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ABSTRACT

We consider the problem of predicting the next observation given
a sequence of past observations, and consider the extent to which
accurate prediction requires complex algorithms that explicitly
leverage long-range dependencies. Perhaps surprisingly, our pos-
itive results show that for a broad class of sequences, there is an
algorithm that predicts well on average, and bases its predictions
only on the most recent few observation together with a set of
simple summary statistics of the past observations. Specifically,
we show that for any distribution over observations, if the mutual
information between past observations and future observations is
upper bounded by I , then a simple Markov model over the most
recent I/ϵ observations obtains expected KL error ϵÐand hence ℓ1
error

√
ϵÐwith respect to the optimal predictor that has access to

the entire past and knows the data generating distribution. For a
Hidden Markov Model with n hidden states, I is bounded by logn, a
quantity that does not depend on the mixing time, and we show that
the trivial prediction algorithm based on the empirical frequencies
of length O (logn/ϵ ) windows of observations achieves this error,
provided the length of the sequence is dΩ(logn/ϵ ) , where d is the
size of the observation alphabet.

We also establish that this result cannot be improved upon, even
for the class of HMMs, in the following two senses: First, for HMMs
with n hidden states, a window length of logn/ϵ is information-
theoretically necessary to achieve expected KL error ϵ , or ℓ1 error√
ϵ . Second, the dΘ(logn/ϵ ) samples required to accurately esti-

mate the Markov model when observations are drawn from an
alphabet of size d is necessary for any computationally tractable
learning/prediction algorithm, assuming the hardness of strongly
refuting a certain class of CSPs.
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1 MEMORY, MODELING, AND PREDICTION

We consider the problem of predicting the next observation xt given
a sequence of past observations, x1,x2, . . . ,xt−1, which could have
complex and long-range dependencies. This sequential prediction
problem is one of the most basic learning tasks and is encountered
throughout natural language modeling, speech synthesis, financial
forecasting, and a number of other domains that have a sequential
or chronological element. The abstract problem has received much
attention over the last half century from multiple communities
including TCS, machine learning, and coding theory. The funda-
mental question is: How do we consolidate and reference memories

about the past in order to effectively predict the future?

Given the immense practical importance of this prediction prob-
lem, there has been an enormous effort to explore different algo-
rithms for storing and referencing information about the sequence,
which have led to the development of several popular models such
as n-gram models and Hidden Markov Models (HMMs). Recently,
there has been significant interest in recurrent neural networks

(RNNs) [1]Ðwhich encode the past as a real vector of fixed length
that is updated after every observationÐand specific classes of such
networks, such as Long Short-Term Memory (LSTM) networks
[2, 3]. Other recently popular models that have explicit notions of
memory include neural Turing machines [4], memory networks [5],
differentiable neural computers [6], attention-based models [7, 8],
etc. These models have been quite successful (see e.g. [9, 10]); never-
theless, consistently learning long-range dependencies, in settings
such as natural language, remains an extremely active area of re-
search.

In parallel to these efforts to design systems that explicitly use
memory, there has been much effort from the neuroscience com-
munity to understand how humans and animals are able to make
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accurate predictions about their environment. Many of these ef-
forts also attempt to understand the computational mechanisms
behind the formation of memories (memory łconsolidationž) and
retrieval [11ś13].

Despite the long history of studying sequential prediction, many
fundamental questions remain:
• How much memory is necessary to accurately predict fu-
ture observations, and what properties of the underlying
sequence determine this requirement?
• Must one remember significant information about the distant
past or is a short-term memory sufficient?
• What is the computational complexity of accurate predic-
tion?
• How do answers to the above questions depend on the metric
that is used to evaluate prediction accuracy?

Aside from the intrinsic theoretical value of these questions, their
answers could serve to guide the construction of effective practi-
cal prediction systems, as well as informing the discussion of the
computational machinery of cognition and prediction/learning in
nature.

In this work, we provide insights into the first three questions.
We begin by establishing the following proposition, which addresses
the first two questions with respect to the pervasively used metric
of average prediction error:

Proposition 1. LetM be any distribution over sequences with mu-

tual information I (M) between the past observations . . . ,xt−2,xt−1
and future observations xt ,xt+1, . . .. The best ℓ-th order Markov

model, which makes predictions based only on the most recent ℓ

observations, predicts the distribution of the next observation with

average KL error I (M)/ℓ or average ℓ1 error
√

I (M)/ℓ,with respect

to the actual conditional distribution of xt given all past observations.

The łbestž ℓ-th order Markov model is the model which predicts
xt based on the previous ℓ observations, xt−ℓ , . . . ,xt−1, according
to the conditional distribution of xt given xt−ℓ , . . . ,xt−1 under the
data generating distribution. If the output alphabet is of size d ,
then this conditional distribution can be estimated with small error
given O (dℓ+1) sequences drawn from the distribution. Without
any additional assumptions on the data generating distribution
beyond the bound on the mutual information, it is necessary to
observe multiple sequences to make good predictions. This is be-
cause the distribution could be highly non-stationary, and have
different behaviors at different times, while still having small mu-
tual information. In some settings, such as the case where the data
generating distribution corresponds to observations from an HMM,
we will be able to accurately learn this łbestž Markov model from
a single sequence (see Theorem 1).

The intuition behind the statement and proof of this general
proposition is the following: at time t , we either predict accurately
and are unsurprised when xt is revealed to us; or, if we predict
poorly and are surprised by the value of xt , then xt must contain a
significant amount of information about the history of the sequence,
which can then be leveraged in our subsequent predictions of xt+1,
xt+2, etc. In this sense, every timestep in which our prediction is
‘bad’, we learn some information about the past. Because the mutual
information between the history of the sequence and the future

is bounded by I (M), if we were to make I (M) consecutive bad
predictions, we have captured nearly this amount of information
about the history, and hence going forward, as long as the window
we are using spans these observations, we should expect to predict
well.

This general proposition, framed in terms of the mutual informa-
tion of the past and future, has immediate implications for a number
of well-studied models of sequential data, such as Hidden Markov
Models (HMMs). For an HMM with n hidden states, the mutual
information of the generated sequence is trivially bounded by logn,
which yields the following corollary to the above proposition. We
state this proposition now, as it provides a helpful reference point
in our discussion of the more general proposition.

Corollary 1. Suppose observations are generated by a Hidden

Markov Model with at most n hidden states. The best
logn
ϵ -th order

Markov model, which makes predictions based only on the most recent
logn
ϵ observations, predicts the distribution of the next observation

with average KL error ≤ ϵ or ℓ1 error ≤
√
ϵ , with respect to the

optimal predictor that knows the underlying HMM and has access to

all past observations.

In the setting where the observations are generated according to
an HMMwith at most n hidden states, this łbestž ℓ-th order Markov
model is easy to learn given a single sufficiently long sequence
drawn from the HMM, and corresponds to the naive łempiricalž
ℓ-th order Markov model (i.e. (ℓ + 1)-gram model) based on the
previous observations. Specifically, this is the model that, given
xt−ℓ ,xt−ℓ+1, . . . ,xt−1,outputs the observed (empirical) distribution
of the observation that has followed this length ℓ sequence. (To
predict what comes next in the phrase ł. . . defer the details to the
ž we look at the previous occurrences of this subsequence, and

predict according to the empirical frequency of the subsequent
word.) The following theorem makes this claim precise.

Theorem 1. Suppose observations are generated by a Hidden

Markov Model with at most n hidden states, and output alphabet of

size d . For ϵ > 1/ log0.25 n there exists a window length ℓ = O (
logn
ϵ )

and absolute constant c such that for anyT ≥ dcℓ , if t ∈ {1,2, . . . ,T }
is chosen uniformly at random, then the expected ℓ1 distance between

the true distribution of xt given the entire history (and knowledge

of the HMM), and the distribution predicted by the naive łempiricalž

ℓ-th order Markov model based on x0, . . . ,xt−1, is bounded by
√
ϵ .1

The above theorem states that the window length necessary
to predict well is independent of the mixing time of the HMM
in question, and holds even if the model does not mix. While the
amount of data required to make accurate predictions using length ℓ
windows scales exponentially in ℓÐcorresponding to the condition
in the above theorem that t is chosen uniformly between 0 and
T = dO (ℓ)Ðour lower bounds, discussed in Section 1.3, argue that
this exponential dependency is unavoidable.

1Theorem 1 does not have a guarantee on the average KL loss, such a guarantee is not
possible as the KL loss as it can be unbounded, for example if there are rare characters
which have not been observed so far.
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Our computational lower bounds, described below, provide some
perspective on these computational considerations.

1.3 Lower bounds

Our positive results show that accurate prediction is possible via an
algorithmically simple modelÐa Markov model that only depends
on the most recent observationsÐwhich can be learned in an algo-
rithmically straightforward fashion by simply using the empirical
statistics of short sequences of examples, compiled over a sufficient
amount of data. Nevertheless, the Markov model has dℓ parameters,
and hence requires an amount of data that scales as Ω(dℓ ) to learn,
where d is a bound on the size of the observation alphabet. This
prompts the question of whether it is possible to learn a successful
predictor based on significantly less data.

We show that, even for the special case where the data sequence
is generated from an HMM over n hidden states, this is not possible
in general, assuming a natural complexity-theoretic assumption.
An HMM with n hidden states and an output alphabet of size d is
defined via only O (n2 + nd ) parameters and Oϵ (n

2
+ nd ) samples

are sufficient, from an information theoretic standpoint, to learn a
model that will predict accurately. While learning an HMM is com-
putationally hard (see e.g. [17]), this begs the question of whether
accurate (average) prediction can be achieved via a computationally
efficient algorithm and and an amount of data significantly less
than the dΘ(logn) that the naive Markov model would require.

Our main lower bound shows that there exists a family of HMMs
such that the dΩ(logn/ϵ ) sample complexity requirement is nec-
essary for any computationally efficient algorithm that predicts
accurately on average, assuming a natural complexity-theoretic as-
sumption. Specifically, we show that this hardness holds, provided
that the problem of strongly refuting a certain class of CSPs is hard,
which was conjectured in Feldman et al. [18] and studied in related
works Allen et al. [19] and Kothari et al. [20]. See Section 5 for a
description of this class and discussion of the conjectured hardness.

Theorem 2. Assuming the hardness of strongly refuting a certain

class of CSPs, for all sufficiently large n and any ϵ ∈ (1/nc ,0.1) for
some fixed constant c , there exists a family of HMMs with n hidden

states and an output alphabet of size d such that any algorithm that

runs in time polynomial in d , namely time f (n,ϵ ) · dд (n,ϵ ) for any
functions f ,д, and achieves average KL or ℓ1 error ϵ (with respect to

the optimal predictor) for a random HMM in the family must observe

dΩ(logn/ϵ ) observations from the HMM.

As the mutual information of the generated sequence of an HMM
with n hidden states is bounded by logn, Theorem 2 directly implies
that there are families of data-generating distributions M with
mutual information I (M) and observations drawn from an alphabet
of size d such that any computationally efficient algorithm requires
dΩ(I (M)/ϵ ) samples fromM to achieve average error ϵ . The above
bound holds when d is large compared to logn or I (M), but a
different but equally relevant regime is where the alphabet size d is
small compared to the scale of dependencies in the sequence (for
example, when predicting characters [21]). We show lower bounds
in this regime of the same flavor as those of Theorem 2 except
based on the problem of learning a noisy parity function; the (very
slightly) subexponential algorithm of Blum et al. [22] for this task

means that we lose at least a superconstant factor in the exponent
in comparison to the positive results of Proposition 1.

Proposition 2. Let f (k ) denote a lower bound on the amount of

time and samples required to learn parity with noise on uniformly

random k-bit inputs. For all sufficiently large n and ϵ ∈ (1/nc ,0.1)
for some fixed constant c , there exists a family of HMMs with n hidden

states such that any algorithm that achieves average prediction error

ϵ (with respect to the optimal predictor) for a random HMM in the

family requires at least f (Ω(logn/ϵ )) time or samples.

Finally, we also establish the information theoretic optimality of
the results of Proposition 1, in the sense that among (even com-
putationally unbounded) prediction algorithms that predict based
only on the most recent ℓ observations, an average KL prediction
error of Ω(I (M)/ℓ) and ℓ1 error Ω(

√

I (M)/ℓ) with respect to the
optimal predictor, is necessary.

Proposition 3. There is an absolute constant c < 1 such that for

all 0 < ϵ < 1/4 and sufficiently large n, there exists an HMM with

n hidden states such that it is not information-theoretically possible

to obtain average KL prediction error less than ϵ or ℓ1 error less than√
ϵ (with respect to the optimal predictor) while using only the most

recent c logn/ϵ observations to make each prediction.

1.4 Future Directions

As mentioned above, for the settings in which capturing long-range
dependencies seems essential, it is worth re-examining the choice of
łaverage prediction errorž as the metric used to train and evaluate
models. One possibility, that has a more worst-case flavor, is to
only evaluate the algorithm at a chosen set of time steps instead
of all time steps. Hence the naive Markov model can no longer do
well just by predicting well on the time steps when prediction is
easy. In the context of natural language processing, learning with
respect to such a metric intuitively corresponds to training a model
to do well with respect to, say, a question answering task instead
of a language modeling task. A fertile middle ground between
average error (which gives too much reward for correctly guessing
common words like łaž and łthež), and worst-case error might
be a re-weighted prediction error that provides more reward for
correctly guessing less common observations. It seems possible,
however, that the techniques used to prove Proposition 1 can be
extended to yield analogous statements for such error metrics.

In cases where average error is appropriate, given the upper
bounds of Proposition 1, it is natural to consider what additional
structure might be present that avoids the (conditional) computa-
tional lower bounds of Theorem 2. One possibility is a robustness
propertyÐfor example the property that a Markov model would
continue to predict well even when each observation were obscured
or corrupted with some small probability. The lower bound instance
rely on parity based constructions and hence are very sensitive to
noise and corruptions. For learning over product distributions, there
are well known connections between noise stability and approxima-
tion by low-degree polynomials [23, 24]. Additionally, low-degree
polynomials can be learned agnostically over arbitrary distribu-
tions via polynomial regression [25]. It is tempting to hope that this
thread could be made rigorous, by establishing a connection be-
tween natural notions of noise stability over arbitrary distributions,
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and accurate low-degree polynomial approximations. Such a con-
nection could lead to significantly better sample complexity require-
ments for prediction on such łrobustž distributions of sequences,
perhaps requiring only poly(d, I (M),1/ϵ ) data. Additionally, such
sample-efficient approaches to learning succinct representations
of large Markov models may inform the many practical prediction
systems that currently rely on Markov models.

1.5 Related Work

Parameter Estimation. It is interesting to compare using aMarkov
model for prediction with methods that attempt to properly learn an
underlying model. For example, method of moments algorithms [26,
27] allow one to estimate a certain class of Hidden Markov model
with polynomial sample and computational complexity. These ideas
have been extended to learning neural networks [28] and input-
output RNNs [29]. Using different methods, Arora et al. [30] showed
how to learn certain random deep neural networks. Learning the
model directly can result in better sample efficiency, and also pro-
vide insights into the structure of the data. The major drawback
of these approaches is that they usually require the true data-
generating distribution to be in (or extremely close to) the model
family that we are learning. This is a very strong assumption that
often does not hold in practice.

Universal Prediction and Information Theory. On the other
end of the spectrum is the class of no-regret online learning meth-
ods which assume that the data generating distribution can even be
adversarial [31]. However, the nature of these results are fundamen-
tally different from ours: whereas we are comparing to the perfect
model that can look at the infinite past, online learning methods
typically compare to a fixed set of experts, which is much weaker.
We note that information theoretic tools have also been employed
in the online learning literature to show near-optimality of Thomp-
son sampling with respect to a fixed set of experts in the context of
online learning with prior information [32], Proposition 1 can be
thought of as an analogous statement about the strong performance
of Markov models with respect to the optimal predictions in the
context of sequential prediction.

There is much work on sequential prediction based on KL-error
from the information theory and statistics communities. The phi-
losophy of these approaches are often more adversarial, with per-
spectives ranging from minimum description length [33, 34] and
individual sequence settings [35], where no model of the data distri-
bution process is assumed. Regarding worst case guarantees (where
there is no data generation process), and regret as the notion of
optimality, there is a line of work on bothminimax rates and the per-
formance of Bayesian algorithms, the latter of which has favorable
guarantees in a sequential setting. Regarding minimax rates, [36]
provides an exact characterization of the minimax strategy, though
the applicability of this approach is often limited to settings where
the number strategies available to the learner is relatively small (i.e.,
the normalizing constant in [36] must exist). More generally, there
has been considerable work on the regret in information-theoretic
and statistical settings, such as the works in [35, 37ś43].

Regarding log-loss more broadly, there is considerable work on
information consistency (convergence in distribution) and minimax

rates with regards to statistical estimation in parametric and non-
parametric families [44ś49]. In some of these settings, e.g. minimax
risk in parametric, i.i.d. settings, there are characterizations of the
regret in terms of mutual information [45].

There is also work on universal lossless data compression algo-
rithm, such as the celebrated Lempel-Ziv algorithm [50]. Here, the
setting is rather different as it is one of coding the entire sequence
(in a block setting) rather than prediction loss.

Sequential Prediction in Practice. Our work was initiated by
the desire to understand the role of memory in sequential prediction,
and the belief that modeling long-range dependencies is important
for complex tasks such as understanding natural language. There
have been many proposed models with explicit notions of memory,
including recurrent neural networks [51], Long Short-Term Mem-
ory (LSTM) networks[2, 3], attention-based models [7, 8], neural
Turing machines [4], memory networks [5], differentiable neural
computers [6], etc. While some of these models often fail to capture
long range dependencies (for example, in the case of LSTMs, it is
not difficult to show that they forget the past exponentially quickly
if they are łstablež [1]), the empirical performance in some settings
is quite promising (see, e.g. [9, 10]).

2 PROOF SKETCH OF THEOREM 1

We provide a sketch of the proof of Theorem 1, which gives stronger
guarantees than Proposition 1 but only applies to sequences gener-
ated from an HMM. The core of this proof is the following lemma
that guarantees that the Markov model that knows the true mar-
ginal probabilities of all short sequences, will end up predicting
well. Additionally, the bound on the expected prediction error will
hold in expectation over only the randomness of the HMM during
the short window, and with high probability over the randomness
of when the window begins (our more general results hold in ex-
pectation over the randomness of when the window begins). For
settings such as financial forecasting, this additional guarantee is
particularly pertinent; you do not need to worry about the possibil-
ity of choosing an łunluckyž time to begin your trading regime, as
long as you plan to trade for a duration that spans an entire short
window. Beyond the extra strength of this result for HMMs, the
proof approach is intuitive and pleasing, in comparison to the more
direct information-theoretic proof of Proposition 1. We first state
the lemma and sketch its proof, and then conclude the section by
describing how this yields Theorem 1.

Lemma 4. Consider an HMM with n hidden states, let the hidden

state at time s = 0 be chosen according to an arbitrary distribution

π , and denote the observation at time s by xs . Let OPTs denote the

conditional distribution of xs given observations x0, . . . ,xs−1, and
knowledge of the hidden state at time s = 0. LetMs denote the condi-

tional distribution of xs given only x0, . . . ,xs−1,which corresponds

to the naive s-th order Markov model that knows only the joint prob-

abilities of sequences of the first s observations. Then with probability

at least 1 − 1/nc−1 over the choice of initial state, for ℓ = c logn/ϵ2,
c ≥ 1 and ϵ ≥ 1/ log0.25 n,

E

[ ℓ−1
∑

s=0

∥OPTs −Ms ∥1
]

≤ 4ϵℓ,
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where the expectation is with respect to the randomness in the outputs

x0, . . . ,xℓ−1.
The proof of the this lemma will hinge on establishing a con-

nection between OPTsÐthe Bayes optimal model that knows the
HMM and the initial hidden state h0, and at time s predicts the
true distribution of xs given h0,x0, . . . ,xs−1Ðand the naive order s
Markov modelMs that knows the joint probabilities of sequences
of s observations (given that the initial state is drawn according
to π ), and predicts accordingly. This latter model is precisely the
same as the model that knows the HMM and distribution π (but
not h0), and outputs the conditional distribution of xs given the
observations.

To relate these two models, we proceed via a martingale ar-
gument that leverages the intuition that, at each time step either
OPTs ≈ Ms , or, if they differ significantly, we expect the sth obser-
vation xs to contain a significant amount of information about the
hidden state at time zero, h0, which will then improveMs+1. Our
submartingale will precisely capture the sense that for any s where
there is a significant deviation betweenOPTs andMs , we expect the
probability of the initial state being h0 conditioned on x0, . . . ,xs ,
to be significantly more than the probability of h0 conditioned on
x0, . . . ,xs−1.

More formally, let H s
0 denote the distribution of the hidden state

at time 0 conditioned on x0, . . . ,xs and let h0 denote the true hid-
den state at time 0. Let H s

0 (h0) be the probability of h0 under the
distribution H s

0 . We show that the following expression is a sub-
martingale:

log

(

H s
0 (h0)

1 − H s
0 (h0)

)

− 1

2

s
∑

i=0

∥OPTi −Mi ∥21 .

The fact that this is a submartingale is not difficult: Define Rs as
the conditional distribution of xs given observations x0, · · · ,xs−1
and initial state drawn according to π but not being at hidden state
h0 at time 0. Note thatMs is a convex combination ofOPTs and Rs ,
hence ∥OPTs −Ms ∥1 ≤ ∥OPTs − Rs ∥1. To verify the submartin-
gale property, note that by Bayes Rule, the change in the LHS at any
time step s is the log of the ratio of the probability of observing the
output xs according to the distributionOPTs and the probability of
xs according to the distribution Rs . The expectation of this is the
KL-divergence between OPTs and Rs , which can be related to the
ℓ1 error using Pinsker’s inequality.

At a high level, the proof will then proceed via concentration
bounds (Azuma’s inequality), to show that, with high probability,
if the error from the first ℓ = c logn/ϵ2 timesteps is large, then

log
(

H ℓ−1
0 (h0 )

1−H ℓ−1
0 (h0 )

)

is also likely to be large, inwhich case the posterior

distribution of the hidden state, H ℓ−1
0 will be sharply peaked at the

true hidden state, h0, unless h0 had negligible mass (less than n−c )
in distribution π .

There are several slight complications to this approach, including
the fact that the submartingale we construct does not necessarily
have nicely concentrated or bounded differences, as the first term
in the submartingale could change arbitrarily. We address this by
noting that the first term should not decrease too much except with
tiny probability, as this corresponds to the posterior probability
of the true hidden state sharply dropping. For the other direction,

we can simply łclipž the deviations to prevent them from exceed-
ing logn in any timestep, and then show that the submartingale
property continues to hold despite this clipping by proving the
following modified version of Pinsker’s inequality:

Lemma 1. (Modified Pinsker’s inequality) For any two distributions

µ (x ) and ν (x ) defined on x ∈ X , define theC-truncated KL divergence

as D̃C (µ ∥ ν ) = Eµ
[

log
(

min
{

µ (x )
ν (x )
,C

})]

for some fixedC such that

logC ≥ 8. Then D̃C (µ ∥ ν ) ≥ 1
2 ∥µ − ν ∥

2
1 .

Given Lemma 4, the proof of Theorem 1 follows relatively easily.
Recall that Theorem 1 concerns the expected prediction error at
a timestep t ← {0,1, . . . ,dcℓ }, based on the model Memp corre-
sponding to the empirical distribution of length ℓ windows that
have occurred in x0, . . . ,xt ,. The connection between the lemma
and theorem is established by showing that, with high probability,
Memp is close toMπ̂ ,where π̂ denotes the empirical distribution
of (unobserved) hidden states h0, . . . ,ht , and Mπ̂ is the distribu-
tion corresponding to drawing the hidden state h0 ← π̂ and then
generating x0,x1, . . . ,xℓ .We provide the full proof in Appendix 8.

3 DEFINITIONS AND NOTATION

Before proving our general Proposition 1, we first introduce the
necessary notation. For any random variable X , we denote its dis-
tribution as Pr (X ). The mutual information between two random
variables X and Y is defined as I (X ;Y ) = H (Y ) − H (Y |X ) where
H (Y ) is the entropy of Y and H (Y |X ) is the conditional entropy of
Y givenX . The conditional mutual information I (X ;Y |Z ) is defined
as:

I (X ;Y |Z ) = H (X |Z ) − H (X |Y ,Z ) = Ex,y,z log
Pr (X |Y ,Z )
Pr (X |Z )

= Ey,zDKL (Pr (X |Y ,Z ) ∥ Pr (X |Z )),

where DKL (p ∥ q) =
∑

x p (x ) log
p (x )
q (x )

is the KL divergence be-

tween the distributions p and q. Note that we are slightly abus-
ing notation here as DKL (Pr (X |Y ,Z ) ∥ Pr (X |Z )) should techni-
cally be DKL (Pr (X |Y = y,Z = z) ∥ Pr (X |Z = z)). But we will ig-
nore the assignment in the conditioning when it is clear from
the context. Mutual information obeys the following chain rule:
I (X1,X2;Y ) = I (X1;Y ) + I (X2;Y |X1).

Given a distribution over infinite sequences, {xt } generated by
some modelM where xt is a random variable denoting the output

at time t , we will use the shorthand x
j
i to denote the collection

of random variables for the subsequence of outputs {xi , · · · ,x j }.
The distribution of {xt } is stationary if the joint distribution of any
subset of the sequence of random variables {xt } is invariant with
respect to shifts in the time index. Hence Pr (xi1 ,xi2 , · · · ,xin ) =
Pr (xi1+l ,xi2+l , · · · ,xin+l ) for any l if the process is stationary.

We are interested in studying how well the output xt can be
predicted by an algorithm which only looks at the past ℓ outputs.
The predictorAℓ maps a sequence of ℓ observations to a predicted
distribution of the next observation. We denote the predictive dis-
tribution of Aℓ at time t as QAℓ

(xt |xt−1t−ℓ ). We refer to the Bayes
optimal predictor using only windows of length ℓ as Pℓ , hence the
prediction of Pℓ at time t is Pr (xt |xt−1t−ℓ ). Note that Pℓ is just the
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naive ℓ-th order Markov predictor provided with the true distribu-
tion of the data. We denote the Bayes optimal predictor that has
access to the entire history of the model as P∞, the prediction of
P∞ at time t is Pr (xt |xt−1−∞ ). We will evaluate average performance
of the predictions of Aℓ and Pℓ with respect to P∞ over a long
time window [0 : T − 1].

The crucial property of the distribution that is relevant to our
results is the mutual information between past and future observa-
tions. For a stochastic process {xt } generated by some modelM
we define the mutual information I (M) of the modelM as the
mutual information between the past and future, averaged over the
window [0 : T − 1],

I (M) = lim
T→∞

1

T

T−1
∑

t=0

I (xt−1−∞ ;x∞t ). (3.1)

If the process {xt } is stationary, then I (xt−1−∞ ;x∞t ) is the same for
all time steps hence I (M) = I (x−1−∞;x

∞
0 ). If the average does not

converge and hence the limit in (3.1) does not exist, then we can
define I (M,[0 : T − 1]) as the mutual information for the win-
dow [0 : T − 1], and the results hold true with I (M) replaced by
I (M,[0 : T − 1]).

We now define the metrics we consider to compare the pre-
dictions of Pℓ and Aℓ with respect to P∞. Let F (P ,Q ) be some
measure of distance between two predictive distributions. In this
work, we consider the KL-divergence, ℓ1 distance and the relative
zero-one loss between the two distributions. The KL-divergence and
ℓ1 distance between two distributions are defined in the standard
way. We define the relative zero-one loss as the difference between
the zero-one loss of the optimal predictor P∞ and the algorithm
Aℓ . We define the expected loss of any predictor Aℓ with respect
to the optimal predictor P∞ and a loss function F as follows:

δ
(t )
F

(Aℓ ) = Ex t−1−∞

[

F (Pr (xt |xt−1−∞ ),QAℓ
(xt |xt−1t−ℓ ))

]

,

δF (Aℓ ) = lim
T→∞

1

T

T−1
∑

t=0

δ
(t )
F

(Aℓ ).

We also define δ̂ (t )
F

(Aℓ ) and δ̂F (Aℓ ) for the algorithm Aℓ in the

same fashion as the error in estimating P (xt |xt−1t−ℓ ), the true condi-
tional distribution of the modelM.

δ̂
(t )
F

(Aℓ ) = Ex t−1
t−ℓ

[

F (Pr (xt |xt−1t−ℓ ),QAℓ
(xt |xt−1t−ℓ ))

]

,

δ̂F (Aℓ ) = lim
T→∞

1

T

T−1
∑

t=0

δ̂
(t )
F

(Aℓ ).

4 PREDICTINGWELL WITH SHORT

WINDOWS

To establish our general proposition, which applies beyond the
HMM setting, we provide an elementary and purely information
theoretic proof.

Proposition 1. For any data-generating distributionM with mu-

tual information I (M) between past and future observations, the best

ℓ-th order Markov model Pℓ obtains average KL-error, δKL (Pℓ ) ≤
I (M)/ℓ with respect to the optimal predictor with access to the infi-

nite history. Also, any predictor Aℓ with δ̂KL (Aℓ ) average KL-error

in estimating the joint probabilities over windows of length ℓ gets

average error δKL (Aℓ ) ≤ I (M)/ℓ + δ̂KL (Aℓ ).

Proof. We bound the expected error by splitting the time inter-
val 0 to T − 1 into blocks of length ℓ. Consider any block starting
at time τ . We find the average error of the predictor from time τ to
τ + ℓ − 1 and then average across all blocks.

To begin, note that we can decompose the error as the sum of the
error due to not knowing the past history beyond the most recent ℓ
observations and the error in estimating the true joint distribution
of the data over a ℓ length block. Consider any time t . Recall the

definition of δ (t )
KL

(Aℓ ),

δ
(t )
KL

(Aℓ ) = Ex t−1−∞

[

DKL (Pr (xt |xt−1−∞ ) ∥ QAℓ
(xt |xt−1t−ℓ ))

]

= Ex t−1−∞

[

DKL (Pr (xt |xt−1−∞ ) ∥ Pr (xt |xt−1t−ℓ ))
]

+ Ex t−1−∞

[

DKL (Pr (xt |xt−1t−ℓ ) ∥ QAℓ
(xt |xt−1t−ℓ ))

]

= δ
(t )
KL

(Pℓ ) + δ̂
(t )
KL

(Aℓ ).

Therefore, δKL (Aℓ ) = δKL (Pℓ ) + δ̂KL (Aℓ ). It is easy to verify

that δ (t )
KL

(Pℓ ) = I (xt−ℓ−1−∞ ;xt |xt−1t−ℓ ). This relation formalizes the
intuition that the current output (xt ) has significant extra informa-
tion about the past (xt−ℓ−1−∞ ) if we cannot predict it as well using
the ℓ most recent observations (xt−1

t−ℓ ), as can be done by using the

entire past (xt−1−∞ ). We will now upper bound the total error for the
window [τ ,τ + ℓ − 1]. We expand I (xτ−1−∞ ;x∞τ ) using the chain rule,

I (xτ−1−∞ ;x∞τ ) =

∞
∑

t=τ

I (xτ−1−∞ ;xt |xt−1τ ) ≥
τ+ℓ−1
∑

t=τ

I (xτ−1−∞ ;xt |xt−1τ ).

Note that I (xτ−1−∞ ;xt |xt−1τ ) ≥ I (xt−ℓ−1−∞ ;xt |xt−1t−ℓ ) = δ
(t )
KL

(Pℓ ) as
t − ℓ ≤ τ and I (X ,Y ;Z ) ≥ I (X ;Z |Y ). The proposition now fol-
lows from averaging the error across the ℓ time steps and using Eq.
3.1 to average over all blocks of length ℓ in the window [0,T − 1],

1

ℓ

τ+ℓ−1
∑

t=τ

δ
(t )
KL

(Pℓ ) ≤
1

ℓ
I (xτ−1−∞ ;x∞τ ) =⇒ δKL (Pℓ ) ≤

I (M)

ℓ
.

□

Note that Proposition 1 also directly gives guarantees for the
scenario where the task is to predict the distribution of the next
block of outputs instead of just the next immediate output, because
KL-divergence obeys the chain rule.

The following easy corollary, relating KL error to ℓ1 error yields
the following statement, which also trivially applies to zero/one
loss with respect to that of the optimal predictor, as the expected
relative zero/one loss at any time step is at most the ℓ1 loss at that
time step.

Corollary 2. For any data-generating distributionM with mu-

tual information I (M) between past and future observations, the

best ℓ-th order Markov model Pℓ obtains average ℓ1-error δℓ1 (Pℓ ) ≤
√

I (M)/2ℓ with respect to the optimal predictor that has access to

the infinite history. Also, any predictor Aℓ with δ̂ℓ1 (Aℓ ) average

ℓ1-error in estimating the joint probabilities gets average prediction

error δℓ1 (Aℓ ) ≤
√

I (M)/2ℓ + δ̂ℓ1 (Aℓ ).
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Proof. We again decompose the error as the sum of the error
in estimating P̂ and the error due to not knowing the past history
using the triangle inequality.

δ
(t )
ℓ1

(Aℓ ) = Ex t−1−∞

[

∥Pr (xt |xt−1−∞ ) −QAℓ
(xt |xt−1t−ℓ )∥1

]

≤ Ex t−1−∞
[

∥Pr (xt |xt−1−∞ ) − Pr (xt |xt−1t−ℓ )∥1
]

+ Ex t−1−∞

[

∥Pr (xt |xt−1t−ℓ ) −QAℓ
(xt |xt−1t−ℓ )∥1

]

= δ
(t )
ℓ1

(Pℓ ) + δ̂
(t )
ℓ1

(Aℓ )

Therefore, δℓ1 (Aℓ ) ≤ δℓ1 (Pℓ ) + δ̂ℓ1 (Aℓ ). By Pinsker’s inequality

and Jensen’s inequality, δ (t )
ℓ1

(Aℓ )
2 ≤ δ

(t )
KL

(Aℓ )/2. Using Proposi-
tion 1,

δKL (Aℓ ) =
1

T

T−1
∑

t=0

δ
(t )
KL

(Aℓ ) ≤
I (M)

ℓ

Therefore, using Jensen’s inequality again, δℓ1 (Aℓ ) ≤
√

I (M)/2ℓ.
□

5 LOWER BOUND FOR LARGE ALPHABETS

Our lower bounds for the sample complexity in the large alphabet
case leverage a class of Constraint Satisfaction Problems (CSPs)
with high complexity. A class of (Boolean) k-CSPs is defined via a
predicateÐa function P : {0,1}k → {0,1}. An instance of such a
k-CSP on n variables {x1, · · · ,xn } is a collection of sets (clauses) of
size k whose k elements consist of k variables or their negations.
Such an instance is satisfiable if there exists an assignment to the
variablesx1, . . . ,xn such that the predicate P evaluates to 1 for every
clause. More generally, the value of an instance is the maximum,
over all 2n assignments, of the ratio of number of satisfied clauses
to the total number of clauses.

Our lower bounds are based on the presumed hardness of distin-
guishing random instances of a certain class of CSP, versus instances
of the CSP with high value. There has been much work attempting
to characterize the difficulty of CSPsÐone notion which we will
leverage is the complexity of a class of CSPs, first defined in Feldman
et al. [18] and studied in Allen et al. [19] and Kothari et al. [20]:

Definition 1. The complexity of a class of k-CSPs defined by pred-
icate P : {0,1}k → {0,1} is the largest r such that there exists
a distribution supported on the support of P that is (r − 1)-wise
independent (i.e. łuniformž), and no such r -wise independent dis-
tribution exists.

Example 1. Both k-XOR and k-SAT are well-studied classes of
k-CSPs, corresponding, respectively, to the predicates PXOR that
is the XOR of the k Boolean inputs, and PSAT that is the OR of
the inputs. These predicates both support (k − 1)-wise uniform
distributions, but not k-wise uniform distributions, hence their
complexity is k . In the case of k-XOR, the uniform distribution over
{0,1}k restricted to the support of PXOR is (k − 1)-wise uniform.
The same distribution is also supported by k-SAT.

A random instance of a CSP with predicate P is an instance such
that all the clauses are chosen uniformly at random (by selecting the
k variables uniformly, and independently negating each variable

with probability 1/2). A random instance will have value close
to E[P], where E[P] is the expectation of P under the uniform
distribution. In contrast, a planted instance is generated by first
fixing a satisfying assignment σ and then sampling clauses that
are satisfied, by uniformly choosing k variables, and picking their
negations according to a (r − 1)-wise independent distribution
associated with the predicate. Hence a planted instance always
has value 1. A noisy planted instance with planted assignment σ
and noise level η is generated by sampling consistent clauses (as
above) with probability 1−η and random clauses with probability η,
hence with high probability it has value close to 1 − η + ηE[P]. Our
hardness results are based on distinguishingwhether a CSP instance
is random versus has a high value (value close to 1 − η + ηE[P]).

As one would expect, the difficulty of distinguishing random
instances from noisy planted instances, decreases as the number
of sampled clauses grows. The following conjecture of Feldman
et al. [18] asserts a sharp boundary on the number of clauses, below
which this problem becomes computationally intractable, while
remaining information theoretically easy.

Conjectured CSP Hardness [Conjecture 1] [18]: Let Q be any

distribution over k-clauses and n variables of complexity r and 0 <

η < 1. Any polynomial-time (randomized) algorithm that, given ac-

cess to a distributionD that equals either the uniform distribution over

k-clausesUk or a (noisy) planted distributionQ
η
σ = (1−η)Qσ +ηUk

for some σ ∈ {0,1}n and planted distribution Qσ , decides correctly

whether D = Q
η
σ or D = Uk with probability at least 2/3 needs

Ω̃(nr /2) clauses.

Feldman et al. [18] proved the conjecture for the class of sta-
tistical algorithms.4 Recently, Kothari et al. [20] showed that the
natural Sum-of-Squares (SOS) approach requires Ω̃(nr /2) clauses to
refute random instances of a CSP with complexity r , hence proving
Conjecture 1 for any polynomial-size semidefinite programming
relaxation for refutation. Note that Ω̃(nr /2) is tight, as Allen et al.
[19] give a SOS algorithm for refuting random CSPs beyond this
regime. Other recent papers such as Daniely and Shalev-Shwartz
[53] and Daniely [54] have also used presumed hardness of strongly
refuting random k-SAT and random k-XOR instances with a small
number of clauses to derive conditional hardness for various learn-
ing problems.

A first attempt to encode a k-CSP as a sequential model is to
construct a model which outputs k randomly chosen literals for
the first k time steps 0 to k − 1, and then their (noisy) predicate
value for the final time step k . Clauses from the CSP correspond to
samples from the model, and the algorithm would need to solve the
CSP to predict the final time step k . However, as all the outputs up
to the final time step are random, the trivial prediction algorithm
that guesses randomly and does not try to predict the output at
time k , would be near optimal. To get strong lower bounds, we will

4Statistical algorithms are an extension of the statistical query model. These are
algorithms that do not directly access samples from the distribution but instead have
access to estimates of the expectation of any bounded function of a sample, through a
łstatistical oraclež. Feldman et al. [52] point out that almost all algorithms that work
on random data also work with this limited access to samples, refer to Feldman et al.
[52] for more details and examples.
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outputm > 1 functions of the k literals after k time steps, while still
ensuring that all the functions remain collectively hard to invert
without a large number of samples.

We use elementary results from the theory of error correcting
codes to achieve this, and prove hardness due to a reduction from a
specific family of CSPs to which Conjecture 1 applies. By choosing
k andm carefully, we obtain the near-optimal dependence on the
mutual information and error ϵÐmatching the upper bounds im-
plied by Proposition 1. We provide a short outline of the argument,
followed by the detailed proof in the appendix.

5.1 Sketch of Lower Bound Construction

We construct a sequential modelM such that making good pre-
dictions on the model requires distinguishing random instances of
a k-CSP C on n variables from instances of C with a high value.
The output alphabet ofM is {ai } of size 2n. We choose a mapping
from the 2n characters {ai } to the n variables {xi } and their n nega-
tions {x̄i }. For any clause C and planted assignment σ to the CSP
C, let σ (C ) be the k-bit string of values assigned by σ to literals
in C . The modelM will output k characters from time 0 to k − 1
chosen uniformly at random, which correspond to literals in the
CSP C; hence the k outputs correspond to a clause C of the CSP.
For somem (to be specified later) we will construct a binary matrix
A ∈ {0,1}m×k ,which will correspond to a good error-correcting
code. For the time steps k to k +m − 1, with probability 1 − η the
model outputs y ∈ {0,1}m where y = Av mod 2 and v = σ (C )

with C being the clause associated with the outputs of the first k
time steps. With the remaining probability, η, the model outputsm
uniformly random bits. Note that the mutual information I (M) is at
mostm as only the outputs from time k to k+m−1 can be predicted.

We claim thatM can be simulated by an HMM with 2m (2k +
m) +m hidden states. This can be done as follows. For every time
step from 0 to k − 1 there will be 2m+1 hidden states, for a total
of k2m+1 hidden states. Each of these hidden states has two labels:
the current value of them bits of y, and an łoutput labelž of 0 or 1
corresponding to the output at that time step having an assignment
of 0 or 1 under the planted assignment σ . The output distribution
for each of these hidden states is either of the following: if the state
has an łoutput labelž 0 then it is uniform over all the characters
which have an assignment of 0 under the planted assignment σ ,
similarly if the state has an łoutput labelž 1 then it is uniform over
all the characters which have an assignment of 1 under the planted
assignment σ . Note that the transition matrix for the first k time
steps simply connects a state h1 at the (i − 1)th time step to a state
h2 at the ith time step if the value of y corresponding to h1 should
be updated to the value of y corresponding to h2 if the output at
the ith time step corresponds to the łoutput labelž of h2. For the
time steps k through (k +m − 1), there are 2m hidden states for
each time step, each corresponding to a particular choice of y. The
output of an hidden state corresponding to the (k + i )th time step
with a particular label y is simply the ith bit of y. Finally, we need
an additional m hidden states to output m uniform random bits
from time k to (k +m − 1) with probability η. This accounts for a
total of k2m+1 +m2m +m hidden states. After k +m time steps the
HMM transitions back to one of the starting states at time 0 and

repeats. Note that the largerm is with respect to k , the higher the
cost (in terms of average prediction error) of failing to correctly
predict the outputs from time k to (k +m − 1). Tuning k and m

allows us to control the number of hidden states and average error
incurred by a computationally constrained predictor.

We define the CSP C in terms of a collection of predicates P (y)
for each y ∈ {0,1}m . While Conjecture 1 does not directly apply to
C, as it is defined by a collection of predicates instead of a single one,
we will later show a reduction from a related CSP C0 defined by a
single predicate for which Conjecture 1 holds. For each y, the predi-
cate P (y) of C is the set of v ∈ {0,1}k which satisfy y = Av mod 2.
Hence each clause has an additional label y which determines the
satisfying assignments, and this label is just the output of our se-
quential modelM from time k to k +m − 1. Hence for any planted
assignment σ , the set of satisfying clauses C of the CSP C are all
clauses such that Av = y mod 2 where y is the label of the clause
and v = σ (C ). We define a (noisy) planted distribution over clauses
Q
η
σ by first uniformly randomly sampling a label y, and then sam-

pling a consistent clause with probability (1 − η), otherwise with
probability η we sample a uniformly random clause. LetUk be the
uniform distribution over all k-clauses with uniformly chosen la-
bels y. We will show that Conjecture 1 implies that distinguishing
between the distributions Q

η
σ and Uk is hard without sufficiently

many clauses. This gives us the hardness results we desire for our
sequential modelM: if an algorithm obtains low prediction error
on the outputs from time k through (k +m − 1), then it can be used
to distinguish between instances of the CSP C with a high value
and random instances, as no algorithm obtains low prediction error
on random instances. Hence hardness of strongly refuting the CSP
C implies hardness of making good predictions onM.

We now sketch the argument for why Conjecture 1 implies the
hardness of strongly refuting the CSP C. We define another CSP
C0 which we show reduces to C. The predicate P of the CSP C0
is the set of all v ∈ {0,1}k such that Av = 0 mod 2. Hence for
any planted assignment σ , the set of satisfying clauses of the CSP
C0 are all clauses such that v = σ (C ) is in the nullspace of A.
As before, the planted distribution over clauses is uniform on all
satisfying clauses with probability (1 − η), with probability η we
add a uniformly random k-clause. For some γ ≥ 1/10, if we can
construct A such that the set of satisfying assignments v (which are
the vectors in the nullspace of A) supports a (γk − 1)-wise uniform
distribution, then by Conjecture 1 any polynomial time algorithm
cannot distinguish between the planted distribution and uniformly
randomly chosen clauses with less than Ω̃(nγk/2) clauses. We show
that choosing a matrixA whose null space is (γk − 1)-wise uniform
corresponds to finding a binary linear code with rate at least 1/2
and relative distance γ , the existence of which is guaranteed by the
Gilbert-Varshamov bound.

We next sketch the reduction from C0 to C. The key idea is that
the CSPs C0 and C are defined by linear equations. If a clause C =
(x1,x2, · · · ,xk ) in C0 is satisfied with some assignment t ∈ {0,1}k
to the variables in the clause then At = 0 mod 2. Therefore, for
some w ∈ {0,1}k such that Aw = y mod 2, t +w mod 2 satisfies
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A(t +w) = y mod 2. A clause C ′ = (x ′1,x
′
2, · · · ,x

′
k
) with assign-

ment t +w mod 2 to the variables can be obtained from the clause
C by switching the literal x ′i = x̄i if wi = 1 and retaining x ′i = xi if
wi = 0. Hence for any label y, we can efficiently convert a clauseC
in C0 to a clause C ′ in C which has the desired label y and is only
satisfied with a particular assignment to the variables if C in C0 is
satisfied with the same assignment to the variables. It is also not
hard to ensure that we uniformly sample the consistent clause C ′

in C if the original clause C was a uniformly sampled consistent
clause in C0.

We provide a small example to illustrate the sequential model
constructed above. Let k = 3,m = 1 and n = 3. Let A ∈ {0,1}1×3.
The output alphabet of the model M is {ai ,1 ≤ i ≤ 6}. The
letter a1 maps to the variable x1, a2 maps to x̄1, similarly a3 →
x2,a4 → x̄2,a5 → x3,a6 → x̄3. Let σ be some planted assignment
to {x1,x2,x3}, which defines a particular modelM. If the output
of the modelM is a1,a3,a6 for the first three time steps, then this
corresponds to the clause with literals, (x1,x2, x̄3). For the final time
step, with probability (1 − η) the model outputs y = Av mod 2,
with v = σ (C ) for the clause C = (x1,x2, x̄3) and planted assign-
ment σ , and with probability η it outputs a uniform random bit.
For an algorithm to make a good prediction at the final time step,
it needs to be able to distinguish if the output at the final time step
is always a random bit or if it is dependent on the clause, hence
it needs to distinguish random instances of the CSP from planted
instances.

6 LOWER BOUND FOR SMALL ALPHABETS

Our lower bounds for the sample complexity in the binary alphabet
case are based on the average case hardness of the decision version
of the parity with noise problem, and the reduction is straightfor-
ward.

In the parity with noise problem on n bit inputs we are given
examples v ∈ {0,1}n drawn uniformly from {0,1}n along with their
noisy labels ⟨s,v⟩ + ϵ mod 2 where s ∈ {0,1}n is the (unknown)
support of the parity function, and ϵ ∈ {0,1} is the classification
noise such that Pr [ϵ = 1] = η where η < 0.05 is the noise level.

LetQ
η
s be the distribution over examples of the parity with noise

instance with s as the support of the parity function and η as the
noise level. Let Un be the distribution over examples and labels
where each label is chosen uniformly from {0,1} independent of the
example. The strength of of our lower bounds depends on the level
of hardness of parity with noise. Currently, the fastest algorithm
for the problem due to Blum et al. [22] runs in time and samples
2n/ logn . We define the function f (n) as followsś

Definition 2. Define f (n) to be the function such that for a
uniformly random support s ∈ {0,1}n , with probability at least
(1−1/n2) over the choice of s, any (randomized) algorithm that can
distinguish between Q

η
s and Un with success probability greater

than 2/3 over the randomness of the examples and the algorithm,
requires f (n) time or samples.

Our model will be the natural sequential version of the par-
ity with noise problem, where each example is coupled with sev-
eral parity bits. We denote the model asM (Am×n ) for some A ∈
{0,1}m×n ,m ≤ n/2. From time 0 through (n − 1) the outputs of the
model are i.i.d. and uniform on {0,1}. Let v ∈ {0,1}n be the vector
of outputs from time 0 to (n − 1). The outputs for the nextm time
steps are given by y = Av + ϵ mod 2, where ϵ ∈ {0,1}m is the
random noise and each entry ϵi of ϵ is an i.i.d random variable such
that Pr [ϵi = 1] = η, where η is the noise level. Note that if A is
full row-rank, and v is chosen uniformly at random from {0,1}n ,
the distribution of y is uniform on {0,1}m . Also I (M (A)) ≤ m as
at most the binary bits from time n to n +m − 1 can be predicted
using the past inputs. As for the large alphabet case,M (Am×n )
can be simulated by an HMM with 2m (2n +m) +m hidden states
(see Section 5.1).

We define a set of Amatrices, which specifies a family of sequen-
tial models. LetS be the set of all (m×n) matricesA such that theA
is full row rank. We need this restriction as otherwise the bits of the
output y will be dependent. We denote R as the family of models
M (A) for A ∈ S. Lemma 2 shows that with high probability over
the choice of A, distinguishing outputs from the modelM (A) from
random examplesUn requires f (n) time or examples.

Lemma 2. Let A be chosen uniformly at random from the set S.
Then, with probability at least (1 − 1/n) over the choice A ∈ S,
any (randomized) algorithm that can distinguish the outputs from

the model M (A) from the distribution over random examples Un
with success probability greater than 2/3 over the randomness of the

examples and the algorithm needs f (n) time or examples.

The proof of Proposition 2 follows from Lemma 2 and is similar
to the proof for the large alphabet case.

7 INFORMATION THEORETIC LOWER

BOUNDS

We show that information theoretically, windows of length cI (M)/ϵ2

are necessary to get expected relative zero-one loss less than ϵ . As
the expected relative zero-one loss is at most the ℓ1 loss, which can
be bounded by the square of the KL-divergence, this automatically
implies that our window length requirement is also tight for ℓ1 loss
and KL loss. In fact, it’s very easy to show the tightness for the KL
loss: choose the simple model which emits uniform random bits
from time 0 to n−1 and repeats the bits from time 0 tom−1 for time
n through n +m − 1. One can then choose n,m to get the desired
error ϵ and mutual information I (M). To get a lower bound for the
zero-one loss we use the probabilistic method to argue that there
exists an HMM such that long windows are required to perform
optimally with respect to the zero-one loss for that HMM. We now
state the lower bound and sketch the proof idea.

Proposition 3. There is an absolute constant c such that for all

0 < ϵ < 0.5 and sufficiently largen, there exists an HMMwithn states

such that it is not information theoretically possible to get average

relative zero-one loss or ℓ1 loss less than ϵ using windows of length

smaller than c logn/ϵ2, and KL loss less than ϵ using windows of

length smaller than c logn/ϵ .
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Now consider the predictor P̂t which for 0 ≤ s ≤ ℓ − 1 predicts
xt+s given xt , . . . ,xt+s−1 according to the empirical distribution of
xt+s given xt , . . . ,xt+s−1, based on the observations up to time t .
Wewill now argue that the predictions of P̂t are close in expectation
to the predictions of Pt . Recall that prediction of Pt at time t + s
is the true distribution of xt under the HMM, conditioned on the
observations xt , . . . ,xt+s−1 and the distribution of the hidden state
at time t being drawn from πt . For any s < ℓ, let P1 refer to the
prediction of P̂t at time t + s and P2 refer to the prediction of Pt
at time t + s . We will show that ∥P1 − P2∥1 is small in expectation
over t .

We do this using a martingale concentration argument. Consider
any string r of length s . Let Q1 (r ) be the empirical probability of
the string r up to time t and Q2 (r ) be the true probability of the
string r given that the hidden state at time t is distributed as πt .
Our aim is to show that |Q1 (r ) −Q2 (r ) | is small. Define the random
variable

Yτ = Pr [[xτ : xτ+s−1] = r |hτ ] − I ([xτ : xτ+s−1] = r ),

where I denotes the indicator function and Y0 is defined to be 0. We
claim thatZτ =

∑τ
i=0 Yi is a martingale with respect to the filtration

{ϕ}, {h1}, {h2,x1}, {h3,x2}, . . . , {ht+1,xt }. To verify, note that,

E[Yτ |{h1}, {h2,x1}, . . . , {hτ ,xτ−1}] = Pr [[xτ : xτ+s−1] = r |hτ ]
− E[I ([xτ : xτ+s−1] = r ) |{h1}, {h2,x1}, . . . , {xτ−1,hτ }]
= Pr [[xτ : xτ+s−1] = r |hτ ] − E[I ([xτ : xτ+s−1] = r ) |hτ ] = 0.

Therefore E[Zτ |{h1}, {h2,x1}, . . . , {hτ ,xτ−1}] = Zτ−1, and hence
Zτ is a martingale. Also, note that |Zτ − Zτ−1 | ≤ 1 as 0 ≤ Pr [[xτ :

xτ+s−1] = r |hτ ] ≤ 1 and 0 ≤ I ([xτ : xτ+s−1] = r ) ≤ 1. Hence
using Azuma’s inequality (Lemma 8),

Pr [|Zt−s | ≥ K] ≤ 2e−K
2/(2t ) .

Note that Zt−s/(t − s ) = Q2 (r ) −Q1 (r ). By Azuma’s inequality and
doing a union bound over all ds ≤ dℓ strings r of length s , for c ≥ 4

and t ≥ T /n2 = dcℓ/n2 ≥ dcℓ/2, we have ∥Q1 −Q2∥1 ≤ 1/dcℓ/20

with failure probability at most 2dℓe−
√
t/2 ≤ 1/n2. Similarly, for

all strings of length s + 1, the estimated probability of the string
has error at most 1/dcℓ/20 with failure probability 1/n2. As the
conditional distribution of xt+s given observations xt , . . . ,xt+s−1
is the ratio of the joint distributions of {xt , . . . ,xt+s−1,xt+s } and
{xt , . . . ,xt+s−1}, therefore as long as the empirical distributions
of the length s and length s + 1 strings are estimated with error
at most 1/dcℓ/20 and the string {xt , . . . ,xt+s−1} has probability
at least 1/dcℓ/40, the conditional distributions P1 and P2 satisfy
∥P1 − P2∥1 ≤ 1/n2. By a union bound over all ds ≤ dℓ strings
and for c ≥ 100, the total probability mass on strings which occur
with probability less than 1/dcℓ/40 is at most 1/dcℓ/50 ≤ 1/n2 for
c ≥ 100. Therefore ∥P1−P2∥1 ≤ 1/n2 with overall failure probability
3/n2, hence the expected ℓ1 distance between P1 and P2 is at most
1/n.

By using the triangle inequality and the fact that the expected
average error of Pt is at most 8ϵ for ℓ = 3 logn/ϵ2, it follows that
the expected average error of P̂t is at most 8ϵ + 1/n ≤ 7ϵ . Note
that the expected average error of P̂t is the average of the expected
errors of the empirical s-th order Markov models for 0 ≤ s ≤ ℓ − 1.

Hence for ℓ = 3 logn/ϵ2 there must exist at least some s < ℓ such
that the s-th order Markov model gets expected ℓ1 error at most 9ϵ .

8.1 Proof of Lemma 4

Let the prior for the distribution of the hidden states at time 0 be π0.
Let the true hidden state h0 at time 0 be 1 without loss of generality.
We refer to the output at time t by xs . Let H s

0 (i ) = Pr [h0 = i |xs0 ] be
the posterior probability of the ith hidden state at time 0 after seeing
the observations xs0 up to time t and having the prior π0 on the
distribution of the hidden states at time 0. Let us = H s

0 (1) and vs =

1 − us . Define Psi (j ) = Pr [xs = j |xs−10 ,h0 = i] as the distribution
of the output at time t conditioned on the hidden state at time 0
being i and observations xs−10 . Note that OPTs = Ps1 . As before,
define Rs as the conditional distribution of xs given observations
x0, · · · ,xs−1 and initial distribution π but not being at hidden state
h0 at time 0 i.e. Rs = (1/vs )

∑n
i=2 H

s
0 (i )P

s
i . Note thatMs is a convex

combination of OPTs and Rs , i.e. Ms = usOPTs + vsRs . Hence
∥OPTs −Ms ∥1 ≤ ∥OPTs − Rs ∥1. Define δs = ∥OPTs −Ms ∥1.

Our proof relies on a martingale concentration argument, and
in order to ensure that our martingale has bounded differences we
will ignore outputs which cause a significant drop in the posterior
of the true hidden state at time 0. Let B be the set of all outputs j at

some time t such that OPTs (j )
Rs (j )

≤ ϵ 4

c logn . Note that,
∑

j ∈B OPTs (j ) ≤
ϵ 4

∑

j∈B Rs (j )

c logn ≤ ϵ 4

c logn . Hence by a union bound, with failure prob-

ability at most ϵ2 any output j such that OPTs (j )
Rs (j )

≤ ϵ 4

c logn is not

emitted in a window of length clogn/ϵ2. Hence we will only con-
cern ourselves with sequences of outputs such that the output j

emitted at each step satisfies OPTs (j )
Rs (j )

≤ ϵ 4

c logn , let the set of all

such outputs be S1, note that Pr (xs0 < S1) ≤ ϵ2. Let ES1 [X ] be the
expectation of any random variable X conditioned on the output
sequence being in the set S1.

Consider the sequence of random variables Xs = logus − logvs
for s ∈ [−1, ℓ − 1]. Let X−1 = log(π1) − log(1 − π1). Let ∆s+1 =
Xs+1−Xs be the change inXs on seeing the output xs+1 at time s+1.
Let the output at time s + 1 be j . We will first find an expression for
∆s+1. The posterior probabilities after seeing the (s + 1)th output
get updated according to Bayes rule,

H s+1
0 (1) = Pr [h0 = 1|xs0 ,x[s + 1] = j]

=

Pr [h0 = 1|xs0 ]Pr [x[s + 1] = j |h0 = 1,xs0 ]

Pr [x[s + 1] = j |xs0 ]

=⇒ us+1 =
usOPTs+1 (j )

Pr [x[s + 1] = j |xs0 ]
.

Let Pr [x[s + 1] = j |xs0 ] = dj . Note that H
s+1
0 (i ) = H s

0 (i )P
s+1
i (j )/dj

if the output at time s + 1 is j. We can write,

Rs+1 =

( n
∑

i=2

H s
0 (i )P

s+1
i

)

/vs

vs+1 =

n
∑

i=2

H s+1
0 (i ) =

( n
∑

i=2

H s
0 (i )P

s+1
i (j )

)

/dj

= vsRs+1 (j )/dj .
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Therefore we can write ∆s+1 and its expectation E[∆s+1] as,

∆s+1 = log
OPTs+1 (j )

Rs+1 (j )

=⇒ E[∆s+1] =
∑

j

OPTs+1 (j ) log
OPTs+1 (j )

Rs+1 (j )
= D (OPTs+1 ∥ Rs+1).

We define ∆̃s+1 as ∆̃s+1 := min{∆s+1, log logn} to keep martingale
differences bounded. E[∆̃s+1] then equals a truncated version of
the KL-divergence which we define as follows.

Definition 3. For any two distributions µ (x ) and ν (x ), define the

truncated KL-divergence as D̃C (µ ∥ ν ) = E
[

log
(

min
{

µ (x )/ν (x ),C

})]

for some fixed C .

We are now ready to define our martingale. Consider the se-
quence of random variables X̃s := X̃s−1 + ∆̃s for t ∈ [0, ℓ − 1],

with X̃−1 := X−1. Define Z̃s :=
∑n
s=1

(

X̃s − X̃s−1 − δ2s /2
)

. Note that

∆s ≥ ∆̃s =⇒ Xs ≥ X̃s .

Lemma 5. ES1 [X̃s − X̃s−1] ≥ δ2s /2, where the expectation is with

respect to the output at time t . Hence the sequence of random variables

Z̃s :=
∑s
i=0

(

X̃s − X̃s−1 − δ2s /2
)

is a submartingale with respect to

the outputs.

Proof. By definition X̃s − X̃s−1 = ∆̃s and E[∆̃s ] = D̃C (OPTs ∥
Rs ),C = logn. By taking an expectation with respect to only se-
quences S1 instead of all possible sequences, we are removing
events which have a negative contribution to E[∆̃s ], hence

ES1 [∆̃s ] ≥ E[∆̃s ] = D̃C (OPTs ∥ Rs ).
We can now apply Lemma 6.

Lemma 6. (Modified Pinsker’s inequality) For any two distributions

µ (x ) and ν (x ) defined on x ∈ X , define theC-truncated KL divergence

as D̃C (µ ∥ ν ) = Eµ
[

log
(

min
{

µ (x )
ν (x )
,C

})]

for some fixedC such that

logC ≥ 8. Then D̃C (µ ∥ ν ) ≥ 1
2 ∥µ − ν ∥

2
1 .

Hence ES1 [∆̃s ] ≥
1
2 ∥OPTs − Rs ∥21 . Hence ES1 [X̃s − X̃s−1] ≥

δ2s /2. □

We now claim that our submartingale has bounded differences.

Lemma 7. |Z̃s − Z̃s−1 | ≤
√
2 log(clogn/ϵ4).

Proof. Note that (δ2s −δ2s−1)/2 can be at most 2. Zs −Zs−1 = ∆̃s .

By definition ∆̃s ≤ log(logn). Also, ∆̃s ≥ − log(clogn/ϵ4) as we
restrict ourselves to sequences in the set S1. Hence |Z̃s − Z̃s−1 | ≤
log(clogn/ϵ4) + 2 ≤

√
2 log(clogn/ϵ4). □

We now apply Azuma-Hoeffding to get submartingale concen-
tration bounds.

Lemma 8. (Azuma-Hoeffding inequality) Let Zi be a submartin-

gale with |Zi − Zi−1 | ≤ C . Then Pr [Zs − Z0 ≤ −λ] ≤ exp
(

−λ2
2tC2

)

Applying Lemma 8 we can show,

Pr [Z̃ℓ−1 − Z̃0 ≤ −c logn] ≤ exp
( −c logn
4(1/ϵ )2 log2 (clogn/ϵ4)

)

≤ ϵ2,

(8.1)

for ϵ ≥ 1/ log0.25 n and c ≥ 1. We now bound the average error in
the window 0 to ℓ − 1. With failure probability at most ϵ2 over the
randomness in the outputs, Z̃ℓ−1 − Z̃0 ≥ −c logn by Eq. 8.1. Let S2
be the set of all sequences in S1 which satisfy Z̃ℓ−1 − Z̃0 ≥ −c logn.
Note that X0 = X̃0 ≥ log(1/π1). Consider the last point after which
vs decreases below ϵ2 and remains below that for every subsequent
step in the window. Let this point be τ , if there is no such point
define τ to be ℓ − 1. The total contribution of the error at every step
after the τ th step to the average error is at most a ϵ2 term as the
error after this step is at most ϵ2. Note that Xτ ≤ log(1/ϵ )2 =⇒
X̃τ ≤ log(1/ϵ )2 as X̃s ≤ Xs . Hence for all sequences in S2,

X̃τ ≤ log(1/ϵ )2

=⇒ X̃τ − X̃−1 ≤ log(1/ϵ )2 + log(1/π1)

(a)
=⇒ 0.5

τ
∑

s=0

δ2s ≤ 2 logn + log(1/π1) + clogn

(b )
=⇒ 0.5

τ
∑

s=0

δ2s ≤ 2(c + 1) logn ≤ 4c logn

(c )
=⇒

∑ℓ−1
s=0 δ

2
s

c logn/ϵ2
≤ 8ϵ2

(c )
=⇒

∑ℓ−1
s=0 δs

c logn/ϵ2
≤ 3ϵ ,

where (a) follows by Eq. 8.1, and as ϵ ≥ 1/n; (b) follows as log(1/π1) ≤
c logn, and c ≥ 1; (c) follows because log(1/π1) ≤ c logn); and (d)
follows from Jensen’s inequality. As the total probability of se-
quences outside S2 is at most 2ϵ2, E[

∑ℓ−1
s=0 δs ] ≤ 4ϵ , whenever the

hidden state i at time 0 has probability at least 1/nc in the prior
distribution π0.

□

REFERENCES
[1] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE transactions on neural networks, 5
(2):157ś166, 1994.

[2] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735ś1780, 1997.

[3] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with LSTM. Neural computation, 12(10):2451ś2471, 2000.

[4] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

[5] J. Weston, S. Chopra, and A. Bordes. Memory networks. In International Confer-
ence on Learning Representations (ICLR), 2015.

[6] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626):471ś476, 2016.

[7] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 6000ś6010, 2017.

[9] M. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1412ś1421, 2015.

[10] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

[11] Zhe Chen and Matthew A Wilson. Deciphering neural codes of memory during
sleep. Trends in Neurosciences, 2017.

1086



STOC’18, June 25–29, 2018, Los Angeles, CA, USA Vatsal Sharan, Sham Kakade, Percy Liang, and Gregory Valiant

[12] Zhe Chen, Andres D Grosmark, Hector Penagos, and Matthew A Wilson. Uncov-
ering representations of sleep-associated hippocampal ensemble spike activity.
Scientific reports, 6:32193, 2016.

[13] Matthew A Wilson, Bruce L McNaughton, et al. Reactivation of hippocampal
ensemble memories during sleep. Science, 265(5172):676ś679, 1994.

[14] Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan.
The communication complexity of correlation. In Twenty-Second Annual IEEE
Conference on Computational Complexity (CCC’07), pages 10ś23. IEEE, 2007.

[15] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling.
In International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
volume 1, pages 181ś184, 1995.

[16] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for
language modeling. In Association for Computational Linguistics (ACL), 1996.

[17] E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov
models. In Theory of computing, pages 366ś375, 2005.

[18] Vitaly Feldman,Will Perkins, and Santosh Vempala. On the complexity of random
satisfiability problems with planted solutions. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 77ś86. ACM, 2015.

[19] Sarah R Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP.
In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on,
pages 689ś708. IEEE, 2015.

[20] Pravesh K Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. arXiv preprint arXiv:1701.04521, 2017.

[21] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-aware neural language
models. arXiv preprint arXiv:1508.06615, 2015.

[22] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. Journal of the ACM (JACM), 50
(4):506ś519, 2003.

[23] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
[24] Eric Blais, Ryan OâĂŹDonnell, and Karl Wimmer. Polynomial regression under

arbitrary product distributions. Machine learning, 80(2-3):273ś294, 2010.
[25] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio.

Agnostically learning halfspaces. SIAM Journal on Computing, 37(6):1777ś1805,
2008.

[26] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden
Markov models. In Conference on Learning Theory (COLT), 2009.

[27] A. Anandkumar, D. Hsu, and S. M. Kakade. A method of moments for mixture
models and hidden Markov models. In Conference on Learning Theory (COLT),
2012.

[28] H. Sedghi and A. Anandkumar. Training input-output recurrent neural networks
through spectral methods. arXiv preprint arXiv:1603.00954, 2016.

[29] M. Janzamin, H. Sedghi, and A. Anandkumar. Beating the perils of non-convexity:
Guaranteed training of neural networks using tensor methods. arXiv preprint
arXiv:1506.08473, 2015.

[30] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds for learning some deep
representations. In International Conference on Machine Learning (ICML), pages
584ś592, 2014.

[31] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006.

[32] Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of
thompson sampling. The Journal of Machine Learning Research, 17(1):2442ś2471,

2016.
[33] A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in

coding and modeling. IEEE Trans. Information Theory, 44, 1998.
[34] P.D. Grunwald. A tutorial introduction to the minimum description length

principle. Advances in MDL: Theory and Applications, 2005.
[35] A. Dawid. Statistical theory: The prequential approach. J. Royal Statistical Society,

1984.
[36] Y. Shtarkov. Universal sequential coding of single messages. Problems of Infor-

mation Transmission, 23, 1987.
[37] K. S. Azoury andM.Warmuth. Relative loss bounds for on-line density estimation

with the exponential family of distributions. Machine Learning, 43(3), 2001.
[38] D. P. Foster. Prediction in the worst case. Annals of Statistics, 19, 1991.
[39] M. Opper and D. Haussler. Worst case prediction over sequences under log loss.

The Mathematics of Information Coding, Extraction and Distribution, 1998.
[40] Nicolo Cesa-Bianchi and Gabor Lugosi. Worst-case bounds for the logarithmic

loss of predictors. Machine Learning, 43, 2001.
[41] V. Vovk. Competitive on-line statistics. International Statistical Review, 69, 2001.
[42] S. M. Kakade and A. Y. Ng. Online bounds for bayesian algorithms. Proceedings

of Neural Information Processing Systems, 2004.
[43] M. W. Seeger, S. M. Kakade, and D. P. Foster. Worst-case bounds for some

non-parametric bayesian methods, 2005.
[44] B. S. Clarke and A. R. Barron. Information-theoretic asymptotics of Bayes meth-

ods. IEEE Transactions on Information Theory, 36(3):453ś471, 1990.
[45] David Haussler and Manfred Opper. Mutual information, metric entropy and

cumulative relative entropy risk. Annals Of Statistics, 25(6):2451ś2492, 1997.
[46] A. Barron. Information-theoretic characterization of Bayes performance and the

choice of priors in parametric and nonparametric problems. In Bernardo, Berger,
Dawid, and Smith, editors, Bayesian Statistics 6, pages 27ś52, 1998.

[47] A. Barron, M. Schervish, and L. Wasserman. The consistency of posterior distri-
butions in nonparametric problems. Annals of Statistics, 2(27):536ś561, 1999.

[48] P. Diaconis and D. Freedman. On the consistency of Bayes estimates. Annals of
Statistics, 14:1ś26, 1986.

[49] T. Zhang. Learning bounds for a generalized family of Bayesian posterior distri-
butions. Proceedings of Neural Information Processing Systems, 2006.

[50] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, 1978.

[51] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533ś538, 1986.

[52] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao.
Statistical algorithms and a lower bound for detecting planted cliques. In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of computing, pages
655ś664. ACM, 2013.

[53] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on
learning DNF’s. In 29th Annual Conference on Learning Theory, pages 815ś830,
2016.

[54] Amit Daniely. Complexity theoretic limitations on learning halfspaces. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
pages 105ś117. ACM, 2016.

1087


	Abstract
	1 Memory, Modeling, and Prediction
	1.1 Interpretation of Mutual Information of Past and Future
	1.2 Implications of Proposition 1 and Corollary 1
	1.3 Lower bounds
	1.4 Future Directions
	1.5 Related Work

	2 Proof Sketch of Theorem 1
	3 Definitions and Notation
	4 Predicting Well with Short Windows
	5 Lower Bound for Large Alphabets
	5.1 Sketch of Lower Bound Construction

	6 Lower Bound for Small Alphabets
	7 Information Theoretic Lower Bounds
	8 Proof of Theorem 1
	8.1 Proof of Lemma 4

	References

