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Abstract. Social choice is a normative study of designing protocols for
collective decision making. However, in instances where the underlying
decision space is too large or complex for ordinal voting, standard vot-
ing methods may be impractical. How then can we design a protocol
- preferably decentralized, simple, scalable, and not requiring any spe-
cial knowledge of the decision space - to reach consensus? We propose
sequential deliberation as a natural solution to this problem. In this iter-
ative method, successive pairs of agents bargain over the decision space
using the previous decision as a disagreement alternative. We show that
sequential deliberation finds a 1.208-approximation to the optimal social
cost when the space of preferences define a median graph, coming very
close to this value with only a small constant number of agents sampled
from the population. We also give lower bounds on simpler classes of
mechanisms to justify our design choices. We further show that sequen-
tial deliberation is ex-post Pareto efficient and has truthful reporting as
an equilibrium of the induced extensive form game. Finally, we prove that
for general metric spaces, the first and second moment of of the distribu-
tion of social cost of the outcomes produced by sequential deliberation
are also bounded by constants.

1 Introduction

Suppose a university administrator plans to spend millions of dollars to up-
date her campus, and she wants to elicit the input of students, staff, and faculty.
In a typical social choice setting, she could first elicit the bliss points of the
students, say “new gym,” “new library,” and “new student center.” However,
voting on these options need not find the social optimum, because it is not clear
that the social optimum is even on the ballot. In such a setting, deliberation
between individuals would find entirely new alternatives, for example “replace
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gym equipment plus remodeling campus dining plus money for scholarship.”
This leads to finding a social optimum over a wider space of semi-structured
outcomes that the system/mechanism designer was not originally aware of, and
the participants had not initially articulated.

We therefore start with the following premise: The mechanism designer may
not be able to enumerate the outcomes in the decision space or know their
structure, and this decision space may be too big for most ordinal voting schemes.
(For instance, ordinal voting is difficult to implement in complex combinatorial
spaces [25] or in continuous spaces [15].) However, we assume that agents can
still reason about their preferences and small groups of agents can negotiate
over this space and collaboratively propose outcomes that appeal to all of them.
Our goal is to design protocols based on such a primitive by which small group
negotiation can lead to an aggregation of societal preferences without a need to
formally articulate the entire decision space and without every agent having to
report ordinal rankings over this space.

The need for small groups is motivated by a practical consideration as well
as a theoretical one. On the practical side, there is no online platform, to the
best of our knowledge, that has a successful history of large scale deliberation
and decision making on complex issues; in fact, large online forums typically
degenerate into vitriol and name calling when there is substantive disagreement
among the participants. Thus, if we are to develop practical tools for decision
making at scale, a sequence of small group deliberations appears to be the most
plausible path. On the theoretical side, we understand the connections between
sequential protocols for deliberation and axiomatic theories of bargaining for
small groups, e.g. for pairs [34, 8], but not for large groups, and we seek to
bridge this gap.

Summary of Contributions. Our main contributions are two-fold:

– A simple and practical sequential protocol that only requires agents to ne-
gotiate in pairs and propose outcomes that appeal to both agents.

– A canonical analytic model in which we can precisely state properties of this
protocol in terms of approximation of the social optimum, Pareto-efficiency,
and incentive-compatibility, as well as compare it with simpler protocols.

1.1 Background: Bargaining Theory

Before proceeding further, we review bargaining, the classical framework for
two-player negotiation in Economics. Two-person bargaining, as framed in [29],
is a game wherein there is a disagreement outcome and two agents must co-
operate to reach a decision; failure to cooperate results in the adoption of the
disagreement outcome. Nash postulated four axioms that the bargaining solu-
tion ought to satisfy assuming a convex space of alternatives: Pareto optimality
(agents find an outcome that cannot be simultaneously improved for both of
them), symmetry between agents, invariance with respect to affine transforma-
tions of utility (scalar multiplication or additive translation of any agent’s utility
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should not change the outcome), and independence of irrelevant alternatives (in-
formally that the presence of a feasible outcome that agents do not select does
not influence their decision). Nash proved that the solution maximizing the Nash
product (that we describe later) is the unique solution satisfying these axioms.
To provide some explanation of how two agents might find such a solution, [34]
shows that Nash’s solution is the subgame perfect equilibrium of a simple re-
peated game on the two agents, where the agents take turns making offers, and
at each round, there is an exogenous probability of the process terminating with
no agreement.

The two-person bargaining model is therefore clean and easy to reason about.
As a consequence, it has been extensively studied. In fact, there are other models
and solutions to two-person bargaining, each with a slightly different axiomati-
zation [21, 22, 28], as well as several experimental studies [33, 30, 7]. In a social
choice setting, there are typically many more than two agents, each agent hav-
ing their own complex preferences. Though bargaining can be generalized to n
agents with similar axiomatization and solution structure, such a generalization
is considered impractical. This is because in reality it is difficult to get a large
number of individuals to negotiate coherently; complexities come with the for-
mation of coalitions and power structures [19, 24]. Any model for simultaneous
bargaining, even with three players [6], needs to take these messy aspects into
account.

1.2 A Practical Compromise: Sequential Pairwise Deliberation

In this paper, we take a middle path, avoiding both the complexity of ex-
plicitly specifying preferences in a large decision space that any individual agent
may not even fully know (fully centralized voting), and that of simultaneous
n-person bargaining (a fully decentralized cooperative game). We term this ap-
proach sequential deliberation. We use 2-person bargaining as a basic primitive,
and view deliberation as a sequence of pairwise interactions that refine good
alternatives into better ones as time goes by.

More formally, there is a decision space S of feasible alternatives (these may
be projects, sets of projects, or continuous allocations) and a set N of agents.
We assume each agent has a hidden cardinal utility for each alternative. We
encapsulate deliberation as a sequential process. The framework that we analyze
in the rest of the paper is captured in Fig. 1.

Our framework is simple with low cognitive overhead, and is easy to imple-
ment and reason about. Though we don’t analyze other variants in this paper,
we note that the framework is flexible. For instance, the bargaining step can be
replaced with any function B(u, v, a) that corresponds to an interaction between
u and v using a as the disagreement outcome; we assume that this function
maximizes the Nash product, that is, it corresponds to the Nash bargaining so-
lution. Similarly, the last step of social choice could be implemented by a central
planner based on the distribution of outcomes produced.
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1. In each round t = 1, 2, . . . , T :
(a) A pair of agents ut and vt are chosen independently and uniformly at random

with replacement.
(b) These agents are presented with a disagreement alternative at, and perform

bargaining, which is encoded as a function B(u, v, a) as described below.
(c) Agents ut and vt are asked to output a consensus alternative; if they fail to

reach a consensus then the alternative at is output.
(d) Let ot denote the alternative that is output in round t. We set at+1 = ot,

where we assume a1 is the bliss point of an arbitrary agent.
2. The final social choice is aT . Note that this is equivalent to drawing an outcome at

random from the distribution generated by repeating this protocol several times.

Fig. 1. A framework for sequential pairwise deliberation.

1.3 Analytical Model: Median Graphs and Nash Bargaining

The framework in Fig. 1 is well-defined and practical irrespective of an ana-
lytical model. However, we provide a simple analytical model for specifying the
preferences of the agents in which we can precisely quantify the behavior of this
framework as justification.

Median Graphs. We assume that the set S of alternatives are vertices of a
median graph. A median graph has the property that for each triplet of vertices
u, v, w, there is a unique point that is common to the three sets of shortest
paths (since there may be multiple pairwise shortest paths), those between u, v,
between v, w, and between u,w. This point is the unique median of u, v, w. We
assume each agent u has a bliss point pu ∈ S, and his disutility for an alternative
a ∈ S is simply d(pu, a), where d(·) is the shortest path distance function on
the median graph. (Note that this disutility can have an agent-dependent scale
factor.) Several natural graphs are median graphs, including trees, points on the
line, hypercubes, and grid graphs in arbitrary dimensions [23]. As we discuss in
Sect. 1.5, because of their analytic tractability and special properties, median
graphs have been extensively studied as structured models for spatial preferences
in voting theory. Some of our results generalize to metric spaces beyond median
graphs; see Sect. 5.

Nash Bargaining. The model for two-person bargaining is simply the classical
Nash bargaining solution described before. Given a disagreement alternative a,
agents u and v choose that alternative o ∈ S that maximizes:

Nash product = (d(pu, a)− d(pu, o))× (d(pv, a)− d(pv, o))

subject to individual rationality, that is, d(pv, o) ≤ d(pv, a) and d(pu, o) ≤
d(pu, a). The Nash product maximizer need not be unique; in the case of ties
we postulate that agents select the outcome that is closest to the disagreement
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outcome. As mentioned before, the Nash product is a widely studied axiomatic
notion of pairwise interactions, and is therefore a natural solution concept in our
framework.

Social Cost and Distortion. The social cost of an alternative a ∈ S is given
by SC(a) =

∑
u∈N d(pu, a). Let a

∗ ∈ S be the minimizer of social cost, i.e., the
generalized median. We measure the Distortion of outcome a as

Distortion(a) =
SC(a)

SC(a∗)
(1)

where we use the expected social cost if a is the outcome of a randomized algo-
rithm. Note that our model is fairly general in that the bliss points of the agents
in N form an arbitrary subset of S. Assuming that disutility is some metric over
the space follows recent literature [2, 3, 9, 10, 17], and our tightest results are for
median graphs specifically.

1.4 Our Results

Before presenting our results, we re-emphasize that while we present analyt-
ical results for sequential deliberation in specific decision spaces, the framework
in Fig. 1 is well defined regardless of the underlying decision space and the medi-
ator’s understanding of the space. At a high level, this flexibility and generality
in practice are its key advantages.

Bounding Distortion. Our main result is in Sect. 3, and shows that for se-
quential Nash bargaining on a median graph, the expected Distortion of outcome
aT has an upper bound approaching 1.208 as T → ∞. Surprisingly, we show that
in T = log

2

1

ε
+ 2.575 steps, the expected Distortion is at most 1.208 + ε, inde-

pendent of the number of agents, the size of the median space, and the initial
disagreement point a1. For instance, the Distortion falls below 1.22 in at most 9
steps of deliberation, which only requires a random sample of at most 20 agents
from the population to implement.

In Sect. 3.2, we ask: How good is our numerical bound?We present a sequence
of lower bounds for social choice mechanisms that are allowed to use increasingly
richer information about the space of alternatives on the median graph. This also
leads us to make qualitative statements about our deliberation scheme.

– We show that any social choice mechanism that is restricted to choosing
the bliss point of some agent cannot have Distortion better than 2. More
generally, it was recently shown [18] that even eliciting the top k alternatives
for each agent does not improve the bound of 2 for median graphs unless
k = Ω(|S|).

– Next consider mechanisms that choose, for some triplet (u, v, w) of agents
with bliss points pu, pv, pw, the median outcome muvw = B(u, v, pw). We
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show this has Distortion at least 1.316, which means that sequential delib-
eration is superior to one-shot deliberation that outputs o1 where a1 is the
bliss point of some agent.

– Finally, for every pair of agents (u, v), consider the set of alternatives on
a shortest path between pu and pv. This encodes all deliberation schemes
where B finds a Pareto-efficient alternative for some 2 agents at each step.
We show that any such mechanisms has Distortion ratio at least 9/8 = 1.125.
This space of mechanisms captures sequential deliberation, and shows that
sequential deliberation is close to best possible within this space.

Properties of Sequential Deliberation. We next show that sequential delib-
eration has several natural desiderata on median graphs in Sect. 4. In particular:

– Under mild assumptions, the limiting distribution over outcomes of sequen-
tial deliberation is unique.

– For every T ≥ 1, the outcome oT of sequential deliberation is ex-post Pareto-
efficient, meaning that there is no other alternative that has at most that
social cost for all agents and strictly better cost for one agent. This is not
a priori obvious, since the outcome at any one round only uses inputs from
two agents.

– Interpreted as a mechanism, truthful play is a sub-game perfect Nash equilib-
rium of sequential deliberation. This interpretation is made precise in Sect. 4,
but at a high level, we seek to address the following concern: In a sequential
setting, would any agent have incentive to misrepresent their preferences so
that they gain an advantage?

Beyond Median Graphs. In Sect. 5, we consider general metric spaces. We
show that the Distortion of sequential deliberation is always at most a factor of 3.
More surprisingly, we show that sequential deliberation has constant distortion
even for the second moment of the distribution of social cost of the outcomes,
i.e., the latter is at most a constant factor worse than the optimum squared
social cost. The practical implication is that one can look at the distribution
of outcomes produced by deliberation and know that the standard deviation in
social cost is comparable to its expected value.3

1.5 Related Work

While the real world complexities of the model are beyond the analytic con-
fines of this work, deliberation as an important component of collective decision
making and democracy is studied in political science. For examples (by no means
exhaustive), see [14, 37]. There is ongoing related work on Distortion of voting
for simple analytical models like points in R [13], and in general metric spaces [3,

3 See also recent work by [38] that considers minimizing the variance of randomized
truthful mechanisms.
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2, 9, 10, 17]. This work focuses on optimally aggregating ordinal preferences, say
the top k preferences of a voter [18]. In contrast, our scheme elicits alternatives
as the outcome of bargaining rounds that require agents to reason about cardinal
preferences. We essentially show that for median graphs, unless k is very large,
such deliberation has provably lower distortion than social choice schemes that
elicit purely ordinal rankings.

Median graphs and their ordinal generalization, median spaces, have been
extensively studied in social choice. The special cases of trees and grids have
been studied as structured models for voter preferences [36, 5]. For general me-
dian spaces, the Condorcet winner (an alternative that pairwise beats any other
alternative in terms of voter preferences) is related to the generalized median [4,
35, 39] – if the former exists, it coincides with the latter. Nehring and Puppe [31]
show that any single-peaked domain which admits a non-dictatorial and neutral
strategy-proof social choice function is a median space. Clearwater et al. [11]
also showed that any set of voters and alternatives on a median graph will have
a Condorcet winner. In a sense, these are the largest class of structured prefer-
ences where ordinal voting over the entire space of alternatives leads to a “clear
winner” (importantly, we assume this is impractical).

Our paper is inspired by the triadic consensus results of Goel and Lee [16],
where the authors also focus on small group interactions to make a collective
decision. The authors show that the Distortion of their protocol approaches 1
on median graphs. However, the protocol crucially assumes individuals know the
positions of other individuals, and requires the space of alternatives to coincide
with the space of individuals. We make neither of these assumptions – in our
case, the space of alternatives can be much larger than the number of agents,
and individuals interact with others only via bargaining. This makes our protocol
more practical, but restricts our Distortion to be bounded away from 1.

The notion of democratic equilibrium [20, 15] considers social choice mecha-
nisms in continuous spaces where individual agents with complex utility func-
tions perform update steps inspired by gradient descent. However, these schemes
do not involve deliberation between agents and have little formal analysis of
convergence. Several works have considered iterative voting where the current
alternative is put to vote against one proposed by different random agent chosen
each step [1, 26, 32], or other related schemes [27]. In contrast with our work,
these protocols are not deliberative and require voting among several agents
each step; furthermore, the analysis focuses on convergence to an equilibrium
instead of welfare or efficiency guarantees.

2 Median Graphs and Nash Bargaining

In this section we will use the notation N for a set of agents, S for the space
of feasible alternatives, and H for a distribution over S. Most of our results are
for the analytic model given earlier wherein the set S of alternatives are vertices
of a median graph. All proofs are given in the full version of the paper [12].
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Definition 1. A median graph G(S, E) is an unweighted and undirected graph
with the following property: For each triplet of vertices u, v, w ∈ S ×S ×S, there
is a unique point that is common to the shortest paths (which need not be unique
between a given pair) between u, v, between v, w, and between u,w. This point is
the unique median of u, v, w.

In the framework of Fig. 1, we assume that at every step, two agents perform
Nash bargaining with a disagreement alternative. The first results characterize
Nash bargaining on a median graph. In particular, we show that Nash bargaining
at each step will select the median of bliss points of the two agents and the
disagreement alternative. After that, we show that we can analyze the Distortion
of sequential deliberation on a median graph by looking at the embedding of that
graph onto the hypercube.

Lemma 1. For any median graph G = (S, E), any two agents u, v with bliss
points pu, pv ∈ S, and any disagreement outcome a ∈ S, let M be the median.
Then M maximizes the Nash product of u and v given a, and is the maximizer
closest to a.

Hypercube Embeddings. For any median graph G = (S, E), there is an
isometric embedding φ : G → Q of G into a hypercube Q [23]. This embedding
maps vertices S into a subset of vertices of Q so that all pairwise distances
between vertices in S are preserved by the embedding. A simple example of this
embedding for a tree is shown in Fig. 2. We use this embedding to show the
following result, in order to simplify subsequent analysis.

Fig. 2. The hypercube embedding of a 4-vertex star graph

Lemma 2. Let G(S, E) be a median graph, and let φ be its isometric embedding
into hypercube Q(V,E′). For any three points t, u, v ∈ S, let MG be the median
of vertices t, u, v and let MQ be the median of vertices φ(t), φ(u), φ(v) ∈ V . Then
φ(MG) = MQ.

3 The Efficiency of Sequential Deliberation

In this section, we show that the Distortion of sequential deliberation is at
most 1.208. We then show that this bound is significant, meaning that mecha-
nisms from simpler classes are necessarily constrained to have higher Distortion
values. All proofs are given in the full version of the paper [12].
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3.1 Upper Bounding Distortion

Recall the framework for sequential deliberation in Fig. 1 and the definition
of Distortion in Equation (1). We first map the problem into a problem on
hypercubes using Lemma 2.

Corollary 1. Let G = (S, E) be a median graph, let φ : G → Q be an isometric
embedding of G onto a hypercube Q(V,E′), and let N be a set of agents such
that each agent u has a bliss point pu ∈ S. Then the Distortion of sequential
deliberation on G is at most the Distortion of sequential deliberation on φ(G)
where each agent’s bliss point is φ(pu).

Our main result in this section shows that as t → ∞, the Distortion of
sequential deliberation approaches 1.208, with the convergence rate being ex-
ponentially fast in t and independent of the number of agents |N |, the size of
the median space |S|, and the initial disagreement point a1. In particular, the
Distortion is at most 1.22 in at most 9 steps of deliberation, which is indeed a
very small number of steps.

Theorem 1. Sequential deliberation among a set N of agents, where the deci-
sion space S is a median graph, yields E[Distortion(at)] ≤ 1.208 + 6

2t
.

3.2 Lower Bounds on Distortion

We will now show that the Distortion bounds of sequential deliberation are
significant, meaning that mechanisms from simpler classes are constrained to
have higher Distortion values. We present a sequence of lower bounds for social
choice mechanisms that use increasingly rich information about the space of
alternatives on a median graph G = (S, E) with a set of agents N with bliss
points VN ⊆ S. We first consider mechanisms that are constrained to choose
outcomes in VN . For instance, this captures the Random Dictatorship algorithm
that chooses the bliss point of a random agent. It shows that the compromise
alternatives found by deliberation do play a role in reducing Distortion.

Lemma 3. Any mechanism constrained to choose outcomes in VN has Distor-
tion at least 2.

We next consider mechanisms that are restricted to choosing the median of
the bliss points of some three agents in N . This captures sequential deliberation
run for T = 1 steps, as well as mechanisms that generalize dictatorship to an
oligarchy composed of at most 3 agents. This shows that iteratively refining the
bargaining outcome has better Distortion than performing only one iteration.

Lemma 4. Any mechanism constrained to choose outcomes in VN or a median
of three points in VN must have Distortion at least 1.316.

We finally consider a class of mechanisms that includes sequential delibera-
tion as a special case. We show that any mechanism in this class cannot have
Distortion arbitrarily close to 1. This also shows that sequential deliberation is
close to best possible in this class.
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Lemma 5. Any mechanism constrained to choose outcomes on shortest paths
between pairs of outcomes in VN must have Distortion at least 9/8 = 1.125.

The significance of the lower bound in Lemma 5 should be emphasized:
though there is always a Condorcet winner in median graphs, it need not be
any agent’s bliss point, nor does it need to be Pareto optimal for any pair of
agents. The somewhat surprising implication is that any local mechanism (in the
sense that the mechanism chooses locally Pareto optimal points) is constrained
away from finding the Condorcet winner.

4 Properties of Sequential Deliberation

In this section, we study some natural desirable properties for our mechanism:
uniqueness of the stationary distribution of the Markov chain, ex-post Pareto-
efficiency of the final outcome, and subgame perfect Nash equilibrium. All proofs
are given in the full version of the paper [12].

Uniqueness of the Stationary Distribution. We first show that the Markov
chain corresponding to sequential deliberation converges to a unique station-
ary distribution on the actual median graph, rather than just showing that the
marginals and thus the expected distances converge.

Theorem 2. The Markov chain defined in Theorem 1 has a unique stationary
distribution.

Pareto-Efficiency. The outcome of sequential deliberation is ex-post Pareto-
efficient on a median graph. In other words, in any realization of the random
process, suppose the final outcome is o; then there is no other alternative a such
that d(a, v) ≤ d(o, v) for every v ∈ N , with at least one inequality being strict.
This is a weak notion of efficiency, but it is not trivial to show; while it is easy
to see that a one shot bargaining mechanism using only bliss points is Pareto
efficient by virtue of the Pareto efficiency of bargaining, sequential deliberation
defines a potentially complicated Markov chain for which many of the outcomes
need not be bliss points themselves.

Theorem 3. Sequential deliberation among a set N of agents, where the deci-
sion space S is a median graph and the initial disagreement point a1 is the bliss
point of some agent, yields an ex-post Pareto Efficient alternative.

Truthfulness of Extensive Forms. Finally, we show that sequential delib-
eration has truth-telling as a sub-game perfect Nash equilibrium in its induced
extensive form game. Towards this end, we formalize a given round of bargain-
ing as a 2-person non-cooperative game between two players who can choose
as a strategy to report any point v on a median graph; the resulting outcome
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is the median of the two strategy points chosen by the players and the dis-
agreement alternative presented. The payoffs to the players are just the utilities
already defined; i.e., the player wishes to minimize the distance from their true
bliss point to the outcome point. Call this game the non-cooperative bargaining
game (NCBG).

The extensive form game tree defined by non-cooperative bargaining consists
of 2T alternating levels: Nature draws two agents at random, then the two agents
play NCBG and the outcome becomes the disagreement alternative for the next
NCBG. The leaves of the tree are a set of points in the median graph; agents
want to minimize their expected distance to the final outcome.

Theorem 4. Sequential NCBG on a median graph has a sub-game perfect Nash
equilibrium where every agent truthfully reports their bliss point at all rounds of
bargaining.

5 General Metric Spaces

We now work in the very general setting that the set S of alternatives are
points in a finite metric space equipped with a distance function d(·) that is a
metric. As before, we assume each agent u ∈ N has a bliss point pu ∈ S. An
agent’s disutility for an alternative a ∈ S is simply d(pu, a). We first present re-
sults for the Distortion, and subsequently define the second moment, or Squared-
Distortion. For both measures, we show that the upper bound for sequential
deliberation is at most a constant regardless of the metric space. All proofs are
given in the full version of the paper [12].

Theorem 5. The Distortion of sequential deliberation is at most 3 when the
space of alternatives and bliss points lies in some metric, and this bound is tight.

The bound of 3 above is quite pessimistic. The metric space employed in the
lower bound is contrived in the following sense: Every pair of agents has some
unique (to that pair) alternative they very slightly prefer to the social optimum.
For structured spaces, we expect the bound to be much better. We have already
shown this for median spaces. In the full version of this paper [12], we provide
more evidence in this direction by considering a structured space motivated by
budgeting applications that is not a median graph. For this space, we show that
sequential deliberation has Distortion at most 4/3.

5.1 Second Moment of Social Cost

We now show that for any metric space, sequential deliberation has a crucial
advantage in terms of the distribution of outcomes it produces. For this, we
consider the second moment, or the expected squared social cost. Recall that
the social cost of an alternative a ∈ S is given by SC(a) =

∑
u∈N d(pu, a). Let

a∗ ∈ S be the minimizer of social cost, i.e., the generalized median. Then define:

Squared-Distortion =
E[(SC(a))2]

(SC(a∗))2
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where the expectation is over the set of outcomes a produced by Sequential De-
liberation.4 We show that sequential deliberation has Squared-Distortion upper
bounded by a constant. This means the standard deviation in social cost of the
distribution of outcomes is comparable to the optimal social cost. This has a
practical implication: A policy designer can run sequential deliberation for a few
steps, and be sure that the probability of observing an outcome that has γ times
the optimal social cost is at most O(1/γ2). In contrast, Random Dictatorship
(choosing an agent uniformly at random and using her bliss point as the solution)
has unbounded Squared-Distortion, which means its standard deviation in social
cost cannot be bounded. In other words, deliberation between agents eliminates
the outlier agent, and concentrates probability mass on central outcomes.

Theorem 6. The Squared-Distortion of sequential deliberation for T ≥ 1 is at
most 41 when the space of alternatives and bliss points lies in some metric.
Furthermore, the Squared-Distortion of random dictatorship is unbounded.

6 Open Questions

Our work is the first step to developing a theory around practical deliberation
schemes. We suggest several future directions. First, we do not have a general
characterization of the Distortion of sequential deliberation for metric spaces. We
have shown that for general metric spaces there is a small but pessimistic bound
on the Distortion of 3, but that for specific metric spaces the Distortion may be
much lower. We do not have a complete characterization of what separates these
good and bad regimes.

More broadly, an interesting question is extending our work to take opinion
dynamics into account, i.e., proving stronger guarantees if we assume that when
two agents deliberate, each agent’s opinion moves slightly towards the other
agent’s opinion and the outside alternative. Furthermore, though we have shown
that all agents deliberating at the same time does not improve on dictatorship,
it is not clear how to extend our results to more than two agents negotiating
at the same time. This runs into the challenges in understanding and modeling
multiplayer bargaining [19, 24, 6].

Finally, it would be interesting to conduct experiments to measure the ef-
ficacy of our framework on complex, real world social choice scenarios. There
are several practical hurdles that need to be overcome before such a system can
be feasibly deployed. In a related sense, it would be interesting to develop an
axiomatic theory for deliberation, much like that for bargaining [29], and show
that sequential deliberation arises naturally from a set of axioms.

4 The motivation for considering Squared-Distortion instead of the standard deviation
is that the latter might prefer a more deterministic mechanism with a worse social
cost, a problem that the Squared-Distortion avoids.
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