
Capacity of Multiple One-Bit Transceivers in a
Rayleigh Environment

Kang Gao, J. Nicholas Laneman, Bertrand Hochwald

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556
Email: {kgao,jnl,bhochwald}@nd.edu

Abstract—We analyze the channel capacity of a system with a
large number of one-bit transceivers in a classical Rayleigh envi-
ronment with perfect channel information at the receiver. With
M transmitters and N = αM receivers, we derive an expression
of the capacity per transmitter C, where C ≤ min(1, α), as a
function of α and signal-to-noise ratio (SNR) ρ, when M →∞.
We show that our expression is a good approximation for small
M , and provide simple approximations of C for various ranges
of α and ρ. We conclude that at high SNR, C reaches its upper
limit of one only if α > 1.24. Expressions for determining when
C “saturates” as a function of α and ρ are given.

I. INTRODUCTION

In an effort to save power and cost in wideband wire-
less transceiver systems, low-resolution (especially one-bit)
analog-to-digital converters (ADCs) [1]–[13] and digital-to-
analog converters (DACs) [14]–[16] are being considered in
transmitter and receiver chains, especially in systems involving
many such chains. The nonlinearity introduced by coarse quan-
tization becomes a limiting factor in the achievable throughput
of such a wireless system. Channel capacity is one measure
of this throughput.

There is a rich literature on the subject of capacity with
coarse quantization. The capacity of a system with one-bit
ADCs at the receiver is analyzed in [1]–[9] with various
assumptions about the channel, the channel information, and
communication schemes. Communication techniques includ-
ing channel estimation and signal detection for a multiple-
input multiple-output (MIMO) system with one-bit ADCs at
the receiver are studied in [10]–[13]. A communication system
with one-bit DACs at the transmitter is studied in [14]–[16].

While many of the efforts consider low-resolution quanti-
zation effects at the transmitter or receiver, a few consider
low-resolution quantization on both, including [17] and [18].
A linear minimum-mean-squared-error precoder design is pro-
posed for a downlink massive MIMO scenario to mitigate the
quantization distortion in [17] and the performance analysis of
a system with a small number of one-bit transceivers is studied
in [18]. We focus on a model where one-bit quantization is
considered at both the transmitter and receiver:

y = sign
(√

ρ

M
Hx + v

)
,x ∈ {±1}M , (1)

where M and N are the number of transmitters and receivers,
x ∈ {±1}M and y ∈ {±1}N are the transmitted and
received signals, H ∈ RN×M is the channel matrix known

to the receiver, v ∈ RN is the additive Gaussian noise with
v ∼ N (0, I) and v is independent of x and H , ρ is the
expected received SNR at each receive antenna. The function
sign(·) provides the sign of the input as its output. The
channel is modeled as real-valued since only the in-phase (I)
information is used and the quadrature (Q) phase is ignored
at the receiver. A Rayleigh channel is assumed, with each
element to be independent Gaussian N (0, 1). This assumption
appears to hold for non-line of sight (NLOS) channels in many
frequency bands [19], and also appears in the analysis in [6]–
[11], [14].

Our contribution is a large M and N analysis, where the
ratio α = N

M is constant, of the capacity for the model (1).
Analytical expressions are derived that can be used to explain
the behavior of the system in various limiting regimes of
operation in α and SNR.

II. CAPACITY FOR A LARGE NUMBER OF TRANSMITTERS
AND RECEIVERS

The capacity of the channel in (1) as a function of ρ, M ,
and N is

C(ρ,M,N) =
1

M
max

px(·),x∈{±1}M
I(x;y, H), (2)

where we have normalized by M , and where px(·) is the
input distribution independent of H , and I(·; ·) is the mutual
information notation. When M,N →∞ with a ratio α = N

M ,
the capacity C is defined as

C(ρ, α) = lim
M→∞

C(ρ,M,αM). (3)

We can readily see that C(ρ,M,N) ≤ min(1, α) because
each transmitter can transmit at most one bit of information,
and each receiver can decode at most one bit of information.
Therefore, C(ρ, α) ≤ min(1, α) for all α and ρ.

Limiting capacities such as (3) are difficult to compute in
closed form, but the “replica method” [20] can be brought to
bear on the problem. Some details of how to apply the method
are presented in Section IV. For now, we present the result:

C(ρ, α) = min
(
α(c(ρ)− c(A2q)) +

1

2 ln 2
(E + Eq)

− 1√
2π

∫
R

log2(cosh(E +
√
Ez))e−z

2/2dz, 1
)
, (4)
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where c(ρ) is the capacity of a single transceiver with SNR
ρ, which is defined as

c(ρ) = 1− Ez (H2(Q(
√
ρz))) , z ∼ N (0, 1), (5)

where H2(p) = −(p log2 p+(1−p) log2(1−p)) is the binary
entropy function, and q, E,A are the solutions of

q =
1√
2π

∫
R

tanh(
√
Ez + E)e−z

2/2dz, (6)

E =
αA2

π
√

2π

∫
R

exp
(
−(A2q + 1

2 )z2
)

Q(A
√
qz)

dz, (7)

A =

√
ρ

1 + ρ(1− q)
. (8)

Equation (4) gives the capacity for any SNR ρ and α,
and some limiting situations are readily analyzed, including:
(i) high SNR, ρ → ∞; (ii) low SNR, ρ → 0; (iii) many
more receivers than transmitters, α → ∞; (iv) many more
transmitters than receivers, α → 0. These are now presented,
with only limited proofs.

A. High SNR (ρ→∞)

When ρ → ∞, the system is effectively becoming “noise-
free”, and we might expect C → 1, but as we show this does
not happen for all α. For SNR → ∞, A =

√
1

1−q , and (4)
becomes

C(α, ρ) = min
(
α
(
1− c( q

1− q
)
)

+
1

2 ln 2
(E + Eq)

− 1√
2π

∫
R

log2(cosh(E +
√
Ez))e−z

2/2dz, 1
)
, (9)

where c(·) is defined in (5), (7) can be simplified as

E =
α

π
√

2π(1− q)

∫
R

exp(−(q + 1
2 )z2)

Q(
√
qz)

dz, (10)

and E, q are the solution of (6) and (10).
The expression (9) is not especially intuitive, but it is

not difficult to solve. We show some numerical examples
in Section III. It turns out that in this case, solving (9) is
essentially equivalent to solving for the “quenched entropy”
for Gibbs learning of the Ising perceptron (Section 7.2 in [21]).

B. Low SNR (ρ→ 0)

When ρ→ 0, (6), (7), and (8) become

q → 2αρ

π
, E → 2αρ

π
, A→ √ρ. (11)

For small x, we use a Taylor series expansion to obtain

Q(x) ln(Q(x)) = − ln 2

2
− (1− ln 2)x√

2π
+
x2

2π

+
(1− ln 2)π + 2

√
2π

6π
√

2π
x3 +

π − 1

6π2
x4 + o(x4),

ln(cosh(x)) =
x2

2
− x4

12
+ o(x4).

Then
C(ρ, α) ≈ αρ

π ln 2
− α2 + (π − 1)α

π2 ln 2
ρ2, (12)

to second order in ρ. It turns out that this result matches
the expression in [6], with a difference in factor of 1

2 ln 2
that comes from the fact that [6] considers two bits per
transmission, and ‘nats’ instead of ‘bits’.

C. N >> M (α→∞)

When α→∞, (6)-(8) becomes

q → 1, A→ √ρ,

E → αρ

π
√

2π

∫
R

exp
(
−(ρ+ 1

2 )z2
)

Q(
√
ρz)

dz. (13)

and

C(ρ, α) ≈ min
(

1,
E

ln 2
−∫

R

1√
2π
e−z

2/2 log2(cosh(E +
√
Ez))dz

)
, (14)

More will be said about this in Section III.

D. N << M (α→ 0)

When α → 0, the first order approximations of q and E
based on (6)-(8) become

q =
2ρα

(1 + ρ)π
+ o(α), E =

2ρα

(1 + ρ)π
+ o(α). (15)

Therefore,

C(ρ, α) ≈ c(ρ)α− ρ2

π2(1 + ρ)2 ln 2
α2, (16)

where c(ρ) is the capacity of a single transceiver, defined in
(5).

III. NUMERICAL EVALUATION OF CAPACITY

We first compare C(ρ,M,αM) in (2) with C(ρ, α) in (4)
for M = 8 and α ∈ {0.25, · · · , 1.75}, to show how the large-
M and N limit (4) can be used to approximate the exact
capacity. Figure 1 displays that the approximation is accurate
for small M for a wide range of SNR (from 0 dB to 30 dB)
when C(ρ, α) ≤ 0.7. When C(ρ, α) is larger than 0.7, M = 8
is not big enough and a larger M is required to get a valid
approximation. We can see that C(ρ, α) can saturate at 1 when
α ≥ 1.5 with SNR smaller than 30 dB, and an SNR higher
than 30 dB is required to achieve the maximum for α = 1.25,
but C(ρ, α) cannot achieve the maximum when α ≤ 1. We will
show later that α > 1.24 is required to achieve the maximum.

Figure 2 displays C(ρ, α) in (4) for α and ρ varying from
0.1 to 10 with step 0.1. We can see that C(ρ, α) increases
linearly with ρ and α when ρ and α are small, and the rate
of increase slows down dramatically as ρ and α grow and C
nears saturation at C ≈ 1. When α is small but ρ is large,
C(ρ, α) saturates at C(ρ, α) ≈ α (its upper bound). When ρ is
small but α is large, we can see that C(ρ, α) increases with
α and reaches its maximum value 1. We show that for any ρ,
C(ρ, α)→ 1 when α→∞.
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Fig. 1. Comparison between C(ρ,M,αM) (2) and C(ρ, α) (4) with M = 8
for α ∈ {0.25, · · · , 1.75} with SNR varying from 0 dB to 30 dB. The
accuracy of the approximation in a wide range of SNR shows that M = 8 is
big enough to get a valid approximation with C(ρ, α) ≤ 0.7.

Contours of constant C(ρ, α) for ρ ≤ 4 and α ≤ 4 are
shown in Figure 3. We can observe that there is generally a
sharp tradeoff between ρ and α, and that operating near the
knee in the curve is generally desirable for a given capacity
since both α and ρ are small.

Furthermore, the contours are dense when C(ρ, α) ≤ 0.8
and start becoming sparse when C(ρ, α) ≥ 0.8, thus showing
that C(ρ, α) has started to “saturate” at 0.8 and improves only
slowly with further increases in either α or ρ.

The contours allow us to explore optimal operating points.
For example, given a cost function where α+ρ = d for some
constant d, we find an approximately optimal point to achieve
C(ρ, α) = 0.8 is α = 3.4 and ρ ≈ 2.07. Attempts to make α
smaller will require significant increase in ρ, and attempts to
make ρ smaller will require significant increase in α.

Figure 4 shows the accuracy of the approximations of
C(ρ, α) at high and low SNR. Plotted are examples when SNR
is large (10 dB to 30 dB) and SNR is low (-10 dB, ρ = 0.1) of
the actual capacity (4) and the corresponding approximations
(9) and (12). Of particular interest is the approximately linear
growth in (9) with α until it reaches the C = 1 saturation point
when α ≈ 1.24. This hard limit value of 1.24 receive antennas
for every transmit antenna is perhaps surprising.

The curves for low SNR show that C(ρ, α) at ρ = 0.1 is
close to the low SNR approximation in (12) with a simple
second order expression when α ≤ 4. In general, when
ρ ≤ 0.1, we need α ≤ 0.4/ρ for an accurate low SNR
approximation according to (11).

Figure 5 presents a comparison of (4) with the large α,
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Fig. 2. C(ρ, α) (4) versus ρ and α with 0.1 ≤ ρ ≤ 10 and 0.1 ≤ α ≤ 10.
C(ρ, α) increases linearly with ρ and α when ρ and α are small but C(ρ, α)
“saturates” quickly.
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Fig. 3. Contour plot of C(ρ, α) (4) with α ≤ 4 and ρ ≤ 4. The gap between
the adjacent contours becomes large as C(ρ, α) increases, which shows the
increasing demands on ρ and α to increase C(ρ, α).

small α approximations in (14) and (16). We obtain excellent
agreement for even the modest values α = 5 and α = 1 over a
wide range of SNR. Moreover, according to (13), when α→
∞, we have E → ∞ for any ρ > 0, and thus C(ρ, α) → 1.
This differs from the high SNR case, where C(ρ, α) < 1 when
α < 1.24 even as ρ→∞.

A. Tradeoff between α and ρ for fixed C

We are interested in characterizing the contours in Figure
3 analytically, and we use the large α approximation for C in
(14). Since C in (14) is just a function of E, to achieve some
target capacity C, we solve for E numerically, and denote the
result as EC . With E = EC , (13) then provides the relationship
between α and ρ. To simplify the relationship, (13) can be
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Fig. 4. Comparison between C(ρ, α) (4) at high SNR (10 dB to 30 dB), low
SNR (-10 dB, ρ = 0.1), and their corresponding approximations in (9) and
(12). The curve at ρ = 10 (10 dB) is already close to the noise-free case,
which increases nearly linearly with α before saturation at α ≈ 1.24. The
low SNR approximation (12) is similarly accurate when ρ = 0.1 for α ≤ 4.
In general, we need α ≤ 0.4/ρ for an accurate low SNR approximation when
ρ ≤ 0.1.
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Fig. 5. The comparison between the capacity C(ρ, α) (4) with large α (α =
5), small α (α = 1) and their corresponding approximations in (14) and (16).
The good approximations over a wide range of SNR shows that α = 5 is
big enough and α = 1 is small enough to use (14) and (16) for accurate
approximations.

further approximated as

EC ≈
α

π
(−0.3ρ2 + 1.8ρ) (17)

with good accuracy when ρ ≤ 1.5. The relationship between
α and ρ is then

ρ ≈ 3−
√

9− 10ECπ

3α
. (18)

To verify the approximation in (18), we compare the actual
SNR ρ with the approximated ρ (18) in Figure 6. Shown are
contours for C = 0.6, . . . , 0.9 and α ∈ [5, 10]. The solid lines
are the contour plot of C(ρ, α) (4), and the dashed lines are
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Fig. 6. Comparison between the actual SNR ρ and the approximated SNR
(18) for the contours C = 0.6, . . . , 0.9. The solid lines are contour plots of
(4), and the dashed lines present the approximation of ρ (18) as a function
of α.

(18). We see good agreement over a wide range of α.
Clearly, there are many other comparisons and tradeoffs

we can analyze using (4) and its approximations. We briefly
describe how the replica method was applied to obtain (4).

IV. REPLICA ANALYSIS

The replica method, a tool used in statistical mechanics and
applied to the theory of spin glass [20], has been applied
in many communication system contexts [22]–[26], neural
networks [21], [27], error-correcting codes [28], and image
restoration [29]. A mathematically rigorous justification of
the replica method is elusive, but the success of the method
maintains its popularity. We apply the method to solve for a
closed-form answer to (3). We omit many details, and present
only the primary steps.

Because the channel is unknown to the transmitter, accord-
ing to [18], the optimal input distribution is px(x) = 1

2M
, and

then (2) becomes

C(ρ,M,N) =
1

M
(H(y|H)−H(y|x, H)) , px(x) =

1

2M
,

where H(·) is the standard definition of entropy.
Since the elements in H are i.i.d. N (0, 1), and x ∈ {±1}M ,

we have
√

ρ
MHx ∼ N (0, ρI), and

H(y|x, H) = N(1− c(ρ)), (19)

where c(ρ) is defined in (5).
Then, (3) becomes

C(ρ, α) = lim
M→∞

H(y|H)

M
− α(1− c(ρ)). (20)

The replica method is used to compute the limit, and the
processes are similar to that used in [22]–[26].

We start with the identity

H(y|H) = − 1

ln 2
lim
n→0

∂

∂n
ln EH,y(p(y|H))n,
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which holds for n ∈ R. The idea of the replica method is to
compute EH,y(p(y|H))n as a function of n by treating n as
a positive integer, and then assume the result to be valid for
n ∈ R.

We assume the limit of M and n can commute, then

lim
M→∞

H(y|H)

M
= − 1

ln 2
lim
n→0

∂

∂n
lim
M→∞

ln Ξn
M

, (21)

where Ξn = EH,y(p(y|H))n.
Now, we regard n as a positive integer and we have

Ξn = EH,y(p(y|H))n = EH
∑
y

(
n∏
a=0

Exap(y|H,xa)

)
,

where xa is the ath replica of x (0 ≤ a ≤ n), and xa are i.i.d.
uniform distributed in {±1}M .

Based on (1), we further have

Ξn = Ex0,··· ,xn

∑
y

EH

(
n∏
a=0

N∏
k=1

Q

(
−yk

√
ρ

M
hTk xa

))
= Ex0,··· ,xn

[eNG ], (22)

where yk is the kth element of y, Q(·) is the well-known
Q-function, and hTk is the kth row of H ,

eG =
∑
y

Eh

n∏
a=0

Q

(
−y
√

ρ

M
hTxa

)
(23)

with y ∈ {±1},h ∼ N (0, I).
Let ua = 1

M hTxa and u = [u0, · · · , un]T . Then u ∼
N (0, R), where R is the covariance matrix with elements
Rab = E(uaub) =

xT
a xb

M ∈ [−1, 1] for 0 ≤ a < b ≤ n
and Raa = 1. Then G only depends on R:

G(R) = ln

(∑
y

Eu

n∏
a=0

Q (−y√ρua)

)
, (24)

and (22) becomes

Ξn =

∫
R
· · ·
∫

R

∏
a<b

dRabµM (R)eNG(R),

where

µM (R) = Ex0,··· ,xn

(∏
a<b

δ(
xTa xb
M

−Rab)

)
. (25)

We can consider µM (R) as the distribution of a random
symmetric matrix R, and we have

Ξn = ER

[
eNG(R)

]
,R ∼ µM (R)

Similarly to [24], we apply Varadhan’s theorem and Gartner-
Ellis theorem [30] and obtain

lim
M→∞

ln Ξn
M

= sup
R

inf
R̃

[
αG(R)−

∑
a<b

R̃abRab + Λ(R̃)

]
︸ ︷︷ ︸

f(R,R̃)

,

(26)

where R̃ is an (n+1)×(n+1) matrix with R̃ab as its elements,
and Λ(R̃) is defined as

Λ(R̃) = lim
M→∞

1

M
ln ER exp

(∑
a<b

MR̃abRab

)
. (27)

Based on the distribution of R in (25), we further have

Λ(R̃) = ln

[
Ex0,··· ,xn

exp

(∑
a<b

R̃abxaxb

)]
, (28)

where xa are independent uniform distributed in {±1}.
R and R̃ that achieve the optimal value described in (26)

are called the saddle point [21]. The saddle point either stays
on the boundary (Rab = 1 or Rab = −1) or satisfies ∂f

∂R̃ab
=

∂f
∂Rab

= 0, i.e.

Rab =
∂Λ(R̃)

∂R̃ab
, R̃ab = α

∂G(R)

∂Rab
, (a < b) (29)

with G(R) and Λ(R̃) expressed in (24) and (28).
Here, we further assume that permutations among the (n+1)

replicas with index a = 0, 1, 2, · · · , n will not change the
saddle point. This assumption is called the “replica symmetry”
(RS) assumption. At the saddle point, we let

Rab = q, R̃ab = E, (0 ≤ a < b ≤ n), (30)

which are called RS saddle points.
Based on (20), (21), (26), and (30), we can get (4), where
C(ρ, α) = 1 is the solution when the saddle point is on
the boundary (q = 1). The remaining expressions in (4)
are obtained when the saddle point satisfies (29), and the
corresponding RS saddle point is the solution of (6)-(8).

A. Extension to complex signals

The real-valued model (1) is now extended to both I and Q
phase at the transmitter and receiver, and hence

ŷ = sign
(√

ρ

2M
Ĥx̂ + v̂

)
, x̂ ∈ {±1}2M (31)

where x̂, ŷ, Ĥ, v̂ are defined as

x̂ =

[
xR

xI

]
, ŷ =

[
yR

yI

]
, Ĥ =

[
HR −HI

HI HR

]
, v̂ =

[
vR

vI

]
.

where HR, HI ∈ RN×M are the real and imaginary parts of
the channel, xR,xI ∈ {±1}M and yR,yI ∈ {±1}N are the
real and imaginary parts of the transmitted and received signal,
and vR and vI are additive noise. The elements in HR, HI,
vR, and vI are independent Gaussian N (0, 1), and ρ is the
expected received SNR at each receive antenna.

Since the channel is known only to the receiver, the uniform
input is optimal and the channel capacity is

Ĉ(ρ,M,N) =
1

M

(
H(ŷ|Ĥ)−H(ŷ|x̂, Ĥ)

)
, px̂(x̂) =

1

22M
.
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When M,N → ∞ with a ratio α = N
M , the capacity Ĉ is

defined as
Ĉ(ρ, α) = lim

M→∞
Ĉ(ρ,M,αM). (32)

Similarly to the analysis for real signal, we have

H(ŷ|x̂, Ĥ) = 2N(1− c(ρ)), (33)

Ĉ(ρ, α) = lim
M→∞

H(ŷ|Ĥ)

M
− 2α(1− c(ρ)). (34)

Using the replica method with the RS assumption, we obtain

lim
M→∞

H(ŷ|Ĥ)

M
= 2 lim

M→∞

H(y|H)

M
, (35)

and therefore
Ĉ(ρ, α) = 2C(ρ, α). (36)

Consequently, the I-Q model capacity is twice the I-only
capacity.

V. CONCLUSION

We have presented the capacity per transmitter in the limit
where the number of single-bit transmitters M and receivers
N is large, and where α = N/M was fixed. A flat Rayleigh
fading channel was considered, and we assumed the channel
was only known by the receiver. We were able to derive a
variety of approximations using the analytical results, and
showed that the large-system formulas are useful even for a
small numbers of transmitters and receivers. We examined how
C saturated with either large α or ρ, and gave formulas for
exploring the contours of fixed C as a function of α and ρ.
Further work in expanding these results to different channel
models would be of great interest.
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