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ENHANCED MATRIX FUNCTION APPROXIMATION∗

NASIM ESHGHI†, LOTHAR REICHEL†, AND MIODRAG M. SPALEVIĆ‡

Abstract. Matrix functions of the form f(A)v, where A is a large symmetric matrix, f is a function, and v 6= 0
is a vector, are commonly approximated by first applying a few, say n, steps of the symmetric Lanczos process to
A with the initial vector v in order to determine an orthogonal section of A. The latter is represented by a (small)
n × n tridiagonal matrix to which f is applied. This approach uses the n first Lanczos vectors provided by the
Lanczos process. However, n steps of the Lanczos process yield n+ 1 Lanczos vectors. This paper discusses how
the (n+ 1)st Lanczos vector can be used to improve the quality of the computed approximation of f(A)v. Also the
approximation of expressions of the form vT f(A)v is considered.
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1. Introduction. Many problems in science and engineering require the evaluation of
expressions of the form

(1.1) f(A)v or vT f(A)v,

where A ∈ RN×N is a large symmetric matrix, v ∈ RN\{0} is a vector, and f is a function
such that f(A) is well defined. Here, the superscript T denotes transposition. Applications for
the expressions (1.1) include the solution of systems of ordinary differential equations [5, 10],
network analysis [2, 12], and the solution of ill-posed problems [3].

Consider the spectral factorization

(1.2) A = UΛUT , Λ = diag[λ1, λ2, . . . , λN ],

where λj are the eigenvalues of A and the matrix U ∈ RN×N is orthogonal. We assume that
f is continuous on the convex hull of the spectrum of A. We may define f(A) with the aid of
the spectral factorization (1.2), i.e.,

(1.3) f(A) = Uf(Λ)UT .

When A is of small to moderate size, we can easily compute the spectral factorization (1.2)
and evaluate f(A) according to (1.3). Knowing f(A), it is straightforward to compute (1.1).
However, when the matrix A is very large, the computation of the spectral factorization (1.2)
may be too expensive to be practical. Also other techniques that require a factorization of A to
compute f(A) typically are too expensive when A is very large.

When A is large, the expressions in (1.1) are commonly approximated by first applying
a few, say n� N , steps of the symmetric Lanczos process to A with the initial vector v to
determine the Lanczos decomposition

(1.4) AVn = VnTn + βnvn+1e
T
n ,
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where Vn = [v1, v2, . . . , vn] ∈ RN×n has orthonormal columns with the initial column
v1 = v/‖v‖, the unit vector vn+1 ∈ RN is such that V T

n vn+1 = 0, and βn ≥ 0. Throughout
this paper, ej denotes the jth column of an identity matrix of suitable order, and ‖ · ‖ stands
for the Euclidean vector norm. The matrix Tn is symmetric and tridiagonal,

(1.5) Tn =


α0 β1 O
β1 α1 β2

. . . . . . . . .
O βn−1 αn−1

 ∈ Rn×n;

it is an orthogonal section of A. We assume that the number of steps n of the Lanczos process
is small enough so that the decomposition (1.4) with the stated properties exists, typically
1 ≤ n� N ; see, e.g., Golub and Meurant [8] or Saad [13] for discussions on the symmetric
Lanczos process. Having computed the Lanczos decomposition (1.4), it is used to approximate
the expressions (1.1) by

(1.6) Vnf(Tn)e1‖v‖ or ‖v‖2eT1 f(Tn)e1,

respectively; see, e.g., [1, 2, 6, 8, 10]. Hence, the evaluation of f(A) is replaced by the
much simpler task of computing f(Tn). Higham [9] discusses and analyzes many numerical
methods for the evaluation functions of a small matrix. We remark that the existence of f(Tn)
is secured, e.g., when f is continuous on the convex hull of the spectrum of A.

Error bounds and error estimates for the left-hand side of (1.6) can be found in [1, 6]. The
expression on the right-hand side of (1.6) can be interpreted as a Gauss quadrature rule. Our
discussion follows Golub and Meurant [8]. Let [ω1, ω2, . . . , ωN ] = vTU . Substituting the
spectral factorization (1.2) into the right-hand side expression of (1.1) yields

(1.7) vT f(A)v =
N∑
j=1

f(λj)ω
2
j =

∫
f(t)dω(t) =: I(f),

where ω(t) is a nondecreasing piecewise constant distribution function with jumps at the
eigenvalues λj of A and dω(t) is the associated measure. Thus, the left-hand side of (1.7) may
be considered a Stieltjes integral determined by the nonnegative measure dω with support in
the convex hull of the spectrum of A. We define an inner product associated with this measure
for polynomials of sufficiently low degree,

(f, g) := (f(A)v)T g(A)v =
N∑
j=1

f(λj)g(λj)ω
2
j =

∫
f(t)g(t)dω(t) = I(fg).

Substituting the spectral factorization of Tn into the right-hand side expression of (1.6),
one can see that it is an n-point quadrature rule

(1.8) Gn(f) = ‖v‖2eT1 f(Tn)e1

for approximating the integral (1.7). Golub and Meurant [8] show that this quadrature rule is a
Gauss rule, i.e.,

(1.9) I(f) = Gn(f), ∀f ∈ P2n−1,

where P2n−1 denotes the set of all polynomials of degree at most 2n− 1. This observation
can be used to determine bounds or estimates for the quadrature error Gn(f) − I(f) when
f 6∈ P2n−1; see [4, 8, 11, 12, 14].
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In the situation when the matrix A is large, the computational effort required for the
evaluation of the Lanczos decomposition (1.4) is dominated by n matrix-vector product
evaluations with A (see, e.g., [8, 13] for details on the symmetric Lanczos process), and each
matrix-vector product evaluation is expensive. We therefore would like to compute accurate
approximations of the expressions (1.1) by carrying out as few steps n of the Lanczos process
as possible.

Neither the constant βn nor the vector vn+1 in (1.4) are used in the expressions (1.6). It is
the purpose of the present paper to explore how these quantities can be applied to obtain more
accurate approximations of the expressions (1.1) than (1.6). This is described in Section 2. A
few computed examples that illustrate the performance of the proposed schemes are presented
in Section 3, and Section 4 contains concluding remarks and discusses extensions.

While the focus of this paper is the evaluation of expressions of the form (1.1), the
technique discussed also may be of interest for computing quadrature rules for approximating
integrals

I(f) =

∫
f(t)dω(t)

that are defined by a nonnegative measure with support on the real axis for which the recursion
coefficients of the associated orthogonal polynomials are not explicitly known. Gautschi [7]
discusses the computation of recursion coefficients and Gauss quadrature rules in this situation.
Our approach for determining quadrature rules may be attractive when it is expensive to
compute the recursion coefficients.

2. New methods for approximating matrix functions. If we would apply n+ 1 steps
of the symmetric Lanczos process to A with the initial vector v, then we would obtain the
decomposition

(2.1) AVn+1 = Vn+1Tn+1 + βn+1vn+2e
T
n+1,

which is analogous to (1.4). As usual, we assume that breakdown does not occur. In particular,
Vn+1 = [v1, v2, . . . , vn, vn+1] ∈ RN×(n+1) has orthonormal columns with v1 = v/‖v‖, and
the matrix Tn+1 is symmetric and tridiagonal,

(2.2) Tn+1 =


α0 β1 O
β1 α1 β2

. . . . . . . . .
βn−1 αn−1 βn

O βn αn

 ∈ R(n+1)×(n+1).

Thus, the leading N × n submatrix of Vn+1 is the matrix Vn in (1.4), and the leading n× n
principal submatrix of (2.2) is the matrix (1.5). The decomposition (2.1) can be used to
evaluate

(2.3) Vn+1f(Tn+1)e1‖v‖ and ‖v‖2eT1 f(Tn+1)e1,

which are analogues of (1.6). Typically, the expressions (2.3) are more accurate approximations
of the matrix functions (1.1) than (1.6), but the computation of (2.3) requires the evaluation of
one more matrix-vector product with A than the calculation of (1.6).

The decomposition (1.4) determines the matrix Vn+1 in (2.3) and all entries of Tn+1

except for the last diagonal entry αn. This suggests that we estimate αn by a scalar α̂n, define
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the symmetric tridiagonal matrix

(2.4) T̂n+1 =


α0 β1 O
β1 α1 β2

. . . . . . . . .
βn−1 αn−1 βn

O βn α̂n

 ∈ R(n+1)×(n+1),

and replace Tn+1 by T̂n+1 in (2.3). This yields the approximations

(2.5) Vn+1f(T̂n+1)e1‖v‖ and ‖v‖2eT1 f(T̂n+1)e1

of the expressions (1.1).
We first discuss the error in the expression in the right-hand side of (2.5). Equation (2.1)

yields

(2.6) AVn+1 = Vn+1T̂n+1 + (αn − α̂n)vn+1e
T
n+1 + βn+1vn+2e

T
n+1.

This expression is used in the proof of the following results.
THEOREM 2.1. Define the reduced inner products

(f, g)n = ‖v‖2eT1 (f(Tn))T g(Tn)e1

and

(2.7) 〈f, g〉n+1 = ‖v‖2eT1 (f(T̂n+1))T g(T̂n+1)e1.

Then

(2.8) (f, g)n = (f, g), ∀fg ∈ P2n−1,

and

(2.9) 〈f, g〉n+1 = (f, g), ∀fg ∈ P2n,

for any entry α̂n of T̂n+1.
Proof. Let h = fg ∈ P2n−1. Then equation (2.8) can be expressed as

‖v‖2eT1 h(Tn)e1 = I(h).

This equality holds due to (1.8) and (1.9).
We turn to (2.9). It suffices to show that

(2.10) (Akv1)T (Ajv1) = (T̂ k
n+1e1)T T̂ j

n+1e1, 0 ≤ j, k ≤ n.

It follows from (2.6) that Av1 = Vn+1T̂n+1e1 for n ≥ 1. Further, the decomposition (2.6)
yields

A2v1 = A(AVn+1e1) = A(Vn+1T̂n+1 + (αn − α̂n)vn+1e
T
n+1 + βn+1vn+2e

T
n+1)e1

= AVn+1T̂n+1e1 = (Vn+1T̂n+1 + (αn − α̂n)vn+1e
T
n+1 + βn+1vn+2e

T
n+1)T̂n+1e1

= Vn+1T̂
2
n+1e1,
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provided that n ≥ 2. We obtain similarly that

(2.11) Akv1 = Vn+1T̂
k
n+1e1, k = 3, 4, . . . , n,

and (2.10) follows.
Introduce the quadrature rule

(2.12) Ĝn+1(f) = ‖v‖2eT1 f(T̂n+1)e1.

COROLLARY 2.2. The quadrature rule (2.12) satisfies

(2.13) Ĝn+1(f) = I(f), ∀f ∈ P2n,

where I(f) is defined by (1.7). Moreover, using (2.6), we have

(2.14) vT1 A
2n+1v1 = eT1 T̂

2n+1
n+1 e1 + (αn − α̂n) eT1 T̂n+1en e

T
1 T̂n+1en+1,

which shows that the quadrature rule (2.13) is exact for f ∈ P2n+1 when α̂n = αn. Further,
the quadrature error (I − Ĝn+1)(f) for f ∈ P2n+1 is small in a relative sense when α̂n is
close to αn or when eT1 T̂n+1en e

T
1 T̂n+1en+1 is small.

Proof. Let g, h ∈ Pn and f = gh. Then, by (2.7) and (2.9),

Ĝn+1(f) = 〈g, h〉n+1 = (g, h) = I(f).

This shows (2.13). Equation (2.14) follows from (2.6).
Corollary 2.2 suggests that the quadrature rule (2.12) may yield more accurate approxima-

tions of (1.7) than (1.8) for many integrands. Extensive numerical experience, some of which
is reported in Section 3, indicate that this is indeed the case. We recall that the computation of
the rule (2.12) can be determined by carrying out n steps of the symmetric Lanczos process,
similarly as the Gauss rule (1.8). The computational effort to evaluate the quadrature rules (1.8)
and (2.12) therefore is essentially the same when the matrixA is so large that the matrix-vector
product evaluations required by the Lanczos process dominate the computational work.

We turn to the error in the expression on the left-hand side of (2.5). It is well-known that

f(A)v = Vnf(Tn)e1‖v‖, ∀f ∈ Pn−1;

see, e.g., [1]. The approximation on the left-hand side of (2.5) is exact for a larger class of
polynomials.

COROLLARY 2.3. The expression on the left-hand side of (2.5) satisfies

f(A)v = Vn+1f(T̂n+1)e1‖v‖ ∀f ∈ Pn.

Proof. The result follows from the proof of Theorem 2.1, specifically from (2.11).

3. Numerical examples. We present a few computed examples that illustrate the accu-
racy of the proposed approximations. All computations were carried out using MATLAB
R2016b on a 64-bit Lenovo personal computer with approximately 15 significant decimal
digits.

EXAMPLE 3.1. Let A ∈ RN×N with N ∈ {200, 2000, 5000, 10000} be a symmetric
Toeplitz matrix with first row [1, 1/2, . . . , 1/2(N−1)], and let v = [1, 1, . . . , 1]T ∈ RN . We
apply n steps of the symmetric Lanczos process to A with the initial vector v. This yields
the Lanczos decomposition (1.4). We choose the last diagonal entry in the matrix (2.4) to
be α̂n = αn−1, where αn−1 is the last diagonal entry of the matrix (1.5). Table 3.1 displays
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TABLE 3.1
Example 3.1: Relative error of computed approximations of vT f(A)v for A ∈ RN×N a Toeplitz matrix,

f(t) = 1/t, and v = [1, 1, . . . , 1]T .

N n = 5 n = 10 n = 15

200 |Gn(f)− I(f)|/|I(f)| 9.57 · 10−6 9.31 · 10−9 9.06 · 10−12

|Ĝn+1(f)− I(f)|/|I(f)| 1.36 · 10−6 1.33 · 10−9 1.29 · 10−12

|Gn+1(f)− I(f)|/|I(f)| 2.39 · 10−6 2.33 · 10−9 2.26 · 10−12

2000 |Gn(f)− I(f)|/|I(f)| 9.76 · 10−7 9.52 · 10−10 9.31 · 10−13

|Ĝn+1(f)− I(f)|/|I(f)| 1.39 · 10−7 1.36 · 10−10 1.34 · 10−13

|Gn+1(f)− I(f)|/|I(f)| 2.44 · 10−7 2.38 · 10−10 2.34 · 10−13

5000 |Gn(f)− I(f)|/|I(f)| 3.91 · 10−7 3.81 · 10−10 3.73 · 10−13

|Ĝn+1(f)− I(f)|/|I(f)| 5.58 · 10−8 5.45 · 10−11 5.36 · 10−14

|Gn+1(f)− I(f)|/|I(f)| 9.76 · 10−8 9.53 · 10−11 9.34 · 10−14

10000 |Gn(f)− I(f)|/|I(f)| 1.95 · 10−7 1.91 · 10−10 1.86 · 10−13

|Ĝn+1(f)− I(f)|/|I(f)| 2.79 · 10−8 2.72 · 10−11 2.66 · 10−14

|Gn+1(f)− I(f)|//|I(f)| 4.88 · 10−8 4.77 · 10−11 4.66 · 10−14

TABLE 3.2
Example 3.1: Relative error of computed approximations of vT f(A)v for A ∈ RN×N a Toeplitz matrix,

f(t) = exp(t), and v = [1, 1, . . . , 1]T .

N n = 5 n = 10 n = 15

200 |Gn(f)− I(f)|/|I(f)| 4.88 · 10−11 3.23 · 10−14 2.52 · 10−14

|Ĝn+1(f)− I(f)|/|I(f)| 8.70 · 10−13 1.98 · 10−14 1.80 · 10−14

|Gn+1(f)− I(f)|/|I(f)| 1.60 · 10−13 2.16 · 10−14 1.44 · 10−14

2000 |Gn(f)− I(f)|/|I(f)| 4.99 · 10−12 7.09 · 10−14 2.66 · 10−14

|Ĝn+1(f)− I(f)|/|I(f)| 8.66 · 10−13 3.37 · 10−14 2.30 · 10−14

|Gn+1(f)− I(f)|/|I(f)| 1.40 · 10−13 1.95 · 10−14 3.37 · 10−14

5000 |Gn(f)− I(f)|/|I(f)| 1.99 · 10−12 5.49 · 10−13 6.02 · 10−14

|Ĝn+1(f)− I(f)|/|I(f)| 3.04 · 10−13 5.13 · 10−13 6.19 · 10−13

|Gn+1(f)− I(f)|/|I(f)| 1.24 · 10−13 5.31 · 10−13 6.73 · 10−13

10000 |Gn(f)− I(f)|/|I(f)| 9.91 · 10−13 7.61 · 10−14 8.85 · 10−14

|Ĝn+1(f)− I(f)|/|I(f)| 1.06 · 10−13 8.49 · 10−14 6.37 · 10−14

|Gn+1(f)− I(f)|/|I(f)| 5.66 · 10−14 9.02 · 10−14 9.55 · 10−14

the relative errors for the computed approximations (1.8) and (2.12) of (1.7) for f(t) = 1/t
and several values of N . For comparison, the table also displays the relative error in the
approximations Gn+1(f), which are obtained by replacing the index n in (1.8) by n+1. While
the evaluation of (1.8) and (2.12) requires the computation of n steps of the Lanczos process,
the determination of Gn+1(f) needs n + 1 Lanczos steps be carried out. Table 3.1 shows
the quadrature rules (2.12) to achieve higher accuracy than the n-point Gauss rules (1.8) for
all N -values. Indeed, the errors obtained with the rules (2.12) are seen also to be smaller
than the errors in the (n+ 1)-point Gauss rules Gn+1(f). This situation takes place for some
matrices A and functions f , though we would expect the errors achieved with the rules (2.12)
to be smaller than the errors in the n-point Gauss rules (1.8) and larger than the errors in the
(n + 1)-point Gauss rules Gn+1(f). This situation is illustrated in Table 3.2, which differs
from Table 3.1 only in that the function is f(t) = exp(t). For this function the approximations
(2.12) of (1.7) are more accurate than those determined with the n-point Gauss rules (1.8)
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TABLE 3.3
Example 3.1: Relative error of computed approximations of vT f(A)v for A ∈ RN×N a Toeplitz matrix,

f(t) = ln(t), and v = [1, 1, . . . , 1]T .

N n = 5 n = 10 n = 15

200 |Gn(f)− I(f)|/|I(f)| 3.80 · 10−7 1.63 · 10−10 1.00 · 10−12

|Ĝn+1(f)− I(f)|/|I(f)| 3.81 · 10−8 1.97 · 10−11 1.22 · 10−13

|Gn+1(f)− I(f)|/|I(f)| 7.59 · 10−8 3.67 · 10−11 2.28 · 10−13

2000 |Gn(f)− I(f)|/|I(f)| 3.82 · 10−8 1.65 · 10−11 1.13 · 10−13

|Ĝn+1(f)− I(f)|/|I(f)| 3.84 · 10−9 1.99 · 10−12 2.02 · 10−14

|Gn+1(f)− I(f)|/|I(f)| 7.64 · 10−9 3.70 · 10−12 4.45 · 10−14

5000 |Gn(f)− I(f)|/|I(f)| 1.53 · 10−8 6.59 · 10−12 6.47 · 10−14

|Ĝn+1(f)− I(f)|/|I(f)| 1.53 · 10−9 7.98 · 10−13 3.64 · 10−14

|Gn+1(f)− I(f)|/|I(f)| 3.06 · 10−9 1.48 · 10−12 4.24 · 10−14

10000 |Gn(f)− I(f)|/|I(f)| 7.64 · 10−9 3.30 · 10−12 5.05 · 10−14

|Ĝn+1(f)− I(f)|/|I(f)| 7.68 · 10−10 4.01 · 10−13 2.43 · 10−14

|Gn+1(f)− I(f)|//|I(f)| 1.53 · 10−9 7.44 · 10−13 4.45 · 10−14

TABLE 3.4
Example 3.2: Relative error of computed approximations of f(A)v for A ∈ RN×N a Toeplitz matrix,

f(t) = 1/t, and v = [1, 1, . . . , 1]T .

N n = 5 n = 10

200 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 6.80 · 10−3 2.14 · 10−4

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 3.20 · 10−3 9.93 · 10−4

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 3.40 · 10−3 1.07 · 10−4

2000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 2.20 · 10−3 6.89 · 10−5

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 1.00 · 10−3 3.20 · 10−5

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 1.10 · 10−3 3.40 · 10−5

5000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 1.40 · 10−3 4.36 · 10−5

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 6.40 · 10−4 2.02 · 10−5

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 6.98 · 10−4 2.10 · 10−5

10000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 9.85 · 10−4 3.09 · 10−5

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 4.59 · 10−4 1.44 · 10−5

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 4.93 · 10−4 1.54 · 10−5

and less accurate than approximations achieved with the (n+ 1)-point Gauss rule Gn+1(f).
Table 3.3 displays results for the function f(t) = ln(t). The matrix A, the vector v, and the
orders N are the same as for Table 3.2.

EXAMPLE 3.2. This example illustrates the accuracy of the expressions

Pn(f)v := Vnf(Tn)e1‖v‖,(3.1)

P̂n+1(f)v := Vn+1f(T̂n+1)e1‖v‖,(3.2)

when applied to approximate f(A)v. The matrices A ∈ RN×N and vectors v used in the
present example are the same as in Example 3.1. Table 3.4 displays the relative errors in the
quantities (3.1) and (3.2) for f(t) = 1/t. In addition, the table presents the relative errors
in Pn+1(f)v. While the computation of (3.1) and (3.2) requires that n steps of the Lanczos
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TABLE 3.5
Example 3.2: Relative error of computed approximations of f(A)v for A ∈ RN×N a Toeplitz matrix,

f(t) = exp(t), and v = [1, 1, . . . , 1]T .

N n = 5 n = 10

200 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 6.72 · 10−5 2.54 · 10−10

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 7.51 · 10−6 1.58 · 10−11

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 7.15 · 10−6 1.52 · 10−11

2000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 2.14 · 10−5 8.13 · 10−11

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 2.39 · 10−6 5.07 · 10−12

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 2.28 · 10−6 4.86 · 10−12

5000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 1.36 · 10−5 5.14 · 10−11

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 1.51 · 10−6 3.20 · 10−12

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 1.44 · 10−6 3.07 · 10−12

10000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 9.58 · 10−6 3.64 · 10−11

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 1.07 · 10−6 2.27 · 10−12

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 1.02 · 10−6 2.17 · 10−12

TABLE 3.6
Example 3.2: Relative error of computed approximations of f(A)v for A ∈ RN×N a Toeplitz matrix,

f(t) = ln(t), and v = [1, 1, . . . , 1]T .

N n = 5 n = 10

200 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 4.83 · 10−4 7.10 · 10−6

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 1.85 · 10−4 3.00 · 10−6

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 1.97 · 10−4 3.21 · 10−6

2000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 1.53 · 10−4 2.25 · 10−6

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 5.87 · 10−5 9.50 · 10−7

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 6.25 · 10−5 1.02 · 10−6

5000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 9.67 · 10−5 1.42 · 10−6

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 3.71 · 10−5 6.01 · 10−7

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 3.95 · 10−5 6.43 · 10−7

10000 ‖Pn(f)v − f(A)v‖/‖f(A)v‖ 6.84 · 10−5 1.01 · 10−6

‖P̂n+1(f)v − f(A)v‖/‖f(A)v‖ 2.63 · 10−5 4.25 · 10−7

‖Pn+1(f)v − f(A)v‖/‖f(A)v‖ 2.80 · 10−5 4.55 · 10−7

algorithm be carried out, the evaluation of Pn+1(f)v demands n+ 1 steps. The relative error
in P̂n+1(f)v is seen to be smaller than the relative error in Pn(f)v for all values of n and N .

Table 3.5 differs from Table 3.4 only in that the function is f(t) = exp(t). The relative
performance of the approximants (3.1) and (3.2) is similar to that of Table 3.4. Finally,
Table 3.6 differs from Table 3.5 only in that the function is f(t) = ln(t); the matrices A, the
vector v, and the sizes N , are the same in all tables.

The performance of the approximants (3.1) and (3.2) for other matrices A, vectors v,
functions f , and number of Lanczos steps n is similar to that of the Tables 3.1–3.6. We
therefore do not show these results.

4. Conclusion and extension. Many methods for the approximation of functions of a
large symmetric matrix are based on the Lanczos process. The application of n steps of
the Lanczos process to A with the initial vector v yields the decomposition (1.4), which is
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commonly used to compute approximations (3.1) and (1.8) of the expressions (1.1). This
paper shows that the expressions (3.2) and (2.12), which can be computed with essentially the
same amount of arithmetic work, may yield more accurate approximations of (1.1) than (3.1)
and (1.8).

The technique of this paper also can be applied when v in (1.1) is a “block vector,” i.e., a
matrix with a few columns. The expressions (1.7) then are matrix-valued. In particular, the
measure dω(t) is matrix-valued, the quadrature rule (1.8) becomes a block Gauss rule, and the
Lanczos process is replaced by a block Lanczos process; see, e.g., Golub and Meurant [8] for
details on block Gauss rules.
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