ElMem: Towards an Elastic Memcached System

Ubaid Ullah Hafeez, Muhammad Wajahat, Anshul Gandhi; Stony Brook University
PACE Lab, Department of Computer Science, Stony Brook University
{uhafeez,mwajahat,anshul } @cs.stonybrook.edu

Abstract—Memory caches, such as Memcached, are a critical
component of online applications as they help maintain low la-
tencies by alleviating the load at the database. However, memory
caches are expensive, both in terms of power and operating costs.
It is thus important to dynamically scale such caches in response
to workload variations. Unfortunately, stateful systems, such as
Memcached, are not elastic in nature. The performance loss that
follows a scaling action can severely impact latencies and lead to
SLO violations.

This paper proposes EIMem, an elastic Memcached system
that mitigates post-scaling performance loss by proactively mi-
gration hot data between nodes. The key enabler of our work is an
efficient algorithm, FuseCache, that migrates the optimal amount
of hot data to minimize performance loss. Our experimental
results on OpenStack, across several workload traces, show that
ElMem elastically scales Memcached while reducing the post-
scaling performance degradation by about 90%.

Index
migration

Terms—elastic, memcached, auto-scaling, data-

I. INTRODUCTION

A crucial requirement for online applications is elasticity —
the ability to add and remove servers in response to changes
in workload demand, also referred to as autoscaling. In a
physical deployment, elasticity can reduce energy costs by
~ 30-40% [1]-[4]. Likewise, in a virtual (cloud) deployment,
elasticity can reduce resource rental costs [5]-[8]; in fact, elas-
ticity is often touted as one of the key motivating factors for
cloud computing [9]-[11]. Elasticity is especially important for
customer-facing services that experience significant variability
in workload demand over time [12]-[15].

Customer-facing services and applications, including Face-
book [12], [16] and YouTube [17], typically employ distributed
memory caching systems, e.g., Memcached [18], to allevi-
ate critical database load and mitigate tail latencies. While
Memcached enables significant performance improvements,
memory (DRAM) is an expensive resource, both in terms
of power and cost. Our analysis of Memcached usage in
Facebook [12] (see Section II) suggests that a cache node
is 66% costlier and consumes 47% more power than an
application or web tier node. Clearly, an elastic Memcached
solution would be invaluable to customer-facing applications.

Unfortunately, memory caching systems are not elastic in
nature owing to their statefulness. Consider a caching node
that is being retired in response to low workload demand.
All incoming requests for data items that were cached on the
retiring node will now result in cache misses and increased
load on the (slower) database, leading to high tail latencies.

Recent studies have shown that latencies and throughput
degrade significantly, by as much as /0x, when autoscaling
a caching tier [8]; worse, performance recovery can take tens
of minutes [19]. Our own results confirm these findings as
well (see Section II-D). Conversely, tail latencies for online
services such as Amazon and Facebook are on the order of
tens of milliseconds [20], [21]; even a subsecond delay can
quickly translate to significant revenue loss due to customer
abandonment.

Most of the prior work on autoscaling focus on stateless
web or application tier nodes which do not store any data [4]—
[7]. There is also some prior work on autoscaling replicated
database tiers [2], [3]. Memory caching tiers are neither
stateless nor replicated, and are thus not amenable to the
above approaches. While there are some works that discuss
autoscaling of Memcached nodes (see Section VI), they do
not address the key challenge of performance loss following
a scaling action.

This paper presents EIMem, an elastic Memcached system
designed specifically to mitigate post-scaling performance
loss. EIMem seamlessly migrates hot data items between
Memcached nodes before scaling to realize the cost and energy
benefits of elasticity. To minimize overhead, we implement
ElMem in a decentralized manner and regulate data movement
over the network (Section III).

The key enabler of ElMem is our novel cache merging
algorithm, FuseCache, that determines the optimal subset of
hottest items to move between retiring and retained nodes.
FuseCache is based on the median-of-medians algorithm [22],
and finds the n hottest items across any k sorted lists. We also
show that FuseCache is within a factor log(n) of the lower
bound time complexity, O(k log(n)) (Section IV).

We experimentally evaluate ElMem on a multi-tier,
Memcached-backed, web application deployment using sev-
eral workload traces, including those from Facebook [12] and
Microsoft [23]. Our results show that EIMem significantly
reduces tail response times, to the tune of 90%, and enables
cost/energy savings by autoscaling Memcached (Section V).
Further, compared to existing solutions, EIMem reduces tail
response times by about 85%.

To summarize, we make the following contributions:

1) We present the design and implementation of EIMem, an
elastic Memcached system.
2) We develop an optimal cache migration algorithm, Fuse-



Cache, that enables EIMem and runs in near-optimal time.
3) We implement EIMem and experimentally illustrate its
benefits over existing solutions.

The rest of the paper is organized as follows. Section II
provides the necessary background and motivation for our
work. Section IIT describes the system design of EIMem and
Section IV presents our FuseCache algorithm. We present our
evaluation results in Section V. We discuss related work in
Section VI and conclude in Section VII.

II. BACKGROUND, MOTIVATION, AND CHALLENGES

Online services are often provided by multi-tier deploy-
ments consisting of load-balanced web/application servers and
data storage servers. To avoid performance loss due to slow
I/O access at the data tier(s), many application owners employ
memory caching systems. These systems provide low latency
responses to clients and alleviate critical database load by
caching hot data items on memory (DRAM); several caching
servers can be employed in a distributed manner to provide
scalable memory caching. A popular caching system that is
employed by several companies, including Facebook [12],
[16], Twitter [24], Wikipedia [25], and YouTube [17], is
Memcached [18]. In the remainder of this paper, we focus
on Memcached as our memory caching system.

A. Memcached overview

Memcached Nodes

Client Web/Application Servers

Requests

Storage Tier
(Database)

Fig. 1. Illustration of a multi-tier Memcached-backed application.

Memcached is a distributed in-memory key-value (KV)
store that serves as an in-memory cache. Memcached sits in
between the client and the back-end database or storage tier,
as shown in Figure 1, and aggregates the available memory
of all nodes in the caching tier to cache data. The memory
allocated to Memcached on a node is internally divided into
IMB pages. The pages are grouped into slabs, where each
slab is responsible for storing KV pairs, or items, of a given
size range (to minimize fragmentation) by assigning each item
to a chunk of memory. Within a slab, KV pairs are stored as
a doubly-linked list in Most-Recently-Used (MRU) order.

Clients read (get) and write (set) KV data from Mem-
cached via a client-side library, such as libmemcached [26].
The library hashes the requested key and determines which
Memcached node is responsible for caching the associated KV
pair; note that each key maps (via hashing) to one specific
node. In case of a get, the KV pair is fetched from the faster
(memory access) Memcached node. Else, the client library can
decide to request the KV pair from the slower (disk access),
persistent database tier, and optionally insert the retrieved pair
into Memcached. Write requests proceed similarly; the client
can choose to additionally write the KV pair to the database.

Consistent hashing is typically employed to minimize the
change in key membership upon node failures.

Note that the client library, and nor Memcached, determines
which node to contact. Memcached nodes are not aware of
the key range that they (or the other nodes) are responsible
for storing, thus placing this responsibility on the client. Each
Memcached node can be treated as a simple cache which stores
items in memory. If the number of items stored exceeds the
memory capacity, items are evicted using the Least-Recently-
Used (LRU) algorithm in O(1) time by simply deleting the
tail of the MRU list.

B. Cost/Energy analysis of Memcached

Despite the many benefits of Memcached, it is an expensive
solution, both in terms of cost and energy, because of its
DRAM usage. Recent numbers from Facebook suggest that
they use 72GB of memory per Memcached node [27]. By
contrast, the web or application tier nodes are equipped with
12GB of memory. Memcached nodes typically have a Xeon
CPU [16], and we expect application tier nodes to have
about twice the computing power as that of a Memcached
node. Using power numbers reported by Fan et al. [28],
and normalizing them to get per GB and per CPU socket
power consumption, we estimate that an application tier server
(2 CPU sockets, 12GB) will consume 204 Watts of (peak)
power, whereas a Memcached node (1 CPU socket, 72GB)
will consume 299 Watts (47% additional power). In terms
of cost, a compute-optimized EC2 instance currently costs
$0.1/hr, whereas a memory-optimized EC2 instance currently
costs $0.166/hr (66% higher cost), based on numbers for large
sized instances [29].

C. Potential benefits of an elastic Memcached

Online services that employ Memcached often exhibit large
variations in arrival rate [1], [14], [30], presenting an op-
portunity for reducing operating costs by dynamic scaling.
For example, production traces from Facebook [12] indicate
load variations on the order of 2x due to the diurnal nature
of customer-facing applications, and a further 2-3x due to
traffic spikes. Our preliminary analysis of these traces reveals
that a perfectly elastic Memcached tier—one that instantly
adds/removes the optimal number of nodes and consolidates
all hot data on the resulting nodes—can reduce the number of
caching nodes by 30-70%. Unfortunately, dynamic scaling of
Memcached is a difficult problem.

D. The inelastic nature of Memcached

Stateful systems store data that is required for the efficient
functioning of the application. In the case of Memcached,
hot data is cached in memory to mitigate load on the critical
database tier. By design, stateful systems are not elastic due to
their data dependence. Building elastic stateful systems thus
requires careful consideration of the data on each node.

The key challenge in designing elastic stateful systems is
the immediate, albeit transient, performance degradation after
scaling. Addition of a new cache node results in a cold cache,



0

@ = haseline
E 15 — ElMem
=

@

@ 1

5 peak

a | RT

o 05 restoration

o l time

2

=0 5 10 15 20 25
o Time (mins)

Fig. 2. Post-scaling performance degradation for Memcached.

whereas removal of an existing cache node results in loss of
hot data. In both cases, performance can suffer severely due to
cache misses—until the cache is warm again, which can take
several minutes.

The red line (baseline) in Figure 2 shows the steep increase
in 95%ile response time, from about 6ms to 1600ms, when
Memcached is scaled in from 10 VMs to 9 VMs when using
the Facebook ETC demand trace [12] (see Section V-A for
details on our experimental setup). This significant increase in
response time (RT), which we refer to as peak RT (shown in
the figure), can hurt performance SLOs. Likewise, the time to
revert to stable RTs, referred to as restoration time, dictates
the duration of performance degradation; in Figure 2, the
baseline’s restoration time is more than 30 minutes. We refer to
this overall loss in performance as post-scaling performance
degradation.

Most of the existing work on elastic stateful systems either
ignores the post-scaling performance degradation problem
(e.g., Amazon ElastiCache [31] ignores this crucial perfor-
mance loss [32]) or assumes that data is replicated and thus
at least one copy will exist (e.g., Sierra [3] and Rabbit [2]),
which is not the case for Memcached. Our goal is to address
this critical gap in the design of stateful systems by specifically
mitigating the post-scaling performance degradation. The blue
line (EIMem) in Figure 2 shows the improved performance
under our approach, with peak RT reducing from 1600ms
to 130ms and restoration time reducing from more than 30
minutes to about 2 minutes.

III. ELMEM SYSTEM DESIGN

To enable an elastic Memcached design, EIMem specifically
focuses on mitigating the post-scaling performance degrada-
tion. The design of EIMem is motivated by the observation that
post-scaling degradation is caused by cache misses (due to a
cold cache); thus, if we can identify and migrate the hot items
prior to scaling, we can mitigate post-scaling degradation.
Note that the hotness of an item refers to its recency of access;
Memcached already stores the most recently used (MRU)
access timestamp of each item.

The key challenge in mitigating post-scaling degradation
lies in efficiently determining the correct subset of hot items
to migrate between appropriate nodes. This section discusses
the system design of EIMem, while our FuseCache algorithm
that efficiently migrates hot items is presented in Section IV.

Memcached Tier
scaling
hints

Web Servers

retained
nodes

retiring
node

Fig. 3. ElMem’s solution architecture, shaded in red. We only show compo-
nents involved in the design of EIMem. The figure illustrates the case of one
node being retired (scaled in).

We consider a multi-tier application deployment consisting
of a Memcached tier comprised of several nodes, as shown in
Figure 1. To dynamically scale Memcached while minimizing
post-scaling performance degradation, the following questions
must be addressed:

(Q1l) When and how much to scale?

(Q2) Which nodes to scale?

(Q3) How to migrate data prior to scaling?

We are less concerned with the autoscaling policy that ad-
dresses Q1 (which is a pluggable module in our system
design) and more concerned with how to minimize the post-
scaling degradation when a scaling event is to be executed.
Of the above three questions, Q3 and (to a lesser extent) Q2
are crucial to mitigate the post-scaling degradation. We first
describe the solution architecture of EIMem, followed by our
approach to address Q1, Q2, and Q3.

A. ElMem architecture

ElMem'’s solution architecture is shown in Figure 3. EIMem
consists of a Master, an Agent on each Memcached node, and
an AutoScaler on one of the web servers. In the case of scale
in, we refer to nodes that are being turned off as retiring nodes,
and those that remain as retained nodes, as shown in Figure 3.
For scale out, we use the terms new nodes and existing nodes.

The AutoScaler monitors the keys requested from Mem-
cached over time and uses this information to decide on
autoscaling (Q1, see Section III-B); this decision is relayed as
hints to the Master, who ultimately triggers the autoscaling.
The AutoScaler can be located on any one of the web servers.
Since incoming requests are load balanced among the web
servers, sampling the keys at one web server allows us to
infer the underlying popularity distribution of requested keys.

The Master is the lightweight central controller that or-
chestrates the autoscaling and the data migration prior to
scaling, and can be located either on a separate node or
colocated with a web server or the load balancer. In case
of a scale-in decision, after receiving the autoscaling hints,
the Master decides which nodes to scale based on a scoring
mechanism that takes into account the hotness of items at
each Memcached node (Q2, see Section III-C). Then, prior
to executing the scaling, the Master initiates data migration
between the retiring nodes and the retained nodes to mitigate
the post-scaling performance loss (Q3, see Section III-D).
Once the migration is complete, the Master informs the web
servers about the change in Memcached composition and



issues scaling directives to the retiring nodes to turn off. The
scale-out case is similar, except that new nodes are first added,
followed by data migration between existing nodes and new
nodes, and only then does the Master inform the web servers
about the change in Memcached composition.

The ElMem Agents (one at each Memcached node) com-
municate with each other, and the Master, to perform the
actual data migration; this includes fetching the requested
subset of KV pairs, transferring KV pairs to other nodes, and
incorporating migrated KV pairs with locally cached pairs.
The Agents are also responsible for inferring the hotness of
items, as needed, for scaling and migration decisions.

B. When and how much to scale?

Dynamic scaling of the Memcached tier starts with ad-
dressing Ql, that is, when to scale and how much to scale
by? To address Q1, we consider the maximum request rate,
say rpp, that the database or back-end storage tier can
handle without violating the SLO performance target; here, we
assume that database is the performance bottleneck, which is
typically the case [8]. The AutoScaler then uses this estimate
to determine, for a given incoming request rate, say 7, the
minimum Memcached hit rate, say py,;n, to ensure that no
more than r7pp req/s go to the database. Specifically:

TDB)

r- (1 _pmin) <TpB == Pmin > (1 - T (1)

As in prior work [2], [3], [33], [34], rpp can be obtained by
profiling the database or by examining database logs.

If the incoming request rate into the system, r, increases
significantly, then we must add more Memcached nodes (scale-
out) to satisfy p,.in as per Eq. (1); note that rpp is typically
a constant for a given database configuration. On the other
hand, if r decreases, then p,,;, will decrease (per Eq. (1)),
possibly allowing us to save on costs by scaling in the size
of the Memcached tier. r can be easily monitored online at
the load balancer; Apache [35] and Nginx [36] load balancers
already provide this ability.

To determine the need for, and amount of, Memcached
scaling, the AutoScaler employs the stack distance measure
to derive the memory capacity that achieves p,,;,. The stack
distance of an item, say z, is defined as the number of unique
items requested between successive requests to x. By tracking
the stack distance of items over a trace of requests, we can
determine the number of cache hits and misses for all cache
sizes in a single pass over the trace [37]. EIMem employs this
idea, by using the MIMIR [38] implementation to periodically
compute the amount of memory required for every integer
hit rate percentage (in a single pass) based on the request
trace. The difference between required memory and current
Memcached memory capacity, normalized by the memory
capacity of each node, is used to determine the number of
nodes to scale-in or scale-out. Since we cannot exactly predict
future Memcached requests, we use the recent history of
requests as our representative trace, similar to prior work on
storage workload modeling [39], [40].

In summary, the AutoScaler periodically (every minute)
employs Eq. (1) to derive p,,;, and then uses the stack
distance measure over the recent trace of cache requests to
determine the amount of scaling. Given the simple expression
in Eq. (1) and the efficient implementation of the stack
distance algorithm, the above computation takes less than a
second. The AutoScaler then relays this information to the
ElMem Master. In our implementation of EIMem, the exact
autoscaling algorithm is a pluggable module. Thus, the user
can input a different autoscaling algorithm, such as a predictive
scaling framework [6], [41], if needed.

C. Which nodes to scale?

When scaling in, an important question is which Mem-
cached nodes to turn off. Ideally, we want to migrate the
hottest items from the retiring nodes to the retained nodes.
Choosing a node that has very little hot data allows ElMem
to quickly migrate this data to other nodes and scale in. On
the other hand, a node that has a lot of hot data on it will
require significant migration time before the scaling in event,
resulting in lost opportunity costs.

Ideally, we should pick the node whose hot data migration
requires the least amount of bytes to be transferred over the
network. However, finding such a node entails determining,
for each node, the subset of data on each slab that is hotter
(with respect to MRU timestamp) than the corresponding data
on that slab on all other nodes.

ElMem avoids this overhead by only comparing the hotness
of the median items, in MRU order, across nodes. Specifically,
for each slab b, EIMem Agents determine the median item
in the MRU ordered linked list and send the item’s MRU
timestamp to the Master. The Master then compares the
timestamps of all median items, across nodes, for each slab.
The motivation behind this approach is as follows: assume we
have only 1 slab of items on 2 nodes, each of size n items,
and we want to scale in to 1 node. By choosing the node
with the colder median to retire, we are guaranteed an upper
bound of n/2 items to be moved [22]. On the other hand, if
we randomly choose a node, we may have to move, in the
worst case, all n items.

To account for the impact of different slabs, EIMem consid-
ers the weighted sum of slab scores, sy ;, and the percentage of
memory pages assigned to this slab, wy. Thus, to retire a node,
the Master chooses the node which is argmin(}_, sp; - ws),

where the summation is over all slabs. To 1retire x nodes, the
Master chooses the x distinct values of ¢ that result in the
x smallest weighted sums. The choice of the node(s) is then
relayed to all Agents on retiring nodes to execute the migration
(as discussed in the next subsection). We show, in Section V,
that this strategy results in the optimal node choice for scaling
in almost all the traces we consider, and provides almost a
36% reduction in the number of items migrated compared to
a random strategy.



D. How to migrate data prior to scaling?

The final and crucial step in autoscaling of Memcached is
to address the post-scaling performance degradation. While
our key component for addressing this issue is the FuseCache
algorithm (presented in the next section), we first describe the
system design for this component here. Most of our discussion
is geared towards scale-in, though the design is similar for
scale-out, and is discussed at the end of this subsection.

ElMem addresses post-scaling degradation by correctly
identifying the subset of hot items on retiring nodes and
migrating them efficiently to retained nodes, prior to scaling.
Consider an item z belonging to a slab with chunk size b on
a retiring node. Based on the design of Memcached, z must
be migrated to a slab with chunk size b. The target node for
migrating x is uniquely computed by taking its hash. Thus, to
determine whether to migrate = or not, EIMem must compare
z’s MRU access timestamp with those of items on the target
node’s corresponding slab. Based on these comparisons, the
retiring nodes send their hot data to retained nodes, who will
then merge this data with their existing cached data, evicting
older items as needed. To minimize overhead during migration,
ElMem executes the migration in three successive phases, as
discussed below.

1) Metadata transfer from retiring to retained nodes

To facilitate comparison, each Agent on a retiring node,
once informed of the autoscaling decision by the Master,
hashes its keys using consistent hashing and sends them along
with their timestamps to the (hashed) target retained nodes.
Note that the hashing function takes as input the member list
of nodes, and so we use only the list of retained nodes when
hashing for this phase; thus, the autoscaling decision from the
Master is relayed to Agents prior to this phase. To minimize
the overhead of transferring the metadata over the network, we
investigate the use of ssh, scp, rsync. We find that it is best to
create a tarball of the metadata (without compression) and pipe
the output directly to the retiring node over ssh. Further, in this
phase, we only transfer keys (which are usually small, about
10s of bytes in the case of Facebook [12]) and timestamps (10
bytes), and not values (100-1000 bytes [12]).

2) Hotness comparison on retained nodes

The Agent on each retained node must now determine, for
every slab, the subset of keys from each retiring node that
are hotter, in terms of MRU timestamp, than its existing data.
While this is a challenging task, the problem is simplified by
the observation that keys on each slab are implicitly stored
in MRU order; thus, we only need to determine the number
of keys per slab that we want to migrate from every retiring
node. Nonetheless, a naive comparison of £ lists of n items
each requires O(n-k log(n-k)) time. Our optimal FuseCache
algorithm, discussed in Section IV, solves this problem in
O(k (log(n))?) time, which is a factor log(n) more than the
theoretical lower bound. The Agents on the retained nodes
then inform the Master about the number of keys to migrate
from each retiring node.

3) Data migration from retiring to retained nodes

The Master directs the retiring nodes to transfer the required
number of KV pairs per slab, as determined by FuseCache,
to the retained nodes. Agents on the retiring nodes pipe this
data directly to the retained nodes. On the retained nodes,
the Agents invoke a thread to write the migrated data into the
local Memcached by prepending them to the start of the MRU
list, thus evicting the colder items at the end of the MRU list
of the retained node. For efficiency, we implement this new
thread as part of the Memcached source code. Note that, by
design of our FuseCache algorithm, the items being evicted
are necessarily colder (in terms of MRU timestamp) than the
KV pairs being migrated.

Once the Master receives an acknowledgement from all
retiring node Agents, it informs the clients on the web servers
about the change in Memcached membership (from all nodes
to only retained nodes), and sends directives to retiring nodes
to turn off. This completes the scale-in process. We show, in
Section V, that this entire migration process of three phases
requires about 2 minutes, for our setup.

4) Extension to scale out

The process for scale out is similar to, but simpler than,
the above described 3-phase process for scale in. Once the
autoscaling decision has been relayed to Agents, each existing
node hashes its keys (based on the scaled-out membership of
nodes) and determines the set of its KV pairs that hash to the
new nodes. Under consistent hashing, if we scale out from &
nodes to (k+1) nodes, then only about -5 of the KV pairs
on each of the k existing nodes will hash to the new (k+1)*"
node [42]. As a result, the total KV pairs to be migrated to the
new node, from all existing nodes, will typically be less than
the capacity of the new node. Thus, EIMem simply migrates
all hashed KV pairs and sets them on the Memcached of the
new node. In the rare case that the KV pairs to be migrated
require more memory than the new node’s capacity, we can
run our FuseCache algorithm to determine the top KV pairs
and set them. Once the migrated data is set, clients on the
web servers are informed about the scaled-out membership of
Memcached.

1V. THE FuseCache ALGORITHM

We now present the FuseCache algorithm that determines
the subset of keys to migrate to mitigate post-scaling perfor-
mance degradation. FuseCache is invoked when there is a
need to determine the hottest KV pairs across different sets
of KV pairs from different nodes. Specifically, consider the
case where we are scaling in (k — 1) nodes, and each of these
nodes send their hashed keys and timestamps, for a given
slab, to a retained node that has space for n items in that
slab. FuseCache must now determine the top n keys across
all k lists (including its own list of items on that slab), where
n >> k, typically. Since keys in Memcached are stored in
MRU order, FuseCache’s goal is to pick the top n hottest
items from k different sorted lists.

A naive way of picking the hottest items is to merge all &k



lists into one list of IV items, where N > n is the total number
of items across all lists, and then sort them in O(N log(N))
time. An arguably better algorithm, the k-way merge [43],
iteratively pops the hottest item across all k lists IV times,
resulting in time complexity of O(N-k). Since we only require
the top n < N items, we can achieve our goal in O(n-k) time.
We can further reduce this time to O(n log(k)) by using heaps
to determine the hottest element in each step [43]. By contrast,
FuseCache achieves this goal in O(k (log(n))?) time, which
is much quicker since typically n >> k.

A. Algorithm design

We have k sorted (in MRU order) lists of timestamps, each
of size s;, for i = 1,2,... k. Of these, (k — 1) belong to
the retiring nodes and one, say the k" is the retained node.
Let s, = n. Since the (k — 1) retiring nodes only send a
subset of their keys (those that hash to the retained node, see
Section III-D), we have s; < n for ¢« < k. Our algorithm
should find the hottest set of n keys from across all k lists.

Our FuseCache algorithm is presented in Algorithm 1 and
returns the number of hottest items to pick in MRU order,
toPick[i], from each list, . FuseCache’s key idea is to employ
the median-of-medians (MOM) algorithm [22] recursively to
discard cold items in each round until we are left with the
hottest n items. We now provide a high-level description of
our algorithm; refer to Figure 4 for illustration. Let IN; be the
number of items across all lists at the start of round j. Note
that, in the worst case, each list is initially of size n, thus
N 1="n- k.

We first find the medians of each of the & sorted list. Next,
we find the MOM, the median item in the median list. By
construction, we are guaranteed that at least 1/ 4™ of the items
are colder than the MOM [22]; this is denoted by the green
bottom-right quadrant in Figure 4 (here, for illustration, the
lists are arranged in decreasing order of hotness). Likewise, at
least 1/4'" of the items are hotter than the MOM.

Next, we find the insertion point of the MOM in all other
lists using binary search; insertion point of the MOM in the
median list is itself. Note that the insertion point will be
towards the end of the MRU list for the hotter lists and closer
to the beginning of the MRU list for the colder lists, as shown
in Figure 4. Let the set of items hotter than the MOM be
X note that | X| > Ny /4. If | X| > n, we discard the at least
N; /4 items that are colder than the MOM (including the green
quadrant in Figure 4), reducing our search space of n hottest
items to at most Ny = 3N;/4 and moving to round 2. Now
consider the case of |X| < n. Since |X| > N;/4, this case
is only possible when Ny < 4n. Thus, as long as N; > 4n,
we have |X| > n, allowing us to discard 1/4" of the search
space, on average, and move to round (j+ 1), where we repeat
the entire process.

Now consider the first such m such that N,, < 4n. For
round m, again, if | X| > n, we can discard the cold items and
reduce the search space to 3/4'". Thus, consider the remaining
case of |X| < n. If | X| = n, we have found our hottest n

<4— hotness

B Medians

B vowm

| Insertion point of MOM

Hotter than MOM

% Can be discarded

w DS 0 T ——
|
|

—|
=

Fig. 4. Illustration of FuseCache. Leveraging the median-of-medians allows
us to discard at least a quarter of the search space in initial rounds.

items, the set X. If | X | < n, we retrieve the set X of items and
recurse the entire process to find the remaining n — | X | hottest
items from the remaining N,,, —|X | items. Since | X| > N,, /4,
we have again reduced the search space by at least 1/4"". We
repeat the above process until we find all n hottest items.

Algorithm 1 FuseCache

1: procedure FUSECACHE(k, [listy, listo, ..., list;], n)
2: med + [01, 02, ..., 0%]

3: startPt < [01,09, ..., 0]

4 endPt < [01, 09, ..., 0g]

5 for i< 1:k do

6: sli] < |list;]

7 startPt[i] < 0

8 endPt[i] + s[i] — 1

9: while n > 0 do

10: for i <~ 1: %k do

11: med][i] < list[i][(startPt[i] + endPt[i])/2]
12: MOM < median(med, k)

13: countX < 0

14: insertPts < [0, 09, ...,0z]

15: for i < 1: % do

16: size; < endPt[i] — startPt[i] + 1

17: insertPts|i] —

insertionPt(list[i], start Pt[i], size;, MOM)

18: curCountX <+ insertPts[i] + 1

19: countX < countX + curCountX

20: if countX > n then
21: for i< 1:k do
22: endPt[i] < startPt[i] + insertPts[i]
23: else if countX < n then
24: for i < 1: % do
25 startPt[i] « startPt[i|+insert Pts[i]+1
26: n < n — countX
27: toPick « [017 02, N 0z]
28: for : < 1:k do
29: toPick[i] + endPts[i] + 1

return toPick




B. Time complexity

This algorithm runs in O(k (log(n))?) time. For each list,
finding the median takes O(1) time since lists are sorted.
Finding the MOM from among the medians takes O(k)
time. Finding the % insertion points via binary search takes
O(k log(n)) time. At each round, we reduce 1/4" of the
search space. Thus, to exhaust the initial (at most) n - k items,
we will need log(n - k) = log(n) + log(k) rounds. Therefore,
total time complexity is O(k (log(n))?), considering k < n.
This O(k (log(n))?) complexity is significantly lower than
the O(n log(k)) complexity of k-way merge algorithms with
heaps, especially for realistic Memcached deployments with
hundreds or even thousands of nodes (k), with each node
consisting of billions of items (n).

1) Theoretical lower bound on time complexity

The theoretical lower bound on time complexity for this
problem is O(k log(n)). To see this, note that our problem
of determining the hottest n items can be reduced to the
equivalent problem of picking an x; for each of the k lists
such that Zle r; = mn, where z; is the number of top
items, in MRU order, to pick from the ith list to constitute
the list of hottest n items. The number of possible solutions
for all feasible x; are ("**7!). Using a decision tree to
solve this equivalent problem will require a tree with ("""~ 1)
leaves, resulting in a height of log (”+:_1). Thus, an optimal
solution that makes the right decision at each level of the
tree will require O(log ("*¥7')) steps, which simplifies to
O(k log(n)).

V. EVALUATION
A. Experimental Setup

For our evaluation, we set up a multi-tier Memcached-
backed web application composed of several VMs deployed
on an OpenStack cloud, similar to the one in Figure 1. At
a high-level, the load generator creates PHP web requests
and directs them at the load balancer, which in turn forwards
the requests to Apache web servers (with PHP support). The
web server parses the request and determines the data items
needed to serve the web request; we fix the number of data
items required per request to be 100 random KV pairs, whose
popularity distribution can be controlled. The items are first
requested from the Memcached tier via a multi-get (using the
libmemcached library); note that several nodes might have to
be contacted to serve all KV pairs. In case of a miss, the
web server contacts the database. The fetched KV pairs from
the database are inserted into Memcached, possibly leading to
evictions. Note that the KV requests are get requests (read-
only), thus no new KV pairs are written to the database.

We define response time (RT) for each web request to be the
weighted average (over the 100 KV fetches) of the latencies of
the get requests that hit in the Memcached and the remaining
requests that are served by the database. We report tail RTs
(95%ile RTs) when evaluating performance.

To generate load, we deploy httperf [45] on a large VM

(8vCPU, 15GB RAM), and optimize it for high throughput.
We use a single Apache web server VM (4vCPU, 8GB
RAM), running mpm_prefork with mod_php, which employs
the libmemcached library to communicate with Memcached.
For the Memcached tier, we use a pool of 10 VMs, each with
2-vCPUs and 4GB memory, mimicking an economical cloud
configuration; we use Memcached version 1.4.31. Finally, for
the database, we employ ardb [46] (version 0.9.3), which
uses the Redis protocol for communication and leverages
RocksDB [47] as the back-end. The database runs on a
physical machine with 8 cores and 32 GB RAM to miti-
gate the I/O bottleneck. Nonetheless, the bottleneck in our
application is the database, which is typically the case in
deployments [12]. Our database can handle a peak request
rate of about 4,000 req/s before the latency rises abruptly; we
thus set rpp = 4,000 req/s when deciding on scaling (see
Section III-B).

1) Modifications to Memcached

We add some custom functionality to Memcached to facili-
tate EIMem. First, we implement a timestamp dump command
using LRU crawler routine in Memcached to write the MRU
timestamps of a slab to a local file; this helps with the
FuseCache algorithm (see Section III-D1). Second, we im-
plement the batch import of KV pairs onto Memcached from
a local file to help with FuseCache (see Section III-D3). This
import functionality employs the set method of Memcached
but removes the data checks since we already know the KV
pairs are valid. Our modified Memcached source code is
publicly available on Github [48].

2) Workload

In terms of the workload, the key size is fixed at 11 bytes
and the value sizes range from 1 byte to 1000 bytes. The
value sizes follow a Generalized Pareto distribution with scale
(o) of 250.476 and shape (v = —¢&) of 0.348238, similar
to the distribution reported by Facebook [12]. The data set
contains about 190 Million KV pairs, resulting in a size of
about 60GB on the database. We use an exponential inter-
arrival time distribution for the incoming requests, where the
mean request rate changes dynamically as determined by the
arrival trace (see below).

3) Traces

To drive our Memcached-backed multi-tier application, we
use three different types of demand traces: (i) (digitized)
Memcached traces from Facebook [12] — SYS and ETC,
(ii) storage workload traces from Microsoft [23], and (iii)
traces from online applications — SAP from an enterprise
application [49] and NLANR from WITS [50]. Since our focus
is on mitigating the post-scaling degradation, we consider
trace snippets where demand varies considerably, as shown
in Figure 5. We only show normalized values as these are
modified per system capabilities.

B. Results

We first evaluate the benefits of EIMem’s migration, in-
cluding its choice of which node(s) to scale, in terms of



o
=]

o
=]
o
=]

Normalized request rate
(2]
o
Normalized request rate
<]
o

®
o
©
=]
® ©
S O

®

=]
~
o

IS
o

[}

=]

Normalized request rate

o
=]

©

=]
®
=]

®
S

Normalized request rate
N
o

Normalized request rate
(o2}
o

N
o

~
o
o
S

o

5 10 15 0 10 20 30 40 0 10 20
Time (mins) Time (mins)

(a) SYS trace [12] (b) ETC trace [12]

Time (mins)

(c) SAP trace [41]

n
=]

5 10 15 20
Time (mins)

10 20 30 40 50 60
Time (mins)

(d) NLANR trace [44]

o

70
30 40 50 0

(e) Microsoft trace [23]

Fig. 5. Traces (normalized) used in our experiments.

100 T ‘ basel = 100 100 T
I ! ——baseline =——EIMem o) | [ !
T 80 ; \ S o | D — S o \ -
T 40 T ‘—baseline—ElMem‘ T ‘—baseline—EIMem‘
60 60
0 5 10 15 0 10 20 30 40 0 10 20 30 40 50
Time (mins) Time (mins) Time (mins)
@ , ©04 ©04
L 04 | ——baseline ——EIMem]| b [ —nbaseline ——EIMem| b | —baseline ——EIMem|
p > 0.2 5 0.2
= 0.2 = =
2 2 . e 2 SlA
0 g 0 = -
@ 5 10 5 2 0 10 20 30 0 ° 0 10 20 30 40 50
Time (mins) Time (mins) Time (mins)

(a) SYS: 10 — 7 nodes.

100
=——=baseline =—=EIMem ‘

Hit rate

80
60
0 10 20 30 40 50 60
Time (mins)
N
- baseline EIMem‘
o
005
5
90
(o]
0 10 20 30 40 50 60
Time (mins)

(d) NLANR: 8 — 9 and 9 — 8 nodes.

(b) ETC: 10 — 9 and 9 — 10 nodes.

(c) SAP: 10 — 9 and 9 — 8 nodes.

100 -
o) =——=baseline EIMem ‘
T g \_\H—"—“‘
=
60
0 5 10 15 20
Time (mins)
@ 1
o .
© 05} ‘ baseline EIMemL
3
E’D 0 /. I\
® o 5 10 15 20
Time (mins)

(e) Microsoft: 10 — 9 and 9 — 8 nodes.

Fig. 6. Experimental evaluation results illustrating the hit rate and 95%ile response time for EIMem and baseline for all traces. Numbers in the subcaption

indicate the scaling action(s).

mitigating the performance degradation. Next, we evaluate
FuseCache, including its overhead. We then evaluate the
choice of which node to scale. Finally, we compare EIMem
with other approaches.
1) Benefits of migration

The key evaluation for EIMem is the reduction in post-
scaling performance degradation. For comparison, we consider
a “baseline” approach that is informed about the autoscaling
decision at the same time as EIMem, but it does not migrate
items and immediately scales in or out, resulting in a cold
cache. Thus, it uses the same approach for Q1 (Section III-B)
and Q2 (Section III-C) as EIMem, but differs in the approach
for Q3 (Section III-D).

Figure 6 shows the performance of baseline and EIMem
for our traces. For each figure, the top graph shows the hit
rate and the bottom graph shows the 95%ile response time,
for each second. We start with Figure 6(a), which illustrates
the performance for the SYS trace. Initially, the RT is about

5ms, which is in line with a high hit rate Memcached-backed
application. At about the 3-min mark, the request rate drops
significantly, translating to a scale in decision from 10 to 7
nodes, per the stack distance-based autoscaling scheme III-B.
The baseline immediately autoscales from 10 to 7 nodes,
without migration, resulting in the significant rise in RT from
Sms to 90ms, eventually peaking to 340ms; even after 10
minutes, the RT for baseline continues to be well above 100ms,
a 20x increase over the pre-scaling RT.

By contrast, EIMem migrates data and then scales down
from 10 to 7 nodes at about the 5-min mark. After migration,
the RT is much lower than the baseline; the peak RT under
ElMem after the 3-min mark is about 35ms (compared to
340ms under baseline). In fact, the average of the 1-second
95%ile RTs after the 3-min mark reduces from 188ms under
baseline to about 22ms under EIMem, a reduction of almost
88%. Note that the 2 minute difference for EIMem represents
our migration and FuseCache overhead. Other results for scale



down are similar, as in Figures 6(b) - 6(d), with an average
post-scaling performance degradation reduction of 96% for
ETC, 90% for SAP, 92% for NLANR, and 97% for Microsofft.

Results for performance improvement under scale out (for
ETC and NLANR) are similar, with average post-scaling
performance degradation reduction of 81%. Note that, imme-
diately after scale out, we expect the hit rate under baseline
to drop (due to cold cache) and that under EIMem to remain
unchanged (due to FuseCache migration, which avoids cold
cache). This is exactly what we observe for the scale out
actions in Figures 6(b) and 6(d).

2) Overhead of FuseCache

For scale in and scale out, our FuseCache algorithm takes,
on average, about 2 minutes. Specifically, the breakdown of
FuseCache’s overhead is:

o about 2 seconds to score the nodes based on their medians
(Section III-C),

o about 50 seconds to hash and dump data (Section III-D1),

o about 7 seconds to transfer the metadata (Section III-D1),

o less than 2 seconds to run FuseCache(Section III-D2),

o about 45 seconds to migrate the required data (Sec-
tion II1-D3), and

« about 8 seconds to set the migrated data into Memcached
(Section III-D3).

We envision ElMem as being deployed in cases where
the change in request rate is not intermittent, for example,
diurnal changes in traffic or a sustained drop in request rate
after a peak demand. In such cases, an overhead of about 2
minutes is not significant compared to, say, an hour of reduced
request rate during which elasticity can help save substantial
costs. Compared to baseline, which has no overhead in terms
of delay in executing autoscaling, EIMem does have some
overhead. However, as shown in Section V-B1, the baseline is
an infeasible approach that significantly impacts tail response
times. Thus, despite the small overhead of delay in autoscal-
ing, EIMem is critical in realizing the design of an elastic
Memcached system.

In terms of scalability of the overhead, we consider the time
complexity of each of the steps outlined above. The scoring
of the nodes takes O(s k) time, where s is the number of
slabs per node and & is the number of nodes. FuseCache takes
O(k (log(n))?) time, as discussed in Section IV-B. The rest
of the steps take at most O(n) time, where n is the number of
items in each node; the exact complexity depends on the subset
of hot items being migrated and is typically lower than O(n).
Thus, the scoring step and FuseCache are linear in terms of
number of nodes (k), while the other steps are linear in terms
of the number of items being migrated, on average, per node.

3) Choice of which node to scale

During scale in, EIMem determines the node(s) to scale
based on the hotness of their median items, as discussed in
Section ITI-C. For a given scaling action, say scale in from 10
nodes to 9 nodes, the choice of node is only dependent upon
the popularity distribution.

# items migrated
(&)

o

1 2 3 4 5 6 7 8 9 10
Nodes sorted by median hotness score

Fig. 7. Evaluation of node choice for scaling.

Figure 7 shows our experimental results for the number of
items moved when scaling from 10 to 9 nodes depending
on the choice of node for scaling; here, nodes are sorted
in ascending order of median hotness score, as defined in
Section III-C. EIMem picks the node with the coldest median
score, that is, node 1; this results in migrating about 3.97
million items. By contrast, scaling a randomly selected node,
which is typically the case in autoscaling [4], [6], results in
migrating, on average, about 6.23 million nodes, an increase
of about 60%. In the worst case, about 7.4 million items must
be migrated, an increase of about 86%.

4) Comparison with other migration approaches
To further evaluate EIMem, we compare two other migration
approaches:

n—x

1) Naive migrates ®—* fraction of items off of z randomly
chosen nodes in response to a request to scale in = nodes.
Naive migration assumes that the distribution of hotness
of items within each node is similar. Thus, when scaling
in from, say, n to (n — 1) nodes, Naive assumes that
the coldest 1/n fraction of items of all nodes can be
discarded.

2) CacheScale [8] migrates items from retiring to retained
nodes based on the hotness of items inferred from in-
coming requests. Specifically, when informed about the
autoscaling decision, CacheScale logically partitions the
nodes into a primary cache and a secondary cache; the
secondary cache is composed of retiring nodes. Incoming
requests are first tried at the primary nodes; if they miss,
they are retried at the secondary nodes. If the request hits
in the secondary nodes, then it is migrated to the primary
node, thus migrating hot items based on incoming request
distribution. The secondary nodes are then discarded after
some time; in our implementation of CacheScale, we
discard them after about 2 minutes, which is the same
as EIMem’s overhead.

Figure 8 shows the performance of EIMem compared to
that of Naive and CacheScale for a specific snippet of the
SYS trace. In this case, the scaling decision (10 to 7 nodes)
was made at about the 3-min mark. We see that the RT under
ElMem is quite low, except for the roughly 1-min overhead
during which RT is high. However, the RT under Naive and
CacheScale continues to degrade well after the scaling event.

The performance under Naive is poor as it does not migrate
the optimal set of hot items, and may in fact be evicting
hot items when migrating colder items from other nodes.



©
w

Naive

@ CacheScale
o
o
X 0.1
0
o

O 1

0 2 4 6 8

Time (mins)
Fig. 8. Comparing EIMem’s migration to other approaches.

For example, if Naive chooses the coldest node and migrates
"7—:1 fraction of items from this node to a hot node, it may
incorrectly evict hot items on that node. By contrast, EIMem
would not migrate cold items. CacheScale also performs
poorly as its migration depends on the hotness inferred based
off of the incoming requests, which may not be accurate;
further, the migration is dictated by the request rate and thus
may be limited. Clearly, as seen in Figure 8, EIMem provides
significant reduction in tail response times when compared
to Naive (about 70% reduction) and CacheScale (about 64%
reduction).

VI. RELATED WORK

These is ample prior work on improving the performance
of Memcached by addressing its network overhead (e.g.,
Chronos [51], Mcrouter [52], and Twemproxy [53]) and global
locks (e.g., KV-Cache [54], MemC3 [55], and Mercury [56]).
There is also some prior work on improving the performance
of Memcached clusters by addressing hot spots or load imbal-
ance (e.g., SPORE [57] and Zoolander [58]), communication
overheads among nodes (e.g., AdaptCache [59]), and fault
tolerance (e.g., Nishtala et al. [16]). Given the scope of our
work, we focus on prior work related to dynamic scaling of
Memcached.

Nishtala et al. [16] employ the “Cold Cluster Warmup”
technique at Facebook when adding a new Memcached cluster
by allowing clients to retrieve data (misses) from an existing
warm Memcached cluster rather than persistent storage. How-
ever, this technique requires replicated Memcached clusters,
and thus increases resource costs. CacheScale [8] proposes
horizontal scaling of Memcached tiers by passively migrating
data between Memcached nodes based on incoming requests.
While effective, the restoration time of CacheScale critically
depends on the arrival rate and popularity distribution, and can
thus be arbitrarily high. By contrast, EIMem is independent
of the arrival rate and popularity skew and is optimized, via
the optimal FuseCache algorithm, to regulate the overhead of
migration. Hwang et al. [60] propose an adaptive partitioning
algorithm to re-balance the load created by hot items due
to data skew. In a follow-up work [61], the authors discuss
the challenges in designing self-managing caches and propose
integrating dynamic scaling with load balancing, but do not
discuss this further. Dynacache [62] is a cache controller
that determines the best memory allocation and eviction

policies for different applications in a shared Memcached-
as-a-service setting. The authors later extended this work
in Cliffhanger [63] to dynamically allocate memory among
applications using a shared Memcached. However, this work
incrementally adds more memory capacity (scale-up) to an
existing node rather than adding new nodes (scale-out). We
note that scale-up is not always feasible, especially at run-
time, for physical deployments.

The stack distance concept is often used to efficiently
determine the hit rate of caches and characterize them, as
in MIMIR [38], Moirai [64], SHARD [65] and counter
stack [66]. EIMem also employs stack distance, but specifically
to facilitate scaling. Different from the above approaches,
ElMem leverages stack distance to estimate the amount of
memory needed to achieve a certain hit rate, and then translates
this to scaling decisions and optimal migration.

There has also been recent work on alleviating the load
imbalance, or hot spots, in Memcached caused by the uneven
popularity of items. MBal [67] focuses on migrating and
replicating items across Memcached worker threads (within
and across nodes) to balance load. While the migration can be
used to facilitate dynamic scaling as well, this aspect is not
evaluated. SPORE [57] proposes a self-adapting, popularity-
based data replication scheme to avoid hot spots. Zoolan-
der [58] proposes using idle cache nodes for replication, and
issuing requests to all replicas concurrently to avoid stragglers
by using the first received result. While replication can be em-
ployed to improve performance, it requires additional memory
resources and is thus contrary to our objective.

Lastly, there has been prior work on dynamic scaling of
the database tier. Rabbit [2] and Sierra [3] propose elastic
database tiers by organizing and scaling data replicas for
storage systems such that at least one copy of the data is
always on. Such approaches are not applicable to Memcached
as it is not a persistent or replicated data store.

VII. CONCLUSION AND FUTURE WORK

This work focuses on the critical post-scaling performance
degradation problem that hinders the dynamic scaling of mem-
ory caches and other stateful clusters. We present the design of
EIMem, an elastic system that dynamically scales Memcached
in response to changes in workload demand. The key enabler
of EIMem is our optimal FuseCache algorithm that finds the
hottest items among Memcached nodes; further, FuseCache’s
running time is within a logarithmic factor of the theoretical
lower bound. Our experimental evaluation of ElMem, using
workload traces from Facebook, Microsoft, and other web
services, shows that we can substantially reduce the post-
scaling degradation while accurately scaling Memcached; this
elasticity translates to reduced energy consumption in physical
deployments and reduced rental costs in virtual deployments.

ACKNOWLEDGEMENTS

This work was supported by NSF CNS grants 1617046,
1622832, 1717588, 1730128, and 1750109.



[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, ser. NSDI *08, San
Francisco, CA, USA, 2008, pp. 337-350.

H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and flexible power-proportional storage,” in SOCC
2010, Indianapolis, IN, USA, pp. 217-228.

E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: practical power-
proportionality for data center storage,” in EuroSys 2011, Salzburg,
Austria, pp. 169-182.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. Kozuch, “Au-
toScale: Dynamic, Robust Capacity Management for Multi-Tier Data
Centers,” Transactions on Computer Systems, vol. 30, 2012.

H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE: Elastic
Distributed Resource Scaling for Infrastructure-as-a-Service,” in ICAC
2013, San Jose, CA, USA, pp. 69-82.

Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic ReSource
Scaling for cloud systems,” in CNSM 2010, pp. 9-16.

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic
Resource Scaling for Multi-tenant Cloud Systems,” in SOCC 2011, pp.
5:1-5:14.

T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A. Kozuch, “Saving cash
by using less cache.” in HotCloud, 2012.

Amazon Inc., “Amazon Elastic Compute Cloud (Amazon EC2),” http:
/laws.amazon.com/ec2.

Microsoft, “Azure Virtual Machines,” https://azure.microsoft.com/en-
us/services/virtual-machines/.

Google Cloud Platform, “Cloud Compute Products,” https://cloud.
google.com/products/compute/.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-scale Key-value Store,” in SSIGMETRICS,
London, England, UK, 2012, pp. 53-64.

B. Urgaonkar and A. Chandra, “Dynamic Provisioning of Multi-tier
Internet Applications,” in /CAC 2005, Seattle, WA, USA, pp. 217-228.
C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Anal-
ysis,” in Proceedings of the 3rd ACM Symposium on Cloud Computing,
ser. SOCC *12, San Jose, CA, USA, 2012.

L. A. Barroso and U. Holzle, “The Case for Energy-Proportional
Computing,” IEEE Computer, vol. 40, no. 12, pp. 33-37, 2007.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in NSDI 2013,
Lombard, IL, USA, pp. 385-398.

C. Do, “YouTube Scalability,” Seattle, WA, USA, 2007.

B. Fitzpatrick, “Distributed Caching with Memcached,” Linux Journal,
vol. 2004, no. 124, pp. 5-5, Aug. 2004.

Y. Cheng, A. Gupta, A. Povzner, and A. R. Butt, “High Performance
In-memory Caching Through Flexible Fine-grained Services,” in Pro-
ceedings of the 4th Annual Symposium on Cloud Computing, ser. SOCC
’13, Santa Clara, CA, USA, 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP 07, Stevenson, Washington, USA, 2007, pp. 205-220.

D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA "11, San Jose, CA, USA, 2011, pp. 319-330.
M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time
Bounds for Selection,” Journal of Computer and System Sciences, vol. 7,
no. 4, pp. 448461, 1973.

S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Character-
ization of storage workload traces from production Windows Servers,”
in Proceedings of the 2008 IEEE International Symposium on Workload
Characterization, Seattle, WA, USA, 2008, pp. 119-128.

Twitter, “Twemcache: Twitter memcached,” https://github.com/twitter/
twemcache.

mediawiki.org, “memcached,”
Memcached, 2014.

http : // www . mediawiki . org / wiki /

[26]
[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]
[36]
(371

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]
[47]
(48]

[49]
[50]

[51]

[52]
[53]

“libMemcached,” http://libmemcached.org/libMemcached.html.

J. Taylor, “Capacity at Facebook,” http://www.jedec.org/sites/default/
files/Jason_Taylor_0.pdf, 2011.

X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proceedings of the 34th Annual Interna-
tional Symposium on Computer Architecture, ser. ISCA *07, San Diego,
CA, USA, 2007, pp. 13-23.

“Amazon EC2 Pricing,” http://aws.amazon.com/ec2/pricing.

K. Wang, M. Lin, F. Ciucu, A. Wierman, and C. Lin, “Characterizing the
Impact of the Workload on the Value of Dynamic Resizing in Data Cen-
ters,” in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Com-
puter Systems, ser. SIGMETRICS ’12, London, England, UK, 2012, pp.
405-406.

I. Amazon Web Services, “Amazon ElastiCache,” http://aws.amazon.
com/elasticache, 2014.

H. Ganesan, “Deep dive into Amazon Elasticache: Elasticity Impli-
cations,” http://harish11g.blogspot.in/2013/01/amazon - elasticache -
memcached-internals_8.html.

A. Gulati, I. Ahmad, and C. A. Waldspurger, “PARDA: Proportional
Allocation of Resources for Distributed Storage Access,” in Proccedings
of the 7th Conference on File and Storage Technologies, ser. FAST *09,
San Francisco, CA, USA, 2009, pp. 85-98.

A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and
M. Uysal, “Pesto: Online Storage Performance Management in Virtual-
ized Datacenters,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, ser. SOCC 11, Cascais, Portugal, 2011, pp. 19:1-19:14.
The Apache Software Foundation, “Apache Module mod proxy bal-
ancer,” http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html.
I. Nginx, “nginx,” http://nginx.org.

G. Almadsi, C. Cascaval, and D. A. Padua, “Calculating Stack Distances
Efficiently,” in Proceedings of the 2002 Workshop on Memory System
Performance, ser. MSP ’02, Berlin, Germany, 2002, pp. 37-43.

T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson, “Dy-
namic Performance Profiling of Cloud Caches,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SOCC ’14, Seattle, WA,
USA, 2014.

T. Zhu, D. S. Berger, and M. Harchol-Balter, “SNC-Meister: Admitting
More Tenants with Tail Latency SLOs,” in Proceedings of the Seventh
ACM Symposium on Cloud Computing, ser. SOCC *16, Santa Clara, CA,
USA, 2016, pp. 374-387.

T. Zhu, M. A. Kozuch, and M. Harchol-Balter, “WorkloadCompactor:
Reducing Datacenter Cost While Providing Tail Latency SLO Guaran-
tees,” in Proceedings of the 2017 Symposium on Cloud Computing, ser.
SoCC 17, Santa Clara, California, 2017, pp. 598-610.

A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah, “Minimizing
Data Center SLA Violations and Power Consumption via Hybrid Re-
source Provisioning,” in Proceedings of the 2011 International Green
Computing Conference, ser. IGCC ’11, Orlando, FL, USA, 2011, pp.
49-56.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web,” in STOC "97:
Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing. El Paso, TX, United States: ACM, 1997, pp. 654-663.
D. Knuth, The Art of Computer Programming, 2nd ed. Addison-Wesley
Longman Publishing Co., Inc., 1998, vol. 3, ch. 5.4.1.

ITA, “http://ita.ee.lbl.gov/index.html,” http://ita.ee.lbl.gov/index.html.
D. Mosberger and T. Jin, “httperf—A Tool for Measuring Web
Server Performance,” ACM Sigmetrics: Performance Evaluation Review,
vol. 26, no. 3, pp. 31-37, 1998.

“ardb,” https://github.com/yinqiwen/ardb.

“RocksDB — A persistent key-value store,” http://rocksdb.org/.

U. U. Hafeez, “El Mem,” https://github.com/PACELab/memcached_
autoscale.

SAP, “SAP application trace from anonymous source.”

WAND Network Research Group, “WITS: Waikato Internet Traffic
Storage,” http://www.wand.net.nz/wits/index.php.

R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable Low Latency for Data Center Applications,” in
Proceedings of the Third ACM Symposium on Cloud Computing, ser.
SoCC ’12, San Jose, CA, USA, 2012.

Facebook, “Mcrouter,” https://github.com/facebook/mcrouter.

I. Twitter, “Twemproxy,” https://github.com/twitter/twemproxy, 2012.



[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

D. Waddington, J. Colmenares, J. Kuang, and F. Song, “KV-Cache: A
Scalable High-Performance Web-Object Cache for Manycore,” in UCC
2013, Dresden, Germany, pp. 123-130.

B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,” in
NSDI 2013, Lombard, IL, USA, pp. 371-384.

R. Gandhi, A. Gupta, A. Povzner, W. Belluomini, and T. Kaldewey,
“Mercury: Bringing Efficiency to Key-value Stores,” in Proceedings of
the 6th International Systems and Storage Conference, ser. SYSTOR
’13, Haifa, Israel, 2013.

Y.-J. Hong and M. Thottethodi, “Understanding and Mitigating the
Impact of Load Imbalance in the Memory Caching Tier,” in Proceedings
of the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13, Santa
Clara, CA, USA, 2013.

C. Stewart, A. Chakrabarti, and R. Griffith, “Zoolander: Efficiently
Meeting Very Strict, Low-Latency SLOs,” in Proceedings of the 10th
International Conference on Autonomic Computing, ser. ICAC *13, San
Jose, CA, USA, 2013, pp. 265-277.

0. Asad and B. Kemme, “AdaptCache: Adaptive data partitioning and
migration for distributed object caches,” in Proceedings of the 17th
International Middleware Conference, Trento, Italy, 2016.

J. Hwang and T. Wood, “Adaptive performance-aware distributed mem-
ory caching.” in ICAC, vol. 13, 2013, pp. 33-43.

W. Zhang, J. Hwang, T. Wood, K. Ramakrishnan, and H. H. Huang,
“Load Balancing of Heterogeneous Workloads in Memcached Clusters,”
in Feedback Computing, 2014.

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti, “Dynacache:
Dynamic Cloud Caching,” in HotStorage, 2015.

A. Cidon, A. Eisenman, Daniel, M. Alizadeh, and S. Katti, “Cliffhanger:
Scaling Performance Cliffs in Web Memory Caches,” in Proceedings
of the 13th USENIX Symposium on Networked Systems Design and
Implementation, Santa Clara, CA, USA, 2016, pp. 379-392.

1. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Ballani,
T. Karagiannis, A. Rowstron, and T. Talpey, “Software-defined caching:
Managing caches in multi-tenant data centers,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing, 2015, pp. 174-181.

C. A. Waldspurger, N. Park, A. T. Garthwaite, and I. Ahmad, “Efficient
MRC Construction with SHARDS,” in Proceedings of the 2015 USENIX
Conference on File and Storage Technologies, 2015, pp. 95-110.

J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, A. Warfield, and C. Data,
“Characterizing Storage Workloads with Counter Stacks,” in Proceed-
ings of the 11th USENIX Symposium on Operating Systems Design and
Implementation, Broomfield, CO, USA, 2014, pp. 335-349.

Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” in Proceedings of the Tenth
European Conference on Computer Systems, 2015.



