return a distribution p+ whose mo-
ments have discrepancy at most 1/exp(O(1/ϵ)) from the moments
of the true spectral distribution, and hence the distance between
the recovered distribution and p is bounded by Proposition 2.3
as 2π

O (1/ϵ ) + 3
O1/ϵ /exp(O(1/ϵ)). Picking the constant in the big-O

notation appropriately yields the theorem.
Finally, note that the computation time is bounded by the collec-

tion of the exp(O(1/ϵ)) log(1/δ ) random walks, and solving the lin-
ear program on exp(O(1/ϵ)) variables, which takes time polynomial
in the number of variables, and hence is bounded by exp(O(1/ϵ)),
as claimed. □

While the MomentInverse algorithm returns a distribution p̂

described via exp(O(1/ϵ)) numbers, we note that there is a simple
algorithm, computable in O(n exp(O(1/ϵ)) time, that will convert p̂
into a vector v of length n, with the property that the Wasserstein
distance between the spectral distribution p and the distribution
associated with v (consisting of n equally-weighted point masses
at the locations specified by v) is at most the distance between p

and p̂.

DiscretizeSpectrum(n, q):
Input: Distribution q consisting of a finite number of point
masses, integer n.
Output: Vector v = (v1, . . . , vn ).

(1) Let fq : [0, 1] → R be defined to be the non-decreasing
function with the property that for X drawn uniformly
at random from the interval [0, 1], the distribution of
fq (X ) is q.

(2) Set

vi = E

[
fq (X ) |X ∈ [

i − 1

n
,
i

n
]

]
,

and return v = (v1, . . . , vn ).

Lemma 2.5. Consider a distribution p that consists of n equally

weighted point masses. Let q be any distribution consisting of a finite

number of point masses, and let qv denote the distribution consisting

of n equally weighted point masses located at the values specified

by the vector v returned by running Algorithm DiscretizeSpectrum

on inputs n and q. Then the Wasserstein distance between p and qv
satisfies

W1(p,qv ) ≤W1(p,q).

Proof. Let p1, . . . ,pn with pi ≤ pi+1 denote the support of
distribution p. Observe that the earth moving scheme of minimal
cost that yields distribution p from distribution q consists of moving
the 1/n probability mass in distribution q corresponding to the
(scaled) conditional distribution fq (X ) conditioned on X ∈ [ i−1n ,

i
n ]

to location pi . Let qi denote the ith such conditional distribution.
Since,W1(p,qv ) =

1
n

∑n
i=1 |pi −vi |, it suffices to analyze |pi −vi |

independently for each i . To conclude, note that the contribution
of qi to the Wasserstein distance is simply 1

n

∑
x ∈supp(qi ) |x − pi | ·

qi (x) ≥
1
n

���pi −
∑
x ∈supp(qi ) x · qi (x)

��� = 1
n |pi − vi |, where for x ∈

supp(qi ), we use the shorthand qi (x) to denote the amount of mass
that distribution qi places on value x . □

3 APPROXIMATING THE SPECTRUM OF
GRAPH LAPLACIANS

In this section we describe how to leverage the results of Section 2.4,
namely how to accurately approximate the spectrum of a stochastic
matrix, to recover the spectrum of a graph Laplacian, establishing
Theorem 1.1. LetG = (V ,E),V = {1, . . . ,n} be an undirected graph
and let A be its adjacency matrix. We assume that we have access
to data structure that, given an a vertex v , can return a uniformly
distributed neighbor of v .

Definition 3.1. The normalized Laplacian of a graph G with adja-
cency matrix A is defined as LG = I − D−1/2AD−1/2, where D is a
diagonal matrix whose entries are the vertex degrees.

Proof of Theorem 1.1. LetM = AD−1 be the transition matrix
of a random walk on G, i.e. Mi, j =

1
deg(j) whenever there is an

edge between vertex i and j and where deg(j) denotes the degree
of vertex j. Note that M = D1/2(I − LG )D

−1/2 and so M is similar
to the real valued symmetric matrix I − LG . Thus,M is a stochastic
matrix that can be written asQΛQ−1 and the i-th largest eigenvalue
λi of LG corresponds to an i-th smallest eigenvalue 1 − λi ofM (in
particular, the eigenvalues are real).

Hence an approximation λ̂ = λ̂1, . . . , λ̂n of the spectrum of M

with error ϵ can be mapped to an approximation λ̂G = ˆλG1 , . . . ,
ˆλGn

of the spectrum of LG that has error ϵ by setting ˆλGi = 1 − λ̂i ,
yielding Theorem 1.1. □

4 AN IMPROVED ALGORITHM FOR
BOUNDED DEGREE PLANAR GRAPHS

In this section we describe an improved algorithm for bounded
degree planar graphs and, more generally, minor-closed bounded-
degree graphs, establishing Theorem 1.2. We need two main tools
to obtain this result. The first one is a lemma that shows that the
Wasserstein distance between the spectra of graphs is at most twice
the graph edit distance.

Lemma 4.1. Let G = (V ,E) and H = (V ,E ′) be two graphs. Then

|V | ·W1(λ, λ
′) ≤ 2G∆H ,



where G∆H denotes the number of edges that need to be changed

to transform G into an isomorphic copy of H and λ and λ′ are the

spectra of G and H , respectively.

Proof. We first recall the variational characterization of eigen-
values for a symmetric n × n matrix Q :

λk (Q) = min{λ |∃k − subspace F ⊂ Rn s.t. ∀x ∈ F xtQx ≤ λxtx}

LetU ⊂ RV be the subspace of functions that vanish on the vertices
incident to at least an edge that is in one of the graphs G and H

only. By assumption, the codimension ofU is at mostG∆H . Now,
it is easy to see that the (normalized) Laplacian quadratic forms
LG and LH coincide onU . For 0 ≤ λ ≤ 2, let fG (λ) (resp. fH (λ)) be
the fraction of eigenvalues of G (resp. H ) that are below λ. From
the variational principle, for a given λ, there is a fG (λ)|V |-subspace
W ⊂ RV such that ∀x ∈W xtLGx ≤ λxtx . The subspaceW ∩U is
at least fG (λ)|V | −G∆H dimensional and because the two quadratic
forms coincide on it, it witnesses that fH (λ)|V | ≥ fG (λ)|V | −G∆H

using the variational principle. By symmetry, | fG − fH | ≤ G∆H/|V |.
Since fG and fH coincide outside [0, 2], we see that

∫
| fG− fH | ≤

2G∆H/|V |. The latter integral is the area between the graphs of
fH and fG . Now, switching axes, these graphs become the graphs
of the inverse cumulative distribution functions of the spectral
measures of G and H . Since the Wasserstein distance is the L1
distance between (inverse) cumulative distribution functions, the
result follows. □

The second tool is an algorithmic gadget called a łplanar parti-
tioning oraclež. It is well known that by applying the planar sepa-
rator theorem [20] multiple times one can partition a planar graph
with maximum degreed into connected components of sizeO(d/ϵ2)
by removing ϵn edges from the graph. A planar partitioning oracle
provides local access to such a partition.

Definition 4.2 ([8] ). We say that O is an (ϵ,k)-partitioning oracle
for a class C of graphs if given query access to a graph G = (V ,E)

in the adjacency-list model, it provides query access to a partition
P of V . For a query about v ∈ V , O returns P[v]. The partition has
the following properties:

• P is a function of the graph and random bits of the oracle. In
particular, it does not depend on the order of queries to O.

• For every v ∈ V , |P[v]| ≤ k and P[v] induces a connected
graph in G.

• If G belongs to C , then |{(v,w) ∈ E : P[v] , P[w]}| ≤

epsilon |V | with probability 9/10.

We will leverage a partitioning oracle by Levi and Ron:

Theorem 4.3 ([18]). For any fixed graphH there exists an (ϵ,O(d2/ϵ2))-

partition-oracle for H -minor free graphs that makes (d/ϵ)O (loд(1/ϵ ))

queries to the graph for each query to the oracle. The total time com-

plexity of a sequence ofq queries to the oracle isq logq·(d/ϵ)O (log(1/ϵ )).

The partitioning oracle provides us access to a partition of a
minor-closed graph G = (V ,E) into small connected components.
This partition is obtained by removing at most ϵn edges. Let us call
the graph that consists of these connected componentsH (V ,E ′). By
our first lemma the spectra of G and H have Wasserstein distance
at most ϵ . This means that if we can approximate the spectrum of a
graph with small connected components, then we can also estimate

the spectrum of a minor-closed bounded degree graph using the
partitioning oracle from above.

We now provide a simple algorithm that samples eigenvalues
from the spectrum of a graph with small connected components.

SmallCCSpectrum(H = (V , E)):
Input: Graph H = (V , E) with small connected components.
Output: A random eigenvalue of the normalized Laplacian of
H .

(1) Sample a vertex v ∈ V uniformly at random

(2) Compute the connected component C(v) of v

(3) Return a random eigenvalue of the normalized Lapla-
cian of C(v)

Lemma 4.4. Algorithm SmallCCSpectrum samples a random eigen-

value from H . If all connected components are of size at most t then

the running time of the algorithm is O(t3).

Proof. First we observe that the spectrum of H is the union of
the spectrum of its connected components. Indeed, given an eigen-
value with corresponding eigenvector of a connected component
C(v) of H we observe that extending the eigenvector with 0 will
yield an eigenvector of H with the same eigenvalue.

Next we observe that the algorithm returns a uniformly dis-
tributed eigenvalue of H . Let us fix an eigenvalue λi belonging to
connected component C . The probability to sample λi is the proba-
bility to sample a vertex from the connected component (which is
|V (C)|/|V |) times the probability that λi is sampled from the |V (C)|

eigenvalues of the connected component, which is 1/|V (C)|. Hence
the probability to sample λi is 1/|V |. □

Theorem 1.2. Let G be a family of graphs of maximum degree at

most d that does not contain a forbidden minor H . Then one can

approximate the spectrum of G in Wasserstein distance up to an

additive error of ϵ in time
(
d
ϵ

)O (log(1/ϵ ))
.

Proof. The approximation guarantee follows from the relation
between edit distance and Wasserstein distance and when we esti-
mate the spectrum using polynomially (in 1/ϵ) many calls to algo-
rithm SmallCCSpectrum. The running time then follows from the
running time of the planar partitioning oracle (where the additional
factors in 1/ϵ are absorbed by theO-notation in the exponent). □

5 EXPERIMENTS

In this section we demonstrate the practical viability of our spec-
trum estimation approach on both real-world and synthetically
generated graph. As our approach is the first proposed algorithm
for estimating the spectrum that runs in time sublinear in the size of
the graph (and actually runs in time independent of the size of the
graph), there is no natural performance comparison to run. Instead,
we first demonstrate that the performance in practice scales as a
function of the number of randomwalk used to estimate the spectral
moments, and not as a function of the graph size. We then investi-
gate the spectra of 15 undirected network datasets that are publicly
available on the Stanford Large Network Dataset Collection [17].





About half of the real-world spectra are close to being anti-
symmetric about the middle eigenvalue (particularly the road net-
works and the social networksÐbut not the collaboration networks
which all exhibit a downward curvature at the middle eigenvalue
rather than an inflexion point). This symmetry implies that the
odd-moments of the corresponding stochastic matrix are very close
to near to zero; namely that odd-length random walks tend to not
return to their origin. In the case of the road networks, this makes
sense as the networks are essentially locally bi-partite. [The road
networks have large grid-like portions.] For other highly symmetric
spectra, such as the LiveJournal, Google+, and Orkut, it is likely
that almost all of the walks that do return to their origin, do so
because they retrace their steps (and hence require an even length
path to return), implying that much of the graph behaves locally
like a tree or expander.

In contrast to the anti-symmetric spectra of some of the social
networks, the collaboration networks have significant downward
curvature about the middle eigenvalue. This implies that the net-
works have significant low-order odd moments (i.e. short random
walks of odd length do return to their origin). This implies that
there are likely to be many low degree nodes involved in small
dense clusters, which give rise to significant return probabilities of
length 3 or 5 walks returning. (This, of course, makes perfect sense
for collaboration networks.)

One final point about the collaboration networks is that they all
have rather similar spectra, despite the DBLP network having a fac-
tor of 15 more nodes and edges than some of the other collaboration
graphs. This nicely illustrates the phenomena that certain classes
of graph have spectra that approach a limiting shape, independent
of their size.

The spectra of the social networks appear more diverse. One
notable featureÐparticularly of the Google+, Orkut, and YouTube
graphs is the significant number of eigenvalues that are extremely
close to 1. These eigenvalues correspond to eigenvectors near the
kernel of the adjacency matrix, and hence indicate that these ad-
jacency matrices are close to being significantly rank deficient. In
contrast, Facebook, Twitter, and LiveJournal do not have the abun-
dance of eigenvalues very near 1, perhaps suggesting that the nodes
tend to be more unique (i.e. everyone has some friends that are not
expected).

The spectrum of the Youtube graph is the most curious, and
seems to be consistent with the presence of two types of nodes:
those for whom random walks return as if they were part of a
regular grid, and nodes who contribute to the ≈ |V |/2 eigenvalues
equal to 1 for whom random walks almost never return to their
origin.
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Figure 2: Plots of the results of running our spectrum estimation algorithm on 15 graphs that are publicly available from the Stanford Large

Network Dataset Collection. Each plot depicts the sorted vector of eigenvalues (in decreasing order) of the scaled Laplacian of the graph.

Viewing the x-axis of each plot as ranging from 0 to 1, for the plot corresponding to a graph G = (V , E), a point at location (x, y) corresponds

to saying that the (x · |V |)th largest eigenvalue is y . For the graphs with < 50k nodes, the true spectrum (red) is superimposed on the estimated

spectrum (blue). All experiments were run in Matlab on a MacBook Pro laptop, and the estimated spectra required less than 5 minutes of

computation time per graph. Matlab code is publicly available from our websites.
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