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Abstract

There is widespread sentiment that fast gradient methods (e.g. Nesterov’s acceleration, conju-
gate gradient, heavy ball) are not effective for the purposes of stochastic optimization due to their
instability and error accumulation. Numerous works have attempted to quantify these instabilities
in the face of either statistical or non-statistical errors (Paige, 1971; Proakis, 1974; Polyak, 1987;
Greenbaum, 1989; Devolder et al., 2014). This work considers these issues for the special case of
stochastic approximation for the least squares regression problem, and our main result refutes this
conventional wisdom by showing that acceleration can be made robust to statistical errors. In par-
ticular, this work introduces an accelerated stochastic gradient method that provably achieves the
minimax optimal statistical risk faster than stochastic gradient descent. Critical to the analysis is a
sharp characterization of accelerated stochastic gradient descent as a stochastic process. We hope
this characterization gives insights towards the broader question of designing simple and effective
accelerated stochastic methods for more general convex and non-convex optimization problems.
Keywords: Stochastic Approximation, Acceleration, Stochastic Gradient Descent, Accelerated
Stochastic Gradient Descent, Least Squares Regression.

1. Introduction

Stochastic gradient descent (SGD) is the workhorse algorithm for optimization in machine learning
and stochastic approximation problems; improving its runtime dependencies is a central issue in
large scale stochastic optimization that often arise in machine learning problems at scale (Bottou
and Bousquet, 2007), where one can only resort to streaming algorithms.
This work examines these broader runtime issues for the special case of stochastic approxima-
tion in the following least squares regression problem:
. def 1 2

min P(x), where, P(x) = §-E@pp [(b— (x,a))%], (1)

X
where we have access to a stochastic first order oracle, which, when provided with x as an input,

returns a noisy unbiased stochastic gradient using a tuple (a, b) sampled from D(R? x R), with d
being the dimension of the problem. A query to the stochastic first-order oracle at x produces:

VP(x)= —(b—(a,x))-a. 2)

(© 2018 P. Jain, P. Netrapalli, S.M. Kakade, R. Kidambi & A. Sidford.
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Algorithm Final error Runtime Memory
Accelerated SVRG o2d - o P(x0)=P(x.)
(Allen-Zhu, 2016) o(=) (n+ vnr)dlog ( @?d/n) nd

Streaming SVRG
(Frostig et al., 2015b)
Iterate Averaged SGD

(Jain et al., 2016)

Accelerated Stochastic Gradient Descent " n B o2d
(this paper) © <exp< *) (P(XO) P<X*))) + O( " ) nd o)

0 (Cxp (=2) - (P(x0) — P(x.)) + ﬂ) nd o)

Table 1: Comparison of this work to the best known non-asymptotic results (Frostig et al., 2015b;
Jain et al., 2016) for the least squares stochastic approximation problem. Here, d, n are the
problem dimension, number of samples; x, x denote the condition number and statistical
condition number of the distribution; o2, P(xg) — P(x,) denote the noise level and initial
excess risk, O* hides lower order terms in d, x, k (see section 2 for definitions and a proof
for k < k). Note that Accelerated SVRG (Allen-Zhu, 2016) is not a streaming algorithm.

Note E [@P(x)} = VP(x) (i.e. eq(2) is an unbiased estimate). Note that nearly all practical

stochastic algorithms use sampled gradients of the specific form as in equation 2. We discuss differ-
ences to the more general stochastic first order oracle (Nemirovsky and Yudin, 1983) in section 1.4.

Let x* & arg miny P(x) be a population risk minimizer. Given any estimation procedure
which returns X,, using n samples, define the excess risk (which we also refer to as the generalization
error or the error) of X,, as E[P(X,)] — P(x*). Now, equipped a stochastic first-order oracle
(equation (2)), our goal is to provide a computationally efficient (and streaming) estimation method
whose excess risk is comparable to the optimal statistical minimax rate.

In the limit of large n, this minimax rate is achieved by the empirical risk minimizer (ERM),

which is defined as follows. Given n i.i.d. samples S,, = {(a;, b;) }}_; drawn from D, define
n

~ def . def 1 2
XERM = arg min P, (x), where P, (x) == E % (bi — an) ,
X n - 1
1=
where QERM denotes the ERM over the samples S,,. For the case of additive noise models (i.e. where
b= a'x* + ¢, with € being independent of a), the minimax estimation rate is do? /n (Kushner and

Clark, 1978; Polyak and Juditsky, 1992; Lehmann and Casella, 1998; van der Vaart, 2000), i.e.:
SERMY] *
n—o0 d0'2/n

3)

where 02 = E [62] is the variance of the additive noise and the expectation is over the samples S,
drawn from D. The seminal works of Ruppert (1988); Polyak and Juditsky (1992) proved that a
certain averaged stochastic gradient method enjoys this minimax rate, in the limit. The question we
seek to address is: how fast (in a non-asymptotic sense) can we achieve the minimax rate of do?/n?

1.1. Review: Acceleration with Exact Gradients

Let us review results in convex optimization in the exact first-order oracle model. Running ¢—steps
of gradient descent (Cauchy, 1847) with an exact first-order oracle yields the following guarantee:

P(x¢) — P(x*) <exp ( — t/Ho) . (P(xo) — P(X*)),

where x( is the starting iterate, kK, = Amax(H)/Amin (H) is the condition number of P(.), where,
Amax (H), Amin (H) are the largest and smallest eigenvalue of the hessian H = V2P(x) = E [aa'].
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Figure 1: Plot of total error vs number of samples for averaged SGD and the minimax risk (green)
of do?/n for the discrete and Gaussian distributions with d = 50, x ~ 10° (see sec-
tion 1.2 for details on the distribution). The kink in the SGD curve represents when the
tail-averaging phase begins (Jain et al., 2016); this point is chosen appropriately. The ver-
tical dashed line shows the sample size at which the empirical covariance, % S aia;-r,
becomes full rank, which is shown at mn}i o in the discrete case and d in the Gaussian
case. With fewer samples than this (i.e. before the dashed line), it is information the-
oretically not possible to guarantee non-trivial risk (without further assumptions). For
the Gaussian case, note how the behavior of SGD is far from the minimax risk; it is this
behavior that one might hope to improve upon. See the text for more discussion.

Thus gradient descent requires O(k,) oracle calls to solve the problem to a given target accuracy,
which is sub-optimal amongst the class of methods with access to an exact first-order oracle (Nes-
terov, 2004). This sub-optimality can be addressed through Nesterov’s Accelerated Gradient De-
scent (Nesterov, 1983), which when run for t-steps, yields the following guarantee:

P(x¢) — P(x") < exp ( — t/\//?o) . (P(XO) — P(x*)),

which implies that O(/k,) oracle calls are sufficient to achieve a given target accuracy. This
matches the oracle lower bounds (Nesterov, 2004) that state that ©(,/k,) calls to the exact first order
oracle are necessary to achieve a given target accuracy. The conjugate gradient method (Hestenes
and Stiefel, 1952) and heavy ball method (Polyak, 1964) are also known to obtain this convergence
rate for solving a system of linear equations and for quadratic functions. These methods are termed
fast gradient methods owing to the improvements offered by these methods over Gradient Descent.
This paper seeks to address the question: “Can we accelerate stochastic approximation in a manner
similar to what has been achieved with the exact first order oracle model?”

1.2. A thought experiment: Is Accelerating Stochastic Approximation possible?

Let us recollect known results in stochastic approximation for the least squares regression prob-
lem (in equation 1). Running n-steps of tail-averaged SGD (Jain et al., 2016) (or, streaming
SVRG (Frostig et al., 2015b)!) provides an output X,, that satisfies the following excess risk bound:

1. Streaming SVRG does not function in the stochastic first order oracle model (Frostig et al., 2015b)
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Figure 2: Plot of total error vs number of samples for averaged SGD, (this paper’s) accelerated SGD
method and the minimax risk for the discrete and Gaussian distributions with d = 50, k =
10° (see section 1.2 for details on the distribution). For the discrete case, accelerated SGD
mimics SGD, which nearly matches the minimax risk (when it becomes well defined). For
the Gaussian case, accelerated SGD significantly improves upon SGD.

E[P(X,)] — P(x*) < exp(—n/k) - (P(Xg) — P(x*)) + 202d/n, )
where k is the condition number of the distribution, which can be upper bounded as L /Apin (H),
assuming that ||a|| < L with probability one (refer to section 2 for a precise definition of ). Under
appropriate assumptions, these are the best known rates under the stochastic first order oracle model
(see section 1.4 for further discussion). A natural implication of the bound implied by averaged SGD
is that with O(k) oracle calls (Jain et al., 2016) (where, O(+) hides log factors in d, k), the excess
risk attains (up to constants) the (asymptotic) minimax statistical rate. Note that the excess risk
bounds in stochastic approximation consist of two terms: (a) bias: which represents the dependence
of the generalization error on the initial excess risk P(xg) — P(x*), and (b) the variance: which
represents the dependence of the generalization error on the noise level o2 in the problem.

A precise question regarding accelerating stochastic approximation is: “is it possible to improve
the rate of decay of the bias term, while retaining (up to constants) the statistical minimax rate?”
The key technical challenge in answering this question is in sharply characterizing the error accu-
mulation of fast gradient methods in the stochastic approximation setting. Common folklore and
prior work suggest otherwise: several efforts have attempted to quantify instabilities in the face of
statistical or non-statistical errors (Paige, 1971; Proakis, 1974; Polyak, 1987; Greenbaum, 1989;
Roy and Shynk, 1990; Sharma et al., 1998; d’ Aspremont, 2008; Devolder et al., 2013, 2014; Yuan
et al., 2016). Refer to section 1.4 for a discussion on robustness of acceleration to error accumu-
lation. Optimistically, as suggested by the gains enjoyed by accelerated methods in the exact first
order oracle model, we may hope to replace the O(k) oracle calls achieved by averaged SGD to
O(y/k). We now provide a counter example, showing that such an improvement is not possible.
Consider a (discrete) distribution D where the input a is the i standard basis vector with probabil-
ity p;, Vi = 1,2, ...,d. The covariance of a in this case is a diagonal matrix with diagonal entries
p;. The condition number of this distribution is Kk = mir},p_ . In this case, it is impossible to make
non-trivial reduction in error by observing fewer than « Zsalmples, since with constant probability,
we would not have seen the vector corresponding to the smallest probability.




ACCELERATING STOCHASTIC GRADIENT DESCENT

5[ ‘ i 5
10 —SGD 10
0 —— Accelerated SGD
10 1 100+
107
a 3 10°" [—sap
[ 10'10 o —— Accelerated SGD
w [2] 10
@ @10
8 1015 3
g 10 <
L AN] -15
10
10—20
1028 1020
10-30 . . . . . . 10—25 . . . .
10° 10" 102 10°® 10* 10° 10% 107 10° 10" 10%2 10® 10* 10° 10° 107
Number of samples Number of samples
(a) Discrete Distribution (b) Gaussian Distribution

Figure 3: Comparison of averaged SGD with this paper’s accelerated SGD in the absence of noise
(62 = 0) for the Discrete and Gaussian distributions with d = 50, k &~ 10°. Acceleration
yields substantial gains over averaged SGD for the Gaussian case, while degenerating to
SGD’s behavior for the discrete case. See section 1.2 for discussion.

On the other hand, consider a case where the distribution D is a Gaussian with a large condition
number k. Matrix concentration informs us that (with high probability and irrespective of how large
k is) after observing n = O(d) samples, the empirical covariance matrix will be a spectral approx-
imation to the true covariance matrix, i.e. for some constant ¢ > 1, H/c < % Z?:l aiaiT < cH.
Here, we may hope to achieve a faster convergence rate, as information theoretically O(d) samples
suffice to obtain a non-trivial statistical estimate (see Hsu et al. (2014) for further discussion).

Figure 1 shows the behavior of SGD in these cases; both are synthetic examples in 50—dimensions,
with a condition number x ~ 10° and noise level 02 = 100. See the figure caption for more details.

These examples suggest that if acceleration is indeed possible, then the degree of improvement
(say, over averaged SGD) must depend on distributional quantities that go beyond the condition
number k. A natural conjecture is that this improvement must depend on the number of samples
required to spectrally approximate the covariance matrix of the distribution; below this sample size
it is not possible to obtain any non-trivial statistical estimate due to information theoretic reasons.
This sample size is quantified by a notion which we refer to as the statistical condition number &
(see section 2 for a precise definition and for further discussion about ). As we will see in section 2,
we have k < k, k is affine invariant, unlike  (i.e. ¥ is invariant to linear transformations over a).

1.3. Contributions

This paper introduces an accelerated stochastic gradient descent scheme, which can be viewed as
a stochastic variant of Nesterov’s accelerated gradient method (Nesterov, 2012). As pointed out
in Section 1.2, the excess risk of this algorithm can be decomposed into two parts namely, bias
and variance. For the stochastic approximation problem of least squares regression, this paper
establishes bias contraction at a geometric rate of O(1/ \/ﬁ), improving over prior results (Frostig
et al., 2015b; Jain et al., 2016),which prove a geometric rate of O(1/x), while retaining statistical
minimax rates (up to constants) for the variance. Here x is the condition number and  is the
statistical condition number of the distribution, and a rate of O(1/v/kk) is an improvement over
O(1/k) since k < k (see Section 2 for definitions and a short proof of k < k).
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See Table 1 for a theoretical comparison. Figure 2 provides an empirical comparison of the
proposed (tail-averaged) accelerated algorithm to (tail-averaged) SGD (Jain et al., 2016) on our two
running examples. Our result gives improvement over SGD even in the noiseless (i.e. realizable)
case where o = 0; this case is equivalent to the setting where we have a distribution over a (possibly
infinite) set of consistent linear equations. See Figure 3 for a comparison on the case where o = 0.

On a more technical note, this paper introduces two new techniques in order to analyze the
proposed accelerated stochastic gradient method: (a) the paper introduces a new potential function
in order to show faster rates of decaying the bias, and (b) the paper provides a sharp understanding of
the behavior of the proposed accelerated stochastic gradient descent updates as a stochastic process
and utilizes this in providing a near-exact estimate of the covariance of its iterates. This viewpoint
is critical in order to prove that the algorithm achieves the statistical minimax rate.

We use the operator viewpoint for analyzing stochastic gradient methods, introduced in Défossez
and Bach (2015). This viewpoint was also used in Dieuleveut and Bach (2015); Jain et al. (2016).

1.4. Related Work

Non-asymptotic Stochastic Approximation: Stochastic gradient descent (SGD) and its variants
are by far the most widely studied algorithms for the stochastic approximation problem. While
initial works (Robbins and Monro, 1951) considered the final iterate of SGD, later works (Rup-
pert, 1988; Polyak and Juditsky, 1992) demonstrated that averaged SGD obtains statistically opti-
mal estimation rates. Several works provide non-asymptotic analyses for averaged SGD and vari-
ants (Bach and Moulines, 2011; Bach, 2014; Frostig et al., 2015b) for various stochastic approxi-
mation problems. For stochastic approximation with least squares regression Bach and Moulines
(2013); Défossez and Bach (2015); Needell et al. (2016); Frostig et al. (2015b); Jain et al. (2016)
provide non-asymptotic analysis of the behavior of SGD and its variants. Défossez and Bach (2015);
Dieuleveut and Bach (2015) provide non-asymptotic results which achieve the minimax rate on the
variance (where the bias is lower order, not geometric). Needell et al. (2016) achieves a geometric
rate on the bias (and where the variance is not minimax). Frostig et al. (2015b); Jain et al. (2016)
obtain both the minimax rate on the variance and a geometric rate on the bias, as seen in equation 4.

Acceleration and Noise Stability: While there have been several attempts at understanding if
it is possible to accelerate SGD , the results have been largely negative. With regards to accel-
eration with adversarial (non-statistical) errors in the exact first order oracle model, d’ Aspremont
(2008) provide negative results and Devolder et al. (2013, 2014) provide lower bounds showing that
fast gradient methods do not improve upon standard gradient methods. There is also a series of
works considering statistical errors. Polyak (1987) suggests that the relative merits of heavy ball
(HB) method (Polyak, 1964) in the noiseless case vanish with noise unless strong assumptions on
the noise model are considered; an instance of this is when the noise variance decays as the iter-
ates approach the minimizer. The Conjugate Gradient (CG) method (Hestenes and Stiefel, 1952)
is suggested to face similar robustness issues in the face of statistical errors (Polyak, 1987); this
is in addition to the issues that CG is known to suffer from owing to roundoff errors (due to finite
precision arithmetic) (Paige, 1971; Greenbaum, 1989). In the signal processing literature, where
SGD goes by Least Mean Squares (LMS) (Widrow and Stearns, 1985), there have been efforts that
date to several decades (Proakis, 1974; Roy and Shynk, 1990; Sharma et al., 1998) which study
accelerated LMS methods (stochastic variants of CG/HB) in the same oracle model as the one con-
sidered by this paper (equation 2). These efforts consider the final iterate (i.e. no iterate averaging)
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of accelerated LMS methods with a fixed step-size and conclude that while it allows for a faster
decay of the initial error (bias) (which is unquantified), their steady state behavior (i.e. variance)
is worse compared to that of LMS. Yuan et al. (2016) considered a constant step size accelerated
scheme with no iterate averaging in the same oracle model as this paper, and conclude that these do
not offer any improvement over standard SGD. More concretely, Yuan et al. (2016) show that the
variance of their accelerated SGD method with a sufficiently small constant step size is the same
as that of SGD with a significantly larger step size. Note that none of the these efforts (Proakis,
1974; Roy and Shynk, 1990; Sharma et al., 1998; Yuan et al., 2016) achieve minimax error rates or
quantify (any improvement whatsoever on the) rate of bias decay.

Oracle models and optimality: With regards to notions of optimality, there are (at least) two
lines of thought: one is a statistical objective where the goal is (on every problem instance) to match
the rate of the statistically optimal estimator (Anbar, 1971; Fabian, 1973; Kushner and Clark, 1978;
Polyak and Juditsky, 1992); another is on obtaining algorithms whose worst case upper bounds (un-
der various assumptions such as bounded noise) match the lower bounds provided in Nemirovsky
and Yudin (1983). The work of Polyak and Juditsky (1992) are in the former model, where they
show that the distribution of the averaged SGD estimator matches, on every problem, that of the
statistically optimal estimator, in the limit (under appropriate regularization conditions standard
in the statistics literature, where the optimal estimator is often referred to as the maximum likeli-
hood estimator/the empirical risk minimizer/an M -estimator (Lehmann and Casella, 1998; van der
Vaart, 2000)). Along these lines, non-asymptotic rates towards statistically optimal estimators are
given by Bach and Moulines (2013); Bach (2014); Défossez and Bach (2015); Dieuleveut and Bach
(2015); Needell et al. (2016); Frostig et al. (2015b); Jain et al. (2016). This work can be seen as
improving this non-asymptotic rate (to the statistically optimal estimation rate) using an accelerated
method. As to the latter (i.e. matching the worst-case lower bounds in Nemirovsky and Yudin
(1983)), there are a number of positive results on using accelerated stochastic optimization pro-
cedures; the works of Lan (2008); Hu et al. (2009); Ghadimi and Lan (2012, 2013); Dieuleveut
et al. (2016) match the lower bounds provided in Nemirovsky and Yudin (1983). We compare these
assumptions and works in more detail.

In stochastic first order oracle models (see Kushner and Clark (1978); Kushner and Yin (2003)),
one typically has access to sampled gradients of the form:

VP(x) = VP(x) + n, (5)

where varying assumptions are made on the noise 1. The worst-case lower bounds in Nemirovsky
and Yudin (1983) are based on that 1) is bounded; the accelerated methods in Lan (2008); Hu et al.
(2009); Ghadimi and Lan (2012, 2013); Dieuleveut et al. (2016) which match these lower bounds
in various cases, all assume either bounded noise or, at least £ [Hn!ﬂ is finite. In the least squares
setting (such as the one often considered in practice and also considered in Polyak and Juditsky
(1992); Bach and Moulines (2013); Défossez and Bach (2015); Dieuleveut and Bach (2015); Frostig
et al. (2015b); Jain et al. (2016)), this assumption does not hold, since E [||/|?] is not bounded. To
see this, 77 in our oracle model (equation 2) is:

n=VP(x)—VP(x)=(aa' —H)(x—x*)—¢-a (6)
which implies that E [||7||?] is not uniformly bounded (unless additional assumptions are enforced

to ensure that the algorithm’s iterates x lie within a compact set). Hence, the assumptions made
in Hu et al. (2009); Ghadimi and Lan (2012, 2013); Dieuleveut et al. (2016) do not permit one to
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obtain finite n-sample bounds on the excess risk. Suppose we consider the case of € = 0, i.e. where
the additive noise is zero and b = a'x*. For this case, this paper provides a geometric rate of
convergence to the minimizer x*, while the results of Ghadimi and Lan (2012, 2013); Dieuleveut
et al. (2016) at best indicate a O(1/n) rate. Finally, in contrast to all other existing work, our result
is the first to provide finer distribution dependent characteristics of the improvements offered by
accelerating SGD (e.g. refer to the Gaussian and discrete examples in section 1.2).

Acceleration and Finite Sums: As a final remark, there have been results (Shalev-Shwartz and
Zhang, 2014; Frostig et al., 2015a; Lin et al., 2015; Lan and Zhou, 2015; Allen-Zhu, 2016) that
provide accelerated rates for offline stochastic optimization which deal with minimizing sums of
convex functions; these results are almost tight due to matching lower bounds (Lan and Zhou, 2015;
Woodworth and Srebro, 2016). These results do not immediately translate into rates on the gener-
alization error. Furthermore, these algorithms are not streaming, as they require making multiple
passes over a dataset stored in memory. Refer to Frostig et al. (2015b) for more details.

2. Main Results

We now provide our assumptions and main result, before which, we have some notation. For a

. : . . . def
vector x € R? and a positive semi-definite matrix S € R?*? (i.e. S > 0), denote ||x||Z = x Sx.

2.1. Assumptions and Definitions

Let H denote the second moment matrix of the input, which is also the hessian V2 P(x) of (1):
HE B ypa®a) = V2P(x).
(A1) Finite second and fourth moment: The second moment matrix H and the fourth moment
tensor M (= E, 5)~p [a ® a ® a® a]) of the input a ~ D exist and are finite.

(A2) Positive Definiteness: The second moment matrix H is strictly positive definite, i.e. H >~ 0.

We assume (A1) and (A2). (A2) implies that P(x) is strongly convex and admits a unique mini-

mizer x*. Denote the noise € in a sample (a, b) ~ D as: € ey - (a,x*). First order optimality con-
ditions of x* imply VP (x*) = E [e - a] = 0. Let X denote the covariance of gradient at optimum
x* (or noise covariance matrix), % def E(ap)~D [@P(x*) ® %P(X*)] = E@p)~p [62 a® a].
We define the noise level o2, condition number k, statistical condition number % below.

Noise level: The noise level is defined to be the smallest positive number o2 such that ¥ < ¢>H.The
noise level o2 quantifies the amount of noise in the stochastic gradient oracle and has been utilized
in previous work (e.g., see Bach and Moulines (2011, 2013)) in providing non-asymptotic bounds
for the stochastic approximation problem. In the homoscedastic (additive noise) case, where € is
independent of the input a, this condition is satisfied with equality, i.e. ¥ = 0? H with 02 = E [¢?].

Condition number: Let 1 of Amin(H). g > 0 by (A2). Now, let R? be the smallest positive

number such that E [||a||? aa'| < R? H. The condition number r of the distribution D (Défossez

and Bach, 2015; Jain et al., 2016) is & def RQ/M.

Statistical condition number: The statistical condition number ¥ is defined as the smallest positive
number such that E [HaH%{_l aaq <k H.
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Algorithm 1 (Tail-Averaged) Accelerated Stochastic Gradient Descent (ASGD)
Input: n oracle calls to 2, initial iterate xg = v, Unaveraged (burn-in) phase ¢, Step sizes «, 5,7, 0
Output: X, < ﬁ Z;‘:Hl X
for j + 1tondo
Yi-1 <+ Oth_lA—i- (1 — Oz)Vj_l
Xj < ¥Yj—1— 6VP(y;-1)
zj1 < Byj-1+ (1= P)vja
vj 21— 7VP(yj-1)
end

Remarks on « and «: Unlike &, it is straightforward to see that x is affine invariant (i.e. unchanged
with linear transformations over a). Since E [||a||%{71 aaT} =< %E {Ha”% aaT] =< kH, we note

k < k. For the discrete case (from Section 1.2), it is straightforward to see that both x and k are
equal to 1/ min; p;. In contrast, for the Gaussian case (from Section 1.2), % is O(d), while « is
O(Trace(H)/p) which may be arbitrarily large (based on choice of the coordinate system).

K governs how many samples a; require to be drawn from D so that the empirical covariance is
spectrally close to H, i.e. for some constant ¢ > 1, H/c < % Py al-aiT = cH. In comparison to
the matrix Bernstein inequality where stronger (yet related) moment conditions are assumed in order
to obtain high probability results, our results hold only in expectation (refer to Hsu et al. (2014) for
this definition, wherein x is referred to as bounded statistical leverage in theorem 1 and remark 1).

2.2. Algorithm and Main Theorem

Algorithm 1 presents the pseudo code of the proposed algorithm. ASGD can be viewed as a variant
of Nesterov’s accelerated gradient method (Nesterov, 2012), working with a stochastic gradient
oracle (equation 2) and with tail-averaging the final n — ¢ iterates. The main result now follows:

_ _3V5VER _ 1 _ 1 _
Theorem 1 Suppose (Al) and (A2) hold. Set o = oA B8 = v | T SR 5 =
%. After n calls to the stochastic first order oracle (equation 2), ASGD outputs Xy p, satisfying:

ki)Y 4dk — o2
BP(xi,)] - PO < € R o (wﬁ7> (o)~ PO+ 5T

Leading order bias error Leading order variance error

o2
> (P(x0) — P(x*))+ C- (n_a;Q KR+

J/

—n
IVEKR
Exponentially vanishing lower order bias term Lower order variance error term
C - exp ( o'd

> . <02d~ (k)74 + e (Hg)7/2',;> LC. noidt(nﬁ)u/zx exp ( (nSO\t/ﬁl))

C - (kR)**dk - exp <

n
IVEKR

Exponentially vanishing lower order variance error terms
where C' is a universal constant, 02, k and & are the noise level, condition number and statistical
condition number respectively.

The following corollary holds if the iterates are tail-averaged over the last /2 samples and n >
O(V Kk log(dkk)). The second condition lets us absorb lower order terms into leading order terms.
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Corollary 2 Assume the parameter settings of theorem I and lett = |n/2] andn > C'v/kk log(dkF)
(for an appropriate universal constants C, C'). We have that with n calls to the stochastic first order
oracle, ASGD outputs a vector X; , satisfying:
n o%d
E[P(x¢,)] — P(x*) < C-exp < — 20@) - (P(x0) — P(x*)) + 117.
A few remarks about the result of theorem 1 are due: (i) ASGD decays the initial error at
a geometric rate of O(1/ \/ﬁ) during the unaveraged phase of ¢ iterations, which presents the
first improvement over the O (1/k) rate offered by SGD (Robbins and Monro, 1951)/averaged
SGD (Polyak and Juditsky, 1992; Jain et al., 2016) for the least squares stochastic approximation
problem, (ii) the second term in the error bound indicates that ASGD obtains (up to constants) the
minimax rate once n > O(v/k% log(dkF)). Note that this implies that Theorem 1 provides a sharp
non-asymptotic analysis (up to log factors) of the behavior of Algorithm 1.

2.3. Discussion and Open Problems

A challenging problem in this context is in formalizing a finite sample size lower bound in the oracle
model considered in this work. Lower bounds in stochastic oracle models have been considered in
the literature (see Nemirovsky and Yudin (1983); Raginsky and Rakhlin (2011); Agarwal et al.
(2012)), though it is not evident these oracle models and lower bounds are sharp enough to imply
statements in our setting (see section 1.4 for a discussion of these oracle models).

Let us now understand theorem 1 in the broader context of stochastic approximation. Under cer-
tain regularity conditions, it is known that (Lehmann and Casella, 1998; van der Vaart, 2000) that the
rate described in equation 3 for the homoscedastic case holds for a broader set of misspecified mod-
els (i.e., heteroscedastic noise case), with an appropriate definition of the noise variance. By defining
0% & E [H%P(x*)
and Casella, 1998; van der Vaart, 2000) in the limit of large n, i.e.:

iy B[ PaBER)] - Pl

n—00 OfpM /n

where XERM s the ERM over samples S, = {a;, b;}" ;. Averaged SGD (Jain et al., 2016) and
streaming SVRG (Frostig et al., 2015b) are known to achieve these rates for the heteroscedastic case.
Neglecting constants, Theorem 1 is guaranteed to achieve the rate of the ERM for the homoscedastic
case (where ¥ = ¢?H) and is tight when the bound ¥ < ¢?H is nearly tight (upto constants). We
conjecture ASGD achieves the rate of the ERM in the heteroscedastic case by appealing to a more
refined analysis as is the case for averaged SGD (see Jain et al. (2016)). It is also an open question
to understand acceleration for smooth stochastic approximation (beyond least squares), in situations
where the rate represented by equation 7 holds (Polyak and Juditsky, 1992).

2
Hl] , the rate of the ERM is guaranteed to approach O'%RM /n (Lehmann

=1, (7

3. Proof Outline

Recall the variables in Algorithm 1. We begin by defining the centered estimate 6, as:
0, < [ Xj =X ] e R%.
yj—X
3V5-VkE 1

_ _1 — 1 - 1
1+3v/5- nE’B T o T 3\/5;“/%’5 ~ 5R%”
The accelerated SGD updates of Algorithm 1 can be written in terms of 6; as:

Recall that the stepsizes in Algorithm 1 are o =

10
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9] j 1 —+ Cj» where,
A, def 0 (I-da; a;r) Cdéf 0-€;a;
7 —a(1-8)1 (1+a(l- ﬁ))I — (a5 +(1—-a)ya 4a-T >3 (ad+ (1 —a)y)-€ga; |’

def

where €; = bj — (a;j, x*). The tail-averaged iterate X; 5, is associated with 6, , = —L- Ly i1 95
Let A ¥ E [Kﬂfj,l], where F;_ is a filtration generated by (a;,b1),---,(aj—1,bj—1). Let
B, Az, A be linear operators acting on a matrix S € R24*2¢ 5o that BS ) [A SA | Fi— 1}

AcS & AS, AzS £ SA. Denote S ' E [CJC | Fj— 1} and matrices G, Z, G as:

G GTZG where, G [_£ 10 } 7 & [I 0_1} .
I =1’ 0 puH
Bias-variance decomposition: The proof of theorem 1 employs the bias-variance decomposition,
which is well known in the context of stochastic approximation (see Bach and Moulines (2011);
Frostig et al. (2015b); Jain et al. (2016)) and is re-derived in the appendix. The bias-variance decom-
position allows for the generalization error to be upper-bounded by analyzing two sub-problems: (a)
bias, analyzing the algorithm’s behavior on the noiseless problem (i.e. {; = 0V j a.s.) while start-
ing at B0 = 6 and (b) variance, analyzing the algorithm’s behavior by starting at the solution
(i.e. Ogaﬁance = 0) and allowing the noise . to drive the process. In a similar manner as ét’n, the

bias and variance sub-problems are associated with e'g}gs and 6;%""°, and these are related as:

E [ét,n & étm] <2. (E [égigs ® égigs] 4 E [éz/f;ll‘iance ® éz/fgiance] ) ®)
Since we deal with the square loss, the generalization error of the output X; ;, of algorithm 1 is:
_ X 1 H 0 = =
E[P(x0n)] — P(x") = 3 < [0 0] E [0, et,n]> , ©)

indicating that the generalization error can be bounded by analyzing the bias and variance sub-
problem. We now present the lemmas that bound the bias error.

Lemma 3 The covariance E [éi’fﬁs ® éi’fﬁs} of the bias part of averaged iterate 0_2’33 satisfies:

E [éi}fas ® ebm] _ <I+ (T - AL)_lAL +(T - A%)_lu‘gz) (T - B)—1(3t+1 — B"+1) (6o ® 6o)

1
(”*t)Q
B n—t2 Z <I Ap) AT (T - AR)T 1(A7Tz)n+1j>3j(90®90)~

Jj=t+1
The quantity that needs to be bounded in the term above is B/*10 ® 6. Lemma 4 presents a result
that can be applied recursively to bound B0y @ 6, (= BH105® @ 65 since 051 = 6,).

d *
Lemma 4 (Bias contraction) For any two vectors X,y € R%, let @ = o [y _ i*] € R2?. We have:

<G,B (aaT)> < (1 - 9&) <G,99T>

11
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Remarks: (i) the matrices Gand GT appearing in G are due to the fact that we prove contraction

using the variables x —x* and v —x* instead of x —x* and y —x*, as used in defining 0. (ii) The key

novelty in lemma 4 is that while standard analyses of accelerated gradient descent (in the exact first

order oracle) use the potential function ||x — x*||3; + ||V — x*||3 (e.g. Wilson et al. (2016)), we

consider it crucial for employing the potential function ||x — x* Hg +p v —x* ||%{_1 (this potential

function is captured using the matrix Z) to prove accelerated rates (of O (1 / \/ﬁ)) for bias decay.
We now present the lemmas associated with bounding the variance error:

Lemma 5 The covariance E [0]9"¢ © 0;"¢| of the variance error 8,%" satisfies:
’ ) I’

o 1 ~
E [0 o 0] = —— (T4 (T~ Ac) " Ag + (T - AR) ' AL) (T - B) 'S

T _1 nE (T —Az) 2 (Az — AZPH + (T — AR) 2 (Ag — (AR)" ) (T - B)'S
— (n _1 t)2 (I+ (T - AL)*lAL +(IZ- A7T2)71A7T2) (T - 3)72(Bt+1 _ Bn+1)§]
+ ﬁ Z ((I_AL)*lAZ—H—j + (I_A;g)fl(A;;)nﬂ—j)(I_6)718]-2.

Jj=t+1

The covariance of the stationary distribution of the iterates i.e., lim;_, requires a precise
bound to obtain statistically optimal error rates. Lemma 6 presents a bound on this quantity.

Ovariance
J

Lemma 6 (Stationary covariance) The covariance of limiting distribution of "¥“"°¢ satisfies:

. . = 1
E [0227" @ 052" ] = (I — B)_12 < 502 ((2/3) : (:H_l) +(5/6) - (6I)> ® B (1)] .
K
A crucial implication of this lemma is that the limiting final iterate Y2137 has an excess risk O(o?).
This result naturally lends itself to the (tail-)averaged iterate achieving the minimax optimal rate of
O(do?/n). Refer to the appendix E and lemma 17 for more details in this regard.

4. Conclusion

This paper introduces an accelerated stochastic gradient method, which presents the first improve-
ment in achieving minimax rates faster than averaged SGD (Robbins and Monro, 1951; Polyak and
Juditsky, 1992; Jain et al., 2016)/Streaming SVRG (Frostig et al., 2015b) for the stochastic approx-
imation problem of least squares regression. To obtain this result, the paper presented the need to
rethink what acceleration has to offer when working with a stochastic gradient oracle: the statistical
condition number (an affine invariant distributional quantity) is shown to characterize the improve-
ments that acceleration offers in the stochastic first order oracle model. In essence, this paper serves
to provide the first provable analysis of the claim that fast gradient methods are stable when dealing
with statistical errors, in stark contrast to efforts that date to several decades indicating negative
results in various statistical or non-statistical settings.
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Appendix A. Appendix setup

We will first provide a note on the organization of the appendix and follow that up with introducing
the notations.

A.1. Organization

In subsection A.2, we will recall notation from the main paper and introduce some new nota-
tion that will be used across the appendix.

In section B, we will write out expressions that characterize the generalization error of the
proposed accelerated SGD method. In order to bound the generalization error, we require
developing an understanding of two terms namely the bias error and the variance error.

In section C, we prove lemmas that will be used in subsequent sections to prove bounds on
the bias and variance error.

In section D, we will bound the bias error of the proposed accelerated stochastic gradient
method. In particular, lemma 4 is the key lemma that provides a new potential function with
which this paper achieves acceleration. Further, lemma 16 is the lemma that bounds all the
terms of the bias error.

In section E, we will bound the variance error of the proposed accelerated stochastic gradient
method. In particular, lemma 6 is the key lemma that considers a stochastic process view
of the proposed accelerated stochastic gradient method and provides a sharp bound on the
covariance of the stationary distribution of the iterates. Furthermore, lemma 20 bounds all
terms of the variance error.

Section F presents the proof of Theorem 1. In particular, this section aggregates the result of
lemma 16 (which bounds all terms of the bias error) and lemma 20 (which bounds all terms
of the variance error) to present the guarantees of Algorithm 1.

A.2. Notations

We begin by introducing M, which is the fourth moment tensor of the input a ~ D, i.e.:

ME o plavasaoal

Applying the fourth moment tensor M to any matrix S € R%*? produces another matrix in R%*¢
that is expressed as:

Ms g [(aTSa)aaT} .

With this definition in place, we recall R? as the smallest number, such that M applied to the
identity matrix I satisfies:

MI=E [||a\|§aaT} <~ R’H
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Moreover, we recall that the condition number of the distribution x = R?/p, where 1 is the smallest
eigenvalue of H. Furthermore, the definition of the statistical condition number & of the distribution
follows by applying the fourth moment tensor M to H™!, i.e.:

MH =E [(aTH_la) . aaT] <rkrH

We denote by A, and Agx the left and right multiplication operator of any matrix A € R%*¢,
i.e. for any matrix S € R*?¢ A,S = AS and AxS = SA.
Parameter choices: In all of appendix we choose the parameters in Algorithm 1 as

o VKR 6:0302\/201—0% 7262\/201—0% 5 c1
cav/2c1 — ¢ + VKR VER UV kKR R?

. . e \/2c1—c2
where c; is an arbitrary constant satisfying 0 < ¢; < % Furthermore, we note that c3 = %,
c3 = 254(;1 and ¢4 < 1/6. Note that we recover Theorem 1 by choosing ¢; = 1/5, ¢ = v/5/9, c3 =
V5/3, ¢4 = 1/9. We denote

c & a(l — f) and, ¢ a6+ (1 —a)y.

Recall that x* denotes unique minimizer of P(x),i.e. x* = argmin, cga E(a p)p [(b — (x,a))?].

We track 8y, = [;k - z*] . The following equation captures the updates of Algorithm 1:
o —
Ops) — 0 I—0Hpy1 0, + [5 : €k+1ak+1]
—c-I (1+¢)-T—q-Hpq q - €pr1akt
def &
= Aps10k + Cria, (10)
3 def ~ def 0 I- 5ﬁk 1 def |:(5 C €1kt
where, H = ai.1a, .., A = RN and = R
k1 k181 Agtl e T (14¢)T—g- Hk+1] Crt1 0 rapi
Furthermore, we denote by ®;, the expected covariance of 8y, i.e.:
@, CE[0) 6]
Next, let F, denote the filtration generated by samples {(a1,b1), - , (ax, bx)}. Then,
def o [~ 0 I-/H
A=E [Ak+1|fk] N |:—CI (I1+o)I- qH] '
By iterated conditioning, we also have
E [0x+1|Fr] = ABy. (11)

Without loss of generality, we assume that H is a diagonal matrix. We now note that we can
rearrange the coordinates through an eigenvalue decomposition so that A becomes a block-diagonal
matrix with 2 x 2 blocks. We denote the ;™ block by Aj:

def | O 1—-0);
Aj = [—c 1—|—c—q/\j]’
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where \; denotes the 4™ eigenvalue of H. Next,

BYE Api1 ® ;&kJrl’]:k} , and

S 52 - 52 6.
Zd_efE[CkH@CkH\fk]_[(s.q q;l}@ilja?,[ 2q}®H.

Finally, we observe the following:
E|(A-Ap)®(A- l&k+1)|fk} =A®A-E [Ak—i-l ® AV‘%}
—E [;&k+1 & A‘Fk} +E [;&k+1 & AkJrl’fk}
=-A®A+E [Kk-i-l ® Kk—&-l‘]:k:}
= E [;&kJrl ® ;&k+1‘fk} =E {(A —App) @ (A - AkJrl)’]:k} +A®A

‘We now define:

REE [(A ~App) @ (A - Ak+1)|f:k} , and

D A®A.
Thus implying the following relation between the operators B, D and R:

B=D+R.

Appendix B. The Tail-Average Iterate: Covariance and bias-variance decomposition

We begin by considering the first-order Markovian recursion as defined by equation 10:
0; = Aj0,1 + ;.
We refer by ®; the covariance of the 5™ iterate, i.e.:

def
®, =E[0, ® 0, (12)

Consider a decomposition of 8; as 8; = 0?ias + BJV-ariance, where 0?12‘3 and HjYariance are defined as
follows:

gl e A, obi; b < g, and (13)
oyariance déf ;&j a;ga_rilance + C 3 Obzariance déf 0. (14)
We note that
E [Ogias] — AE [9']3531] 7 (15)
E [o}lariance] — AE [g}fa_rilance] . (16)
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Note equation 16 follows using a conditional expectation argument with the fact that E [(x] =0V k
owing to first order optimality conditions.

Before we prove the decomposition holds using an inductive argument, let us understand what
the bias and variance sub-problem intuitively mean.

Note that the bias sub-problem (defined by equation 13) refers to running algorithm on the
noiseless problem (i.e., where, (. = 0 a.s.) by starting it at OBiaS = 6y. The bias essentially
measures the dependence of the generalization error on the excess risk of the initial point 6y and
bears similarities to convergence rates studied in the context of offline optimization.

The variance sub-problem (defined by equation 14) measures the dependence of the general-
ization error on the noise introduced during the course of optimization, and this is associated with
the statistical aspects of the optimization problem. The variance can be understood as starting the
algorithm at the solution (6’5“‘“Ce = 0) and running the optimization driven solely by noise. Note
that the variance is associated with sharp statistical lower bounds which dictate its rate of decay as
a function of the number of oracle calls n.

Now, we will prove that the decomposition 8; = O?ias—i-e}’mance captures the recursion expressed
in equation 10 through induction. For the base case 7 = 1, we see that

01 = A16) + (1
_ Alegias + Alegariance +C1
~—— ——
ggiaszoo =0, - oéariance:()

__ pbias variance
6% 1 oY

Now, for the inductive step, let us assume that the decomposition holds in the j — 1% iteration, i.e.

we assume 0;_; = 0b‘asl + 0va“a“°e We will then prove that this relation holds in the %" iteration.
Towards this, we will write the recursion:
0; =A;0,_1+(;

=A; (Obl‘“l + V“‘““““) + ¢; (using the inductive hypothesis)
o A eblagi + A Ovarrance + Cj

_ pbias

— ejlas + 0}’3]‘13“06.

This proves the decomposition holds through a straight forward inductive argument.

i . . 5 def .
In a similar manner as 6, the tail-averaged iterate 0, ,, = Ly 0; can also be written
J g n—t 2aj=t+1
Abi gbias def bi def
as etn — 0 1as + Ovarlance Whel‘e 9 ldb = = t Z] 1 9 1as and Hvarlance = = tZ] t_;’_]_ ;/anance'
Furthermore, the tall-averaged 1terate 0;., and its bias and variance counterparts 0}’};5, Zﬁl“nce are
associated with their corresponding covariance matrices ®; ,,, @?}fﬁ, @X%iance respectively. Note that
®, ,, can be upper bounded using Cauchy-Shwartz inequality as:
E [O_t,n ® B_t,n] <2 ( [Oblas ® Oblas} +E [é;&giance ® észgiance] >
étﬂl <2. ((I)blds + q)varmnce) (17)

The above inequality is referred to as the bias-variance decomposition and is well known from
previous work Bach and Moulines (2013); Frostig et al. (2015b); Jain et al. (2016), and we re-
derive this decomposition for the sake of completeness. We will now derive an expression for the
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covariance of the tail-averaged iterate and apply it to obtain the covariance of the bias (@?}#) and
variance (<I>V*ma“°e) error of the tail-averaged iterate.

B.1. The tail-averaged iterate and its covariance

We begin by writing out an expression for the tail-averaged iterate ét,n as:
6.-— 3o
To get the excess risk of the tail-averaged iterate ét,n’ we track its covariance ‘I%;ni

(i)t,n =K [ét,n ® ét,n]

n

— (n—lt)2 Z E[0; ® 6]

3 l=t+1
1 j_l n
:—(n_t)QZ S EB;20]+E0;20,]+ > Ef;0)]
i I=t+1 I=j+1

j—1 n
= (n,tQZ Y ATE6,26)+E[0;©60]+ > E[6;©6;] (A7) | (from (11)

i \i=t+1 1=j+1
(X S ammea Y Ege0l+ Y Y Bl e0)(a0))
I=t+1j=I+1 j=t+1 j=t+11= ]+1
2(2 ZAlJE @0+ > E Z Z (AT )
j=t+11=j+1 j=t+1 j=t+11=j+1
2< A)THA-ATTIEG; 2 0]+ > E[6; 6]
j= t+1 j=t+1
+ Z I_AT) (AT _ (AT)n+1—j)>
j=t+1

(z H(Z—Ap) M (A — AT (T - AR)THAR - <A7E>”+1—j>)1a 6; © 6]

:(n—t)2 Z

=t+1

:(n—t)2 Z

(z (T A (Ap — AT (T AT AR — <A7E>“+”>) ®;
=t+1

(18)
Note that the above recursion can be applied to obtain the covariance of the tail-averaged iterate for

the bias (‘i)?jgs) and variance (‘i)}’fgiance) error, since the conditional expectation arguments employed
in obtaining equation 18 are satisfied by both the recursion used in tracking the bias error (i.e.
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equation 13) and the variance error (i.e. equation 14). This implies that,

n
= bias def 1

j=t+1

<I+ (I — »A[L)fl(AL — AZ"Fl—j) + (I - A/]‘E)fl(‘A% B (A;Fz)nJrlj))(I)?ias

19)

= vari e 1 — n+1—j — n+1—j variance
Bt L Y (T4 T A0 e - AP 4 (T AR AR - (AR )
j=t+1

(20)
B.2. Covariance of Bias error of the tail-averaged iterate
Proof [Proof of Lemma 3] To obtain the covariance of the bias error of the tail-averaged iterate, we

first need to obtain @?ias, which we will by unrolling the recursion of equation 13:

Oblas A Oblas
— (I,zlas _ [Oblas 0bias}
E[E [0 @ ob‘awfk 1)
-=[s Rt oo AT |
= BE[60™ ®0b“5} B@blas
— & =BF o 1)

Next, we recount the equation for the covariance of the bias of the tail-averaged iterate from equa-
tion 19:

B ) n ] _ n+l—j ias
B = > (T (T - ) (e = A7) 4 (T AR AR~ (AR @t

— 2
(n—1) st

Now, we substitute @?ias from equation 21:

B =~ _1 e IDY (z (T — Ap) Y(Ap — A7) (T — AR) (AR — (A;)nﬂj))zgj%

=02 5,
1 - ,
= > <I +(ZT—Ag) T AL+ (T - A;g)—lAIz) B'®,
(n—1) j=t+1
BCEnE Z ( o)A (I—A%)*(A%)”“—j)sj@o
(n— =t+1
1

= m <I+ (I — Aﬁ)_lAL + (I — A,}—;)_lA;l;> (I _ B)—l(BH—l . B”+1)<1>

Leading order term
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RCEDE Z ( o)A (T - A%)‘%A%)"“‘j)z%o. (22)

J=t+1

There are two points to note here: (a) The second line consists of terms that constitute the lower-
order terms of the bias. We will bound the summation by taking a supremum over j. (b) Note that
the burn-in phase consisting of ¢ unaveraged iterations allows for a geometric decay of the bias,
followed by the tail-averaged phase that allows for a sublinear rate of bias decay. |

B.3. Covariance of Variance error of the tail-averaged iterate

Proof [Proof of Lemma 5] Before obtaining the covariance of the tail-averaged iterate, we note that
E [H}’mance} = 0V j. This can be easily seen since O(V)ariance =0and E [Bzariance] = AE [Hzafifnce]
(from equation 16).
Next, in order to obtain the covariance of the variance of the tail-averaged iterate, we first need
to obtain "¢, and we will obtain this by unrolling the recursion of equation 14:
Ozariance — ;& evariance + Ck
— (ﬁzariance _ [ variance ® ovarlance]

[ [Ovarlance ® evarlance‘ J—_-k 1]]
|: |: avarlance OzzglfmceAk + Ck ® Ck|]:k:—1:|:|
— BE [gvarmnce ozaiiimce] + 2 - B q)%a_riimce + 2

— (I)%ariance _ i B f:

=(I-B)"Y (-8B (23)

Note that the cross terms in the outer product computations vanish owing to the fact that E [G%ajifnce} =
0V k. We then recount the expression for the covariance of the variance error from equation 20:

¥ variance __

Jj=t+1

<I —i— I Aﬁ) 1(AL . A72+1_j) + (I _ _/47T2)—1<A7T2 . (A7T2)n+l—j)> (I);{ariance
We will substitute the expression for @;ariance from equation 23.

q,va;;lance _ (n — t  — Z <I+ I .Ag) (-AL _ AZ-‘rl—j) + (I — _A?Tz)—l(/l;; - (A;;)n—i-l—j)) (I— B)—l(I — Bj)i

j=t+1
Evaluating this summation, we have:

1

Pyariance — — ——(T+ (T - Ap) " A+ (T — Ag) P AR)(Z - B) ™
Leading order term
1
(T = A0 (A~ AFT 4 (- AR) (AR~ (AR ) - B)
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" (n _1 )2 (T4 (T —Ag) " Ar + (T — AR)LAR) (T - B) (B! — S
+ (n—lt)2 Z ((I — Ag)*lAz-H—j + (I _ A%)fl(A%)nJrl—j) (I _ B),lBji
j=t+1
(24)
[ |

Equations 17, 22, 24 wrap up the proof of lemmas 3, 5.
The parameter error of the (tail-)averaged iterate can be obtained using a trace operator (*, *)

. . . = . .| 0f .
to the tail-averaged iterate’s covariance ®; ,, with the matrix [ 0 ol i.e.

_ N I 0| =
I - = ([g ] ®n)

In order to obtain the function error, we note the following taylor expansion of the function P(+)
around the minimizer x*:

* 1 *
P(X) = P(X )—|— 5 ||X — X ||2V2P(x*)
* 1 *
= () g =y

This implies the excess risk can be obtained as:
_ 1 H 0| =
- rir=1 ([ G )

H 0 = bias H O F, variance
< s
- <[0 0] i)\ [0 of Bin

In this section, we will state and prove some useful lemmas that will be helpful in the later sections.

Appendix C. Useful lemmas

Lemma 7

(=) 5 o s i o

Proof Since we assumed that H is a diagonal matrix (with out loss of generality), we note that A is
a block diagonal matrix after a rearrangement of the co-ordinates (via an eigenvalue decomposition).

In particular, by considering the j" block (denoted by A ; corresponding to the 4™ eigenvalue
Aj of H), we have:

I-A = [_(1 _1 5A;) —(c—CQ/\j)]

23



ACCELERATING STOCHASTIC GRADIENT DESCENT

Implying that the determinant ‘I — A;r‘ = (g — ¢0)A;, using which:
_ 1 —(c—qX;) —c
I-AN) 1=~ J 25
T ol @
Thus,

3 [

Accumulating the results of each of the blocks and by rearranging the co-ordinates, the result fol-

lows. |
Lemma 8
PGS P N T —(cI — gH)H1/2
<I A) 0 of T4 "~ (q—cd)? 2 (I-sH)H1/?
Proof

In a similar manner as in lemma 7, we decompose the computation into each of the eigen-
directions and subsequently re-arrange the results. In particular, we note:

a1 b le=aX) (A=0N)
(I—Ay) (g —co)A; [ —c 1 }

Multiplying the above with the result of lemma 7, we have:

1[N0 N —(C—q)\j))\;l/Q
I-Aj) [oj o}(I_AJ) _(q—c5)2<®2[(1—(5)\j))\j1/2]>

From which the statement of the lemma follows through a simple re-arrangement.

Lemma 9

- “(—c(1-c)I—c -
(1-47) Al [IBI 8] - [HH_(l((l( 1—0)1) . CSI({II;I()I(I— 51(;1){) 8}

~ (g—cd)?
Proof In a similar argument as in previous two lemmas, we analyze the expression in each eigendi-
rection of H through a rearrangement of the co-ordinates. Utilizing the expression of I — A;r from
equation 25, we get:

_ A 0 1 —c(1=46X;) 0
ANV IAT (7Y - - J
=AY = e o o
thus implying:
_ Aj 0 (1=0X;) [—c(l—c)—cqgr; O
_AN2AT [V — =7 J
(I A7) A [0 O} (g — c0)2); [ (1—¢c)—cor; O
Rearranging the co-ordinates, the statement of the lemma follows. |
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Lemma 10 The matrix A satisfies the following properties:

1. Eigenvalues q of A satisfy |q| < v/, and
2. ||A%|,<3V2 ka7 VE>1.

Proof Since the matrix is block-diagonal with 2 x 2 blocks, after a rearranging the coordinates,
we will restrict ourselves to bounding the eigenvalues and eigenvectors of each of these 2 x 2
blocks. Combining the results for different blocks then proves the lemma. Recall that A; =
0 1—-0);
[—c 1+c—q)\]}'
Part I: Let us first prove the statement about the eigenvalues of A. There are two scenarios
here:

1. Complex eigenvalues: In this case, both eigenvalues of A ; have the same magnitude which is
given by \/det(A;) = \/c(1 —d);) < e < Va.

2. Real eigenvalues: Let ¢, and g2 be the two real eigenvalues of A ;. We know that ¢; + ¢q2 =

Tr(Aj) =1+c—g)\; >0and ¢ - g2 = det(A;) > 0. This means that ¢ > 0 and g2 > 0.
def L (l—ﬁ) —1+5)\j

Now, consider the matrix G; = (1 - 3)I - A, = [ c —-1+(1-8)1-a)+ q)\]} .

We see that ((1— ) — 1) (1 ) — a2) = det(Gy) = (1-A)(1—a) (1 - B) — 1)+ (1 -

B)(qg—ad)Xj = (1-0)(1—a)(yA; — ) > 0. This means that there are two possibilities:

either q1,q2 > (1 — ) or g1, ¢2 < (1 — j3). If the second condition is true, then we are done.

If not, if ¢1,q2 > (1 — ), then max; ¢; = det(A;) C(l__éﬁ’\)j) < a(l — d);). Since

min; ¢; — (1

Va > a > 1— j, this proves the first part of the lemma.

PartIl: Let A; = VQV'T be the Schur decomposition of A where Q = [%1 qq] is an upper
2
triangular matrix with eigenvalues ¢ and g2 of A, on the diagonal and V is a unitary matrix i.e.,

VVT = VTV = I We first observe that |g| < [Qll, = [|A;]l, < [Ajll, < v/6. where (¢)
follows from the fact that V is a unitary matrix. V being unitary also implies that Af =VQFVT,
On the other hand, a simple proof via induction tells us that

Qk _ [qlf (Zz 1 Q1QQ )] ‘

0 @

So. we have [AF]|) = @], < @, < V3ol max (Jonf* ") < 3VE- k-
where we used |¢| < v/6 and max (|q1], |q2|) < V. [

Finally, we state and prove the following lemma which is a relation between left and right multipli-
cation operators.

Lemma 11 Let A be any matrix with Ay = A ®1and Ar = 1 ® A representing its left and right
multiplication operators. Then, the following expression holds:

(I+ (L= Ag) " Ap+ (T - A%)lA&) (L= ApAR)™ = (T — Ay T — AL

25



ACCELERATING STOCHASTIC GRADIENT DESCENT

Proof Let us assume that A can be written in terms of its eigen decomposition as A = VAV L,
Then the first claim is that Z, A;, A are diagonalized by the same basis consisting of the eigen-
vectors of A, i.e. in particular, the matrix of eigenvectors of Z, A, Ar can be writtenas V® V. In
particular, this implies, V ¢, j € {1,2,....d} x {1,2,...,d}, we have, applying v; ® v; to the LHS,
we have:

<z +(Z—Ar) AL+ (T - A£)1A7E> (T — AcAR) v ® v,

= (1= X\t <Z + (T —Ap) YA+ (T - AIQ)*A%) Vi ®V;
=(1+NI =) N0 =) A=) iy
Applying v; ® v; to the RHS, we have:

(T—Ag) MZ - AR) Vi@ vy
= (1 — /\i)_l(l — )\j)_lvi & v

The next claim is that for any scalars (real/complex) z,y = 1, the following statement holds
implying the statement of the lemma:

I+Q-a2)z+(1-yly) - Q-ay)'=1-2)'1-y) "

[T =21 I
Lemma 12 Recall the matrix G defined as G & [ 17a } {I 0_1] [ 10 I]' The

condition number of G, k(G) satisfies k(G) < —2£

Proof Since the above matrix is block-diagonal after a rearrangement of coordinates, it suffices to
compute the smallest and largest singular values of each block. Let ); be the i™ eigenvalue of H.

1
LetC & [ _1a (1) ] and consider the matrix G; e [ 2} CT. The largest eigenvalue of
0 x5

G, is at most oyay (C)?, while the smallest eigenvalue, omin (G;) is at least % Omin (C)2 We
obtain the following bounds on o, (C) and oyax (C).

l—«a l—«a

2

UmaxCSC < —— a§1

© <0l < = (- a<1)
det(CCT) _ 1
Omin (C) > ——7——= > =,
IClI 2

( det (CCT) = Omax (0)2 Omin (0)2)
where we used the computation that det (CC') = 2-. This means that oy, (G;) > 7, and

omax (Gi) < \/1%7 Combining all the blocks, we see that the condition number of G is at most

\/ff?, proving the lemma. |
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Appendix D. Lemmas and proofs for bias contraction

Proof [Proof of Lemma 4] Let v def ﬁ (y — ax) and consider the following update rules corre-

sponding to the noiseless versions of the updates in Algorithm 1:
xt =y - 6H(y — x")
z=Py+(1-p)v
vi =z —yH(y — x%)
yr=ax" 4+ (1 —a)vT,

where H & aaT where a is sampled from the marginal on (a, b) ~ D. We first note that
xt —x* ~ x—x*| \~1
E |®9 + " =E |A| ®9 " A
y —X y—Xx
-5(=: ;%)
y—X

¥ -~ _ o~ + _ *
], we can verify that [X X*] =G {x x*} , similarly {X n X*] =
vV —X y—X v —x

- I
Letting G def o 1
=l 1951
« «
yT —x* 0 pH™!
statement below, and substitute the values of ¢y, c2, c3 to obtain the statement of the lemma:

(B s (B = (o) (6w (B2

~ [xt — x* ~ ~
G [X i x ] Recall that G % GT [I 0 } G. With this notation in place, we prove the

(27

. . . def %112 def %12
To establish this result, let us define two quantities: e = ||x —x*||5, f = ||v — x*||-1 and
similarly, e* & |xT — x*”% and f* & vt — x*||%l,1. The potential function we consider is

e + 1 - f. Recall that the parameters are chosen as:

NS co/ :CQ\/ch—c% 5— c1

3 2c) — 3
= =~ =C3 — y Y = -
Ccon/2¢1 — C% + VKK VKK UV KR R?

(01

. V/2c1—c? . . .
with ¢; < 1/2, ¢3 = e Cil a, c = 224(:1. Consider e* and employ the simple gradient descent
bound:
2
2

=E[lly - x"I3] 26 E [ly - x* %] + 0°E [y — %" 3]

<E |[ly - x'[3] - 25 E [lly - x"[[%] + B*0°E [ lly — x|

e" =E |:HX+ —x*Hg} =E Hy—é-ﬁ(y—x*) - x*

r 21 — ¢?
* (12 1 * (12
=E [y = x"1}] - =5 [y - x" 4] 8)
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Next, consider f+:

ff=E [Hv"‘ - X*H;,l} =E||z - ’yﬁ(y —x") —x"

2
H—l

=E|llz = x"ll3-1 | +77E [Ily = x" Phgr-1] — 2 [z %",y — %)

2 — x| | + %7 B [lly — x| - 27 B[z —x",y — x7)]
(29)

<E

Where, we use the fact that MH™! < FKH, where % is the statistical condition number.
Consider E {Hz — X" Hf{,l] and use convexity of the weighted 2—norm to get:

E ||z = x* |1 | < BE [ly — x| ] + (1= B)E |Iv = %"
<TE[ly-x'1] + (1-5) f (30)

Next, consider E [(z — x*, y — x*)|, and first write z in terms of x and y. This can be seen as two
steps:
vy
e z=[y+(1—-p)v=y+(1—p)(v—y). Then substituting v in terms of x and y as in the
equation above, we get: z =y + <M) (y —x)

11—«

Then, E [(z — x*,y — x*)] can be written as:

a(l - p)

E((z - x",y —x")] = E ||y - x"|I3] + < 1-a

JEly-xy-x) 6D
Then, we note:
Elly —xy —x)] =E[lly - x"[}] —Elx —x",y =x)]
> B [ly - x] - 5 (B [ly ~xI] + & [Ix—x12])
=2 (B[ly 1] [l —x12])

Re-substituting in equation 31:

Btz -y - x 2 (145 S8 [y - x8) - - 2= - 1]

Substituting equations 30, 32 into equation 29, we get:
yua(l — B .
poft< </3—2w—1(_a ))E[Hy—x II§} +pl=p)-f
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’}/,U,O[(l - B) ~ «12
+ PP et 1% B [y - x I
-«
Rewriting the guarantee on e as in equation 28:

2c; — ¢
*12 1 * 12
" <E[ly —xI] - =52 E [ly - x"I3]

By considering e + 11 - fT, we see the following:

. )2 . N \/2c1—c2
e The coefficient of E [Hy X HH} < 0 by setting v = 3 Pt where, 0 < ¢y < 1,
= B
o

1 — VKR
yn ™ eyy/2e1—3+VKR

With these in place, we have the final result:

e Set {£5 = 1 implying oo =

ety T <2829 [lly = x'3] + (1= B)- (e + - f)

. . \/2c1—c? . .
In particular, setting 8 = c3yu = c3=Y—1 we have a per-step contraction of 1 — 3 which

VKR
/ _ 2
is precisely 1 — 03022#, from which the claimed result naturally follows by substituting the
values of ¢y, co, c3. |

Lemma 13 For any psd matrix Q > 0, we have:

HWQkS¢§iﬂ@—(@%j2_ﬁ))me

k
fo. 2
Proof From Lemma 4, we conclude that <G,BkQ> < (1 - (W) > (G, Q). This

VKR
Lemma 12 proves the lemma. |

k
for 2
implies that | B¥Q|, < (1 — <W> ) Q|| x(G). Plugging the bound on x(G) from

Lemma 14 We have:

(I-D)(I-B) "B (I1-B"") 6,0,

4k VKR =
< ——— exp | —teoesy/2¢p — 2 /-@75) Ol [ I+ ————(R%*/oD)T | .
= o (e 2 V) Bl 1+ (o)
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Proof The proof follows from Lemma 4. Since B = D + R, we have (Z —D)(Z —B) ' =
T+ R(Z—B)". Since R, Band (Z — B)~* are all PSD operators, we have

(Z-D)(Z-B) "B (T-B"") 6,0,
_ (I FR(T - B)_1> B (T — B) 0,0,
< B*16y8] + R(ZT — B)"'B71006, .

NV
def def
S1= Sa=

Applying Lemma 13 with Q = 6 90 tells us that S; <
For So, we have

<G,(z_5)713t+1009§> <G Z 519000>

Jj=t+1

< i <1 B (cgcz; 261 - Cl) <G 0,0, >
\/ﬁ F T
cro 2 = exp ( teacsy/2c1 — 2/ 4/m> <G, 0,6, > .

Tt OXP ( teacsy/2c1 — 3V ﬁ%) 160]|5 1.

IN

This implies

(Z - B) 'B*1000] < k(G)(VER/(caczy/2¢1 — ¢2)) exp ( teacsy/ 201 — 2 /V Ak > 160)° 1,

which tells us that

Sy < K(G) (VKR /(cacz\/2¢1 — ¢2)) exp <—t0263\/201 - @@) 1601 (R?/o?)E

Combining the bounds on S; and Ss, we obtain

(Z-D)(Z-B) "B (T-B"") 6,0,

k(G) exp( teaesy/2c1 — cl/\/7> 160]? (I—i— 0263\/\/2;7_0%(}22/02)2) .

Plugging the bound for x(G) from Lemma 12 finishes the proof. |

Corollary 15 For any psd matrix Q = 0, we have:

ey < 12V 1=k s [ eaes/2e

|a™EQl < =m0 (1= =] lQl,
RN e (een2am ) g
>~ 1_a2 p m 2
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Proof This corollary follows directly from Lemmas 10 and 13 and using the factthat 1 —z < e™*

|
The following lemma bounds the total error of (9_}5’}35.
Lemma 16
9/4d 2 2
HOO1 g [t @ gpios) ) < 0 RAR o (14 1) 228V 2 VAR | (piy) - px))
0 0 (n—t)2 KK

+ C - (k7)) *dk - exp ( n0263 201 — Cl) (P(x0) — P(x¥))

Where, C' is a universal constant.

Proof Lemma 3 tells us that

m <I +(T—Ar) AL+ (T - A7E)1A7E> (Z —B)"YB" = B") (6 ® 6))

_ n — t — Z < lAerl*j + (I— A%)_I(A%)n-i_l_j)lgjeo ®00.

(33)

E [ebms ® gblas] —

We now use lemmas in this section to bound inner product of the two terms in the above expression

with [I(_)I 8] , 1.e. we seek to bound,

I(;I 8 E 95 & 601
e )

(5 1. (1 (T4 @A) M e+ (@ - ) AR ) (- B) B - ) G0 60))

H 0 bl _ ] )
—|—<[0 O]’ n—t2 Z ( IALH 7+(I—.A7—'£) 1(.A7Tg) +1 ]>B]00®00>
(34)

For the first term of equation 34, we have

([0 (74 @t e+ @Ay af )@ -5y 2 - 50 (00 00))

- < 1;1 8 ! (I + (T = A) AL+ (T - A%)*%) (z- ALA%)_I (7 - AcAR)
(I— B)—I(Bt-i-l _ Bn+1) (00 Q 00)>
= < Ig (T —Ar) N T — AL <I— ALA7T3> (T — B)~Y (B! — B (6 @ 90)>

(using Lemma 11)

o O
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- <(1 —AN! [Ig 8] I-A)Y (T -D)(Z-B) B -B" (6 ® 90)>

< q —105) \/Lexp< (t+1) CQQJ,\/E/F> HOOH

< ( ®2 [_((ICI_;I?II;II){}_II /12/1 ) I+ 2VkE (R /02)§> .

The two terms above can be bounded as

<<®2 [_((IC I—jSEIP)II){Hl_/Zz] >I> <7-Tr(H) < 7;1 and,

2VkR(R?0?) < < ®2 [_((ICI_;IQ_I})II){E;Q/Q] ) §> = 2VRRR (g — ¢6)%d.

Combining the above and noting the fact that 2v/kxR?(q — ¢6)?d < L—d, we have

0 O

56kd ||6'0||2 < 27,/ ~)
< . cexp | —(t + 1)cacsa/2¢1 — ¢ KK | . 35
SV ulgap P\ U DesyRazal )

We now note the following facts:

1 con/2c1 — C% < 2 =
1—-«a \//{/@—1—02\/201—01 \/6104
1 1 I 4K
< < < —
g—cd —v(1—a) =~ (1—a)? = 40

< [H O] , (I + (T —Ap) YA+ (T - A%)‘1A£> (Z - B)~Y(BT - B (6 ® 90)>

This implies, equation 35 can be bounded as:

<[H 0],(z+(z Ap) " VAp + (T — AL) 1AR>(I B (B! — Bn+1)(00®90)>

0 0

1792 (/‘/1‘/%)9/461 6263\ / 2 0
= (c1eq)5/4 ) oca cexp | — (t+ \ﬁ | ||

1792 (sR)Mdr (1 )2V g
= (c1e4)P/4 ciey VER

3584 (n%)g/‘ld/a ( cac3r/2c1 — c%)
< : - S+ 1)EBVIEATAN | (pxy) - P(x*

e ae P\ TERNTE ) (P 2P
2 _ a2

< O (kR)4dk - exp ( (1) BV a V\/%Cl> - (P(x0) — P(x7)). (36)

Where, C is a universal constant.
Consider now a term in the summation in the second term of (34).

< [Ig 8} , ((z — Ap) LA (@ - AT AR ) B (60 ® 90)>
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(A [ ] Ao es )
(5 e (Faem jan)

< 4dH(I —AT)! [Ig 8] H |A"1=787 (6 @ 6|

4d — ].2 1 — n—j —1 2 - 2
< —(cI — ¢H) \fn—i— J)K o exp jeacsy/2¢1 — ¢ HOOHQ
q—cod I—5H V1—a? VER

(Lemma 8 and Corollary 15)

672(n —t)dk o —negesy/2c1 — 3 16 H2
. X .
“ (g —ce0)V1—a? P VKR ’

~\5/4 _ (9o — 2
_(537)?/4“? d(n—t)exp< neacy/2a c1>,,,,0,2
C1C4 C4 KK

~ 5/4d - 2 32
5376 (kK) K(n—t)exp( neacsy/2cq cl> 'H”90”2

(et e N

10752 (kR)*4dk —necgcsn/2¢1 — 2 .
B (6104)1/4( 0)104 (= tjex ( K H ] (Plxo) = P(x7))

RK

—ncecaocgn/2¢1 — cf

< C- (kR)**dk - (n —t) exp ( — ) - (P(x0) — P(x")). 37)

RK

Where, C is a universal constant. Plugging (36) and (37) into (34), we obtain

H 0 nbias 1as
(o o] = eam)

ki)Y 4dr 0203 2c; — 2 N
SC'((TZ)—W.GXP<_(Z€+1 Ny l> (P(x0) — P(x"))
_ — 2
+C - (kR)**dk - exp ( neas %Cl Cl) - (P(x0) — P(x"))
KR
This proves the lemma. |

Appendix E. Lemmas and proofs for Bounding variance error

Before we prove lemma 6, we recall old notation and introduce new notations that will be employed
in these proofs.
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x|

E.1. Notations
_ *
[Xk x } Given 6;,, we recall the recursion

We begin with by recalling that we track 0y Vi — X
& —

governing the evolution of :

I- 5ﬁk+1A ] 0, + [5 ' €k+1ak+1}

0
(7] =
e [—C ‘T (1+co)I—q -Hpp q - €kt1a%41
(38)

= Kk-&-lok + Cht1

where, recall, ¢ = a(1 — ), ¢ = ad + (1 — a)v, and Hy 1 = aj11a,, . Furthermore, we recall

the following definitions, which will be heavily used in the following proofs

A=E {Ak+1|}—k]
B=E [Kk—i-l ® Ak-f—l’]:k}
62 (S - q 2
= = <02
E [Ck+1 @ Chr1|Fi] [5# qg]@E_a [5‘

‘We recall:
R=FE [(A — A1) © (A - Km)lfk}

D=A®A
And the operators B, D, R being related by:
B=D+R

Furthermore, in order to compute the steady state distribution with the fourth moment quantities in
the mix, we need to rely on the following re-parameterization of the update matrix A:

~ 0 I-6H
A= .

—c-I (1+¢)-I-¢-H
o I L0 —§-H
T eI (1401 " |0 —¢-H
d—er1+V2

This implies in particular:

K@K:(V1+V2)®(V1+V2)
=Vi0Vi+Vi@Ve+Va@V] + Va2 Vs

Note in particular, the fourth moment part resides in the operator V3 @ V. Terms such as Vi @
'V are deterministic, or terms such as V1 ® Vg or Vz ® V1 contain second moment quantities.
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Furthermore, note that the operator B = E [A ® A} where the expectation is taken with respect to

a single random draw from the distribution D.
Considering the expectation of A ® A with respect to a single draw from the distribution D, we
have:

B=E[A0A] =VieVi+E[Vie V| +E[Va0Vi| +E[V, 0 V)

=V1®V1+V1®V2+V2®V1+E[V2®V2]>

where Vo def E {\72} = {8 :g g}

Finally, we let nr and dr to denote the numerator and denominator respectively.

E.2. An exact expression for the stationary distribution

Note that a key term appearing in the expression for covariance of the variance equation (24) is
(T - B)flf]. This is in fact nothing but the covariance of the error when we run accelerated SGD
forever starting at x* (i.e., at steady state). This can be seen by considering the base variance
recursion using equation (38):

0r = Arbi 1 + Ci

= P, défE[Gk ® O]

=E |:E |:<Kk0k—1 & Hk_lz/&];r> |]:k—1:|:| + f)
=B-E [ak—l ® Bk_l] + i
= B . (I)k—l —|— i\]
This recursion on the covariance operator ®;, can be unrolled until the starti.e. k£ = 0 to yield:

k—1
7% :Bk‘I)()—i-ZBli
=0

—(Z-B)NT-BHT (. ®=0)
= @ = lim B = (T~ B)~'S (39)

E.3. Computing the steady state distribution

We now proceed to compute the stationary distribution. Recall that

B:V1®V1+V1®V2+V2®V1+E[%@\7‘2}

— I-B=(I-Vi@Vi-Vi8Vs-V,0 Vi) —E|V20 V)
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Where the expectation is over a single sample drawn from the distribution D. This implies in
particular,

-1
(I—B)flz <(Z—V1®V1—V1®V2—V2®V1)—E[Vg@Vg})

00 k
:Z <(I—V1 ®V1—V1®V2—V2®V1)71E |:V2®V2:|>
k=0

1

(T-V1ieVi—-Vi®Vy-V,0 Vi) (40)

~ 2 .
Since & < 02 - [ 55' ¢ (5q2q} ® H, and (Z — B)_l is a PSD operator, the steady state distribution
@, is bounded by:

P =(I-B)'S=<c2(T-B)" ({fq 5(1'2(1] ® H)

00 k
:aQZ((I—V1®V1—V1®V2—V2®V1)‘1E [V2®V2]> :
=0

2 .
(I—V1®V1—V1®V2—V2®V1)1<|:55.q 5q2q] ®H>. 1)

Note that the Taylor expansion above is guaranteed to be correct if the right hand side is finite. We
will understand bounds on the steady state distribution by splitting the analysis into the following
parts:

2 .
e Obtain U def (I—V1®V1—V1®V2—V2®V1)71 <[65 ¢ 5q2q] & H) (in section E.3.1).

e Obtain bounds on E [\72 ® V2:| U (in section E.3.2)

e Combine the above to obtain bounds on ® ., (lemma 6).

Before deriving these bounds, we will present some reasoning behind the validity of the upper
bounds that we derive on the stationary distribution ®:

®,,=(I-B)'S

00 k
jazz((I—V1®V1—V1®V2—V2®V1)1E[V2®V2]> U (% %)
k=0
o] 1 ) ) k
:a2U+a2Z((IV1®V1V1®V2V2®V1)_ ]E[V2®V2D U

k=1

%) k
=?U+o* Y <(I—V1®V1 ~Vi®@Vy - V8 V) 'E [%@%D
k=0

'(I—V1®V1—V1®V2—V2®V1)_1E [V2®V2}U
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=o?’U+o%(Z-B)'-E [\72 ® \72} U (using equation 40),

(42)

with (% * x) following through using equation 41 and through the definition of U. Now, with this in
place, we clearly see that since (Z—3) ! and E {Vz ® Vg} are PSD operators, we can upper bound
right hand side to create valid PSD upper bounds on ® .. In particular, in section E.3.1, we derive

with equality what U is, and follow that up with computation of an upper bound on [E [Vg ® V2:| U

in section E.3.2. Combining this will enable us to present a valid PSD upper bound on ®, owing
to equation 42.

E.3.1. UNDERSTANDING THE SECOND MOMENT EFFECTS

This part of the proof deals with deriving the solution to:

-1 52 6-q
U=(I-Vi@V,-Vi®Vy-V,y,0V)) 5oq ®H

This is equivalent to solving the (linear) equation:

52 6.
(I—V1®V1—V1®V2—V2®V1)'U:([ 2q]®H>

0-q ¢
2 5.
— U-V,UV] —V,UV] - V,UV[ = ([ ﬁ . 5q2q] ® H) 43)

Note that all the known matrices above i.e., V1, V5 and H are all diagonalizable with respect to H,
and thus, the solution of this system can be computed in each of the eigenspaces (A}, u;) of H. This
implies, in reality, we deal with matrices UY), one corresponding to each eigenspace. However, for
this section, we will neglect the superscript on U, since it is clear from context for the purpose of
this section.

woi=[% L )

—c l1+4+c| |ug wuoe| |1 1+4c
_ U2 —cuz + (1 4 c)ua
—cupz + (1 4+ c)ugz  upy — 2¢(1 + c)urz + (1 + ¢)ugn
Next,
T [ 0 1 uilp uUi2 0 0 )
ViUV, = |—¢ 1+ c] [ulg um} [—6 —q] A
T U12 U922 0 0 \s
C|meun + (L4 uie —curp + (14 cuge| | -0 —q|
— [ —0ugy —qu22 } .
_—(5(—cu12 + (1 + C)UQQ) —q(—CU12 + (1 + C)UQQ) J

It follows that:

V,UV] = (V,UV,)T
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—dugy —0(—cuiz + (1 4 c)uge)
—quga  —q(—cuiz + (1 + c)ue)

J

Given all these computations, comparing the (1, 1) term on both sides of equation 43, we get:

U1l — U992 + 25)\jU22 = 52)‘j
U1l = ’LL22(1 — 25)\j) + 52)\j 44)

Next, comparing (1, 2) term on both sides of equation 43, we get:

(
U1 — (—C’ulz + (1 + C)'UQQ) + quUQQ + 5)\]'(—CU12 + (1 + C)U22) =94 q)\j
w12 — (1 = 0Xj)(—curz + (1 + c)uaz) + gAjuze = d g,
(L4 c(L=6A5)) w2+ (gA; — (1 +¢)(1 = 0Aj)) - ug2 = 6 g (45)

Finally, comparing the (2, 2) term on both sides of equation 43, we get:

uga — (Cugr — 2¢(1 + ¢)uga + (14 ¢)%ug2) + 2gN\j(—curz + (1 + c)uga) = >\
= —c*u1 + (2¢(1 + ¢) — 2eqAj)urz + (1 — (1 +¢)* + 2(1 + ¢)g)j)uze = ¢*\; (from equation 44)
= —Z(uga(1 — 2067;) + 52XN;) + (2¢(1 4 ¢) — 2cg)j)ura + (1 — (14 ¢)? + 2(1 + c)gAj)uge = ¢°);
= (2c(1+¢) — 2cq\j)urz + (1 — (1 +¢)® — (1 = 267;) + 2(1 + ¢)g)\j)uzz = (¢* + 26\,
= 2¢((1+¢) — gA\j)urz + 2((1 + ¢)(g\j — ¢) + 6N )ugz = (¢° + ¢*6%) ), (46)

Now, we note that equations 45, 46 are linear systems in two variables w12 and ug2. Denoting the
system in the following manner,

ajjuiz + ajpugy = by
aziuiz + agaugz = by
For analyzing the variance error, we require ug2, u12:

_ brag1 — boany _ brage — beaga
U22 = y U12 =
a12a21 — (11022 ajlaz — a12a21

Substituting the values from equations 45 and 46, we get:

20q(5<1 +c— q)\j> —(¢® + %8?) <1 +c(1 — (5)\j)>
Ugp = >y
2c<(1 +c—qN) - (Ng— 1 +e)(1 - 5)\]-))) -2 <(1 +c—cdhj) - (L+e)(ghj —c) + 5)\j02)>

47)

2q6(<1 +e)(gh — o) + Mﬁ) — (q? + c2?) (qu —(1+o)(1- w)
DY

U2 =
2<(1 +c— C(S)\j) . ((1 + C)(q)\j - C) + 5)\]'02)) - 20((1 +c— q)\j) . ()‘jq - (1 + C)(l — 5)\J))>
(48)
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Denominator of us5: Let us consider the denominator of ugs (from equation 47) to write it in a
concise manner.

dr(uz2) = 2( (1 +c— qu) k1 — (1 te— C‘S)‘j) : k2)
with
ki=c-(Njg— (1 +c)(1—-0d)))
= (c)\jq — (C + 02)(1 — 5)\]))
= (cqhj — ¢ — ¢ + O\ + P6N;)
ky = (14 )(ghj — ¢) + 0X;c?)
= (q)\j —c+ cq)\j — + 5)\3‘02)

Plugging in expressions for ¢ = ad + (1 — )y and ¢ = a(1 — ), in dr(ug2) we get:
dI‘(UQz) =2 < (1 +c— 045)\j)(k‘1 — k‘z) — )\j . ((1 — Oé)’)/k‘l + aﬁdk}z) ) 49)

Next, considering k1 — k2, we have:
k1 — ko =chjg—c— A+ o\ + 025)\]- —q\j+c—cg)j+ 2 — 025)\]-
= (cd — q)\j
= —(aBd+v(1 —a))); (50)

Next, considering (1 — o) k1 + a36 ko, we have:

v(1 — a)ki + aBé ks

=7(1 — a)(eAjqg — c — & + 25N\ + b))

+ aBd(chjg — c — ® + o + q\j)

= (@Bd + (1 — a)y)(chjqg — c — & + 26)j) + X;6(ey(1 — a) + aBq)
Consider ¢y(1 — a) + afq:

y(1—a)+afg=a(l = B)y(1—a) +ab(ad + (1 - a)y)
— (1 - Bl - a) + afr(1 - ) + 065
=ay(l —a) +a?B0
=o(afd + (1 —a)y)

Re-substituting this in the expression for v(1 — a)k; + afBdks, we have:

(1 — a)ky + B ke = (@B + (1 — a)y)(chjqg — ¢ — ¢ + 26N;) + N\jo(ey(1 — a) + afq)
= (aBd + (1 — a)y)(chjq — ¢ — & + 25N;) + aXjd(aBd + (1 — a)y)
= (@B5 + (1 — a)y)(chjqg — ¢ — & + 26N + a);6) (51)
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Substituting equations 50, 51 into equation 49, we have:

dr(uzz) = —2Xj(aBd +v(1 — ) - (1 + ¢ — adj + cAjq — ¢ — & + 20N, + ad)j)
= —2);(@Bd + (1 —a)) - (1 — 4 cAj(q + ¢d)) (52)
We note that the denominator of u;2 (in equation 48) is just the negative of the denominator of ugo

as represented in equation 52.
Numerator of us2: We begin by writing out the numerator of ug9 (from equation 47):

nr(ugs) = Aj - (2cq5(1 +e—q)) — (@ +28°) (1 +e(l— 6)\j))>
= <2cq5(1 +e—adhj—y(1—a)\) — (¢® + 26 (1 +c—ad); + aﬂé/\j)>
=\ ( — (1 +c—ad))(g—cd)® =N\ (2cg67(1 — a) + (¢° + (65)2)aﬁ5)> (53)

We now consider 2cqdy(1 — o) + (g2 + (c0)?)a36:

2cq67(1 — a) + (¢ + (¢8)?)aBs
=2cqd - (y(1 — @) + aB8) + (¢* + (¢8)? — 2cqd)aBd
= 2cqd(q — ¢6) + (q — c¢6)*aBd (54)

Substituting equation 54 into equation 53 and grouping common terms, we obtain:
nr(ugs) = Aj - < — (1 +c—ad\j)(g—cd)® — N (2cq8(q — cd) + (g — 05)2aﬁ5)>
= < — (14 c—cXj)(g—cb)® = X - (2¢6(q — 05))>
=)\ ((1+c—05/\j)(Q—cé)2+20q5)\j(q—cé)) (55)

With this, we can write out the exact expression for ugs:

(14 c—cdXj) (g — cd) + 2cqd);
2-(L—=c®+c)j-(q+cd))

Uy = (56)

Numerator of u;2: We begin by rewriting the numerator of ;2 (from equation 48):

nr(ugg) = Aj - <2q5((1 +0)(gAj — ¢) +6Xjc®) — (¢* + *6*) (Njg — (1 +¢)(1 — Mj))) (57)

We split the simplification into two parts: one depending on (1 + ¢) and the other part representing
terms that don’t contain (1 + ¢). In particular, we consider the terms that do not carry a coefficient
of (1+ ¢):

2q52>\jc2 — (q2 + 0252) < (gA)
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=q)\; - (20%¢? — ¢* — 6%¢?)
= —qA; - (¢* — (c6)?) (58)

Next, we consider the other term containing the (1 + ¢) part:
(1+c)- <2q5 (ghj—¢) + (g% + (e6)?) - (1 — Mj))
=(1+c¢)- <2q25)\j —2¢0c + ¢ + (¢6)* — ¢*0N; — 02(53/\j>
=140 ((a- P+ on @~ (@) ) (59)

Substituting equations 58, 59 into equation 57, we get:

nr(ura) = ;- ((1+ Ay (a® — (e6)%) + (1 + c)(g — ed)? qA = ()
=X ((L+e)(g—ed)?+ X (1 +e)d —q) - (6% — (0)?))
=X (L4 ¢)(g—cd)* + X (6 — (g — cd)) - (¢° — (c)?))
=\ ((1 +c)(qg— 65) +6); (q - (05)2) )\](q + ¢d)(q — ¢d) )
=\ ((1 +c—XNj-(g+¢d))-(¢— c6)* + I - (¢ — (66)2)) (60)

With which, we can now write out the expression for uq2:

(1+c—Xj(g+cd))(q— cd) + dAj(q + cd)
2-(1—=c2+c)j-(g+cd))

Ui = (61)

Obtaining u11: We revisit equation 44 and substitute ugs from equation 56:

Uil = U22(1 — 2(5)\]') + (52)\j

(1+c—coXj)(q— cd) + 2cqd, 9
2-(1—c2+c)j-(g+cd)) ( OAj) + 9%,

From which, we consider the numerator of 11 and begin simplifying it:

nr(ugr) = (14 ¢ —ed\;)(q — cd) (1 — 20);) + 2o (1 — 267;) + 282X (1 — 2 + ¢\ (q + ¢d))
= (14 c— o)) (g —cd)(1 —25);) + 262N + 2co)j(q — cd)(1 — ;)
= (14 ¢+ cdXj)(g—cd)(1 = 8Xj) + 202N, — 6X; (1 4 ¢ — ¢6);) (g — ¢d)
= (1+c+cd))(q—cd) — 207j(q — cd)(1 + ¢) + 262N\
= (1+c—cd)\)(q— cd) — 20)(q — ¢d) + 252\, (62)
This implies,

(1+c—cdNj)(g—cd) —26X(q — ¢d) + 262,
2-(1—c2+c)j-(g+co))

(63)

Uyl =

Obtaining a bound on U,
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For obtaining a PSD upper bound on Usgy, we will write out a sharp bound of w2 in each eigen
space:

(1+c—cAjd) (g — cd) + 2cqd);

u22 = 2-(1—c2+chj-(qg+cd))

(A=A 4edjlg+ed) + X+ (14 e)(c — Nj(g+¢0))) (g — cd) + 2cqd A,

N 2-(1=c2+4cAj-(qg+cd))

q—¢cd qA;(q — cd) (I+¢)(c—Nj(g+cd))(g—cd) + 2cqo);
2 2-(1—=c2+chj-(g+cd)) 2-(1—=c2+c)j-(g+cd))

q—cd qAj(q — cd) N (1+¢)(c—Nj(g+cd))(g—cd) + 2cqd);

- 2 2 (cAj-(q+cd)) 2-(1—c?+c)j-(qg+cd))

< g—cd l+c N (1+c)(c—Nj(g+cd))(q—cd) + 2cqd N

-2 c 2-(1—c2+chj-(qg+cd))

Let us consider bounding the numerator of the 2" term:

(1+¢)(c— Aj(g+cd))(g — cd) + 2cqd;
=c(1+¢)(g—cd) — (1+e)\j(g + cd)(q — ¢d) + 2cqd),
=c(1+c)(g—cd) — (1 +e)Aj(g— c6)® —2¢6Mj(1 + ¢)(q — d) + 2cqd\;
=c(1+c)(g—cd) — (1+e)\j(g—cd)* —2¢67j(1 + c)(q — ¢d) + 2¢(q — ¢8)dN; + 2¢%52 ),
=c(1+¢)(q—cd) + 2252 N; — (1 +¢)\j(q — c0)* — 2¢%6Nj(q — ¢d)
<c(1+c)(g— cd) + 2262\,
Implying,
gy < 4= ¢ l+c . c(1+¢)(q— cd) + 2c252),
2 c 2-(1—=c?+c)j-(g+cd))
< q—cb 1—|—cJr c(1+c¢)(qg—cd) c262)
- 2 c 2-(1=c2+cXj-(g+cd)  (L—c2+chj-(g+cd))

We will first upper bound the third term:

262X < cs?

(1—=c2+chj-(g+cd)) ~ (g+ cd)

B cd?
(g — cb + 2ch)

6?6

< - =Z

T~ 2¢0 2

This implies,
g—cd l+c c(1+¢)(g — ¢d)

)
c 2 2-(1—-c24chj-(g+c)))
q—05‘1+c+§ 2(q — cf) c(1 —¢)(qg — ¢d)

2 c 2 1-c+c)j-(g+cd) 2-(1—c2+ch-(qg+cd))
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qg—cd l4c¢ ¢ (g — cd) c(1—c)(q — ¢d)
< :
-2 c 21— 4\ (q+cd) 2-(1—-¢c2)
g—cd 1+c¢ ¢ c2(q — cb) c(q — )
= . + =
2 c 2 1—-c+c)j-(g+cd) 2-(1+¢)
qg—cd [(1+c c +§+ c2(q — cd)
2 c 1+e¢ 2 1—c+c)j-(g+cd)
< q—cd § é c2(q — ¢cf)
=75 cta 1—62+c>\j‘(q—i—c5)
g—cd 3 ¢ c(q — ¢d)
< T T &
- 2 C+2+)\j-(q+65)
_q—0(5§ g c(q — o)
2 c+2+/\j~(q—05—|—206)
<q—c§ §+§ q—cé
=2 2" a0
<% q—cd é
T c 25/\j 2

Let us consider bounding %g/\c‘_; :
]

q—cd  afd+~(1—-a)
200, 20\

Substituting the values for «, 3,7, applying ﬁ <1l,¢g=¥—1 VCl
0<cy <1/6we get:

q — 05 c3Co 201 —cf \/> N 63(261 — c%) 1
I 261 )\j;‘%

<0302 2¢1 — ¢} N c3(2¢1 — C%)) 1

- 2¢1 AjK
=c3(2—c1)- —zq-i
2 R\ \jR
Which implies the bound on uss:
< 4 Cq4 + 0
U - — 4+ =
2= Ajk 2

Now, consider the following bound on 1/¢:

1 1

¢ a(l-p)

(1 + 63)62\/261 — C%

VKR — cac3+/2¢1 — c%
— 3

<14 (1 + 63)02 2cq ]

1 — coc3n/2c1 — C%

=1+
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g Vaata
1—cy
1
_ + 4/c1¢4 (64)
1— Cq

Substituting values of ¢1, ¢4 we have: 1/¢ < 1.5. This implies the following bound on wu2s:

c4 )
uz2 < 6 AR 2 65)

Alternatively, this implies that U9 can be upper bounded in a psd sense as:

ber g1y 0y
K 2

Up =
E.3.2. UNDERSTANDING FOURTH MOMENT EFFECTS
We wish to obtain a bound on:
E [\72 ® \72] U=E [VQUV;F}
2 §-q
_|:6q q2:|®MU22
We need to understand MU gs.

6 1)
MUQQj%-MH_I-f—i'MI

2
5(6044-5%)'1{

=s-H (66)

where, s & (6cq + %) =23/30 < %. This implies (along with the fact that for any PSD matrices
A.B,C,if A< B, then, A® C < B® C)),

. 25 478 5.
E[V2®V2}Ujs-[5_q ng}®Hj5-[5_q qf]@H. (67)

This will lead us to obtaining a PSD upper bound on ®, i.e., the proof of lemma 6
Proof [Proof of lemma 6] We begin by recounting the expression for the steady state covariance
operator @, and applying results derived from previous subsections:

®,.=(I-B)'S
<0?U+0c*(Z-B) 1 E [Vg ® Vg] U (from equation 42)

52

2 4 90 a1
jaU+5U(I B) 54

5q-2q} ® H> (from equation 67)

4 ~
=o?U + g(z >
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4
:aﬁj+g.¢w

— &, < 50°U. (68)

Now, given the upper bound provided by equation 68, we can now obtain a (mildly) looser upper
PSD bound on U that is more interpretable, and this is by providing an upper bound on U;; and
Uy by considering their magnitude along each eigen direction of H. In particular, let us consider
the max of u1; and ugo along the jth eigen direction (as implied by equations 63, 56):

(14 c—cdXj)(g — cd) +26°);
2-(1—c2+c)j-(qg+cd))
_ (L4 ce—cddj)(g—cd) +25°),

2. (1=c2+c)j (g + )
(T4 c—edXj)(g — c6) + 2cq); — 2cq); + 262);
2-(1—c2+c)j-(qg+cd))
—2cq); + 252)\j
2-(1—c2+c)j-(qg+cd))
< B 0y 0N — i
/i)\j 2 (1 — 2 + C/\j . (q + 65)>

This implies, we can now consider upper bounding the term in the equation above and this will yield
us the result:

max(uu, u22) =

= u2 +

(using equation 65)

52)\]' - Cq)\j < 52Aj - Cq)\j
(I—=c2+chj-(g+cd)) ~ chj-(q+cd)
< 52)‘]' - Cq>\j
2625)\]'
_ 62N — c(ad +v(1 — a)),
262(5>\j
52>\j — CO((S)\]‘ N 1—ca é
2c¢20N; 2 2

—~
—~
—_
+
Q
w
~
—~
—_
\
Q
~—
—
\
e
~—
N &

N |

\//{/{—0103 1—cy4

1+ /
<3 C1C3 ) + 0164.é

1-—ad  1-c 2
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4]
<(2/3)=
< (2/3);
Plugging this into the bound for max w11, uge, we get:

S (5/3)5 = (/3= + (5/3)]

ma. U < —
x(u11,u22) < =y ;

This implies the bound written out in the lemma, that is,

u=y e (a3 6n)

Lemma 17

<[I(')I 8] , <I+ (Z—Ag) " Ap+ (I—AyTz)‘lAfz) "E[6) ®05]> <

< [Ig 8] : (I +(T—Ag) A+ (T - A7Ta)1«4£> "E 00 ® 000}> < 5o’d.

Where, d is the dimension of the problem.

Before proving Lemma 17, we note that the sequence of expected covariances of the centered
parameters E [0; ® ;] when initialized at the zero covariance (as in the case of variance analysis)
only grows (in a psd sense) as a function of time and settles at the steady state covariance.

Lemma 18 Let 6y = 0. Then, by running the stochastic process defined using the recursion as in
equation 38, the covariance of the resulting process is monotonically increasing until reaching the
stationary covariance E [0 ® Oo).

Proof As long as the process does not diverge (as defined by spectral norm bounds of the expected
update B = E A® A} being less than 1), the first-order Markovian process converges geometri-

cally to its unique stationary distribution 0., ® 8. In particular,

E[6,® 6] =BE[6_1®6,_1]+3%
-1
=(>_ 8%
k=0
Thus implying the fact that

E[6,®6]=E[0,_1©60_1]+B 'S

Owing to the PSD’ness of the operators in the equation above, the lemma concludes with the claim
that [£ [01 ® 01] = E [91—1 & 01_1] |

Given these lemmas, we are now in a position to prove lemma 17.
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Proof [Proof of Lemma 17]

< [Ig 8} , (z +(T—A) " AL+ (T - A7Tz)1A7T2> Elor® 911>
[H 0} , <z + (T Ag) A+ (T~ A%)‘IAIQ) (T AcAR) (T - AcAg) -E[6;@ 9l]>

0 0} ) <(I —Ap) NI - A7T3)1> (Z—-ALAL)-E[6;® 91]> (using Lemma 11)
H 0

<
<
:< (I_Ag)—l(z_AR)—1> [0 0],(I—AEA£)-E[0l®0l]>
<
<

I-A")! {H 8] I-A)"(ZT—-ALAR)-E[® ol]>

= (@AD", ] L(Z-D)- [el®el]>

B —105)2<<®2 ((CI__(;Iq_II){) 1/12/2:> 01®01]> (using lemma §)
_<q—1c6>2<<®2 e ohh- //) Nz -8B >
:(q—1c5)2<<®2 ((CI__(;I?II){) 1/12/2:> (T-B+R)T-B)" (I—Bl)§>
e Gy ),2 55 4R B) 'S - R(T-B)B'S)
b (e [ )

So, we need to understand RU:

R (E | ] P

= '2 & (./\/l — HgHR)UQQ

A

'2 ® MUgg

A

q'Qq] ®@H (from equation 66).
Then,

<[I§ 8} , (z+ (T Ac) " Ag+ (T A%)*A@ 0 el>
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1 —(cI — qgHH Y21\ 4 _
< (q—co)? <<®2 [ ((IC_ 5121)1){1/2 } >72 +0°R - (5U)> (from equation 69)
bo’ —(cl - qH)H!/? 52 5-q
<z (o e | )5 ' em)
5
== m-dUQ-(q—C(S)Q
= 507d. (70)
|
Lemma 19

([0 o] (@024 @-apy 24z o) | < 0 oavim

Where, C' is a universal constant.

Proof We begin by noting the following while considering the left side of the above expression:
H 0 _ _
([6 o] (@40 245+ - a0 2ac o)

([ o aa-arzea-anzar [ Hen)

The inner product above is a sum of two terms, so let us consider the first of the terms:

(8 g we)

I-AT)2AT [H;/T [H!/2 0] <I>oo>

(V] o [))

=Tr

N

_ iT(( *0/ T (o0);(I- AJ)2A] [Ao/] ))
Sen(([4] ) (merae e [4])

where (®,); is the 2 x 2 block of ®,, corresponding to the j™ eigensubspace of H, (<I>C1>42)j

1/2
o0

denotes the 2 x 2d submatrix (i.e., 2 rows) of ®5,° corresponding to the j eigensubspace and A;

denotes the j™ diagonal block of A. Note that (@%2) j (@ééQ);r = (®);. Itis very easy to observe

that the second term in the dot product can be written in a similar manner, i.e.:

I-—AT)2AT H 0 P
< o o]-#)
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(e []) (4] wa-sren)

So, essentially, the expression in the left side of the lemma can be upper bounded by using cauchy-

shwartz inequality:

-

\L/2 )\1 /2
@i2);) - (@] - a])2a] [ /

J
0

*((
(@) [AO/] )+ ( [AO/] A Ay, )

1/2 1/2
A A
0

I-A)2AT 7Y

(1-a) AT |

The advantage with the above expression is that we can now begin to employ psd upper bounds on
the covariance of the steady state distribution ®., and provide upper bounds on the expression on
the right hand side. In particular, we employ the following bound provided by the taylor expansion
that gives us an upper bound on ®,

<2 (71

(Poo); (P);

a [0y U 2 2 |Un U : .
pu— ~ < —
(788 [Um Uﬂ] <50°U = 50 U1T2 Uy (using equation 68)

This implies in particular that (®.,); < 502U, for every j € [d] and hence, for any vector
||a||(¢,oo)j < V502 ||a||Uj. The important property of the matrix U that serves as a PSD upper
bound is that it is diagonalizable using the basis of H, thus allowing us to bound the computations
in each of the eigen directions of H.

(I-A])2A] [A;ﬂ]

(Po);
1/2 A2
_ [/\j o} A= A))2(®), (I A])2AT [

IN

\L/2
502 [A}/Q o} Aj(I—A)2U;(I-AT)- ZA;f[ ; ]

=V5 (72)

2||(1— A])2A] [AV 2]

U;

So, let us consider [)\;/ 2 0} A (I — A;)~? and write out the following series of equations:

2 ofai=0 yEa-oy)

S ]
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det(I— Aj) = (g —co));

1 1 —(c—qXj) 1—=0);
(I-Aj) 1_(91—@5))\3'[ e ! 1 ]]
— [Aj/z o] Aj(I—Aj)lz‘/(M[—c 1]

= [)\}/2 O] A;I-Aj) %= m [—c(1—c+qXj) 1—c+co)]
= M . ((1 —c+cdX;) [—c 1] —eXj(g—cd) [1 0] >

((g — cd)A;)?

This implies,
1/2 VA (1 =0
TV=2AT |4 i i)
(I-A;) A, !0] S?Gizigﬁ‘“_c+dM)

i ll,

U, ((g —co)A

]

U;

o

(73)

2
Next, let us consider

U;

—c
1
Note that 411,112, u9o share the same denominator, so let us evaluate the numerator nr(02u11 —
2cu12 + ug2). For this, we have, from equations 63, 61, 56 respectively: Furthermore,

2
= Puy + U2 — 2C - U9

U;

nr(uyp) = (14 ¢ —ed);)(q — cd) — 207j(q — cd) + 202,
nr(ui2) = (1 +c—Aj(g+¢d))(qg — cd) + 0Xj(q + o)
nr(ugz) = (1+c¢—coXj)(q — cd) + 2¢cqd )

Combining these, we have:

cznr(uu) —2c- nr(ulg) + I’II'(UQQ)
=((1+c—cdrj)(1— c)? + 2cq);)(q — ¢d) — 2¢%0)(q — ¢6)

=((1+c— oA\ (1 —c)*(qg — b)) + 2¢)(g — cd)?

511, -

In a very similar manner,

ILll,

Implying,

(14 c—cdX)(1 —c)* (g — ed) + 2chj(qg — c6)?
1 —c2+chj(qg+cd)

= uil
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(14 c—cdA;j)(qg—cd) —25Nj(q — cd) + 252),
1 —c+e)j(g+ cd)

This implies, plugging into equation 73

_ A2
I-A)2A] |7
a-apar [

U;

VA (L= 6))) (14 c¢—edXj)(1—c)?(q— cd) + 2¢Aj(q — ¢d)?
S((qj_c(s))\j)]Q'(l—c—l-C(S)\j)\/ ]1_02+0/\j(q+05) 2

N /A (L =06X) [(14c—eoN)(q— cd) —20)(q — cd) + 262,
(g —cd)N)) 1 —c?+chj(qg+ o)

Finally, we need,

(74)

< V502

P

H1/2 H1/2
%] o
Again, this can be analyzed in each of the eigen directions (\;, u;) of H to yield:

A2
sl = v
- \/Aj (L4 c—cdXj)(g — cd) — 20)(q — cd) + 26%),
Now, we require to bound the product of equation 74 and 75:

1 —c?+e)j(q + ¢d)
1/2
Aj
0
Where,

A =0 Y (14 c—cdXj)(1—c)?(q— cd) +2cAj(q — ¢d)?
Tl—((;_cé)/\j)Q (1—c+ 6AJ)<\/ Jl—c2+cAj(q+05) j )

. (1+c—corj)(g—cd) —20)j(q — cd) + 202
1—c%+chj(qg+co)

‘ U

U;

(75)

=T+ 1T (76)
U;

~ A2
I—-AN)2AT |7
T A]) J[O]

U;

And,

T c(1—0X)) <(1 +c—coNj) (g —cd) —26Nj(q — ¢d) + 252)\j>
L — :

q—cd 1 —c?+ce)j(g+ o)
We begin by considering 74 :

7y = =) ‘<1_c+caxj>(¢<1+c—caxj><1—c>2<q—ca>+2cxj<q—c5>2>

(g — ed)A))? 1 —c%+chj(q+ cd)
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1 —c?+ce)j(g+ o)
(1 —0X)) 1 —c+co)j
q—cé 2 1 —c2+4ce)j(q + )
1 +c—cONj) (g —cd) — 20N\ (g — ) + 262X, - \/(1 +c—coNj)(1— )% (g — cd) + 2chj(q — 05)2>
1—c+cd)j
q—cé )2 1 —c2 4 c)j(q + )
\/(1+c—05)\ )(q — cd) + 202N - \/1—|—C—C(5)\ ) (1 —c)%(q — cd) + 2c) (q—05)>
7

\/ 14 c—cd)j)(g — cb) — 201 (q—c5)+252xj>

IA A

7 N\

We will consider the four terms within the square root and bound them separately:

(1+c—coNj)(1—c)

i1
! (g —co)A;
< 2(1—¢) < 2(1+4c3)
T Aj(g—c0) T Ay
2(1 + 63) =
< ——— VKK
T oco/201 — &2
Next,
o1 _ V(e i) (1~ 0P — D)
1 (q — 05)2Aj
20(1—c) 20 1—c¢
T V@=c)N lg—cd)rja—cd
~ 2(14c3)0 1
v (q—co)A;
< 2(1+c3)8 1
g (1 — o)
< 2\?(1 + ¢3) =
c5(2—c1)
Next,
T2 _ VL + e — o) (g — )3 - 2¢)
(g — cd)?)j
S i . \/H%
2 261 — C%
Finally,
o V202X - 2 eXj(g — ¢6)?

(g —cd)?)j
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26 4 ~

< < .
qg—cd ~ B(2—c1) "

Implying,

1 —C+C§)\j
1 —c?+c)j(qg+ o)

1 —c+co); VKR R
1—62+C)\j(Q+05)> (1+f+63 ( ‘/261_61 f 261)>

<
(
g( . +210)‘2-(1+¢5+63>< o +¢562(2%01)>
!

> (T 4+ T2+ T2+ 722

2v/201 — cf
—I—2lc>-2-(l+\@+c3)<r fﬁ)

Cl C4

(1+xf+cg)<g+€%>

Recall the bound on 1/c from equation 64:

1—1¢cy
Implying,
3 KK 2K
T < =-(1 2
1_C ( +\[+63)<\/@+ C4>
3 1 2 =
S-(1+\/§+C3)( +\f> KR
c Jeics ¢y
1 2 1 =
314+ VE 4 e Ay V2 VAT
V/cieq C4 1—cy
1 V2 1+ /ce —
<31+ V2+ ve). NP -3
(1+V2+ (04/01))(\/@4- C4> T KR (78)

Next, we consider T5:

Ty =

c(l—6))) ((1 +c—coNj)(qg—cd) —26N;(q — ¢d) + 252)\j>
q—cd 1 —c+ce)j(g+ o)
< <(1 +c—cdNj) (g —cd) —26Nj(q — cd) + 252/\j>
- (g—cd)- (1 —c2+4chj(qg+cd))
< (1+c—co)j)(g —cd) +20°), )
(g—cd) - (1 —c?+chj(g+ cd))

We split 75 into two parts:

Tl _ (1—|—C—C5)\j)
27 (1= +e)j(g+ )
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1 1
“1-¢ 1-a + af
1
C (1+e3)(l—a)
2VkR
T (14 c3)ean/2¢1 — 3
_ 2VKR
S (U ajo)vaa
Y
NG
Then,
T2 = 20%)\;
(g —cd)(1 =+ chj(q + cd))
< 82\ _ o
Tyl -a)Nd Ayl - )
2K
=@
Implying,

T2s2-< i +2"">
c4 + (/c1¢q cicy

1 14/ 1
<92. +( + 0164)2'7 =
yvcicq + ¢y 1—cy cq
2 1+ ./ e~
< Z. <1_|_ (W)2>‘/,§H (79)
c4 1—1¢cy
We add T} and 75 and revisit equation 76:
1/2 1/2
Ty=2AT [A; A
U, U;
=T +1>
2 1+ y/cic 14+ /ciea 142+ /ea/c —
< (2 (1 2Ry a2 IRV () ) Vi
4 —C4 —C4 4

(80)
Then, we revisit equation 71:

d 1/2 1/2
As T\=2 AT |
§2§7 []0] (I-Aj) Aj[]()]
j=1 (Po); (Poo);

([F57] =) (ma-anear (7] )+ (e [37) ([7] m-ra)
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d )\1/2 )\1/2
< 100 Z ]0 (X = A;—)_QAjT ]0 (using equation 68)
j:]- U]‘ U]‘

SlOO’Q-d'<2'<1—|—(1+ \/0164)2>+3.1+\/0164‘1+\/§+\/C4/Cl.(\/i_i_m))\/ﬁ

cq 1—¢y 1—cy c4
< Co*dVkk (1)
Where the equation in the penultimate line is obtained by summing over all eigen directions the
bound implied by equation 80, and C' is a universal constant. |
Lemma 20
H 0 gvariance gvariance JQd UZd ~
< . .
<[O 0},E[0t7n ®0t,n ] _5n—t+c e KK
o?d —\11/4 B (n—t—1)ca\/2¢c1 — ¢}
+C - ——(kk)"/“exp Al
n—t AV KR
Lo o2d ( (n+1) clc§> ( ~)7/2~+C 2. ~)7/4 < (n+1) cac3v/2c1 — c%)
. -exp | —(n = ) - (kK)'°R c0d - (kr)"""exp [ —(n e
(n — 1) VER KK

where, C' is a universal constant.

Proof We begin by recounting the expression for the covariance of the variance error of the tail-
averaged iterate 6;%,“"° from equation 24:

. . 1 ~
E [ezfﬁilance ® azzglance] — — (I—I— (I _ Ag)_lAL + (I _ ./47—;)_1./47—2) (I _ B)_IZ]

def
&1=

e (T~ A0 P Ae (T AR AR) (T - B8

&E
1

g (€ = A0 A 4 (T = AR AR ) - B)7'S

def
E3=

o T+ (T = A0 e+ (T - AR) AR T~ B) (B - B

'

def
E4=

+(n_1t)2 Zn) (T — Ag)TARTT (T — AR)THAR) ) (Z - B) T B E

j=t+1

~~

def
&%

The goal is to bound < E)I 8] ,5i>, fori=1,..,5.
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For the case of &1, combining the fact that E [0, ® O] = (Z — B)*lf) and lemma 17, we get:

< [Ig 8} ’51> - ﬁ < [Ig 8} T+ (T —Ap) A+ (T — AR) T AR) (T - B)—1§;>

- < [H 0} AT+ (T - A) AL+ (T - AR) T AR)E [0 ® Hoo]>

S n—t\|0 0
2d
<57 (82)
n—t
For the case of &, we employ the result from lemma 19, and this gives us:
- o2dvV kR
H 0 o\ C-07dVrR (83)
0 0 (n—t)2

For ¢ = 3, we have:

< [Ig 8} ,53> _ (n—1t)2 < [Ig 8] (T — Ag) 241 4 (T — AR) 2 (AR )T — B)—1§:>

_ (n_lt)2<<(I_AT>—2AT [Ig 8} ,A"—t(I—B)—1§> +<[Ig 8} A(I—A)—Q,(I—B)‘li:(AT)H>>

We will consider bounding ||A"*(Z — B)_lle:

H 0
0 0

] |- AT - B8 (84)

AT - B) B < 3 ATES

i=0
1V2 e _ ccy/2a —dyi) 5
< H(n t)Oé Z (1 = ) ”ZH
V1—a? i VR
(using corollary 15)
_ L\/izﬂ(n — f)am-t-D/2, LQ A=
V1—a? 0263m
\ =
_ 109 et YRR s
Vi—a2 cac3y/201 — cf
) =
_ Mﬁ(n_t)a(n—t—l)ﬂ VR 52| H|| (85)
< 2
Vi-a? c2c3y/ 201 — ]
We also upper bound « as:
a=1-— sz
VKR + sz
- 2VkR
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—e T o (36)

Furthermore, for |[(I — AT)72AT I(_)I 8} I, we consider a bound in each eigendirection j and

accumulate the results subsequently:

J10 0
1 10N
~ (q—cd)? Aj

la-aj)2a] |5 ol

VL + )1 =02 + )32+ 82)

(using lemma 9)

1
< -
o ('Y(l —a) 2 /\J
- 48(kR)* p*  48R* 1
T (aea)? A (6ea)? A
H 0 4872 1
— 1—AT2AT{ } < S
II( ) 0 0 II_(5C4)2 “

Plugging this into equation 84, we obtain:

2
<[H 0} ’53> < 41472 o dt(n%)11/4a("_t_1)/2 1

0 0 n— csc3(cres)3/?

2
<C o°d (H%)11/4a(n—t—1)/2
n—t
2d _(n—t—l)czy/ch—c2
O L (87)
n—t

Next, let us consider &£4:

Lo o5

=~ < [H 0] AT+ (T~ Ag) Ap+ (T - AR) AL - B) 2(B - Bnﬂ)i>

(n—t)2\|[0 0
= *(n _1 t)2 <(I - AT)_l |:I(_)I 8:| (I — A)_l’ (If D)(Ii B)—2(8t+1 . Bn+1)§}>
—(cI — ~1/2 R
= (g 05);(71 — )2 <<®2 [ ((II— 51?11)11){}11/2 } >,(I— B+ R)(Z - B) 2B — Bn+1)2>

(using lemma 8)

< e (= I—_Mq-l?lzl}—ll/lf] ).z -BaRT- B ES)
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CI— qH -1z —1 pntl

(cI — qgH)H~1/2 1S
S )

(
<
(®2[ f{;IﬁIH 1/12/2D,(28)—15n+1§>
(
(

<
(q—c§ (n—t)2 <

<
_<q—c6 (n—1)2 <<
<

®2 [ } <M HEHR> (I-fH)H '(I-6H), (T — B)—25”+1§:> )

(cI — qgH)H™/2 —1 19
®2|: I—(SHH 1/2 ,(I—B) B >

= (¢ — 05 (n—t)? (
3 <(§:/02), (T - B)—2B"+1§:> > (88)
—(cI — qH)H~1/2

(I-6H)H1/2
accumulate the results:

To bound || ®2 [ ] ||, we will consider a bound along each eigendirection and

—1/2 c— a\)2 S)L)2
||®[( — ) ]n_( )’ + (1= 0))

(1—6), )/\_1/2 by
2 2 2\ 2
Y (1+¢%) + (g% +6%)X;
< ¥
2456°X 14
e <
Ai T A
—(cI — gH)H /2 14
— o | e 1<

Next, we bound || B¥(Z — B) || (as a consequence of lemma 13 with Q = X):

N 1 N
k -1 T 12k -1
T - Y| < 7 — b
BT ~B)"'S < Amm(g)ne BT B3|
< > IGTBE |
mln(G) =k
< VR (@) exp( kYIS Gy
coc3r/2¢c1 — c1 VKK
402k \/Iilﬁ c c2
< -5 exp(—k—==) - 96°|[H]5
V1 —a? 6103 VKR
2 ~
< 360“K -vm;exp(—kzclci)-é
V1—a?2 cacg KK

This implies,
—(cI — qgH)H~1/2 1S
(o [ st ] ) -z <
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/ ~ 2 5
504Li2’{exp <_(n+1>clc3). .0.2d

VeR/) W
Furthermore,
B /S i 2t R _ Ry lgtD)/2sy (7 py-lpntl)/25
- <2,(I B)~2B 2>_02 <(I BB $.(Z-B)'B 2>
K —1a(n S
< 5I@-B) PBHURS2 .
2 =N 2 2
< 129610_60{2 </€01/Z/;) 0°Fexp(—(n +1) 01:3%)
3

This implies that,

< ( ®2 [_((ICI_;I‘{I})II){H;/ZT ) (T — B)-13n+1§> + % <§ (T - B)—25n+1§:>

=\ 2
< 2592 10_2?12 (/ﬁg) §*Rexp(—(n +1) \C/lé)
< 2592 - o2d - <@)3exp((n +1) Clc%) - 0%k%R (89)
cicg KK
Finally, we also note the following:
1 1 I 4K

G-~ (-a) =~ 1-a? " b

Plugging equation 89 into equation 88, we get:

<[IBI 8} ,54> = 2592 e t)gzj_ ik (@):xp((n +1) clc%) - 82K2R

cic3 VKR
o?d 1 (VrR\® €163
<42 —— = | —= —(n+1)—=) - k*F’
= dl47 (n—t)?2 ¢2 ( 163 > ep(—(n+1) n%) "
o%d 1 < e
= 41472 - . cexp | —(n+1 3)- KR) 2R
(n—1)? c2(c1cd)3 P~ )\/ﬁ (5F)
2d 2 ~ ~
<C- (na_ )2 - €xXp (-(n + 1)3}:%) - (KR) 2R ©0)

Next, we consider &s:

Lo o #)

:(n_lt)2 Y l<[f)1 8} ,((I_Aﬁ)—l,ztz“J’+(z—A%)—I(AIQ)"“—J‘)(I—B)—13j§:>
=t
:(n_lt)szn: <<(IAT)_1AT [Ig 8},A”‘j(IB)‘IBj§>
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4 < {Ig 8] AT- A (T B)lsﬂ'i(AT)nJ’> )

4d " B H o - A
<t Xl AT AT [ A 5) S o)
j=t+1

In a manner similar to bounding ||A"~*(Z — B)~13| as in equation 85, we can bound || A" (Z —
B)~1B/%| as:

[

~ jeges 2617C1
— Y exp Ve %H|
coc3n/2¢c1 — c%

Furthermore, we will consider the bound |[(I — AT)"TAT [I(_)I 8} || along one eigen direction (by

108v/202

AT - BB <
| ( ) H_m

employing equation 26) and collect the results:

;0] 14¢c? 2
I-A)'AT 7Y < <
It i) J [0 0] H*q—cé*q—cd
2 4R
< —- <=
(1l —a@) T deq
H 0] 4R
— [[(I-AT)'AT <
I( ) {0 0] H_5C4

Plugging this into equation 91, and upper bounding the sum by (n — ¢) times the largest term of the
series:

2
1

~\7/4 cocgn/2e1—c
<[H 0} 755> <6912 - o2d - Lexp—(n—&-l)-T

0 0 0364<6163)3/2
cgcga/2¢cq —c%
< C-o?d- (kR)7*. expf(nﬂ)' ViR (92)
Summing up equations 82, 83, 87, 90, 92, the statement of the lemma follows. |

Appendix F. Proof of Theorem 1

Proof [Proof of Theorem 1] The proof of the theorem follows through various lemmas that have
been proven in the appendix:

e Section B provides the bias-variance decomposition and provides an exact tensor expression
governing the covariance of the bias error (through lemma 3)and the variance error (lemma 5).

e Section D provides a scalar bound of the bias error through lemma 16. The technical contri-
bution of this section (which introduces a new potential function) is in lemma 4.

e Section E provides a scalar bound of the variance error through lemma 20. The key technical
contribution of this section is in the introduction of a stochastic process viewpoint of the pro-
posed accelerated stochastic gradient method through lemmas 6, 17. These lemmas provide
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a tight characterization of the stationary distribution of the covariance of the iterates of the
accelerated method. Lemma 19 is necessary to show the sharp burn-in (up to log factors),
beyond which the leading order term of the error is up to constants the statistically optimal
error rate O(o2d/n).

Combining the results of these lemmas, we obtain the following guarantee of algorithm 1:

1P - Poc) < € S o (- LY (pi) - pix)
+ O (5R)Adr - exp <9\_/:?> (P(xo) — P(x)) + 5n"2_dt
+C- m@+ C-o2d- (kR)* - exp <‘£}”\/‘KL;)>
+C- :2(%%)11/4 exp < - (’”‘3;\2;%1))
+C. (n"ji)z exp (— gjg) - (kR) /R

Where, C'is a universal constant.
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