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For infants and young children, learning takes place all the time and everywhere.

How children learn best both in and out of school has been a long-standing topic of

debate in education, cognitive development, and cognitive science. Recently, guided

play has been proposed as an integrative approach for thinking about learning as a

child-led, adult-assisted playful activity. The interactive and dynamic nature of guided

play presents theoretical and methodological challenges and opportunities. Drawing

upon research from multiple disciplines, we discuss the integration of cutting-edge

computational modeling and data science tools to address some of these challenges,

and highlight avenues toward an empirically grounded, computationally precise and

ecologically valid framework of guided play in early education.

Keywords: guided play, computational modeling, data science, direct instruction, free play

INTRODUCTION

Learning Q6in
Q7

Q8

school is often

Q12

characterized by structured courses and tasks with discrete and explicit
objectives. Yet, learning is a continuous process that also takes place outside the classroom where
explicit objectives are not always evident. This is especially true in early childhood interactions at
home, where children often learn from everyday interactions with both the physical environment
and with social partners (Bruner, 1961; Csibra and Gergely, 2009). How to best navigate between
explicit, objective-directed learning and more flexibly driven exploration has been a longstanding
topic of debate in education, developmental psychology, and cognitive science (Kirschner et al.,
2006; Tobias and Duffy, 2009). This debate surfaces in a number of forms, as direct instruction
vs. discovery learning or as work vs. play (Bonawitz et al., 2011; Hirsh-Pasek and Golinkoff, 2011;
Clements and Sarama, 2014). Pitting these two interests against each other has neither optimized
our understanding of learning, nor produced optimal methods of learning (Wise and O’Neill,
2009). Here, we discuss an integrated approach, guided play, that enables us to rethink learning
as a child-led, adult-assisted activity (Weisberg et al., 2013, 2014, 2016). Focusing on everyday
interactions in early childhood, guided play is operationally defined as learning that is active and
engaged, where the child takes initiative in a playful learning environment and the adult supports,
rather than directs, the learning experience. Sitting between free play, where children explore by
themselves, and direct instruction, where the interaction is led by an adult and children take a
passive role, guided play takes advantage of the latest research in the science of learning.
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Educational research indicates that student-led discovery
learning that is facilitated by teachers outperforms both direct
instruction and unassisted discovery (Mayer, 2004; Honomichl
and Chen, 2012). In a meta-analysis comparing explicit
instruction, unassisted discovery, and assisted discovery (Alfieri
et al., 2011), learning outcomes were more favorable for
assisted discovery than for other forms of instruction. These
results held for learners of different ages and across different
learning domains. Similarly, developmental studies have shown
an advantage of adult guidance over both direct instruction
and free play, even before children start formal schooling (Han
et al., 2010; Fisher et al., 2013; Ridge et al., 2015; Haden et al.,
2016; Sim and Xu, 2017; Yu et al., 2018). In both bodies
of literature, “guidance” has referred to a variety of practices
including modeling, questioning, encouragement, and feedback,
and thus it is unclear what particular aspects of guidance are
associated with learning (Wise andO’Neill, 2009; Honomichl and
Chen, 2012).

In guided play, learning opportunities may be explicitly
structured, but importantly the activity is child-led. Specifically,
we define “guidance” as adults’ involvement that subtly channels
the dyadic interactions to fulfill certain pedagogical objectives,
while not interfering too much so that the activities remain
child-led. The pedagogical objectives can be multi-level: they
can focus on specific content knowledge, but can also focus on
the emotional, motivational, and metacognitive aspects of the
learning process, such as cultivating children’s love of learning,
promoting their engagement, or making them aware of their
own learning process (Weisberg et al., 2014). Our concept of
guidance is inspired by the Vygotskian concept of scaffolding
(Vygotsky, 1934/1987; Wood et al., 1976; Fernández et al., 2001)
and Barbara Rogoff’s theory of guided participation (Rogoff et al.,
1993). In addition to guidance being tailored to fit individual
children’s needs and skill level (which is similar to scaffolding),
in guided play we also emphasize that guidance should never
shift children away from controlling their own learning process.
The pedagogical objectives of guidance are therefore broader—
besides helping children to master particular knowledge or skills,
guided play also aims to provide children with an opportunity to
enjoy, control, and reflect upon their own learning process, which
may facilitate independent inquiry and discovery in the future.

Because guided play requires seamless integration between
the adult’s objectives to support learning and child-led activity
that can be highly fluid, characterizing appropriate guidance
requires an understanding of the dynamic nature of an adult–
child interaction in context. First, guided play is interactive.How
well-children can learn from a playful interaction depends on
their mental state (Putnam, 1980) at the moment—including
their level of knowledge, goal, attention, emotion, trust toward
the play partner, etc. Therefore, effective guidance should take
into account and be contingent upon the mental state of the
child. This requires theories to consider the dyad as a system
moving toward a joint objective (Fogel and Garvey, 2007; Lavelli
et al., 2015; Heller and Rohlfing, 2017), and requires experimental
designs and analytical tools that go beyond between-group
comparisons to focus on individual dyads. Second, guided
play is dynamic. Timing is critical for the guidance to be

effective. Providing a label, for example, can be educational
at a moment when a child is focusing on the target object,
but can be confusing when the child is focusing on multiple
objects (Pereira et al., 2014). Similarly, demonstrating object
functions when an infant is pointing to the object also supports
learning (Begus et al., 2014). For preschoolers, revealing causal
features of objects right before, but not after, a demonstration
of categorization facilitates children’s category learning (Yu and
Kushnir, 2016). Existing theories, such as direct instruction and
free play, and methodological tools, such as standard statistical
tests, are optimized for discrete interventions and are usually
applied uniformly across groups of individuals. Characterizing
the dynamic nature of guided play will require development
of new theories and tools to capture interventions along a
continuous timeline. In what follows, we detail these theoretical
andmethodological matters, the tools that may be used to address
them, and the prospects for a theory of guided play.

THEORETICAL CHALLENGES AND
OPPORTUNITIES FOR GUIDED PLAY

Free play and direct instruction have long been contrasted in
education and cognitive development (Dewey, 1933; Mayer,
2004; Kirschner et al., 2006; Hirsh-Pasek et al., 2008), and existing
mathematical and computational models for the two scenarios
have likewise been developed separately because they typically
focus on different aspects of learning (Nelson, 2005; Shafto et al.,
2014). Free play is based on the constructivist views of learning,
which portrays learning as an active process during which
the learner repeatedly intervenes on their environment, and
update their beliefs based on information gathered from these
experiences (Piaget, 1952 Q13). Correspondingly, computational
models of free play have largely focused on how to sequentially
choose evidence during learning (Nelson, 2005; Settles, 2010;
Markant and Gureckis, 2014; McCormack et al., 2016). These
models generate predictions about how the optimal next step will
depend on the current state and are therefore dynamic. However,
such models are inadequate to capture the interactive aspect of
guided play because they do not usually simulate a social partner
whose behavior is contingent on the learner.

In contrast, direct instruction emphasizes the necessity of
outside instructions for learners to successfully navigate a
learning task (Kirschner et al., 2006), and focuses on what
content should be delivered by instruction (Mayer, 2004).
Correspondingly, computational models of direct instruction
have focused on the evidence teachers should select to lead
learners to the correct answer, given the learner’s current beliefs
(Shafto and Goodman, 2008; Shafto et al., 2012 Q14, 2014; Frank,
2014; Zhu, 2015; Rafferty et al., 2016 Q15). Some of these models
simulate the interactive nature of teaching and learning through
modeling the teacher and the learner’s reasoning about the other’s
knowledge levels and objectives (Shafto and Goodman, 2008;
Shafto et al., 2012, 2014). However, these models are not dynamic;
they select evidence with the immediate goal of the learner
arriving at the correct inference. When dynamic extensions
have been proposed, they encounter significant computational
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challenges that render the models of limited use for modeling
real-life scenarios (Rafferty et al., 2016; Yang and Shafto, 2017).

Theories and models of epistemic trust may inform modeling
of dynamic interactions between a teacher and a learner. The
literature on epistemic trust has investigated the dynamics of
reasoning, focusing on a learner’s sensitivity to both a teacher’s
prior knowledge in a given domain (Pasquini et al., 2007; Sobel
and Corriveau, 2010) as well as her social group membership
when making decisions about whom to trust (Kinzler et al.,
2011; Chen et al., 2013). Models of epistemic trust (Eaves and
Shafto, 2012, 2017; Shafto et al., 2012) tend to build upon
aforementioned models of direct instruction. Although both of
these bodies of workmake the prediction that children’s epistemic
and social evaluation of a teacher should influence their trust
in her (and therefore, their sensitivity to her guidance), to date,
both the experimental and computational work has focused on
the dynamics of trust, but not learning.

Finally, ecological psychology and dynamic systems
approaches have been applied to analyze dynamic interactions
between adults and children (Bronfenbrenner, 1986; Thelen
and Smith, 1996; Fogel and Garvey, 2007). These approaches
were foundational in emphasizing the need to view adult–child
interactions as a system that evolves through time, as well as the
need to situate these interactions in the immediate environment.
They also provided invaluable computational tools to analyze
patterns of co-activities that emerges along time. Because formal
dynamic systems models often focus on overt behavior, applying
these models to guided play may require an extension which
takes into account the mental state and inferential capacities of
both learners and guiding adults.

A unified theory of guided play must combine strengths from
previous research to capture the interactive and dynamic nature
of learning. A key challenge for proposing such a theory is the
development of theoretical frameworks that avoid simulating
every possible mental state of the teacher and the learner,
which would create intractable computational problems. Even
the simplest learning situations involve many potential choices
by both learners and guiding adults. For example, when an adult
guides a child to learn the name of an object, the adult could
choose from a variety of actions (e.g., pointing to the object,
holding it, looking at the child, or looking at the object) as well
as utterances (e.g., naming the object, or asking a question),
and the child could also respond in a variety of ways (e.g.,
reaching for the object, repeating the word, or displaying a
puzzled face). Adults and children nevertheless navigate such
situations, making choices while balancing short- and long-term
objectives. To simulate these capacities, one approach is to adopt
simplified computational models similar to those employed in
the educational technology literature. One example is Bayesian
knowledge tracing, which instead of modeling the learner’s full
belief state, focuses on whether the learner has the correct
concepts (Corbett and Anderson, 1995; Yudelson et al., 2013).
A second approach is to use task-specific information to limit
the set of relevant actions. For example, an approach that pairs
observation of naturalistic adult–child interaction during a task
with an experiment that measures the learning outcome of that
task could help to identify the task-relevant subset of information

(Yu et al., 2017). Subsequent experimental studies could then
test predictions of the model on this reduced set of relevant
information rather than the whole set of logical possibilities.

METHODOLOGICAL CHALLENGES AND
OPPORTUNITIES FOR GUIDED PLAY

The interactive and dynamic properties of guided play also pose
questions for experimental design and analysis that may require
modifications of existing tools and the development of new ones.
One source ofmethodological challenges arises from variations in
the effectiveness of guidance based on individual characteristics
of the child. Guidance content that is effective for one child may
not be effective for a different child. For example, two children
may have different misconceptions about what constitutes a
triangle (Fisher et al., 2013). One may think a triangle needs to
have the point at the top, whereas the other may think a triangle
needs to have all acute angles. In this case, different examples
should be presented to guide these two children away from their
respective misconceptions: it would be more effective to show
the first child a real triangle with point in the bottom, and show
the second child an obtuse triangle. This intuition is supported
by research: research in category learning has shown that a set
of evidence that is effective in facilitating one person’s learning
may be less effective when presented to another person (Markant
and Gureckis, 2014; Sim et al., 2015). In addition, individual
differences in children’s background knowledge, cognitive style,
and experiences with different sociocultural practices can all
influence the effectiveness of presenting certain content to them
(McNamara et al., 1996; Gutiérrez and Rogoff, 2003; Price, 2004).
Individual differences remain an important topic for further
research.

The timing of guidance is also important: well-timed guidance
that is contingent upon the child’s prior actions may impact
child learning outcomes differently than if the same guidance
is not well-timed (Pereira et al., 2014). Such variability in
guidance content and timing poses challenges to typical random-
assignment controlled experiments, as uniform interventions
applied to groups of randomly assigned individuals do not
necessarily test the interactive and dynamic predictions of
guided play. Yet observational designs are insufficient to tease
apart the causal relations between components of guided play
and children’s learning outcomes. Therefore, new methods and
analytical tools are required to select the content and timing
of guidance to maximally inform our understanding of the
mechanisms involved in guided play.

Advances in data science and technologymay provide tools for
addressing some of these challenges by providing an opportunity
for real-time analysis and feedback, as well as (semi-)automatic
analysis of large amounts of time series data. For example,
in word-learning scenarios, children look at the experimenter
more when they are uncertain about an object label (Hembacher
et al., 2017). Thus, an overt behavior, here eye gaze, reveals
important information about the learner’s mental state, and could
represent opportunities for guidance. Technological advances
in eye-tracking equipment and data sharing mechanisms have
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allowed for the collection and sharing of large-scale, live-stream
video data from naturalistic adult–child interactions (Franchak
et al., 2011; Databrary, 2012). However, coding and analysis of
children’s looks are usually conducted manually, which restricts
the amount of data that can be utilized and precludes real-time
feedback during the interaction. Applying tools of automatic
decoding of eye movements and looking, such as those used
in vision research (Duc et al., 2008; Gottlieb et al., 2013; Borji
and Itti, 2014), may allow for the online recognition of the
referent associated with the child’s gaze, which, in turn, may help
to nominate a range of appropriate guidance “moves” that are
contingent upon the child’s attention and mental state. Indeed,
research in social robotics has implemented gaze and action
detection in robot learners to infer human teachers’ pedagogical
intent based on their gaze and actions, and to react in a contingent
way (e.g., when the teacher showed an object with pedagogical
cues, the robot turned head to the same object; then when the
teacher looked back at the robot’s eyes and labeled the object, the
robot looked at the teacher and smiled). Human teachers were
more engaged and more likely to attribute human-like traits to
the robot when the robot displayed these contingent reactions
(Lohan et al., 2012). Similar algorithms may also support teachers
who provide guidance contingent on the learner’s behavior.

Similarly, the learner’s affect and engagement plays an
important role (Greene and Noice, 1988; Rader and Hughes,
2005). In guided play, the joy that accompanies play helps to
sustain motivation, interest, and excitement, which should be
associated with enhanced learning outcomes (Hirsh-Pasek and
Golinkoff, 2003; Weisberg et al., 2016). Unfortunately, given
the time-intensive nature of affect coding, the evidence relating
affective states to improved learning outcomes is less extensive.
Data science tools may be used to automatically identify affect
and engagement in real-time video streams for analysis, and to
time guidance to foster affect that predict positive short term and
long term learning (Littlewort et al., 2006; Yao et al., 2015; Baker
et al., 2017). Such analytical tools would allow for direct tests of
guided play predictions related to the timing of learning, while
employing experimental designs that are similar to those typically
used in the developmental and educational literature.

COUPLING COMPUTATIONAL MODELS
AND DATA SCIENCE TOOLS

A more ambitious possibility is to couple models and data
science tools to create experiments highlighting times when
interventions may yield the strongest test of the theory. Attempts
at interactive, dynamic approaches to teaching can be found
in the literature of social robotics and intelligent tutoring
systems (Anderson et al., 1985; Breazeal, 2002; Thomaz and
Breazeal, 2008; Lohan et al., 2012; Nguyen and Oudeyer, 2014;
Vollmer et al., 2014; Clement et al., 2015), in which data
from expert teachers have been used to train algorithms to
learn the contingencies between learner’s behavior and teachers’
appropriate response (Ruvolo et al., 2008). Such data-driven
approaches can serve as a first step for identifying patterns in
guided-play interactions. However, to understand characteristics

of effective guidance, we also need theory-driven computational
models that can represent children’s mental states based on
their behavior. Such models differ from existing intelligent
tutoring systems in that instead of teaching knowledge in specific
domains, they are designed to understand the general principles
of effective guidance in a wide range of child-led activities
that may or may not have an explicit learning goal. Coupling
such models with empirical data could inform an algorithm
that predicts appropriate guidance based on children’s behavior,
which could in turn be used in experiments to verify the
effect of guidance on children’s learning. These experiments
would have significant advantages relative to classic training
studies, as the intervention is based on an online algorithm
which would adapt based on children’s moment-by-moment
behavior.

Consider how such computational models could be applied
to a recent study of guided play (Fisher et al., 2013). This
study examined different pedagogical methods on preschoolers’
learning of geometric shapes, with increased learning in guided
play as compared to didactic instruction and free play. In
the guided play condition, the experimenter presented two
typical examples (e.g., upright triangles) and two atypical
examples (e.g., inverted triangles) in a playful manner, and asked
children to determine what makes them the same shape. During
children’s active exploration the experimenter used questions,
encouragement, and feedback to guide them toward the correct
answer. Yet, because the interaction was dynamic, the manner
and timing of adult guidance were not prespecified in the
experimental design, which makes it difficult to pinpoint what
aspects of guidance resulted in the enhanced learning outcomes.

Following the aforementioned framework, existing videos of
guided play interactions could be used to train a computational
model of learning geometric shapes in four steps: first, data
science tools can identify a set of common task-relevant behavior
during children’s active exploration, and cluster behaviors
into categories (e.g., children’s looking and pointing may
be categorized as seeking guidance from the experimenter;
their emotion as confident vs. doubtful; their language as
statements or questions). Tools of this stage could build upon
advances in (semi-)automatic recognition of eye gaze (e.g., Lohan
et al., 2012; Smith et al., 2015), emotion (e.g., Baker et al.,
2017; Nojavanasghari et al., 2018), natural language including
information-seeking questions (e.g., Rothe et al., 2016), among
others.

Second, a computational model can be used to simulate
children’s moment-to-moment beliefs about geometric shapes
based on these behavioral patterns. For example, if children
point to an upright triangle, look doubtfully at the experimenter,
and ask “Is this a triangle because the point is at the top?,”
their presumed belief about triangles would shift toward the
wrong hypothesis of “point at the top,” with a flat distribution
indicating uncertainty. The model at this stage could be built
upon existing work that links behavior with mental states
on a microgenetic scale, including those that model shifting
hypotheses (e.g., Bonawitz et al., 2014), epistemic trust (e.g.,
Eaves and Shafto, 2017), and automatic goal inference (inverse
reinforcement learning; e.g., Baker et al., 2009).
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FIGURE 1 | WeQ4 propose

Q16

Q5

a framework that integrates computational modeling and data science to address challenges brought by the interactive and dynamic nature

of guided play. By modeling children’s moment-to-moment mental state from their task-relevant behavior, the proposed framework identifies guidance that are

optimized in terms of timing and form, with the objective of sustaining the children’s interests toward the learning goal. The italic text provides an example of learning

geometric shapes (Fisher et al., 2013) to show how the framework could be implemented to a specific guided play interaction. This framework can facilitate research

of guided play by identifying key aspects of guidance within the dynamic and complex interactions children experience in their everyday environment.
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Third, a model of guidance can identify the most effective
intervention given children’s current belief. For example, in
the aforementioned scenario, to shift children’s belief away
from the wrong hypothesis and toward the correct hypothesis,
the best example to show may be a real triangle with the
point at the bottom. Existing models of teaching, such as the
model presented in Rafferty et al. (2016), has used partially
observable Markov decision process to optimize teaching actions
given the learner’s observed behaviors as well as previous
teaching actions. Similar approaches could be used to build
models that optimize guidance based on children’s current belief.
Importantly, the model is not intended to immediately lead
the child to the correct hypothesis as in direct instruction
(e.g., “Triangles are shapes bounded by three edges and three
vertices”), rather it optimizes the child’s interest to guide them
toward the correct hypothesis. In this way, guided play remains
child-led.

Finally, the recommended intervention can be carried out by
the experimenter in a way that is consistent with the principles
of guided play (e.g., through questions like “What about this one
[pointing to the inverted triangle]? Does it have point at the top?
Is it a real triangle?”).

Once trained, this model will significantly advance our
understanding of (1) how individual children grasp concepts
of geometric shapes; (2) common misconceptions along the
way; and (3) optimal interventions. The resulting model-
based interventions allow for guidance tailored to the learner’s
moment-by-moment belief states.

PROSPECTS AND DIRECTIONS FOR A
THEORY OF GUIDED PLAY

For children, learning takes place everywhere, all the
time, and often involves interactions by the learner with
more knowledgeable individuals. This ubiquity of learning
opportunities can be exploited by providing subtle guidance that
is contingent on the environment and children’s current mental
state (Ridge et al., 2015). Although research has highlighted the
advantage of guided play, as compared to direct instruction

or free play for facilitating learning (Alfieri et al., 2011; Fisher
et al., 2013; Haden et al., 2016; Sim and Xu, 2017; Yu et al.,
2018), pinpointing the optimum content and timing of guidance
requires an understanding of the interactive and dynamic nature
of an adult–child interaction.

We suggest that integrating computational models and data
science tools may help lay out an avenue toward an empirically
grounded and computationally precise framework of guided
play. By modeling children’s moment-to-moment mental state and
the responsive behavior from adults, the proposed model has the
potential to identify different components of guided play from
dynamic and individualized interactions, and recommend model-
based interventions that are optimized in terms of timing and
form, with the objective of sustaining the child’s interests toward
the learning goal. The resulting theory of guided play could
identify key aspects of guidance that makes guided play effective
in a particular context, while maintaining the complexity and
ecological validity that comes with the interactive and dynamic
nature of the theory. The goal is to use this framework to
understand how learning proceeds and when it succeeds, which
will also depend on the cultural context and individual learner.
Future work could further extend the framework from one-on-
one interactions in early childhood to more complex learning
scenarios and topics, such as those in a classroom setting. We
hope such a framework will shed light on principles of optimal
environments and practices to facilitate children’s learning,
and present an example of using new approaches to studying
cognitive development.
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