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ABSTRACT

We consider the problem of predicting the next observation given
a sequence of past observations, and consider the extent to which
accurate prediction requires complex algorithms that explicitly
leverage long-range dependencies. Perhaps surprisingly, our pos-
itive results show that for a broad class of sequences, there is an
algorithm that predicts well on average, and bases its predictions
only on the most recent few observation together with a set of
simple summary statistics of the past observations. Specifically,
we show that for any distribution over observations, if the mutual
information between past observations and future observations is
upper bounded by I, then a simple Markov model over the most
recent I /e observations obtains expected KL error e—and hence ¢;
error \e—with respect to the optimal predictor that has access to
the entire past and knows the data generating distribution. For a
Hidden Markov Model with n hidden states, I is bounded by log n, a
quantity that does not depend on the mixing time, and we show that
the trivial prediction algorithm based on the empirical frequencies
of length O(log n/e) windows of observations achieves this error,
provided the length of the sequence is dogn/e€) \where d is the
size of the observation alphabet.

We also establish that this result cannot be improved upon, even
for the class of HMMs, in the following two senses: First, for HMMs
with n hidden states, a window length of log n/e is information-
theoretically necessary to achieve expected KL error €, or {1 error
Ve. Second, the d®1°8n/€) samples required to accurately esti-
mate the Markov model when observations are drawn from an
alphabet of size d is necessary for any computationally tractable
learning/prediction algorithm, assuming the hardness of strongly
refuting a certain class of CSPs.
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1 MEMORY, MODELING, AND PREDICTION

We consider the problem of predicting the next observation x; given
a sequence of past observations, x1,x2,. . .,x;—1, which could have
complex and long-range dependencies. This sequential prediction
problem is one of the most basic learning tasks and is encountered
throughout natural language modeling, speech synthesis, financial
forecasting, and a number of other domains that have a sequential
or chronological element. The abstract problem has received much
attention over the last half century from multiple communities
including TCS, machine learning, and coding theory. The funda-
mental question is: How do we consolidate and reference memories
about the past in order to effectively predict the future?

Given the immense practical importance of this prediction prob-
lem, there has been an enormous effort to explore different algo-
rithms for storing and referencing information about the sequence,
which have led to the development of several popular models such
as n-gram models and Hidden Markov Models (HMMs). Recently,
there has been significant interest in recurrent neural networks
(RNNSs) [1]—which encode the past as a real vector of fixed length
that is updated after every observation—and specific classes of such
networks, such as Long Short-Term Memory (LSTM) networks
[2, 3]. Other recently popular models that have explicit notions of
memory include neural Turing machines [4], memory networks [5],
differentiable neural computers [6], attention-based models [7, 8],
etc. These models have been quite successful (see e.g. [9, 10]); never-
theless, consistently learning long-range dependencies, in settings
such as natural language, remains an extremely active area of re-
search.

In parallel to these efforts to design systems that explicitly use
memory, there has been much effort from the neuroscience com-
munity to understand how humans and animals are able to make
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accurate predictions about their environment. Many of these ef-
forts also attempt to understand the computational mechanisms
behind the formation of memories (memory “consolidation”) and
retrieval [11-13].

Despite the long history of studying sequential prediction, many

fundamental questions remain:
e How much memory is necessary to accurately predict fu-

ture observations, and what properties of the underlying
sequence determine this requirement?

Must one remember significant information about the distant
past or is a short-term memory sufficient?

What is the computational complexity of accurate predic-
tion?

How do answers to the above questions depend on the metric
that is used to evaluate prediction accuracy?

Aside from the intrinsic theoretical value of these questions, their
answers could serve to guide the construction of effective practi-
cal prediction systems, as well as informing the discussion of the
computational machinery of cognition and prediction/learning in
nature.

In this work, we provide insights into the first three questions.
We begin by establishing the following proposition, which addresses
the first two questions with respect to the pervasively used metric
of average prediction error:

PROPOSITION 1. Let M be any distribution over sequences with mu-
tual information I(M) between the past observations . ..,X;—2,Xt—1
and future observations X;,Xt41,. ... The best {-th order Markov
model, which makes predictions based only on the most recent {
observations, predicts the distribution of the next observation with
average KL error I(M)/¢ or average €1 error \/I(M)/€, with respect
to the actual conditional distribution of x; given all past observations.

The “best” £-th order Markov model is the model which predicts
x¢ based on the previous ¢ observations, x;_¢,. . ., x;—1, according
to the conditional distribution of x; given x;_g¢,. .., x;—1 under the
data generating distribution. If the output alphabet is of size d,
then this conditional distribution can be estimated with small error
given O(d‘*') sequences drawn from the distribution. Without
any additional assumptions on the data generating distribution
beyond the bound on the mutual information, it is necessary to
observe multiple sequences to make good predictions. This is be-
cause the distribution could be highly non-stationary, and have
different behaviors at different times, while still having small mu-
tual information. In some settings, such as the case where the data
generating distribution corresponds to observations from an HMM,
we will be able to accurately learn this “best” Markov model from
a single sequence (see Theorem 1).

The intuition behind the statement and proof of this general
proposition is the following: at time ¢, we either predict accurately
and are unsurprised when x; is revealed to us; or, if we predict
poorly and are surprised by the value of x;, then x; must contain a
significant amount of information about the history of the sequence,
which can then be leveraged in our subsequent predictions of x;+1,
Xt+2, etc. In this sense, every timestep in which our prediction is
‘bad’, we learn some information about the past. Because the mutual
information between the history of the sequence and the future
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is bounded by I(M), if we were to make I(M) consecutive bad
predictions, we have captured nearly this amount of information
about the history, and hence going forward, as long as the window
we are using spans these observations, we should expect to predict
well.

This general proposition, framed in terms of the mutual informa-
tion of the past and future, has immediate implications for a number
of well-studied models of sequential data, such as Hidden Markov
Models (HMMs). For an HMM with n hidden states, the mutual
information of the generated sequence is trivially bounded by log n,
which yields the following corollary to the above proposition. We
state this proposition now, as it provides a helpful reference point
in our discussion of the more general proposition.

COROLLARY 1. Suppose observations are generated by a Hidden
Markov Model with at most n hidden states. The best 105" -th order
Markov model, which makes predictions based only on the most recent
logn

observations, predicts the distribution of the next observation
with average KL error < € or {1 error < +/e, with respect to the
optimal predictor that knows the underlying HMM and has access to
all past observations.

In the setting where the observations are generated according to
an HMM with at most n hidden states, this “best” ¢-th order Markov
model is easy to learn given a single sufficiently long sequence
drawn from the HMM, and corresponds to the naive “empirical”
{-th order Markov model (i.e. (£ + 1)-gram model) based on the
previous observations. Specifically, this is the model that, given
X¢—,Xt—f+1,- - - »Xt—1,0utputs the observed (empirical) distribution
of the observation that has followed this length ¢ sequence. (To
predict what comes next in the phrase ... defer the details to the

” we look at the previous occurrences of this subsequence, and
predict according to the empirical frequency of the subsequent
word.) The following theorem makes this claim precise.

THEOREM 1. Suppose observations are generated by a Hidden
Markov Model with at most n hidden states, and output alphabet of
sized. For e > 1/1og®% n there exists a window length £ = O(k’#)
and absolute constant ¢ such that for any T > dcg, ift e{1,2,...,T}
is chosen uniformly at random, then the expected {1 distance between
the true distribution of x; given the entire history (and knowledge
of the HMM), and the distribution predicted by the naive “empirical”
¢-th order Markov model based on xq, . . . ,x;—1, is bounded by +/e.!

The above theorem states that the window length necessary
to predict well is independent of the mixing time of the HMM
in question, and holds even if the model does not mix. While the
amount of data required to make accurate predictions using length £
windows scales exponentially in {—corresponding to the condition
in the above theorem that ¢ is chosen uniformly between 0 and
T = d°) —our lower bounds, discussed in Section 1.3, argue that
this exponential dependency is unavoidable.

!Theorem 1 does not have a guarantee on the average KL loss, such a guarantee is not
possible as the KL loss as it can be unbounded, for example if there are rare characters
which have not been observed so far.
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1.1 Interpretation of Mutual Information of
Past and Future

While the mutual information between the past observations and
the future observations is an intuitive parameterization of the com-
plexity of a distribution over sequences, the fact that it is the right
quantity is a bit subtle. It is tempting to hope that this mutual
information is a bound on the amount of memory that would be
required to store all the information about past observations that
is relevant to the distribution of future observations. This is not
the case. Consider the following setting: Given a joint distribution
over random variables Xpast and Xy rure, Suppose we wish to define
a function f that maps Xpast to a binary “advice”/memory string
f(Xpast), possibly of variable length, such that Xp,yre is indepen-
dent of Xpast, given f(Xpast). As is shown in Harsha et al. [14],
there are joint distributions over (Xpast, Xfuture) Such that even on
average, the minimum length of the advice/memory string neces-
sary for the above task is exponential in the mutual information
I(Xpast; Xfuture)- This setting can also be interpreted as a two-player
communication game where one player generates Xpast and the
other generates Xf,yre given limited communication (i.e. the ability
to communicate f (Xpast)).2

Given the fact that this mutual information is not even an up-
per bound on the amount of memory that an optimal algorithm
(computationally unbounded, and with complete knowledge of the
distribution) would require, Proposition 1 might be surprising.

1.2 Implications of Proposition 1 and
Corollary 1

These results show that a Markov model—a model that cannot cap-
ture long-range dependencies or structure of the data—can predict
accurately on any data-generating distribution (even those corre-
sponding to complex models such as RNNs), provided the order of
the Markov model scales with the complexity of the distribution,
as parameterized by the mutual information between the past and
future. Strikingly, this parameterization is indifferent to whether
the dependencies in the sequence are relatively short-range as in
an HMM that mixes quickly, or very long-range as in an HMM
that mixes slowly or does not mix at all. Independent of the nature
of these dependencies, provided the mutual information is small,
accurate prediction is possible based only on the most recent few
observation. (See Figure 1 for a concrete illustration of this result
in the setting of an HMM that does not mix and has long-range
dependencies.)

At a time when increasingly complex models such as recurrent
neural networks and neural Turing machines are in vogue, these
results serve as a baseline theoretical result. They also help explain
the practical success of simple Markov models such as Kneser-Ney
smoothing [15, 16] for machine translation and speech recognition
systems in the past. Although recent recurrent neural networks
have yielded empirical gains (see e.g. [9, 10]), current models still

21t is worth noting that if the advice/memory string s is sampled first, and then Xpast
and Xfytyre are defined to be random functions of s, then the length of s can be related
to I(Xpast; Xfuture) (see [14]). This latter setting where s is generated first corresponds
to allowing shared randomness in the two-player communication game; however, this
is not relevant to the sequential prediction problem.
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Figure 1: A depiction of a HMM on n states, that repeats a given
length n binary sequence of outputs, and hence does not mix. Corol-
lary 1 and Theorem 1 imply that accurate prediction is possible
based only on short sequences of O(log n) observations.

lack the ability to consistently capture long-range dependencies.’ In
some settings, such as natural language, capturing such long-range
dependencies seems crucial for achieving human-level results. In-
deed, the main message of a narrative is not conveyed in any single
short segment. More generally, higher-level intelligence seems to
be about the ability to judiciously decide what aspects of the obser-
vation sequence are worth remembering and updating a model of
the world based on these aspects.

Thus, for such settings, Proposition 1, can actually be interpreted
as a kind of negative result—that average error is not a good met-
ric for training and evaluating models, since models such as the
Markov model which are indifferent to the time scale of the depen-
dencies can still perform well under it as long as the number of
dependencies is not too large. It is important to note that average
prediction error is the metric that ubiquitously used in practice,
both in the natural language processing domain and elsewhere. Our
results suggest that a different metric might be essential to driving
progress towards systems that attempt to capture long-range de-
pendencies and leverage memory in meaningful ways. We discuss
this possibility of alternate prediction metrics more in Section 1.4.

For many other settings, such as financial prediction and lower
level language prediction tasks such as those used in OCR, average
prediction error is actually a meaningful metric. For these settings,
the result of Proposition 1 is extremely positive: no matter the
nature of the dependencies in the financial markets, it is sufficient
to learn a Markov model. As one obtains more and more data, one
can learn a higher and higher order Markov model, and average
prediction accuracy should continue to improve.

For these applications, the question now becomes a computa-
tional question: the naive approach to learning an ¢-th order Markov
model in a domain with an alphabet of size d might require Q(d?)
space to store, and data to learn. From a computational standpoint,
is there a better algorithm? What properties of the underlying se-
quence imply that such models can be learned, or approximated more
efficiently or with less data?

30ne amusing example is the recent sci-fi short film Sunspring whose script was
automatically generated by an LSTM. Locally, each sentence of the dialogue (mostly)
makes sense, though there is no cohesion over longer time frames, and no overarching
plot trajectory (despite the brilliant acting).
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Our computational lower bounds, described below, provide some
perspective on these computational considerations.

1.3 Lower bounds

Our positive results show that accurate prediction is possible via an
algorithmically simple model—a Markov model that only depends
on the most recent observations—which can be learned in an algo-
rithmically straightforward fashion by simply using the empirical
statistics of short sequences of examples, compiled over a sufficient
amount of data. Nevertheless, the Markov model has dt parameters,
and hence requires an amount of data that scales as Q(d?) to learn,
where d is a bound on the size of the observation alphabet. This
prompts the question of whether it is possible to learn a successful
predictor based on significantly less data.

We show that, even for the special case where the data sequence
is generated from an HMM over n hidden states, this is not possible
in general, assuming a natural complexity-theoretic assumption.
An HMM with n hidden states and an output alphabet of size d is
defined via only O(n? + nd) parameters and O, (n? + nd) samples
are sufficient, from an information theoretic standpoint, to learn a
model that will predict accurately. While learning an HMM is com-
putationally hard (see e.g. [17]), this begs the question of whether
accurate (average) prediction can be achieved via a computationally
efficient algorithm and and an amount of data significantly less
than the d®(1°8™) that the naive Markov model would require.

Our main lower bound shows that there exists a family of HMMs
such that the d20°87/€) sample complexity requirement is nec-
essary for any computationally efficient algorithm that predicts
accurately on average, assuming a natural complexity-theoretic as-
sumption. Specifically, we show that this hardness holds, provided
that the problem of strongly refuting a certain class of CSPs is hard,
which was conjectured in Feldman et al. [18] and studied in related
works Allen et al. [19] and Kothari et al. [20]. See Section 5 for a
description of this class and discussion of the conjectured hardness.

THEOREM 2. Assuming the hardness of strongly refuting a certain
class of CSPs, for all sufficiently large n and any € € (1/n°,0.1) for
some fixed constant c, there exists a family of HMMs with n hidden
states and an output alphabet of size d such that any algorithm that
runs in time polynomial in d, namely time f(n,€) - 49€) for any
functions f,g, and achieves average KL or {1 error € (with respect to
the optimal predictor) for a random HMM in the family must observe
dQUogn/€) ohservations from the HMM.

As the mutual information of the generated sequence of an HMM
with n hidden states is bounded by log n, Theorem 2 directly implies
that there are families of data-generating distributions M with
mutual information I(M) and observations drawn from an alphabet
of size d such that any computationally efficient algorithm requires
dUIM)/€) samples from M to achieve average error €. The above
bound holds when d is large compared to logn or I(M), but a
different but equally relevant regime is where the alphabet size d is
small compared to the scale of dependencies in the sequence (for
example, when predicting characters [21]). We show lower bounds
in this regime of the same flavor as those of Theorem 2 except
based on the problem of learning a noisy parity function; the (very
slightly) subexponential algorithm of Blum et al. [22] for this task
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means that we lose at least a superconstant factor in the exponent
in comparison to the positive results of Proposition 1.

ProposITION 2. Let f (k) denote a lower bound on the amount of
time and samples required to learn parity with noise on uniformly
random k-bit inputs. For all sufficiently large n and € € (1/n°,0.1)
for some fixed constant c, there exists a family of HMMs with n hidden
states such that any algorithm that achieves average prediction error
€ (with respect to the optimal predictor) for a random HMM in the
family requires at least f (Q(logn/€)) time or samples.

Finally, we also establish the information theoretic optimality of
the results of Proposition 1, in the sense that among (even com-
putationally unbounded) prediction algorithms that predict based
only on the most recent £ observations, an average KL prediction
error of Q(I(M)/€) and ¢1 error Q(+/I(M)/€) with respect to the

optimal predictor, is necessary.

PRrRoPOSITION 3. There is an absolute constant ¢ < 1 such that for
all 0 < € < 1/4 and sufficiently large n, there exists an HMM with
n hidden states such that it is not information-theoretically possible
to obtain average KL prediction error less than € or {1 error less than
V€ (with respect to the optimal predictor) while using only the most
recent c log n/e observations to make each prediction.

1.4 Future Directions

As mentioned above, for the settings in which capturing long-range
dependencies seems essential, it is worth re-examining the choice of
“average prediction error” as the metric used to train and evaluate
models. One possibility, that has a more worst-case flavor, is to
only evaluate the algorithm at a chosen set of time steps instead
of all time steps. Hence the naive Markov model can no longer do
well just by predicting well on the time steps when prediction is
easy. In the context of natural language processing, learning with
respect to such a metric intuitively corresponds to training a model
to do well with respect to, say, a question answering task instead
of a language modeling task. A fertile middle ground between
average error (which gives too much reward for correctly guessing
common words like “a” and “the”), and worst-case error might
be a re-weighted prediction error that provides more reward for
correctly guessing less common observations. It seems possible,
however, that the techniques used to prove Proposition 1 can be
extended to yield analogous statements for such error metrics.

In cases where average error is appropriate, given the upper
bounds of Proposition 1, it is natural to consider what additional
structure might be present that avoids the (conditional) computa-
tional lower bounds of Theorem 2. One possibility is a robustness
property—for example the property that a Markov model would
continue to predict well even when each observation were obscured
or corrupted with some small probability. The lower bound instance
rely on parity based constructions and hence are very sensitive to
noise and corruptions. For learning over product distributions, there
are well known connections between noise stability and approxima-
tion by low-degree polynomials [23, 24]. Additionally, low-degree
polynomials can be learned agnostically over arbitrary distribu-
tions via polynomial regression [25]. It is tempting to hope that this
thread could be made rigorous, by establishing a connection be-
tween natural notions of noise stability over arbitrary distributions,
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and accurate low-degree polynomial approximations. Such a con-
nection could lead to significantly better sample complexity require-
ments for prediction on such “robust” distributions of sequences,
perhaps requiring only poly(d,I(M),1/€) data. Additionally, such
sample-efficient approaches to learning succinct representations
of large Markov models may inform the many practical prediction
systems that currently rely on Markov models.

1.5 Related Work

Parameter Estimation. It is interesting to compare using a Markov
model for prediction with methods that attempt to properly learn an
underlying model. For example, method of moments algorithms [26,
27] allow one to estimate a certain class of Hidden Markov model
with polynomial sample and computational complexity. These ideas
have been extended to learning neural networks [28] and input-
output RNNs [29]. Using different methods, Arora et al. [30] showed
how to learn certain random deep neural networks. Learning the
model directly can result in better sample efficiency, and also pro-
vide insights into the structure of the data. The major drawback
of these approaches is that they usually require the true data-
generating distribution to be in (or extremely close to) the model
family that we are learning. This is a very strong assumption that
often does not hold in practice.

Universal Prediction and Information Theory. On the other
end of the spectrum is the class of no-regret online learning meth-
ods which assume that the data generating distribution can even be
adversarial [31]. However, the nature of these results are fundamen-
tally different from ours: whereas we are comparing to the perfect
model that can look at the infinite past, online learning methods
typically compare to a fixed set of experts, which is much weaker.
We note that information theoretic tools have also been employed
in the online learning literature to show near-optimality of Thomp-
son sampling with respect to a fixed set of experts in the context of
online learning with prior information [32], Proposition 1 can be
thought of as an analogous statement about the strong performance
of Markov models with respect to the optimal predictions in the
context of sequential prediction.

There is much work on sequential prediction based on KL-error
from the information theory and statistics communities. The phi-
losophy of these approaches are often more adversarial, with per-
spectives ranging from minimum description length [33, 34] and
individual sequence settings [35], where no model of the data distri-
bution process is assumed. Regarding worst case guarantees (where
there is no data generation process), and regret as the notion of
optimality, there is a line of work on both minimax rates and the per-
formance of Bayesian algorithms, the latter of which has favorable
guarantees in a sequential setting. Regarding minimax rates, [36]
provides an exact characterization of the minimax strategy, though
the applicability of this approach is often limited to settings where
the number strategies available to the learner is relatively small (i.e.,
the normalizing constant in [36] must exist). More generally, there
has been considerable work on the regret in information-theoretic
and statistical settings, such as the works in [35, 37-43].

Regarding log-loss more broadly, there is considerable work on
information consistency (convergence in distribution) and minimax
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rates with regards to statistical estimation in parametric and non-
parametric families [44-49]. In some of these settings, e.g. minimax
risk in parametric, i.i.d. settings, there are characterizations of the
regret in terms of mutual information [45].

There is also work on universal lossless data compression algo-
rithm, such as the celebrated Lempel-Ziv algorithm [50]. Here, the
setting is rather different as it is one of coding the entire sequence
(in a block setting) rather than prediction loss.

Sequential Prediction in Practice. Our work was initiated by
the desire to understand the role of memory in sequential prediction,
and the belief that modeling long-range dependencies is important
for complex tasks such as understanding natural language. There
have been many proposed models with explicit notions of memory,
including recurrent neural networks [51], Long Short-Term Mem-
ory (LSTM) networks[2, 3], attention-based models [7, 8], neural
Turing machines [4], memory networks [5], differentiable neural
computers [6], etc. While some of these models often fail to capture
long range dependencies (for example, in the case of LSTMs, it is
not difficult to show that they forget the past exponentially quickly
if they are “stable” [1]), the empirical performance in some settings
is quite promising (see, e.g. [9, 10]).

2 PROOF SKETCH OF THEOREM 1

We provide a sketch of the proof of Theorem 1, which gives stronger
guarantees than Proposition 1 but only applies to sequences gener-
ated from an HMM. The core of this proof is the following lemma
that guarantees that the Markov model that knows the true mar-
ginal probabilities of all short sequences, will end up predicting
well. Additionally, the bound on the expected prediction error will
hold in expectation over only the randomness of the HMM during
the short window, and with high probability over the randomness
of when the window begins (our more general results hold in ex-
pectation over the randomness of when the window begins). For
settings such as financial forecasting, this additional guarantee is
particularly pertinent; you do not need to worry about the possibil-
ity of choosing an “unlucky” time to begin your trading regime, as
long as you plan to trade for a duration that spans an entire short
window. Beyond the extra strength of this result for HMMs, the
proof approach is intuitive and pleasing, in comparison to the more
direct information-theoretic proof of Proposition 1. We first state
the lemma and sketch its proof, and then conclude the section by
describing how this yields Theorem 1.

LEMMA 4. Consider an HMM with n hidden states, let the hidden
state at time s = 0 be chosen according to an arbitrary distribution
7, and denote the observation at time s by xs. Let OPT; denote the
conditional distribution of xs given observations xy, . ..,Xs—1, and
knowledge of the hidden state at time s = 0. Let My denote the condi-
tional distribution of xs given only xo,. . . ,xs—1, which corresponds
to the naive s-th order Markov model that knows only the joint prob-
abilities of sequences of the first s observations. Then with probability
at least 1 — 1/n°~1 over the choice of initial state, for £ = clogn/e?,
c>1lande > 1/log"®n,

-1
E[ > I0PT, — Ml | < 4et.
s=0
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where the expectation is with respect to the randomness in the outputs
X059 Xp—1-

The proof of the this lemma will hinge on establishing a con-
nection between OPT;—the Bayes optimal model that knows the
HMM and the initial hidden state hg, and at time s predicts the
true distribution of xs given hg,xo,. . .,xs—1—and the naive order s
Markov model M; that knows the joint probabilities of sequences
of s observations (given that the initial state is drawn according
to ), and predicts accordingly. This latter model is precisely the
same as the model that knows the HMM and distribution = (but
not hy), and outputs the conditional distribution of xs given the
observations.

To relate these two models, we proceed via a martingale ar-
gument that leverages the intuition that, at each time step either
OPT; ~ Mg, or, if they differ significantly, we expect the sth obser-
vation x to contain a significant amount of information about the
hidden state at time zero, hg, which will then improve Ms1. Our
submartingale will precisely capture the sense that for any s where
there is a significant deviation between OPTs and M, we expect the
probability of the initial state being hy conditioned on xo,. . .,xs,
to be significantly more than the probability of hy conditioned on
X005 -9 Xs—1-

More formally, let Hj denote the distribution of the hidden state
at time 0 conditioned on xy,. . .,xs and let hy denote the true hid-
den state at time 0. Let H; (ho) be the probability of ho under the
distribution Hj. We show that the following expression is a sub-

martingale:
1 S
2
log( )—E;nopn—mnl.

The fact that this is a submartingale is not difficult: Define Ry as
the conditional distribution of x; given observations xg,- -+ ,x5-1
and initial state drawn according to 7 but not being at hidden state
hg at time 0. Note that My is a convex combination of OPTs and Rj,
hence ||OPTs — Msll; < ||OPTs — Rg||;. To verify the submartin-
gale property, note that by Bayes Rule, the change in the LHS at any
time step s is the log of the ratio of the probability of observing the
output x; according to the distribution OPT; and the probability of
xs according to the distribution Rg. The expectation of this is the
KL-divergence between OPT; and R, which can be related to the
{1 error using Pinsker’s inequality.

At a high level, the proof will then proceed via concentration
bounds (Azuma’s inequality), to show that, with high probability,
if the error from the first £ = clogn/e? timesteps is large, then
log (—H(ffl(h(’)

1-H{ " (ho)
distribution of the hidden state, Hg ~1 will be sharply peaked at the
true hidden state, hg, unless ho had negligible mass (less than n™¢)
in distribution .

There are several slight complications to this approach, including
the fact that the submartingale we construct does not necessarily
have nicely concentrated or bounded differences, as the first term
in the submartingale could change arbitrarily. We address this by
noting that the first term should not decrease too much except with
tiny probability, as this corresponds to the posterior probability
of the true hidden state sharply dropping. For the other direction,

Hg (ho)
- Hy (ho)

) is also likely to be large, in which case the posterior
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we can simply “clip” the deviations to prevent them from exceed-
ing log n in any timestep, and then show that the submartingale
property continues to hold despite this clipping by proving the
following modified version of Pinsker’s inequality:

LEmMA 1. (Modified Pinsker’s inequality) For any two distributions
1(x) and v(x) defined on x € X, define the C-truncated KL divergence

asDe(u || v) = Ey[log (min{%,C})]forwmeﬁxedC such that

logC > 8. Then Dc(p || v) > %Il,u - v||f.

Given Lemma 4, the proof of Theorem 1 follows relatively easily.
Recall that Theorem 1 concerns the expected prediction error at
a timestep t « {0,1,... ,d<?}, based on the model Memyp corre-
sponding to the empirical distribution of length ¢ windows that
have occurred in xg,. . .,x;, The connection between the lemma
and theorem is established by showing that, with high probability,
Memyp is close to Mz, where 7 denotes the empirical distribution
of (unobserved) hidden states hy,...,h;, and M is the distribu-
tion corresponding to drawing the hidden state hy < 7 and then
generating xo,x1,. . . ,xg. We provide the full proof in Appendix 8.

3 DEFINITIONS AND NOTATION

Before proving our general Proposition 1, we first introduce the
necessary notation. For any random variable X, we denote its dis-
tribution as Pr(X). The mutual information between two random
variables X and Y is defined as I(X;Y) = H(Y) — H(Y|X) where
H(Y) is the entropy of Y and H(Y|X) is the conditional entropy of
Y given X. The conditional mutual information I(X; Y|Z) is defined
as:
Pr(X|Y,Z)
I(X;Y|Z) = HX|Z) - H(X|Y,Z) = Ex,y, log Prx2Z)
=Ey,:Dx1(Pr(X1Y,2) || Pr(X|2)),
where Dii(p || g) = T p(x) log 25
tween the distributions p and q. Note that we are slightly abus-
ing notation here as Dk (Pr(X|Y,Z) || Pr(X|Z)) should techni-
cally be D (Pr(X|Y =y,Z = z) || Pr(X|Z = z)). But we will ig-
nore the assignment in the conditioning when it is clear from
the context. Mutual information obeys the following chain rule:
I(X1,X2;Y) = I(X1; Y) + I(X2; Y1X1).

is the KL divergence be-

Given a distribution over infinite sequences, {x;} generated by
some model M where x; is a random variable denoting the output
at time t, we will use the shorthand xl] to denote the collection
of random variables for the subsequence of outputs {x;,-- - ,x;}.
The distribution of {x;} is stationary if the joint distribution of any
subset of the sequence of random variables {x;} is invariant with
respect to shifts in the time index. Hence Pr(x; ,x;,, ,Xi,) =
Pr(x,+1,Xi,+1, * + »X;,+1) for any [ if the process is stationary.

We are interested in studying how well the output x; can be
predicted by an algorithm which only looks at the past £ outputs.
The predictor A, maps a sequence of £ observations to a predicted
distribution of the next observation. We denote the predictive dis-
tribution of A, at time t as Q 4, (x¢ |x§:}). We refer to the Bayes
optimal predictor using only windows of length ¢ as ¢, hence the
prediction of Py at time ¢t is Pr(xtlxtt:}). Note that Py is just the
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naive {-th order Markov predictor provided with the true distribu-
tion of the data. We denote the Bayes optimal predictor that has
access to the entire history of the model as Pw, the prediction of
Poo at time t is Pr(x;|x!Z}). We will evaluate average performance
of the predictions of A, and P, with respect to P over a long
time window [0 : T — 1].

The crucial property of the distribution that is relevant to our
results is the mutual information between past and future observa-
tions. For a stochastic process {x;} generated by some model M
we define the mutual information I(M) of the model M as the
mutual information between the past and future, averaged over the
window [0 : T — 1],

(3.1)

If the process {x;} is stationary, then I(x!3}; x{°) is the same for
all time steps hence I((M) = I(x~L; xy°)- If the average does not
converge and hence the limit in (3.1) does not exist, then we can
define I(M,[0 : T — 1]) as the mutual information for the win-
dow [0 : T — 1], and the results hold true with I(M) replaced by
I(M,[0:T —1]).

We now define the metrics we consider to compare the pre-
dictions of P, and A, with respect to Peo. Let F(P,Q) be some
measure of distance between two predictive distributions. In this
work, we consider the KL-divergence, ¢; distance and the relative
zero-one loss between the two distributions. The KL-divergence and
{1 distance between two distributions are defined in the standard
way. We define the relative zero-one loss as the difference between
the zero-one loss of the optimal predictor Pe and the algorithm
Ap. We define the expected loss of any predictor A, with respect
to the optimal predictor P and a loss function F as follows:

O (Ae) = Bt |[FPr(xelx ). 0 Coa (1) |-
1 T-1
. t
Sp(Ag) = lim = > 817(Ae).
t=0

We also define Sl(f) (Ag) and 5 r(Ap) for the algorithm A, in the
same fashion as the error in estimating P(x; |xf:£1,
tional distribution of the model M.

3;;)(?15) E,- 1[ (Pr(xe|x;~p).Qa, (xelx; ")) |-

), the true condi-

Sp(Ag) =

4 PREDICTING WELL WITH SHORT
WINDOWS

To establish our general proposition, which applies beyond the
HMM setting, we provide an elementary and purely information
theoretic proof.

ProposITION 1. For any data-generating distribution M with mu-
tual information I(M) between past and future observations, the best
{-th order Markov model Py obtains average KL-error, S (Py) <
I(M)/C with respect to the optimal predictor with access to the infi-
nite history. Also, any predictor Ay with S (Ap) average KL-error
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in estimating the joint probabilities over windows of length { gets
average error S (Ag) < I(M) /€ + S (Ap).

Proor. We bound the expected error by splitting the time inter-
val 0 to T — 1 into blocks of length ¢. Consider any block starting
at time 7. We find the average error of the predictor from time 7 to
7 + ¢ — 1 and then average across all blocks.

To begin, note that we can decompose the error as the sum of the
error due to not knowing the past history beyond the most recent £
observations and the error in estimating the true joint distribution
of the data over a ¢ length block. Consider any time ¢. Recall the

definition of 5( ) 1 (Ag),
8¢ (Ae) = By [P (Prexe et ) 1l Qn, et =) |
= B [Dren (Prexe et 2) Il Preelt =)

+ By [DKL(PV(XHXIt:é) I Qﬂ{(xtlx;:}))]
=81 Pp) + 80) (Ay).

Therefore, dxr (Ar) = Oxr(Pe) + 5KL(‘7(£’)‘ It is easy to verify
that 8¢) (P) = I(xt3LY;

T ) This relation formalizes the
intuition that the current output (xt) has significant extra informa-

s Xt |x
tion about the past (x!Z{~1) if we cannot predict it as well using
the £ most recent observations (xf:}), as can be done by using the
entire past (x!71). We will now upper bound the total error for the
window [z,7 + £ — 1]. We expand I(x73}; x>°) using the chain rule,

) T+{—-1
—009 Z —oo’xtlxt l) 2 Z I(x—oo ,.X'[lx )
t=1 t=1

Note that I(x7 3} xe|xi™Y) > I(x! [ B xtlx ) 5(t)(Pg) as
t—-¢ < rand I(X,Y;Z) > (X,Z|Y). The proposmon now fol-
lows from averaging the error across the £ time steps and using Eq.

3.1 to average over all blocks of length ¢ in the window [0,T — 1],
T+l’ 1
IM
Z S0P < ) = o) < OU.
O

Note that Proposition 1 also directly gives guarantees for the
scenario where the task is to predict the distribution of the next
block of outputs instead of just the next immediate output, because
KL-divergence obeys the chain rule.

The following easy corollary, relating KL error to ¢ error yields
the following statement, which also trivially applies to zero/one
loss with respect to that of the optimal predictor, as the expected
relative zero/one loss at any time step is at most the £; loss at that
time step.

COROLLARY 2. For any data-generating distribution M with mu-
tual information I(M) between past and future observations, the
best £-th order Markov model Py obtains average {1-error §¢, (Pr) <
VI(M)/2¢ with respect to the optimal predictor that has access to
the infinite history. Also, any predictor Ap with 551 (Ay) average
{1-error in estimating the joint probabilities gets average prediction

error 8¢, (Ag) < IM)J20 + b¢, (Ay).



STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Proor. We again decompose the error as the sum of the error
in estimating P and the error due to not knowing the past history
using the triangle inequality.

54 (AL) = Byea [IIPr(xtlxi;.}) -Qa, (xtlezé)nl]
< By [llPr(xtle;ol) - Pr(xt|x§:})||1]
t—1 t—1
+ Exf;l [”Pr(xt|xt_[) -Qa, (xtlxt_[)”l]
=61 (Pr) + 8 (A)

Therefore, 5, (Ar) < 8¢, (Pr) + 551 (Ap). By Pinsker’s inequality

and Jensen’s inequality, 5;,? (Ap)? < 5;;11(%5)/ 2. Using Proposi-

tion 1,
T-1
1 IM
OkL(Ar) = = Z s (A < _(g )
t=0
Therefore, using Jensen’s inequality again, dg, (Ag) < I(M)/2€.

O

5 LOWER BOUND FOR LARGE ALPHABETS

Our lower bounds for the sample complexity in the large alphabet
case leverage a class of Constraint Satisfaction Problems (CSPs)
with high complexity. A class of (Boolean) k-CSPs is defined via a
predicate—a function P : {0, l}k — {0,1}. An instance of such a
k-CSP on n variables {x1,--- ,x,} is a collection of sets (clauses) of
size k whose k elements consist of k variables or their negations.
Such an instance is satisfiable if there exists an assignment to the
variables x1, . . . , X, such that the predicate P evaluates to 1 for every
clause. More generally, the value of an instance is the maximum,
over all 2" assignments, of the ratio of number of satisfied clauses
to the total number of clauses.

Our lower bounds are based on the presumed hardness of distin-
guishing random instances of a certain class of CSP, versus instances
of the CSP with high value. There has been much work attempting
to characterize the difficulty of CSPs—one notion which we will
leverage is the complexity of a class of CSPs, first defined in Feldman
et al. [18] and studied in Allen et al. [19] and Kothari et al. [20]:

Definition 1. The complexity of a class of k-CSPs defined by pred-
icate P : {O,I}k — {0,1} is the largest r such that there exists
a distribution supported on the support of P that is (r — 1)-wise
independent (i.e. “uniform”), and no such r-wise independent dis-
tribution exists.

Example 1. Both k-XOR and k-SAT are well-studied classes of
k-CSPs, corresponding, respectively, to the predicates PxoRr that
is the XOR of the k Boolean inputs, and Ps47 that is the OR of
the inputs. These predicates both support (k — 1)-wise uniform
distributions, but not k-wise uniform distributions, hence their
complexity is k. In the case of k-XOR, the uniform distribution over
{0,1}¥ restricted to the support of PxoR is (k — 1)-wise uniform.
The same distribution is also supported by k-SAT.

A random instance of a CSP with predicate P is an instance such
that all the clauses are chosen uniformly at random (by selecting the
k variables uniformly, and independently negating each variable
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with probability 1/2). A random instance will have value close
to E[P], where E[P] is the expectation of P under the uniform
distribution. In contrast, a planted instance is generated by first
fixing a satisfying assignment o and then sampling clauses that
are satisfied, by uniformly choosing k variables, and picking their
negations according to a (r — 1)-wise independent distribution
associated with the predicate. Hence a planted instance always
has value 1. A noisy planted instance with planted assignment o
and noise level  is generated by sampling consistent clauses (as
above) with probability 1 -7 and random clauses with probability 7,
hence with high probability it has value close to 1 — n + yE[P]. Our
hardness results are based on distinguishing whether a CSP instance
is random versus has a high value (value close to 1 — 5 + yE[P]).

As one would expect, the difficulty of distinguishing random
instances from noisy planted instances, decreases as the number
of sampled clauses grows. The following conjecture of Feldman
et al. [18] asserts a sharp boundary on the number of clauses, below
which this problem becomes computationally intractable, while
remaining information theoretically easy.

Conjectured CSP Hardness [Conjecture 1] [18]: Let Q be any
distribution over k-clauses and n variables of complexity r and 0 <
n < 1. Any polynomial-time (randomized) algorithm that, given ac-
cess to a distribution D that equals either the uniform distribution over
k-clauses Uy or a (noisy) planted distribution QZ =(1-1)Q¢s +nUg
for some o € {0,1}" and planted distribution Q, decides correctly
whether D = QZ, or D = U with probability at least 2/3 needs
Q(n"'?) clauses.

Feldman et al. [18] proved the conjecture for the class of sta-
tistical algorithms.* Recently, Kothari et al. [20] showed that the
natural Sum-of-Squares (SOS) approach requires Q(n"/2) clauses to
refute random instances of a CSP with complexity r, hence proving
Conjecture 1 for any polynomial-size semidefinite programming
relaxation for refutation. Note that Q(n'/2) is tight, as Allen et al.
[19] give a SOS algorithm for refuting random CSPs beyond this
regime. Other recent papers such as Daniely and Shalev-Shwartz
[53] and Daniely [54] have also used presumed hardness of strongly
refuting random k-SAT and random k-XOR instances with a small
number of clauses to derive conditional hardness for various learn-
ing problems.

A first attempt to encode a k-CSP as a sequential model is to
construct a model which outputs k randomly chosen literals for
the first k time steps 0 to k — 1, and then their (noisy) predicate
value for the final time step k. Clauses from the CSP correspond to
samples from the model, and the algorithm would need to solve the
CSP to predict the final time step k. However, as all the outputs up
to the final time step are random, the trivial prediction algorithm
that guesses randomly and does not try to predict the output at
time k, would be near optimal. To get strong lower bounds, we will

4Statistical algorithms are an extension of the statistical query model. These are
algorithms that do not directly access samples from the distribution but instead have
access to estimates of the expectation of any bounded function of a sample, through a
“statistical oracle”. Feldman et al. [52] point out that almost all algorithms that work
on random data also work with this limited access to samples, refer to Feldman et al.
[52] for more details and examples.
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output m > 1 functions of the k literals after k time steps, while still
ensuring that all the functions remain collectively hard to invert
without a large number of samples.

We use elementary results from the theory of error correcting
codes to achieve this, and prove hardness due to a reduction from a
specific family of CSPs to which Conjecture 1 applies. By choosing
k and m carefully, we obtain the near-optimal dependence on the
mutual information and error e—matching the upper bounds im-
plied by Proposition 1. We provide a short outline of the argument,
followed by the detailed proof in the appendix.

5.1 Sketch of Lower Bound Construction

We construct a sequential model M such that making good pre-
dictions on the model requires distinguishing random instances of
a k-CSP C on n variables from instances of C with a high value.
The output alphabet of M is {a;} of size 2n. We choose a mapping
from the 2n characters {a;} to the n variables {x;} and their n nega-
tions {x;}. For any clause C and planted assignment o to the CSP
C, let o(C) be the k-bit string of values assigned by o to literals
in C. The model M will output k characters from time 0 to k — 1
chosen uniformly at random, which correspond to literals in the
CSP C; hence the k outputs correspond to a clause C of the CSP.
For some m (to be specified later) we will construct a binary matrix
A € {0,1}™* which will correspond to a good error-correcting
code. For the time steps k to k + m — 1, with probability 1 — 5 the
model outputs y € {0,1}" where y = Av mod 2 and v = o(C)
with C being the clause associated with the outputs of the first k
time steps. With the remaining probability, 7, the model outputs m
uniformly random bits. Note that the mutual information I(M) is at
most m as only the outputs from time k to k+m—1 can be predicted.

We claim that M can be simulated by an HMM with 2™ (2k +
m) + m hidden states. This can be done as follows. For every time
step from 0 to k — 1 there will be 2! hidden states, for a total
of k2™*! hidden states. Each of these hidden states has two labels:
the current value of the m bits of y, and an “output label” of 0 or 1
corresponding to the output at that time step having an assignment
of 0 or 1 under the planted assignment o. The output distribution
for each of these hidden states is either of the following: if the state
has an “output label” 0 then it is uniform over all the characters
which have an assignment of 0 under the planted assignment o,
similarly if the state has an “output label” 1 then it is uniform over
all the characters which have an assignment of 1 under the planted
assignment o. Note that the transition matrix for the first k time
steps simply connects a state h; at the (i — 1)th time step to a state
hy at the ith time step if the value of y corresponding to h; should
be updated to the value of y corresponding to hy if the output at
the ith time step corresponds to the “output label” of hy. For the
time steps k through (k + m — 1), there are 2™ hidden states for
each time step, each corresponding to a particular choice of y. The
output of an hidden state corresponding to the (k + i)th time step
with a particular label y is simply the ith bit of y. Finally, we need
an additional m hidden states to output m uniform random bits
from time k to (k + m — 1) with probability 5. This accounts for a
total of k2™*! + m2™ + m hidden states. After k + m time steps the
HMM transitions back to one of the starting states at time 0 and
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repeats. Note that the larger m is with respect to k, the higher the
cost (in terms of average prediction error) of failing to correctly
predict the outputs from time k to (k + m — 1). Tuning k and m
allows us to control the number of hidden states and average error
incurred by a computationally constrained predictor.

We define the CSP C in terms of a collection of predicates P(y)
for each y € {0,1}"". While Conjecture 1 does not directly apply to
C, asitis defined by a collection of predicates instead of a single one,
we will later show a reduction from a related CSP Cy defined by a
single predicate for which Conjecture 1 holds. For each y, the predi-
cate P(y) of C is the set of v € {0, 1}* which satisfy y = Av mod 2.
Hence each clause has an additional label y which determines the
satisfying assignments, and this label is just the output of our se-
quential model M from time k to k + m — 1. Hence for any planted
assignment o, the set of satisfying clauses C of the CSP C are all
clauses such that Av =y mod 2 where y is the label of the clause
and v = ¢/(C). We define a (noisy) planted distribution over clauses
QZ, by first uniformly randomly sampling a label y, and then sam-
pling a consistent clause with probability (1 — 1), otherwise with
probability n we sample a uniformly random clause. Let Uy be the
uniform distribution over all k-clauses with uniformly chosen la-
bels y. We will show that Conjecture 1 implies that distinguishing
between the distributions QZ and Uy, is hard without sufficiently
many clauses. This gives us the hardness results we desire for our
sequential model M: if an algorithm obtains low prediction error
on the outputs from time k through (k + m — 1), then it can be used
to distinguish between instances of the CSP C with a high value
and random instances, as no algorithm obtains low prediction error
on random instances. Hence hardness of strongly refuting the CSP
C implies hardness of making good predictions on M.

We now sketch the argument for why Conjecture 1 implies the
hardness of strongly refuting the CSP C. We define another CSP
Co which we show reduces to C. The predicate P of the CSP Cp
is the set of all v € {0, 1}k such that Av = 0 mod 2. Hence for
any planted assignment o, the set of satisfying clauses of the CSP
Co are all clauses such that v = o(C) is in the nullspace of A.
As before, the planted distribution over clauses is uniform on all
satisfying clauses with probability (1 — 5), with probability n we
add a uniformly random k-clause. For some y > 1/10, if we can
construct A such that the set of satisfying assignments v (which are
the vectors in the nullspace of A) supports a (yk — 1)-wise uniform
distribution, then by Conjecture 1 any polynomial time algorithm
cannot distinguish between the planted distribution and uniformly
randomly chosen clauses with less than Q(nY*/2) clauses. We show
that choosing a matrix A whose null space is (yk — 1)-wise uniform
corresponds to finding a binary linear code with rate at least 1/2
and relative distance y, the existence of which is guaranteed by the
Gilbert-Varshamov bound.

We next sketch the reduction from Cy to C. The key idea is that
the CSPs Cy and C are defined by linear equations. If a clause C =
(x1,x2,- -+ ,xx) in Cp is satisfied with some assignment t € {0, 1}k
to the variables in the clause then At = 0 mod 2. Therefore, for
some w € {0, 1}k such that Aw =y mod 2,t+w mod 2 satisfies
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A(t+w) =y mod 2. A clause C’ (x{,xé,- . ,x]'c) with assign-
ment t + w mod 2 to the variables can be obtained from the clause
C by switching the literal x] = %; if w; = 1 and retaining x; = x; if
w; = 0. Hence for any label y, we can efficiently convert a clause C
in Cp to a clause C’ in C which has the desired label y and is only
satisfied with a particular assignment to the variables if C in Cp is
satisfied with the same assignment to the variables. It is also not
hard to ensure that we uniformly sample the consistent clause C’
in C if the original clause C was a uniformly sampled consistent

clause in Cy.

We provide a small example to illustrate the sequential model
constructed above. Let k = 3, m = 1 and n = 3. Let A € {0,1}%3.
The output alphabet of the model M is {a;,1 < i < 6}. The
letter a; maps to the variable xi, az maps to X1, similarly az —
X2,a4 — X2,d5 — Xx3,d¢ — X3. Let o be some planted assignment
to {x1,x2,x3}, which defines a particular model M. If the output
of the model M is aj, a3, aq for the first three time steps, then this
corresponds to the clause with literals, (x1,x2,%3). For the final time
step, with probability (1 — ) the model outputs y = Av mod 2,
with v = ¢(C) for the clause C = (x1,x2,%3) and planted assign-
ment o, and with probability 5 it outputs a uniform random bit.
For an algorithm to make a good prediction at the final time step,
it needs to be able to distinguish if the output at the final time step
is always a random bit or if it is dependent on the clause, hence
it needs to distinguish random instances of the CSP from planted
instances.

6 LOWER BOUND FOR SMALL ALPHABETS

Our lower bounds for the sample complexity in the binary alphabet
case are based on the average case hardness of the decision version
of the parity with noise problem, and the reduction is straightfor-
ward.

In the parity with noise problem on n bit inputs we are given
examples v € {0,1}" drawn uniformly from {0, 1}" along with their
noisy labels (s,v) + € mod 2 where s € {0,1}" is the (unknown)
support of the parity function, and € € {0,1} is the classification
noise such that Pr[e = 1] =  where 5 < 0.05 is the noise level.

Let Q/ be the distribution over examples of the parity with noise
instance with s as the support of the parity function and 7 as the
noise level. Let U, be the distribution over examples and labels
where each label is chosen uniformly from {0, 1} independent of the
example. The strength of of our lower bounds depends on the level
of hardness of parity with noise. Currently, the fastest algorithm
for the problem due to Blum et al. [22] runs in time and samples
2"/ 10gn Ve define the function f(n) as follows—

Definition 2. Define f(n) to be the function such that for a
uniformly random support s € {0,1}", with probability at least
(1—1/n?) over the choice of s, any (randomized) algorithm that can
distinguish between Q¢ and U, with success probability greater
than 2/3 over the randomness of the examples and the algorithm,
requires f(n) time or samples.
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Our model will be the natural sequential version of the par-
ity with noise problem, where each example is coupled with sev-
eral parity bits. We denote the model as M(A;xn) for some A €
{0,1}™*" 'm < n/2. From time 0 through (n — 1) the outputs of the
model are i.i.d. and uniform on {0,1}. Let v € {0,1}" be the vector
of outputs from time 0 to (n — 1). The outputs for the next m time
steps are given by y = Av + € mod 2, where € € {0,1}™ is the
random noise and each entry €; of € is an i.i.d random variable such
that Pr[e; = 1] = n, where 7 is the noise level. Note that if A is
full row-rank, and v is chosen uniformly at random from {0,1}",
the distribution of y is uniform on {0,1}"". Also I(M(A)) < m as
at most the binary bits from time n to n + m — 1 can be predicted
using the past inputs. As for the large alphabet case, M(Apmxn)
can be simulated by an HMM with 2™ (2n + m) + m hidden states
(see Section 5.1).

We define a set of A matrices, which specifies a family of sequen-
tial models. Let S be the set of all (m X n) matrices A such that the A
is full row rank. We need this restriction as otherwise the bits of the
output y will be dependent. We denote R as the family of models
M(A) for A € S. Lemma 2 shows that with high probability over
the choice of A, distinguishing outputs from the model M(A) from
random examples Uy, requires f(n) time or examples.

LEmMA 2. Let A be chosen uniformly at random from the set S.
Then, with probability at least (1 — 1/n) over the choice A € S,
any (randomized) algorithm that can distinguish the outputs from
the model M(A) from the distribution over random examples U,
with success probability greater than 2/3 over the randomness of the
examples and the algorithm needs f(n) time or examples.

The proof of Proposition 2 follows from Lemma 2 and is similar
to the proof for the large alphabet case.

7 INFORMATION THEORETIC LOWER
BOUNDS

We show that information theoretically, windows of length cI(M)/e?
are necessary to get expected relative zero-one loss less than €. As
the expected relative zero-one loss is at most the ¢1 loss, which can
be bounded by the square of the KL-divergence, this automatically
implies that our window length requirement is also tight for £; loss
and KL loss. In fact, it’s very easy to show the tightness for the KL
loss: choose the simple model which emits uniform random bits
from time 0 to n—1 and repeats the bits from time 0 to m—1 for time
n through n + m — 1. One can then choose n,m to get the desired
error € and mutual information I(M). To get a lower bound for the
zero-one loss we use the probabilistic method to argue that there
exists an HMM such that long windows are required to perform
optimally with respect to the zero-one loss for that HMM. We now
state the lower bound and sketch the proof idea.

PROPOSITION 3. There is an absolute constant c such that for all
0 < € < 0.5 and sufficiently large n, there exists an HMM with n states
such that it is not information theoretically possible to get average
relative zero-one loss or {1 loss less than € using windows of length
smaller than clogn/e?, and KL loss less than € using windows of
length smaller than clogn/e.
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We illustrate the construction in Fig. 2 and provide the high-level
proof idea with respect to Fig. 2 below.

h,

(o)
®

o
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@@ ©
@
©
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Figure 2: Lower bound construction, n = 16.

hy

We want show that no predictor # using windows of length
¢ = 3 can make a good prediction. The transition matrix of the
HMM is a permutation and the output alphabet is binary. Each state
is assigned a label which determines its output distribution. The
states labeled 0 emit 0 with probability 0.5 + € and the states labeled
1 emit 1 with probability 0.5 + €. We will randomly and uniformly
choose the labels for the hidden states. Over the randomness in
choosing the labels for the permutation, we will show that the
expected error of the predictor P is large, which means that there
must exist some permutation such that the predictor # incurs a
high error. The rough proof idea is as follows. Say the Markov model
is at hidden state hy at time 2, this is unknown to the predictor
. The outputs for the first three time steps are (xo,x1,x2). The
predictor # only looks at the outputs from time 0 to 2 for making
the prediction for time 3. We show that with high probability over
the choice of labels to the hidden states and the outputs (xo,x1,x2),
the output (xp,x1,x2) from the hidden states (ho,h1, h2) is close in
Hamming distance to the label of some other segment of hidden
states, say (h4,hs,he). Hence any predictor using only the past
3 outputs cannot distinguish whether the string (xo,x1,x2) was
emitted by (ho, h1,h2) or (hg,hs, he), and hence cannot make a good
prediction for time 3 (we actually need to show that there are many
segments like (h4,hs, hg) whose label is close to (xg,x1,x2)). The
proof proceeds via simple concentration bounds.

8 PROOF OF THEOREM 1

THEOREM 1. Suppose observations are generated by a Hidden Markov
Model with at most n hidden states, and output alphabet of size d.
Fore > 1/1og"% n there exists a window length € = O(IO%) and
absolute constant ¢ such that for any T > d°¢, ift € {1,2,...,T} is
chosen uniformly at random, then the expected {1 distance between
the true distribution of x; given the entire history (and knowledge
of the HMM), and the distribution predicted by the naive “empirical”
{-th order Markov model based on xy, . . . ,x;-1, is bounded by +e.

1084

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Proor. Let m; be a distribution over hidden states such that
the probability of the ith hidden state under 7; is the empirical
frequency of the ith hidden state from time 1 to ¢ — 1 normalized
by (t = 1). For 0 < s < ¢ — 1, consider the predictor $; which
makes a prediction for the distribution of observation x;+s given
observations x;,...,X;+s—1 based on the true distribution of x;
under the HMM, conditioned on the observations x;,...,X;+s-1
and the distribution of the hidden state at time ¢ being ;. We will
show that in expectation over ¢, P; gets small error averaged across
the time steps 0 < s < ¢ — 1, with respect to the optimal prediction
of x;+s with knowledge of the true hidden state h; at time ¢. In
order to show this, we need to first establish that the true hidden
state h; at time ¢ does not have very small probability under 7,
with high probability over the choice of .

LEMMA 3. With probability 1-2/n over the choice of t € {1,...,T},
the hidden state hy at time t has probability at least 1/n® under ;.

Proor. Consider the ordered set S; of time indices ¢t where the
hidden state h; = i, sorted in increasing order. We first argue that
picking a time step t where the hidden state h; is a state j which
occurs rarely in the sequence is not very likely. For sets correspond-
ing to hidden states j which have probability less than 1/n? under
77, the cardinality |S;| < T/ n?. The sum of the cardinality of all
such small sets is at most T/n, and hence the probability that a
uniformly random t € {1,...,T} lies in one of these sets is at most
1/n.

Now consider the set of time indices S; corresponding to some
hidden state i which has probability at least 1/n® under 7. For all
t which are not among the first T/ n?® time indices in this set, the
hidden state i has probability at least 1/n3 under 7,. We will refer
to the first T/n® time indices in any set S; as the “bad” time steps
for the hidden state i. Note that the fraction of the “bad” time steps
corresponding to any hidden state which has probability at least
1/n? under 77 is at most 1/n, and hence the total fraction of these
“bad” time steps across all hidden states is at most 1/n. Therefore
using a union bound, with failure probability 2/n, the hidden state
hy at time t has probability at least 1/n> under ;. O

Consider any time index ¢, for simplicity assume ¢ = 0, and let
OPT; denote the conditional distribution of xg given observations
X0, - - -, Xs—1, and knowledge of the hidden state at time s = 0. Let
M denote the conditional distribution of xg given only xo, . . ., xs-1,
given that the hidden state at time 0 has the distribution 7.

LEMMA 4. For € > 1/n, if the true hidden state at time 0 has
probability at least 1/n€ under o, then for € = clogn/e?,

-1
1
E[z ZO IOPTs — Myll1| < 4e,

where the expectation is with respect to the randomness in the outputs
from time 0 to £ — 1.

By Lemma 3, for a randomly chosent € {1,...,T} the probability
that the hidden state i at time 0 has probability less than 1/n® in the
prior distribution 7; is at most 2/n. As the ¢ error at any time step
can be at most 2, using Lemma 4, the expected average error of the
predictor P; across all t is at most 4€ + 4/n < 8¢ for £ = 3logn/e’.
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Now consider the predictor #; which for 0 < s < £ — 1 predicts
Xt+s given xy,. .. ,Xr4+s—1 according to the empirical distribution of
Xt+s given xy,. .., xr45-1, based on the observations up to time ¢.
We will now argue that the predictions of P, are close in expectation
to the predictions of $;. Recall that prediction of #; at time t + s
is the true distribution of x; under the HMM, conditioned on the
observations x¢,. . .,x;+s—1 and the distribution of the hidden state
at time ¢ being drawn from ;. For any s < ¢, let P; refer to the
prediction of P, at time t + s and P, refer to the prediction of P;
at time t + s. We will show that ||P; — P]|; is small in expectation
over t.

We do this using a martingale concentration argument. Consider
any string r of length s. Let Q1 (r) be the empirical probability of
the string r up to time ¢ and Q2(r) be the true probability of the
string r given that the hidden state at time ¢ is distributed as 7;.
Our aim is to show that |Q1 (r) — Q2(r)| is small. Define the random
variable

Y, = Pr[[x r),

where I denotes the indicator function and Yj is defined to be 0. We

claim that Z; = }}7_ Y; is a martingale with respect to the filtration
{#}, {h1},{ha,x1},{h3,x2},. . . ,{ht+1,x: ). To verify, note that,

E[Y:I{h1), tho,x1},. . . e, x0-1}] = Pri[x; : xp45-1] = rlhe]

- E[I([xr : xr+s—1] = r)l{hl}v{thxl}s cee s{xr—lyhr}]

= Pr([x; : xz45-1] = rlhe] = E[I([x7 : x745-1] = r)|h¢]

v Xps—1] = rlhe] = I([x7 @ x745-1] =

Therefore E[Z;|{h1},{h2,x1},...,{hr,xr-1}] = Zr-1, and hence
Zr is a martingale. Also, note that |Z; — Z;_1| < 1as 0 < Pr{[x; :
Xr4s—1] = rlhy] € 1and 0 < I([x,
using Azuma’s inequality (Lemma 8),

: Xr+s—1] = r) < 1. Hence

Pr(1Zs—s| > K] < 2¢7K*1@D)

Note that Z;_s/(t —s) = Q2(r) — Q1(r). By Azuma’s inequality and
doing a union bound over all @° < d’ strings r of length s, for ¢ > 4
and t > T/n? = d°‘/n? > d°/2, we have ||Q1 — Qall; < 1/d°¢/20
with failure probability at most 2d%e~ Vi/z <4 /n?. Similarly, for
all strings of length s + 1, the estimated probability of the string
has error at most 1/d°¢/20 with failure probability 1/n%. As the
conditional distribution of x;+ given observations x¢,. . .
is the ratio of the joint distributions of {x;,...,x;4+s—1,%r+s} and
{xt,...,xr4+5-1}, therefore as long as the empirical distributions
of the length s and length s + 1 strings are estimated with error
at most 1/d°¢/20 and the string {x;,...,xr+s—1} has probability
at least 1/d°¢/40, the conditional distributions P; and P, satisfy
|IPy = P2ll; < 1/n%. By a union bound over all d° < d¢ strings
and for ¢ > 100, the total probability mass on strings which occur
with probability less than 1/d¢¢740 is at most 1/d¢/%0 < 1/n? for
¢ > 100. Therefore ||P1—P2 |1 < 1/n® with overall failure probability
3/ n%, hence the expected {; distance between P; and P, is at most
1/n.

By using the triangle inequality and the fact that the expected
average error of P; is at most 8¢ for £ = 3log n/e?, it follows that
the expected average error of 75t is at most 8¢ + 1/n < 7¢. Note
that the expected average error of P, is the average of the expected
errors of the empirical s-th order Markov models for 0 < s < £ - 1.

s Xt+s—1

=0.
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Hence for £ = 3log n/e? there must exist at least some s < £ such
that the s-th order Markov model gets expected {1 error at most 9e.

8.1 Proof of Lemma 4

Let the prior for the distribution of the hidden states at time 0 be 7.
Let the true hidden state h at time 0 be 1 without loss of generality.
We refer to the output at time ¢ by xs. Let H{j (i) = Pr[ho = ilxj] be
the posterior probability of the ith hidden state at time 0 after seeing
the observations x; up to time t and having the prior 7y on the
distribution of the hidden states at time 0. Let us = Hj(1) and vs =
1 — us. Define P; (j) = Prlxs = jlxg’l,ho = i] as the distribution
of the output at time ¢ conditioned on the hidden state at time 0
being i and observations x3~'. Note that OPTs = P;. As before,
define R; as the conditional distribution of x5 given observations
X0,- -+ ,Xs—1 and initial distribution 7 but not being at hidden state
ho at time O i.e. Rs = (1/vs) X1, Hj (i)P{. Note that M; is a convex
combination of OPTs and Ry, i.e. Mg = usOPTs + vsRs. Hence
IOPTs — Msll1 < ||OPTs — Rs|l1. Define 65 = ||OPTs — M]z.

Our proof relies on a martingale concentration argument, and
in order to ensure that our martingale has bounded differences we
will ignore outputs which cause a significant drop in the posterior
of the true hidden state at time 0. Let B be the set of all outputs j at

Olff(fj%’) < Note that, 3., OPT; (j) <
Hence by a union bound, with failure prob-

OPT;(j) <
Rs(j) — clogn

emitted in a window of length clog n/e?. Hence we will only con-
cern ourselves with sequences of outputs such that the output j

OPTs(j)
O S clogn let the set of all

such outputs be Sy, note that Pr(x; ¢ S1) < €2 Let Eg, [X] be the
expectation of any random variable X conditioned on the output
sequence being in the set Sj.

Consider the sequence of random variables X = logus — log v
fors € [-1,£ — 1]. Let X_1 = log(m1) —log(1 — m1). Let Ag4q =
Xs+1—X, be the change in X on seeing the output x4 at time s+1.
Let the output at time s + 1 be j. We will first find an expression for
As+1. The posterior probabilities after seeing the (s + 1)th output
get updated according to Bayes rule,

some time ¢ such that
et 2163 Rs 0)

clogn

clog n’

&t
= clogn'

ability at most €? any output j such that is not

emitted at each step satisfies

Hs*™H(1) = Priho = 1|x§,x[s + 1] = j]
Prihy = 1|xg]Pr[x[s +1] =jlhy = l,xg]
Prlx[s + 1] = jlx;]
OPT. j
— ugyq = Us s+1()

Prix[s + 1] = jlxj]’

Let Pr(x[s + 1] = jlxj] = d;. Note that Hy*' (i) = Hy (i)P;*'(j)/d
if the output at time s + 1 is j. We can write,

Resy = (iH z)P”l)
(ZHS( )RS )

B

Vs41 = ZHS“@) =

= 'UsRs+1(])/dj~
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Therefore we can write As4 and its expectation E[Ag41] as

OPT;11())
Asy1 = log ——————=
ot & Rs+1(j)
OPT.
= E[Asi] ZOPTMU :(1]%’) = D(OPTss1 | Resa).

We define Ay as Agqq = min{Ag41,loglogn} to keep martingale
differences bounded. E[A11] then equals a truncated version of
the KL-divergence which we define as follows.

Definition 3. For any two distributions p(x) and v(x), define the

truncated KL-divergence as Dc (i || v) = E[ log ( min {p(x)/v(x), C})]

for some fixed C.

We are now ready to define our martingale. Consider the se-
quence of random variables X := Xs—1 + Ag for t € [0, — 1],
with X_1 := X_;. Define Zs := Zg’zl (f(s - Xsq — 532/2). Note that
As 2 Ay = X5 = Xs.

LemMA 5. Eg, [ Xs — Xs—1] > 62/2, where the expectation is with
respect to the output at time t. Hence the sequence of random variables
Zs = PIHEN (f(s - Xsoq - 552/2) is a submartingale with respect to
the outputs.

PROOF. By definition Xs — Xs_1 = As and E[A] = Dc(OPT; ||
Rs),C = logn. By taking an expectation with respect to only se-

quences Sy instead of all possible sequences, we are removing
events which have a negative contribution to E[As], hence

Es, [As] = E[As] = Dc(OPT; || Ry).
We can now apply Lemma 6.

LEMMA 6. (Modified Pinsker’s inequality) For any two distributions
1(x) and v(x) defined on x € X, define the C-truncated KL divergence

asDe(u || v) = Ey [log (min {”(x) C})] for some fixed C such that

v(x)’
logC > 8. Then Dc(p || v) > 3llu— vli2.
Hence Eg, [As] > %IlOPTs - Rs||f. Hence Eg, [Xs — Xs-1] >
82/2. O

We now claim that our submartingale has bounded differences.
V2log(clogn/e*).

271)/2 can be at most 2. Zs — Zs_1 = As.

< log(logn). Also, As > > —log(clog n/e4) as we

Zs 1|S
O

LEMMA 7. |Zs - Zs—ll <

ProoF. Note that (52 -
By definition Ag
restrict ourselves to sequences in the set S1. Hence IZS
log(clogn/e*) + 2 < V2log(clogn/e*).

We now apply Azuma-Hoeffding to get submartingale concen-
tration bounds.
LEMMA 8. (Azuma-Hoeffding inequality) Let Z; be a submartin-

gale with |Z; — Z;_1| < C. Then Pr[Zs — Zy < —A] < exp (Ztcz)

Applying Lemma & we can show,
—clogn
4(1/€)? log®(clog n/e*

PrZe_y — Zy < —clogn] < exp( )) <€,

(8.1)
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for € > 1/1og”® nand ¢ > 1. We now bound the average error in
the window 0 to £ — 1. With failure probability at most €? over the
randomness in the outputs, Zp_; — Zy > —c¢ logn by Eq. 8.1. Let Sz
be the set of all sequences in S; which satisfy Z,_; — Zy > —clogn.
Note that Xy = Xo > log(1/m1). Consider the last point after which
vs decreases below €2 and remains below that for every subsequent
step in the window. Let this point be 7, if there is no such point
define 7 to be £ — 1. The total contribution of the error at every step
after the rth step to the average error is at most a €2 term as the
error after this step is at most €2. Note that X; < log(1/e)?

X; < Iog(l/e)2 as X5 < Xs. Hence for all sequences in Sy,

X < log(1/e)®

= X, - X1 <log(1/e)? +log(1/m)

T
g 0.5253 < 2logn +log(1/m1) + clogn
s=0

(b)
-

T
0.525? < 2(c+1)logn < 4clogn
s=0
Zf 152
clogn/e? =~
Z5o

clogn/e? ~

(c)
-

(c)
-

where (a) follows by Eq. 8.1, and as € > 1/n; (b) follows aslog(1/71) <
clogn, and ¢ > 1; (c) follows because log(1/71) < clogn); and (d)
follows from Jensen’s inequality. As the total probability of se-
quences outside Sy is at most 2€2, E[Zf;é Js] < 4e, whenever the
hidden state i at time 0 has probability at least 1/n¢ in the prior
distribution 7.

O
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