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The successional dynamics of microbial communities are influenced by the synergistic

interactions of physical and biological factors. In our motivating data, ocean microbiome

samples were collected from the Santa Cruz Municipal Wharf, Monterey Bay at

multiple time points and then 16S ribosomal RNA (rRNA) sequenced. We develop a

Bayesian semiparametric regression model to investigate how microbial abundance and

succession change with covarying physical and biological factors including algal bloom

and domoic acid concentration level using 16S rRNA sequencing data. A generalized

linear regression model is built using the Laplace prior, a sparse inducing prior, to

improve estimation of covariate effects on mean abundances of microbial species

represented by operational taxonomic units (OTUs). A nonparametric prior model is used

to facilitate borrowing strength across OTUs, across samples and across time points.

It flexibly estimates baseline mean abundances of OTUs and provides the basis for

improved quantification of covariate effects. The proposed method does not require prior

normalization of OTU counts to adjust differences in sample total counts. Instead, the

normalization and estimation of covariate effects on OTU abundance are simultaneously

carried out for joint analysis of all OTUs. Using simulation studies and a real data analysis,

we demonstrate improved inference compared to an existing method.

Keywords: count data, Laplace prior, metagenomics, microbiome, regularizing prior, process convolution,

negative binomial model, 16S ribosomal RNA sequencing

1. INTRODUCTION

Microbial communities are influenced by several factors whether they live in the host’s guts
or other occupied niches. Their successional dynamics could further change in response to
perturbations of the host or of the surrounding environments (Turnbaugh et al., 2009; Needham
and Fuhrman, 2016). Understanding how abiotic and biotic factors influence the dynamics of
microbial communities is of great interest in the field of microbiome studies. Recent revolutionary
advances in next-generation sequencing (NGS) technologies along with rapidly decreasing costs,
have facilitated the accumulation of large datasets of 16S ribosomal RNA (rRNA) amplicon
sequences across various disciplines such asmedicine, biology, ecology, and environmental sciences
(Woo et al., 2008). Sequencing data is usually pre-treated for quality filtering, noise removal
and chimera checking through bioinformatics algorithms and the filtered sequences are clustered
into Operational Taxonomic Units (OTUs), which represent similar organisms (microbial species)
based on sequence homology (called OTU picking). An OTU abundance table is generated,
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recording counts for OTUs in samples. Further statistical data
analyses are then performed using the OTU table to answer
biological and ecological questions.

Analysis of huge NGS data is computationally expensive and
challenging. One of the key challenges is the normalization of
counts across samples. Total counts (often called library size
or sequencing depth) may vastly vary across different samples
due to technical reasons. Thus, observed counts are not directly
comparable across samples and cannot be used as a measure
of the abundance of an OTU. Normalized counts through
rarefaction or relative frequencies are commonly used for easy
comparison of OTU abundance across samples. However, such
ad hoc normalization procedures have been criticized from a
statistical perspective since using pre-normalized quantities may
undermine the performance of downstream analysis (McMurdie
andHolmes, 2014). Another challenge is high dimensionality and
sparsity inOTU count data. A dataset typically includes hundreds
or thousands of OTUs and a majority of them has zero or very
low frequencies in most of samples. For example, Figure 1A
illustrates a heatmap of OTU counts in our motivating dataset
described in section 2.3. It shows that a majority of OTUs has
very low counts (gray) in a sample, and the set of OTUs having
large counts (blue) vary across samples. Due to such sparsity
in data, borrowing strength across OTUs through joint analysis
of all OTUs is crucial for improved inference. Recently, various
statistical methods including Romero et al. (2014), Chen and
Li (2016), Gibbons et al. (2017), and Zhang et al. (2017) have
been developed for microbiome studies using NGS data. For
example, Zhang et al. (2017) used a negative binomial mixed
regression model to study interactions between the microbiome
and host environmental/clinical factors. Random effects are used
to induce correlation among samples from a group. Common to
most of recentmethods including Zhang et al. (2017) is separately
analyzing each OTU at a time.

We develop a Bayesian semiparametric generalized linear
regression model to study the effects of physical and biological
factors on abundance of microbes. The proposed method
performs mode-based normalization through a hierarchical
model, which enables direct modeling of OTU counts.
Furthermore, the hierarchical model facilitates borrowing
strength between OTUs, between samples, and between time
points through joint analysis and improves inference on the
effects of covariates X on OTU abundance which are the
parameters of our primary interest. Specifically, a negative
binomial (NB) distribution parameterized by a mean parameter
µ and an overdispersion parameter s is assumed for OTU counts.
The NB distribution flexibly accommodates overdispersion
often seen in NGS data and is commonly used as a robust
alternative to a Poisson distribution (Anders and Huber,
2010). The expected count µ of an OTU is decomposed as a
product of factors, a baseline mean count g and a nonnegative
function η(X) of covariates that describes their effects on
the mean count. We use the log link function for η(X) and
assume that change in a covariate has a multiplicative effect
on mean count, where the associated coefficient quantifies
the size and direction of the effect. We consider a Laplace
prior for the coefficients, a shrinkage prior that is essential

in a high dimensional regression setting. Shrinkage priors in
regression yield sparse point estimates of the coefficients, where
many of the coefficients have values close to zero and few
have large values. The sparse estimates improve out-of-sample
prediction and produce more interpretable models (Park and
Casella, 2008). In addition, shrinkage priors such as a Laplace
prior in a regression problem mitigate potential problems
by multicollinearity and yield improved coefficient estimates
when covariates are high-dimensional and potentially highly
correlated (Polson and Scott, 2012). For baseline mean counts,
we develop a nonparametric model to combine all OTUs for
joint analysis. Baseline mean counts may vary across samples and
OTUs. Also, as in our motivating data for which samples were
taken over time, there may be temporal dependence in baseline
mean counts. To tackle the problem, we further decompose the
baseline count g into sample size factor (r), OTU size factor
(α0), and OTU and time factor (αt), that is, g = r × α0 × αt .
Due to the overparametrization of the baseline mean abundance,
individual factors are not identifiable. To avoid identifiability
issues, we place the regularizing priors with mean constraints
(Li et al., 2017) for sample size factor r and OTU size factor
α0. In addition, we model a temporal dependence structure
between the baseline expected counts for an OTU through a
convolutional Gaussian process (Higdon, 1998). The process
convolution approach is often used as an alternative approach
of the Gaussian process to construct a dependent process due to
its efficient computation (Lee et al., 2005; Liang and Lee, 2014).
Through simulation studies, we show that estimates of individual
parameters r, α0, and αt are not fully interpretable under the
proposed model, but baseline mean counts g are identifiable. The
model also provides a posterior distribution of g for uncertainty
quantification.

The rest of the paper is organized as follows. In section 2 we
describe the proposed model and discuss the prior formulations
and the resulting posterior inference. We perform simulation
studies to assess the proposed model and perform comparison
with an existing method that analyzes one OTU at a time. We
then apply the proposed model to an ocean microbiome dataset.
Section 3 presents the performance of the proposed model
from the simulation experiment and the ocean microbime data.
Section 4 concludes the paper with a discussion on limitations
and possible extensions.

2. MATERIALS AND METHODS

2.1. Bayesian Semiparametric Regression
Model
Suppose that samples are taken at n different time points, 0 ≤
ti ≤ T, i = 1, . . . , n, and with Ki replicates at time point ti.
We consider count yti ,k,j of OTU j in replicate k taken at time
ti, where i = 1, . . . , n, k = 1, . . . ,Ki, and j = 1, . . . , J. A
sample is thus indexed by ti and k. We let the total number of
samples N =

∑n
i=1 Ki. Let Y = [yti ,k,j] denote the N × J matrix

of counts, where yti ,k,j is integer-valued and nonnegative. Also,
suppose that covariates Xti = (Xti ,1, . . . ,Xti ,P)

′ are recorded at
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FIGURE 1 | Ocean microbiome data. (A) Heatmap of OTU counts (yti ,k,j ). OTU and samples are in rows and columns, respectively. OTU counts are rescaled within a

sample for better illustration. (B) 55 time points where ocean microbiome samples were collected are marked on the X-axis and the number of dots at a time point

represents the number of replicates (Ki ) at the time point.

time ti. For example, covariates are physical and biological factors
in our motivating data.

2.1.1. Sampling Model
Count data by NGS methods is often modeled through a Poisson
distribution. The assumption under the Poisson distribution that
the variance is equal to the mean is often too restrictive to
accommodate overdispersion that variation in data exceeds the
mean. The negative binomial (NB) distribution is a popular and
convenient alternative to address the overdispersion problem and
is widely recognized as a model that provides improved inference
to NGS count data (for example, see Robinson and Smyth, 2007;
Anders andHuber, 2010). ANB distribution can be characterized
by mean and overdispersion parameters. We suppress index i for
simpler notation and assume a NB model for count yt,k,j of OTU

j in replicate k at time t,

yt,k,j
indep∼ NB(µt,k,j, sj), (1)

where mean count µt,k,j > 0 and overdispersion parameter
sj > 0. The model in Equation (1) implies that count of OTU
j in replicate k at time t has mean E(yt,k,j | µt,k,j) = µt,k,j and

variance Var(yt,k,j | µt,k,j, sj) = µt,k,j + µ2
t,k,j

sj. The model allows

different dispersion levels across OTUs through OTU-specific
overdispersion parameters sj. In the limit as sj → 0, the model
in Equation (1) yields the Poisson distribution with mean µt,k,j.
We assume a gamma distribution for a prior distribution of sj,

sj
iid∼ Ga(as, bs), j = 1, . . . , J, with fixed as and bs.
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2.1.2. Model for Regression
We next model the mean count µt,k,j of yt,k,j. We decompose the
mean count into factors, a baseline mean count and a function
of covariates, µt,k,j = gt,k,jηj(Xt). Here parameter gt,k,j denotes
the baseline mean abundance of OTU j in sample (t, k) and
ηj(Xt) is a function of covariates Xt for OTU j to model the
covariate effects. We construct a generalized regression model
by letting log(ηj(Xt)) = X

′
tβj , where βj = (βj1, . . . ,βjP)

′

is a P-dimensional vector of regression coefficients of OTU j
(Lawless, 1987; McCullagh and Nelder, 1989). The coefficient βj,p

quantifies the effect of covariate p Xp on the mean abundance
of OTU j. A vector βj close to the zero vector produces a value
of ηj(Xt) close to 1, and the mean count remains similar to
the baseline mean count gt,k,j, implying insignificant covariate
effects. A negative (positive) of βj,p implies a negative (positive)
association between mean counts and the p-th covariate, and a
larger value of Xj,p decreases (increases) the mean count, while
holding the other covariates constant. We consider a Laplace
prior on βj. Specifically, we express the Laplace distribution as
a scale mixture of normals and assume for j = 1, . . . , J and
p = 1, . . . , P,

βj,p | σ 2
j ,φj,p

indep∼ N(0, σ 2
j φj,p), φj,p

indep∼ Exp(
λ2j

2
),

λ2j
iid∼ Ga(aλ, bλ), σ 2

j
iid∼ IG(aσ , bσ ),

(2)

where aλ, bλ, aσ , and bσ are fixed. σ 2
j and φj,p denote the global

and local shrinkage parameters, respectively, for OTU j. After
integrating φj,p out, the prior distribution of βj,p is the Laplace
distribution with location parameter 0 and scale parameter
√

σ 2
j /λj, that is, p(βj,p | λ2j , σ

2
j ) ∝ exp

(

−λj|βj,p|/
√

σ 2
j

)

.

Compared to a normal distribution that is a common choice for

r̃ti ,k | ψ r , ηr ,wr , v2r , cr
iid∼

Lr
∑

ℓ=1

ψ r
ℓ

{

wr
ℓφ(η

r
ℓ, v

2
r )+ (1− wr

ℓ)φ

(

cr − wr
ℓη

r
ℓ

1− wr
ℓ

, v2r

)}

,

α̃0,j | ψα , ηα ,wα , v2α , cα
iid∼

Lα
∑

ℓ=1

ψα
ℓ

{

wα
ℓ φ(ηα

ℓ , v
2
α)+ (1− wα

ℓ )φ

(

cα − wα
ℓ ηα

ℓ

1− wα
ℓ

, v2α

)}

,

(4)

the prior of βj,p, the Laplace distribution has more concentration
around zero but allows heavier tails. The regularized regression
through the Laplace prior more shrinks the coefficients of
insignificantly related covariates into zero and less pulls the
coefficients of important covariates toward zero. Shrinkage
of β estimates through the model in Equation (2) mitigates
possible issues due to multicollinearity and efficiently improves
estimation of β in a high dimensional setting (Polson and Scott,
2012).

2.1.3. Model for Baseline Mean Count
We next build a prior probability model for the baseline
mean count gt,k,j of OTU j in sample (t, k). We assume
gt,k,j = rt,kα0,jαt,j to separate sample (rt,k), OTU (α0,j),
and OTU-time (αt,j) factors. Sample total counts yt,k,· =
∑J

j=1 yt,k,j may greatly differ for different samples possibly due

to experimental artifacts. For example, counts of an OTU even
in the replicates taken at a time point may vastly differ. Sample
specific size factors rt,k account for different total counts in
different samples and expected counts normalized by rt,k are
comparable across samples. Factor α0,j explains variabilities in
baseline mean abundances of OTUs and αt,j models temporal
dependence of the mean counts for an OTU, respectively.
Factors α0,j and αt,j are not indexed by replicate k and
account for stochastic change over time in normalized baseline
expected counts of OTU j. Collecting all, we write the mean
count as

µt,k,j = gt,k,jηj(Xt) = rt,kα0,jαt,jηj(Xt), (3)

The model for gt,k,j in Equation (3) is overparameterized and
the individual parameters are not identifiable. To avoid potential
identifiability issues, many of NB models rely on some form
of approximation for the baseline mean counts. For example,
one may find the maximum likelihood estimates (MLEs) of
baseline mean abundance under some constraints and plug in
those estimates to infer the mean abundance levels µti ,j of
OTUs (Witten, 2011). Plugging in MLEs is simple but may not
be robust. In particular, the inference is greatly affected by a
small change in a few OTUs that have large counts. Moreover,
the errors introduced in the baseline mean count estimation
will not be reflected in the inference. Several approaches to
robustify the estimates are proposed (for example, see Anders
and Huber, 2010; Witten, 2011). To circumvent the identifiability
issue and provide uncertainty quantification for estimation of
gt,k,j, we take an alternative in Li et al. (2017) by imposing
regularizing priors with mean constraints for rt,k and α0,j. We
let the logarithm of the factors r̃t,k = log(rt,k) and α̃0,j =
log(α0,j), and assume the regularizing prior distribution with
mean constraints,

where φ(η, v2) is the probability density function of the normal
distribution with mean η and variance v2, constraints for the
mixture weights

∑Lr

ℓ=1 ψ r
ℓ =

∑Lα

ℓ=1 ψα
ℓ = 1 with 0 < ψ r

ℓ < 1
and 0 < ψα

ℓ < 1 , 0 < wr
ℓ < 1, and 0 < wα

ℓ < 1
for all ℓ. Mixture models as in Equation (4) are often used as
a basis to approximate any distribution. Each component in
Equation (4) is further composed of a mixture of two normals,

N(ηℓ, v
2) and N

(

(c−wℓηℓ)
(1−wℓ)

, v2
)

with weights wℓ and 1 − wℓ,

respectively, and themean of the component is c. In consequence,
the prior and posterior of r̃ and α̃ under the model in
Equation (4) satisfy their prespecified mean constraints cr and cα ,
respectively. Li et al. (2017) showed that the model in Equation
(4) flexibly accommodates various features in a distribution such
as skeweness or multi-modality while satisfying the constraints.
Furthermore, the model based normalization through Equation
(4) enables joint analysis of all OTUs and can further improve
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estimation of the covariate effects. With the regularizing priors,
baseline mean counts gt,k,j are identifiable, while rt,k, α0,j, and αt,j

are not directly interpretable. More importantly, the parameters
of primary interest ηj(Xt) can be uniquely estimated and βj,p’s
keep their interpretation as parameters that quantify the effects
of covariates on mean counts. We used an empirical approach
to fix the mean constraints cr and cα . Sensitivity analyses were
conducted to assess the robustness to the specification of cr and
cα and show that the model provides reasonable estimates of
gt,k,j and moderate changes in the values of cr and cα minimally
change the estimates. More details of the specification of cr and
cα are discussed in section 3.1. We fix the numbers of mixture

components, Lr and Lα and variances v2r and v2α . We let ηrℓ
iid∼

N(cr ,ω
2
r ) and ηα

ℓ

iid∼ N(cα ,ω
2
α), where ω2

r and ω2
α are fixed.

We assume ψ r = (ψ r
1 , . . . ,ψ

r
Lr ) ∼ Dir(dr , . . . , dr) and ψα =

(ψα
1 , . . . ,ψ

α
Lα ) ∼ Dir(dα , . . . , dα), with fixed dr and dα . We let

wr
ℓ

iid∼ Be(ar , br), ℓ = 1, . . . , Lr and wα
ℓ

iid∼ Be(aα , bα), ℓ =
1, . . . , Lα with fixed ar , br , aα , and bα .

Recall that samples are collected over time points t1, . . . , tn
in [0,T] and αt,j accounts for temporal dependence in the
baseline mean count for an OTU. We let α̃t,j = log(αt,j)
a function in time t and use a stochastic process to model
temporal dependence among µt,k,j. The Gaussian process (GP)
is one of the most popular stochastic models for the underlying
process in spatial and spatio-temporal data (for example, see
Cressie, 1992; Banerjee et al., 2014 among many others). The
GP effectively represents the underlying phenomenon in a
variety of applications, but it has some drawbacks such as
a complex computation that requires a matrix decomposition
and problematic estimation of the parameters in its covariance
function, potentially leading to difficulties in exploring the
posterior distribution (Lee et al., 2005; Liang and Lee, 2014). To
alleviate such difficulties of GP models while still maintaining
their flexibility and adaptiveness, we use a convolution approach
with a kernel function developed in Higdon (1998, 2002). For
each OTU, we specify the latent process θ j(t) to be nonzero only
at the time points u1, . . . , uM in [0,T]. Specifically, we consider
the GP convolution model,

α̃t,j =
M

∑

m=1

Z(t − um)θm,j,

where {u1, . . . , uM} a set of basis points in [−t′1,T + t′2] with
t′1, t

′
2 > 0, and Z(t − um) a Gaussian kernel centered at um,

Z(t − um) = 1√
2πγ 2

exp{−(t−um)
2

2γ 2 }. The number of basis points

M, their locations um and the range parameter γ can be treated
as random variables by placing prior distributions, e.g., consider
a gamma prior for γ . For simplicity, we fix them as follows. We
first choose a value for M and let um evenly spaced over time
[−t′1,T + t′2]. Following Xiao (2015), we let the range parameter
γ 2 = ((2T + t′1 + t′2)/M)2, that is, the range parameter depends
on the value of M. Through simulations, we studied the impact
of different values of M on the posterior inference of gt,k,j. A
discussion is included in section 3.1. Given the number of basis

pointsM, we assume θm,j | τ 2j
indep∼ N(0, τ 2j ) and τ 2j

iid∼ IG(aτ , bτ ),

m = 1, . . . ,M and j = 1, . . . , J.

We implement posterior inference on the parameters θ̃ =
(βj, σ

2
j , λ

2
j ,φj,p, r̃t,k,ψ

r ,wr
ℓ, η

r
ℓ, α̃0,j, α̃t,j,ψ

α ,wα
ℓ , η

α
ℓ , θ j, τ

2
j , sj) via

a Markov chain Monte Carlo (MCMC) method based on
Metropolis-Hastings algorithm and Gibbs sampling. Each of the
parameters is iteratively updated conditional on the currently
computed values of all other parameters to simulate a sample
from the posterior distribution. The parameters r̃ and α̃0

jointly determine baseline mean counts and joint updating
of r̃ and α̃0 may greatly improve the mixing. In our ocean
microbiome data, some discretized covariates are missing.
We treat them as random variables by assuming a uniform
distribution over possible categories, and impute their values
in MCMC simulation. Full details of our MCMC algorithm are
given in Supplementary section 1. We diagnose convergence and
mixing of the described posterior MCMC simulation using trace
plots and autocorrelation plots of imputed parameters. For the
upcoming simulation examples and the data analysis, we found
no evidence of practical convergence problems. An R package
of the code used for simulations and the analysis of the ocean
microbiome dataset in the following sections is available from the
authors website https://users.soe.ucsc.edu/~juheelee/.

2.2. Simulation Experiment: Data
Generation and Comparative Study
We conducted simulation studies to assess the performance of
our model. We compared the model to an alternative model,
the negative binomial mixed model (NBMM) in Zhang et al.
(2017). We assumed a sample of J = 200 OTUs. We used
the same time points (ti) and numbers of replicates (Ki) of our
ocean microbiome data as shown in Figure 1B. We let βTR

j,p = 0

with probability 0.85. For βTR
j,p 6= 0 we simulated βTR

j,p from

either of N(−1.5, 0.052) or N(1.5, 0.052) with equal probability,
where N(a, b2) denotes the normal distribution with mean a and
variance b2. It implies that a covariate has no effect on OTU
abundance with probability 0.85 or may significantly affect mean
abundance with the remaining probability 0.15. To specify rTR

t,k

and αTR
0,j , we did not assume any distribution and used their

classical estimates from our ocean microbiome data; following
Witten (2011), we first computed estimates of sample size factors
r′
ti ,k

and OTU size factors α′
0,j using the ocean microbiome data,

r′
ti ,k

= yti ,k,·/y···
and α′

0,j = 1
N

∑n
i=1

∑Ki

k=1
yti ,k,j/r

′
ti ,k

where

yti ,k,· =
∑J

j=1 yti ,k,j and y
···

=
∑J

j=1 y··,j. We then randomly

sampled from the pool of r′
t,k

and α′
0,j to specify the true values.

To simulate temporal dependence in OTU abundance, we let
α̃TR
ti ,j

= ati ,j cos(2π(t̃i − bti ,j))+ cti ,j(t̃i − t̃⋆)2. Here t̃i denotes time

ti in year and t̃⋆ the median of t̃i. We let at,j
iid∼ N(0.15, 0.12),

bt,j
iid∼ N(0, 0.52), and ct,j

iid∼ N(0.1, 0.12) to have different patterns
for OTUs. For some OTUs, α̃TR

ti ,j
are illustrated in red squares

in Figures 4E–G. We generated sTRj
iid∼ Ga(1, 10). We used the

covariate matrix of the ocean microbiome data illustrated in
Figure 2 for the simulation study. For the missing covariates in
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the data, we generated a value of possible categories with equal
probability. We finally simulated OTU counts yti ,k,j from the

negative binomial distribution yti ,k,j
indep∼ NB(µTR

ti ,k,j
, sTRj ), where

µTR
ti ,k,j

= rTR
ti ,k

αTR
0,j exp(α̃

TR
ti ,j

+ X
TR
t βTR

j ).

For comparison, we used the negative binomial mixed model
(NBMM) in Zhang et al. (2017). Similar to the proposed model,
the NBMM uses a negative binomial distribution with mean
µNBMM and shape parameter θNBMM to model OTU counts and
assumes log(µNBMM

t,k,j
) = log(yt,k,·)+βNBMM

0,j +Xtβ
NBMM
j +Zt,kb

NBMM
j

where Xt and Zt,k are the covariate matrices for fixed effects and
random effects, respectively. It assumes random effects bNBMM

j ∼
N(0,9). By letting the replicates at a time point share the same
random effect, OTU abundances in the replicates at a time
point are correlated. The NBMM normalizes OTU counts by
sample total counts. That is, sample total counts yt,k,· are used
as an offset to adjust for the variability in total counts across
samples. Similar to other existing methods, the NBMM performs
separate analyses of OTUs. An iterative weighted least squares
algorithm is developed to produce the MLEs under the NBMM
and implemented in a R function glmm in R package BhGLM.

2.3. Ocean Microbiome Data: Data
Description and Preprocessing
We applied the proposed statistical method to ocean microbiome
data. Seawater samples were collected weekly at the end of Santa
Cruz Municipal Wharf (SCW), Monterey Bay (36.958 oN,
−122.017 oW), with an approximate depth of 10 m. SCW is one
of the ocean observing sites in Central and Northern California
(CenCOOS), where harmful algal bloom species [HAB species:
Alexandrium (Ax), Dinophysis (Dp), Pseudo-nitzschia (Pn)
etc.] are monitored weekly along with nutrient measurements
[ammonia (NH4), silicate (Si), nitrate (N), phosphate (P)],
temperature (T), domoic acid (DA) concentration, and
chlorophyll (Chl). Details of phytoplankton net tow sampling
of measuring phytoplankton abundance, measurement of
physical (nutrients and temperature) and biological parameters
(chlorophyll α and DA concentration) are described in
Sison-Mangus et al. (2016). Pseudo-nitzschia, Dinophysis, and
Alexandrium cells were counted with a Sedgewick rafter counter
under themicroscope. Data for physical and biological factors are
available from the website link http://www.sccoos.org/query/?
project=Harmful%20Algal%20Blooms&study[]=Santa%20Cruz
%20Wharf. Among the 10 variables, the concentration levels of
Alexandrium, Dinophysis, Pseudo-nitzschia, and domoic acid
have highly right-skewed distributions and are discretized into
categories based on their biological properties for our analysis.
The ranges of the concentration levels for the discretization are in
Supplementary Table 1 and Figures 2A–J illustrates all covariates
included for analysis. The values of−1, 0, 1, 2, 3, and 4 represent
missing values and the categories of None, Low, Medium,
High, and Very High for the discretized variables, respectively.
Due to high right skeweness, categories corresponding to
high concentration levels have low frequencies. Values of the
Dinophysis concentration level are missing at 20 time points
among 55 points used for analysis. Sample correlations between

the factors are relatively strong. Figures 2K,L shows scatterplots
for some selected pairs of the factors.

For bacterial RNA samples, three depth-integrated (0, 5, and
10 ft) water samples were collected at a total of 55 time points
between April 2014 and November 2015. Two or three samples
are sequenced at each time point. The numbers of replicates
at the time points are illustrated in Figure 1B. Microbial RNA
in the samples was extracted for 16S rRNA sequencing. Post-
processing of sequences was performed using the Quantitative
Insights Into Microbial Ecology (QIIME 1.9.1) pipeline. A total
of nearly 39,823 OTUs were obtained in data after removing
singletons. We restricted our attention to OTUs that have greater
than or equal to five counts on average. The rule leaves in the end
J = 263 OTUs for the 150 samples for the analysis. A heatmap of
the counts in the filtered data is shown in Figure 1. The primary
goal of the study is to investigate the effects of physical and
biological factors on abundance levels of OTUs, while accounting
for baseline abundance levels of OTUs in samples.

3. RESULTS

3.1. Simulation Experiment: Model Fitting
and Comparison
To fit the proposed model for the simulated data designed in
section 2.2, we specified hyperparameter values of the model as
follows; for the Laplace prior of βj,p, we let aλ = bλ = 0.5
for a gamma prior of λ2j (with mean aλ/bλ and variance aλ/b

2
λ)

and aσ = bσ = 0.3 for an inverse gamma prior for common
variances σ 2

j . For the regularizing priors of r̃ti ,k and α̃0,j, we fixed

dα = dr = 10, ar = br = aα = bα = 1, ω2
r = ω2

α = 1.0,
v2r = 1, and v2α = 2.0. We also fixed the number of mixture
components for the regularizing priors Lr = 30 and Lα = 50.
To specify values of the mean constraints cr and cα , we took
an empirical approach. We used the simulated yti ,k,j, computed
estimates of rti ,k,j and αj,0 as described in section 2.2 and fixed the
mean constraints at the means of the logarithm of the estimates,
respectively. Note that the specified values of cr and cα were very
different from the means of their true values. For the process
convolution prior of OTU-time factor α̃ti ,j, we chose a value of
M such that the kernel function at a basis point is not entirely
located in a place where no sample is obtained.We let the number
of basis M = 13 and basis um, m = 1, . . . ,M evenly spaced
between−10 and Ti + 10. For overdispersion parameter sj we let
as = 1 and bs = 2. To run MCMC simulation, we initialized the
parameters by simulating with their prior distributions. We then
implemented posterior inference using MCMC simulation over
25,000 iterations, discarding the first 10,000 iterations as burn-in
and choosing every other sample as thinning.

Figure 3 illustrates the comparison of posterior estimates of
βj,p to their true values βTR

j,p for some selected covariates. In the

figure, dots and blue dashed lines represent posterior means β̂j,p

of βj,p and their 95% credible intervals, respectively. β̂j,ps are
around the 45 degree line (red dotted line) for most of (j, p)
and most of the interval estimates captures the true values. It
implies that the proposed model reasonably recovers βTR

j,p . For

categories 3 and 4 of X4 in Figures 3I,J, the credible intervals
tend to be wider due to their low frequencies in the data as shown
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FIGURE 2 | Ocean microbiome data. Bar plots of discretized covariates, concentration levels of Alexandrium (Ax, X1) and Dinophysis (Dp, X2), Pseudo-nitzchia (Pn,

X3), domoic acid (DA, X4) in (A–D). The values of −1, 0, 1, 2, 3, and 4 represent a missing value, none and low, medium, high, and highest concentration levels,

respectively. Histograms of continuous covariates, concentration levels of ammonia (NH4, X5), nitrate (N, X6), phosphate (P, X7), silicate (Si, X8), water temperature (T,

X9), concentration level of chlorophyll (Chl, X10) in (E–J). The variables are standardized to have mean 0 and variance 1 prior to analysis. A scatterplot of the

concentrations of ammonia and silicate and a scatterplot of the concentrations of phosphate and silicate are shown in (K,L), respectively.

in Figure 2D. The insert plot in each panel illustrates a scatter
plot of β̂j,p for (j, p) with βTR

j,p = 0 . It shows that the proposed

regression model with the Laplace prior effectively shrinks βj,p

with βTR
j,p = 0 to zero, as is desired in our simulation setup.

Supplementary Figure 1 has plots for all covariates.
Figures 4A–C illustrate plots of gTR

t,k,j
vs estimates of gt,k,j

with their means (black dots) and 95% credible intervals (blue
vertical lines) for some selected OTUs, j = 8, 34, and 48.
Recall that we do not attempt to recover the true values of
individual rti ,k, α0,j, and αt,j, but we rather aim to reasonably
recover the true baseline mean counts, gTR

ti ,k,j
= rTR

ti ,k
αTR
0,j exp(α̃

TR
ti ,j
).

In the figure the estimates are tightly around the 45 degree
line, providing evidence that reasonable estimates of baseline
mean counts are obtained under the proposed model. Figure 4D

has a histogram of averaged differences between baseline mean

count estimates and their true values, Dj =
∑n

i=1

∑Ki

k=1
(ĝti ,k,j −

gTR
ti ,k,j

)/N. The averaged differences are around zero, implying that

the proposed model provides reasonable estimates of baseline
mean counts for most of OTUs. We further examined individual

parameters. Figures 4E–G shows the comparison of estimates
of α̃0,j + α̃t,j to their true values over time for the same OTUs
in Figures 4A–C. Black dots and blue vertical lines represent

estimates of posterior means of α̃0,j + α̃t,j and their 95% credible
intervals, respectively. Red squares represent their true values.
From the figure, the estimates of α̃0,j + α̃t,j are consistently
greater than their true values at all time points, but capture their
overall temporal trend. Figure 4H illustrates a scatterplot of r̃TR

t,k
and their posterior estimates of r̃t,k, where dots and blue vertical
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FIGURE 3 | Simulation 1—proposed model. Comparison of the true values βTR
j,p and the posterior estimates of βj,p under the proposed model for some selected

covariates. Dots and blue dashed lines represent estimates of posterior means β̂j,p of βj,p and 95% credible intervals (CIs) of βj,p, respectively. The insert plot in each

panel is a scatter plot of β̂j,p and βTR
j,p for (j,p) with βTR

j,p = 0.

intervals denote estimates of posterior means and 95% credible
intervals, respectively, and the gray horizontal line is at cr used for
analysis. Different from the estimates of α̃0,j + α̃t,j, the estimates
of r̃t,k fall below the 45 degree line approximately by the same
distance for all OTUs. It shows that estimates of α̃0,j + α̃t,j and
r̃t,k have discrepancies from their true values but in the opposite
direction and the model can produce reasonable estimates of gt,k,j
as seen in Figures 4A–D. The true overdispersion parameters
sTRj are reasonably well estimated as shown in Figure 4I. We

check the posterior predictive distribution of Yt,k,j. The posterior

predicted values of Yti ,k,j with their 95% predictive intervals for
OTUs j = 8, 34, and 48 are compared to their observed values in
Supplementary Figure 2. The figure indicates a reasonable model
fit.

In addition, we conducted a sensitivity analysis to the
specification of mean constraints cr and cα for the priors of r̃
and α̃0. We used different values for cr and cα and compared
the estimates of gt,k,j to their truth. Supplementary Figures 3a–
c has histograms of averaged differences Dj between ĝti ,k,j and
gTR
ti ,k,j

for different specification of cr and cα . The histograms show
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FIGURE 4 | Simulation 1—proposed model. Panels (A–C) illustrate plots of the true baseline mean counts gTR
t,k,j vs their estimates ĝt,k,j for some selected OTUs

j = 8, 34, 48. Panel (D) shows a histogram of averaged differences between gTR
t,k,j and ĝt,k,j for each OTU. Panels (E–G) show plots of estimates of α̃0,j + α̃t,j over time

for OTUs j = 8, 34, 48. Panel (H) has a scatterplot of ˆ̃rt,k vs. r̃TR. Panel (I) has a scatterplot of ŝ vs. sTR. Dots represent posterior mean estimates and blue vertical

dotted lines 95% credible intervals. Red squares represent the true values.

minor change in estimates of gti ,k,j under different specifications
of cr and cα . An sensitivity analysis to the specification of the
number M of basis points in the GP convolution model for α̃t,j

was also performed. We used M = 8, 13, and 18 and examined
estimates of the baseline mean counts, gt,k,j. Supplementary
Figures 3a,d,e has histograms of averaged differences Dj for each
of M. The results indicate that the baseline mean counts are
reasonably estimated for a range of values ofM in the simulation
study.

For comparison, we used the NBMM to the simulated data.
Since the NBMM does not accommodate missing covariates,
we used X

TR to fit the NBMM. Figure 5 compares the MLEs
β̂NBMM
j,p of βj,p to the true values for the same covariates used in

Figure 3. Dots and blue vertical lines represent the MLEs under
the NBMM and their 95% confidence intervals, respectively.
Comparing Figure 5 to Figure 3, the NBMM produces poor
estimates. The MLEs are biased for some covariates (e.g.,
Figure 5A). Also, confidence intervals under the NBMM often
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FIGURE 5 | Simulation 1—NBMM. Comparison of the true values βTR
j,p and maximum likelihood estimates β̂NBMM

j,p of βj,p under the negative binomial mixed model

(NBMM) for some selected covariates. Dots and blue dashed lines represent β̂NBMM and their 95% confidence intervals, respectively. The insert plot in each panel is a

scatter plot of β̂NBMM
j,p and βTR

j,p for (j,p) with βTR
j,p = 0.

fail to capture the true values and their interval estimates under
the NBMM tend to bemuch wider than those under the proposed
model. Normalization through observed sample total counts
and inducing correlation in replicates through iid (independent
and identically distributed) random effects under the NBMM
may lead to poor estimation of the baseline mean abundance
for the simulated data, resulting in deterioration of coefficient
estimation. In addition, separate analyses of OTUs under the
NBMM do not allow to strengthen estimates through combining
information across OTUs. Comparing the insert plots in Figure 5

to those in Figure 3, β̂NBMM
j,p with βTR

j,p = 0 tends to more widely

spread out from zero and often their confidence intervals fail
to capture zero. Supplementary Figure 4 has plots of βj,p for all
covariates. Supplementary Figures 4, 5 shows the comparison
of the estimates θ̂NBMM of overdispersion parameters under the
NBMM to their true values. Note that θNBMM is the inverse of s in
our model. The NBMM underestimates sj for many OTUs, and
yields poor predicted values, implying the lack of a fit.

We further examined the performance of the proposed model
through additional simulation studies, Simulations 2 and 3 in
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Supplementary section 2. In these simulations, we studied the
robustness of the model when different simulation setups are
used to simulate data. In Simulation 2, we assumed no temporal
dependence among OTU abundance and generated independent
samples from a normal distribution for α̃t,j. We assumed that
all βTR

j,p has nonzero effects for all OTUs and simulated βj,p

from a mixture of normals. The performance of our model is
almost the same as in Simulation 1 (see Supplementary Figures
6–8). Interestingly, the NBMM that assumes iid random effects
performs poorly for β estimation. In Simulation 3, we simulated
α̃TR
t,j from a discontinuous function. The results show that when

the temporal dependence pattern is not smooth as assumed
for the GP, estimates of the baseline mean counts under the
proposed model are slightly deteriorated but the model produces
reasonable inference on βj,p (see Supplementary Figures 9–11). A
more detailed summary of the additional simulations is given in
Supplementary section 2.

3.2. Ocean Microbiome Data: Model Fitting
and Comparison
We specified hyperparameters similar to those in the simulations
and analyzed the microbiome data in section 2.3. The MCMC
simulation was run over 25,000 iterations. The first 15,000
iterations were discarded as burn-in and every other sample
was kept as thinning and used for inference. Figure 6 illustrates
inference on covariate effects for some selected OTUs, j = 16, 34,
and 49, taxonomically belonging to Alteromonadales,Halomonas
sp., and Alteromonadales in the Gamma-proteobacteria phyla,
respectively. Dots and vertical solid lines represent the posterior
mean β̂j,p and 95% credible interval estimates, respectively.
Similar to the results of the simulation study, the credible
intervals for high and highest levels of the discretized covariates
tend to be wider due to their low frequencies in the data. From
Figure 6A, on average themedium concentration level of domoic
acid (DA, X4) and the concentration level of nitrate (N, X6)
significantly decrease the mean abundance of OTU 16 by a
multiplicative factor of exp(−0.572) = 0.564 and exp(−0.260) =
0.771, respectively. Onemay infer that themedium concentration
level of domoic acid is significantly associated with lower
expected counts for the OTU compared to those with category
none of the domoic acid concentration level. A similar argument
can be applied to the inference on the nitrate concentration
level. Interestingly, we observed statistically significant reduction
in abundance from many OTUs belonging to Gamma-
proteobacteria including those OTUs for increasing domoic
acid concentration (not shown). The resulting inference was
further validated through a lab experiment. Most notably, four
bacterial cultured isolates belonging to Gamma-proteobacteria
(three among them are Alteromonadales) were observed to be
severely retarded in growth after 2 days of exposure to increasing
domoic acid of 0 to 150 µg/ml in the experiment (Sison-
Mangus, unpublished data). This demonstrates that the proposed
model successfully identifies important OTUs in ocean bacterial
community dynamics for further investigation. More results are
presented in Supplementary section 3. Supplementary Figures
12a–c illustrates the posterior estimates of baseline expected

counts α̃0,j+ α̃t,j normalized by sample size factors for the OTUs.
From the figure, the baseline expected counts vary over time
for those OTUs and the temporal pattern of OTU j = 34
is different from those of OTUs j = 16 and 49. Histograms
of the posterior mean estimates β̂j,p of βj,p, are illustrated in
Supplementary Figure 13. The figure does not show clear overall
tendency in the direction of association between covariates and
OTU counts. Posterior inference on sample size factors rti ,k
and OTU specific overdispersion parameters sj is illustrated in
Supplementary Figures 12d,e.

For comparison, we fitted the NBMM to the data. Since
the NBMM does not account for missing values, we use the
maximum a posteriori estimates of the missing values under
the proposed for the NBMM. We used the R function glmm
and the algorithm produced warning messages on convergence
for 32 OTUs. Figure 7 illustrates β̂NBMM

j,p (dots) with their 95%

confidence intervals (solid vertical lines) for OTUs j = 16, 34,
and 49. Inference on the covariate effects is different from
that under the proposed. For example, domoic acid (DA)
levels do not have significant effects on the mean counts
for OTU j = 16 and 49 from Figures 7A,C. Comparing
Figures 7A,C to Figure 7, the NBMM produces wider interval
estimates for βj,p. Histograms of the MLEs of βj,p, β̂NBMM

j,p

under the NBMM are shown in Supplementary Figure 14. The
histograms are much dispersed than those under the proposed
model shown in Supplementary Figure 13. Estimates β̂j,p and

β̂NBMM
j,p for all covariates are also compared in Supplementary

Figure 15. From the figure, the NBMM yields extremely large
or small values for β̂j,p for some OTUs, possibly due to the
convergence problem. The insert plots show that for regions
of small values of β̂j,p, the estimates under the proposed are
more shrunken toward zero than those under the NBMM,
similar to the results in section 3.1. The overdispersion
parameter estimates under the NBMM tend to be smaller than
those under the proposed (shown in Supplementary Figure
12f), which may lead to different predictive distributions of
OTU counts.

4. DISCUSSION AND CONCLUSIONS

In this paper, we developed a Bayesian semiparametric regression
model for joint analysis of microbiome data. We formulated
the mean counts of OTUs as a product of factors and built
models for the factors. We utilized the regularizing priors
with mean constraints to avoid possible idenfiability issues,
and the process convolution model to capture the temporal
dependence structure in the baseline mean abundance of an
OTU. The flexible model developed for baseline abundance
enables joint analysis of all OTUs in the data and allows
borrowing information across OTUs, across samples, and across
time points. The model produces accurate estimates of the
baseline mean counts and yields improved estimates of the effects
of the covariates. We incorporated the Laplace distribution, a
sparsity inducing shrinkage prior for the coefficients and the
proposed model produces sparse estimates that is more desirable
when the problem is high-dimensional and covariates are highly
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FIGURE 6 | Ocean microbiome data—proposed model. Posterior Inference on βj for some selected OTUs (j = 16, 34, 49). Dots represent the posterior means β̂j,p of

βj,p. Each vertical line connects the lower bounds and the upper bounds of 95% credible intervals.

correlated. We compared the proposed model to a comparable
frequentist model that does separate analyses for individual
OTUs. The comparisons through the simulation study and real
data analysis show better performance of the proposed model.

Although we focused on the analysis of NGS count data,
the proposed model is quite general and can be applied for
analyses of any count data. Future work will explore alternative
approaches to model the effects of covariates on the mean counts.
For example, one may consider a nonparametric model using
linear combinations of basis functions (Kohn et al., 2001) to

flexibly capture shape in the response function. In such a case,
an elaborate development of the prior model may be needed
to produce a robust inference since both the baseline mean
counts and the covariate effects are nonparametrically modeled.
Other possible extensions are to include a variable selection
method such as a stochastic search variable selection (George and
McCulloch, 1993) if it is reasonable to assume that some covariate
effects are exactly zero, and to let coefficients vary over time if
covariate effects evolve with time. For time varying coefficients,
we may use the random walk process in Leybourne (1993) to
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FIGURE 7 | Ocean microbiome data—NBMM. Inference on βj for some selected OTUs (j = 16, 34, 49) under the negative binomial mixed model (NBMM). Dots
represent the maximum likelihood estimates β̂NBMM

j,p of βj,p. Each vertical line connects the lower bounds and the upper bounds of 95% confidence intervals.

induce relationship between βj,p,t−1 and βj,p,t . Considering the
high dimensionality in OTU data, posterior computation may
need to be carefully handled. Also, prior information may be
needed to produce sensible inference due to sparsity in data.
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