
Decentralized Chernoff Test in Sensor Networks

Anshuka Rangi and Massimo Franceschetti

University of California, San Diego

{arangi, massimo}@ucsd.edu

Stefano Marano

University of Salerno, Italy

marano@unisa.it

Abstract—We propose a decentralized, sequential and adaptive
hypothesis test in sensor networks, which extends Chernoff’s test
to a decentralized setting. We show that the proposed test achieves
the same asymptotic optimality of the original one, minimizing
the expected cost required to reach a decision plus the expected
cost of making a wrong decision, when the observation cost per
unit time tends to zero. We also show that the proposed test is
parsimonious in terms of communications. Namely, in the regime
of vanishing observation cost per unit time, the expected number
of channel uses required by each sensor to complete the test
converges to four.

Index Terms—Hypothesis Testing, Chernoff Test, KL-
Divergence, Sensor Network

I. INTRODUCTION

Inference systems based on sensor networks are attractive

for a variety of reasons, including the increasingly low cost

of the sensors, the inherent redundancy provided by the dis-

tributed structure of the network, the embedded computational

capabilities of the sensors, and the availability of high-speed

wireless communication channels [1]. When the network is

used for detection, a set of hypotheses is tested based on the

observations collected at the remote sensors, and an action is

taken based on the results of these tests. Applications that fall

in this framework include intrusion and target detection, and

object classification and recognition [2]–[6].

One possible strategy to perform a statistical test using a

sensor network is to send all observations from the sensors to

a central processor, where the inference task is performed.

Alternatively, in a decentralized setting, some preliminary

processing can be performed at the sensors, and only a limited

amount of pre-processed data is communicated to the central

processor. This reduces the communication overhead, but may

lead to sub-optimal performance. A natural question is what

kind of local processing to perform at the sensor nodes, and

what fusion scheme to adopt at the central processor, in order

to reduce the communication burden while keeping a high

level of detection performance. In this work, we address this

question by proposing a decentralized statistical test in sensor

networks that is optimal in terms of detection performance,

while being parsimonious in terms of communication.

Hypothesis testing techniques are broadly classified as se-

quential or non-sequential tests, and adaptive or non-adaptive

tests. Our focus is on a sequential and adaptive test. In a

sequential test the number of observations needed to make

a decision is not fixed in advance, but depends on the specific

realization of the observed data. The test proceeds to collect

and process data until a decision with a prescribed level of

reliability can be made, and an important performance figure

— in addition to the probability of correct decision — is the

average number of observations required to end the test. In

an adaptive test, the sensors’ probing actions are chosen on

the basis of the collected data in a causal manner. Hence, the

sensors learn from the past, and adapt their future probing

actions in a closed loop fashion.

Sequential tests were first introduced by Wald in [7]. One

of such tests, the Sequential Probability Ratio Test (SPRT),

was established to be asymptotically optimal for binary hy-

pothesis testing in [8]. The asymptotic optimality of SPRT

was extended to multi-hypothesis testing in [9], [10]. In the

case of sequential and adaptive tests, Chernoff provided a test

that is asymptotically optimal for binary hypotheses in his

landmark paper [11]. Namely, as the observation cost per unit

time vanishes, the test minimizes the sum of the expected cost

required to reach a decision and the expected cost of making

an incorrect decision. The asymptotic optimality of his test

was extended to multi-hypothesis testing in [12]. The work

in [13] discusses a specific application. The sequentiality and

adaptivity gains for different tests were further studied in [14]–

[16]. All of these results were established in a centralized

setting.

Various works discuss extensions to a decentralized set-

ting [17], [18]. Different techniques for combining the infor-

mation at the central processor are considered in [1], [19]–

[21]. In this context, asymptotically optimal sequential and

non-adaptive tests have been developed [22], [23]. All of these

results do not consider adaptive test, which are the main focus

of our work.

We propose a Decentralized version of Chernoff’s Test

(DCT) for sensor networks that retains the asymptotic opti-

mality of Chernoff’s original solution. We provide an upper

bound on the test performance in terms of expected risk. We

also provide a matching converse, showing that any sequential

test must achieve at least the same value of expected risk.

Our solution is efficient in terms of communication overhead,

compared to the trivial one where sensors blindly send all of

their observations to the fusion center. We show that, as the

observation cost per unit time vanishes, the expected number

of times each sensor node uses the communication channel

tends to four. Finally, discussing future work, we mention

possible extensions of the test to a fully distributed scenario

that does not require any fusion center operation.

The rest of the paper is organized as follows: Section

II formulates the problem; Section III reviews the standard



Chernoff test and Section IV introduces its decentralized ver-

sion; Section V informally describes the main idea behind the

decentralized test and Section VI presents rigorous theoretical

results. Section VII concludes the work.

II. PROBLEM FORMULATION

We consider a sensor network composed of L sensors

and one fusion center. The sensors and the fusion center

can communicate with each other, while no direct mode of

communication between the sensors is allowed. We consider

M hypotheses and assume that only one of these hypotheses

is true. At each time instant, each sensor can take a probing

action, selected from a fixed set of actions S = {ui}i∈M ,

independently of all other sensors. For simplicity, we consider

the cardinality of set S to be M , however, all results hold

for the more general case as well. For i, k ∈ [M ], given

that hypothesis hi is true and probing action uk is taken

at sensor `, we let puk

i,` denote the probability distribution

of the observation received at the sensor ` following uk.

Given the true hypothesis, the observations received at any

sensor are independent of the observations received at other

sensors. Conversely, there may be a time-correlation between

the observations at a given sensor, induced by the fact that the

probing actions are observation-dependent.

Our performance measure – the risk – is analogous to the

one considered in [11]. Given hypothesis hi is true, the risk

R
δ
i of a sequential test δ is defined as

R
δ
i = cEδ

i [N ] + wi P
δ
i (Ĥ 6= hi), (1)

where E
δ
i [N ] is the conditional expected time required to reach

a decision, c is the observation cost per unit time, Ĥ is the

decision made, Pδ
i (Ĥ 6= hi) is the conditional probability of

wrong detection, and wi is the cost of wrong detection. It

follows that the risk corresponds to the sum of the expected

cost required to reach a decision and the expected cost of

making a wrong decision. Our objective is to design a test

that minimizes the risk for all i ∈ [M ], as c→ 0.

We assume that observations corresponding to probing ac-

tions are instantly available at the sensors, the communication

link between the sensor and the fusion center is noise free, and

the information sent along this link is instantly available at the

receiving end. The KL-divergence between the hypotheses is

assumed to be finite for the entire action set S, namely, for

all ` ∈ [L] and i, j, k1 ∈ [M ], we have D(p
uk1

i,` ||p
uk1

j,` ) < ∞.

Also, for all ` ∈ [L] and i, j ∈ [M ], there exists an action

uk1
, where k1 ∈ [M ], such that D(p

uk1

i,` ||p
uk1

j,` ) > 0. This

assumption entails little loss of generality, rules out trivialities,

and is commonly adopted in the literature, see e.g. [11],

[13]. Also, for all ` ∈ [L] and i, j, k1 ∈ [M ], we assume

E[log(p
uk1

i,` (Y ))/ log(p
uk1

j,` (Y ))]2 <∞.

III. STANDARD CHERNOFF TEST

We start considering sensor ` alone, with no interactions

with the fusion center or with other elements of the network.

Chernoff test for this isolated sensor is as follows:

1) At step k − 1, a temporary decision is made, based on

the posterior probability of the hypotheses, given the

past observations and actions. Specifically, the temporary

decision is in favor of hi∗
k−1

if

i∗k−1 = argmax
i∈[M ]

P(H∗ = hi|y
k−1
` , uk−1

` ), (2)

where H∗ is the true hypothesis, yk−1
` = {y1,`, y2,` . . .

yk−1,`}, yi,` is the observation at step i and sensor `,
uk−1
` = {u1,`, u2,` . . . uk−1,`}, and ui,` is the action at

step i and sensor `.
2) At step k, the action uk,` is randomly chosen among the

elements of S, according to Probability Mass Function

(PMF) Q`
i∗
k−1

, where:

Q`
i∗
k−1

= argmax
q∈Q

min
j∈[M ]\{i∗

k−1
}

∑

u

q(u)D(pui∗
k−1

,`||p
u
j,`),

in which Q denotes the set of all the possible PMFs over

the alphabet [M ].
3) For all i ∈ [M ], update the posterior probability P(H∗ =

hi|y
k
` , u

k
` ).

4) The test stops at step N if the worst case log-likelihood

ratio crosses a prescribed fixed threshold γ, i.e.,

log
pi∗

N,`
(yN` , uN

` )

maxj 6=i∗
N
pj,`(yN` , uN

` )
≥ γ, (3)

where pi∗
N,`

(yN` , uN
` ) is the posterior probability P(H∗ =

hi∗
N
|yN` , uN

` ) at sensor `. If the test stops at step N , then

the final decision is hi∗
N

. Otherwise, k ← (k − 1), and

the procedures continues from 1).

IV. DECENTRALIZED CHERNOFF TEST

As the observation cost per unit time tends to zero, the

probability of wrong detection for the standard Chernoff test

tends to zero [11]. It follows that minimizing the risk in

(1) also corresponds to minimizing the expected number of

samples required to reach a decision. When one sample is

collected at each time step, minimizing the expected number

of samples is obviously the same as minimizing the expected

time for making a decision. However, this is not necessarily

true in a decentralized setting.

To further illustrate this point, consider first minimizing

the total expected number of samples collected by the L
sensors to reach a decision, and assume that the amount

of communication between sensors and fusion center is un-

constrained. A straightforward design, which we call Fusion

center based Chernoff Test (FCT), is as follows. The action

set S is modified to S′ with cardinality ML, where action

ai,` ∈ S′ corresponds to the selection of ui ∈ S and sensor

` ∈ [M ]. Then, a Chernoff test is performed on S′ at the fusion

center where the selection of ai,` corresponds to activating

sensor `, and enabling the activated sensor to use the probing

action ui in order to collect the corresponding observation,

which is then delivered to the fusion center. It is not hard to

see that, as the probability of wrong detection tends to zero,



the FCT minimizes the total expected number of collected

samples. The proof of this claim is similar to the one of the

optimality of Chernoff test in [11] and is thus omitted.

The FCT also minimizes the total number of probing actions

performed by the sensors. However, there is only one active

sensor, out of L, per unit time, and all observations are

communicated to the fusion center. Clearly, this is highly

inefficient in terms of both communication overhead and

decision time, and motivates introducing a different kind of

test.

Our proposed DCT operates in two phases. In the initial-

ization phase, each sensor ` sends a vector v` to the fusion

center, where the elements of v` are, for all i ∈ [M ]

vi,` = max
q∈Q

min
j 6=i

∑

u

q(u)D(pui,`||p
u
j,`). (4)

The quantity vi,` is a measure of the capability of sensor ` to

detect hypothesis hi (see [11] for a discussion), and plays a

critical role in designing the test. After receiving v` from all

sensors, the fusion center sends back to sensor ` a response

vector ρ`, whose L entries are the scalars

ρi,` = vi,`/I(i), (5)

where I(i) =
∑L

`=1 vi,` is a measure of cumulative capability

of the network to detect hypothesis hi.

At this point, the test phase begins. All sensors perform a

Chernoff test, independently of each other, consisting of steps

1-4 described in Section III, with an important difference: any

time at sensor ` we have

log
pi∗n,`(y

n
` , u

n
` )

maxj 6=i∗n
pj,`(yn` , u

n
` )
≥ ρi∗n,` |log c|, (6)

then a local decision in favor of hi∗n
is communicated to

the fusion center. This is not a stopping criterion for the

test at sensor `, but only a triggering condition for the

communication between sensor ` and the fusion center. Thus,

sensor ` continues to run the test until the fusion center sends

a halting message.

The final decision Ĥ is made at the fusion center in favor

of hypothesis hi when the local decisions from all the sensors

are in favor of hi. After the final decision is made, the fusion

center sends a halting message to all the sensors.

Apart from the initialization phase, the proposed DCT only

requires the communication of an index ∈ [M ] during the

test phase. Thus, the communication resources required are

considerably less compared to the FCT, where continuous

random variables are sent over the network at each step.

In addition, our results show that, while maintaining the

same asymptotic optimality of Chernoff’s test as c → 0,

the oscillations in the local decisions at the sensors vanish,

and each sensor tends to use the communication channel on

average only four times: two in the initialization phase, one to

communicate the local decision, and one to receive the halting

message.

V. INFORMAL DISCUSSION

The key idea behind the proposed DCT is to determine the

individual capabilities of the sensors for detecting the hypothe-

ses. These capabilities — that depend on the true hypothesis

H∗ — are captured by the vector v`, whose ith element is a

measure of sensor capability to detect the hypothesis hi. The

fusion center gathers this information, and utilizes it to control

the threshold at each sensor through the response vector ρi,`.
At the fusion center, I(i) is the measure of the cumulative

detection capability of the network for hypothesis hi, and ρi,`
denotes the fraction of this capability contributed by sensor `
for hypothesis hi. To minimize the expected time to reach

a decision, it is desirable to determine the threshold for each

sensor ` such that all the sensors require roughly the same time

to reach the triggering condition. This is analogous to dividing

the task of hypothesis testing among the sensors based on their

speed of performing the task, such that all the sensors finish

their share of the task at roughly the same time.

VI. THEORETICAL RESULTS

In the following theorems, N indicates the time required to

make a decision, and C indicates the communication overhead,

namely the number of times a sensor communicates with the

fusion center. The superscripts C and δ refer to the DCT and

to a generic decentralized sequential test, respectively.

Part (i) of Theorem 1 states that the probability of making

a wrong decision can be made as small as desired by an

appropriate choice of c. Part (ii) provides a bound on the

expected time to reach the final decision, and part (iii) bounds

the risk as an immediate consequence of parts (i) and (ii).
Theorem 1: (Direct). The following statements hold:

(i) For all c ∈ (0, 1) and for all i ∈ [M ], given that hypothesis

hi is true, the probability that the DCT makes an incorrect

decision is bounded as

P
C
i (Ĥ 6= hi) ≤ min{(M − 1)c, 1}.

(ii) For all i ∈ [M ], given that hypothesis hi is true, the

expected decision time is

E
C
i [N ] ≤ (1 + o(1))

|log c|

I(i)
, as c→ 0. (7)

(iii) Combining (i) and (ii), the risk defined in (1) verifies

R
C
i ≤ (1 + o(1))

c |log c|

I(i)
, as c→ 0. (8)

The following theorem provides a matching converse result.

Theorem 2: (Converse). For any sequential test δ, if for all

i ∈ [M ] the probability of missed detection satisfies

P
δ
i (Ĥ 6= hi) = O(c | log c|), as c→ 0, (9)

then we have

E
δ
i [N ] ≥ (1 + o(1))

|log c|

I(i)
, (10)

R
δ
i ≥ (1 + o(1))

c |log c|

I(i)
, as c→ 0. (11)



The following result is a consequence of Theorems 1 and 2.

It shows the asymptotic optimality of the DCT, and presents

the expected communication overhead, as c→ 0.

Theorem 3: For the DCT , for all i ∈ [M ] we have

E
C
i [N ] = (1 + o(1))

|log c|

I(i)
, (12)

R
C
i = (1 + o(1))

c |log c|

I(i)
, as c→ 0, (13)

lim
c→0

E
C
i [C] = 4. (14)

To illustrate the proofs, we need the following additional

notation. We let yk` = {y1,`, y2,` . . . yk,`}, where yi,` is the

ith observation sample at sensor `; uk
` = {u1,`, u2,` . . . uk,`},

where ui,` is the ith action at sensor `. We also let An,j be the

set of sample paths where the decision by the fusion center is

made in favor of hj at the nth step, and we indicate a single

sample path as {(un
1 , y

n
1 ) . . . (u

n
L, y

n
L)}. We indicate by An,j,`

the set of sample paths in An,j corresponding to the `th sensor.

Finally, we define

Ni,` = inf

{

n :

n
∑

k=1

log
p
uk,`

i,` (yk,`)

maxj 6=i p
uk,`

j,` (yk,`)
≥ ρi,` |log c|

}

.

Proof of Theorem 1: The proof consists of two parts.

First, we write P
C
i (Ĥ 6= hi) as the probability of a countable

union of disjoint sets of sample paths. An upper bound on

this probability then follows from an upper bound on the

probability of these disjoint sets, in conjunction with the union

bound. Second, we upper bound E
C
i [N ] by the sum of the

expected time required to reach the triggering condition (6)

for hypothesis hi, and the expected delay between the time of

triggering and the final decision is taken in favor of hypothesis

hi at the fusion center. We then show that these expectations

are the same at all sensors, so that (7) follows.

Consider the probability P
C
i(Ĥ = hj). This is same as the

probability of the countable union of disjoint sets An,j . Thus,

for j 6= i, we can write

P
C
i (An,j)

=

∫

An,j

L
∏

`=1

n
∏

k=1

p
uk,`

i,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

(a)
=

L
∏

`=1

∫

An,j,`

n
∏

k=1

p
uk,`

i,` (yk,`) dy1,`(u1,`)..... dyn,`(un,`)

(b)

≤
L
∏

`=1

∫

An,j,`

cρj,`

n
∏

k=1

p
uk,`

j,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

(c)
= c

L
∏

`=1

∫

An,j,`

n
∏

k=1

p
uk,`

j,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

= c
L
∏

`=1

P
C
j (Ĥ = hj at sample n at `th sensor)

= cPC
j (Ĥ = hj at sample n), (15)

where (a) follows from the definition of An,j,`; (b) follows

from the definition of Ni,`; (c) follows from
∑L

`=1 ρj,` = 1.

Now, we can bound P
C
i (Ĥ 6= hi) as follows

P
C
i (Ĥ 6= hi) =

∑

j 6=i

P
C
i (Ĥ = hj) =

∑

j 6=i

∞
∑

n=1

P
C
i (An,j)

≤
∑

j 6=i

∞
∑

n=1

cPC
j (Ĥ = hj at sample n)

=
∑

j 6=i

cPC
j (Ĥ = hj) ≤ c (M − 1), (16)

where the first inequality of the chain follows by (15). This

proves part (i) of the theorem.

Let us now define

τ(Ni,`) = sup
{

n :

Ni,`+n
∑

k=Ni,`+1

log
p
uk,`

i,` (yk,`)

maxj 6=i p
uk,`

j,` (yk,`)
≤ 0

}

.

The triggering condition (6) at the `th sensor is satisfied for

all n > Ni,` + τ(Ni,`), yielding

N≤ max
1≤`≤L

(Ni,` + τ(Ni,`) + 1)≤ max
1≤`≤L

Ni,` +

L
∑

`=1

τ(Ni,`)+1.

Taking the expectation of both sides, we get

E
C
i [N ] ≤ Ei

[

max
1≤`≤L

Ni,`

]

+

L
∑

`=1

E[τ(Ni,`)] + 1. (17)

We now bound the terms on the right-hand side of (17). As

each sensor performs a Chernoff test individually, using [11,

Lemma 2] we have, as c→ 0

Ei[Ni,`] = (1 + o(1))|log c|/I(i), (18)

which is independent of `. Additionally, from [24, eq. (19)]

we have, as c→ 0

Var(Ni,`) = O(|log c|).

Hence, as c→ 0, and for all ` ∈ [L], we have
(

Ei

∣

∣

∣

∣

Ni,` − (1 + o(1))
|log c|

I(i)

∣

∣

∣

∣

)2

≤ Ei

(

Ni,` − (1 + o(1))
|log c|

I(i)

)2

= Var(Ni,`) = O(|log c|). (19)

The above yields,

Ei

[

max
1≤`≤L

Ni,`

]

=
|log c|

I(i)
(1 + o(1)) + Ei

[

max
1≤`≤L

Ni,` − (1 + o(1))
|log c|

I(i)

]

≤
|log c|

I(i)
(1 + o(1)) +

L
∑

`=1

Ei

∣

∣

∣

∣

Ni,` − (1 + o(1))
|log c|

I(i)

∣

∣

∣

∣

=
|log c|

I(i)
(1 + o(1)) +O(

√

|log c|), (20)



where the inequality follows by max` Ni,` ≤
∑

`|Ni,`|,
and the last equality follows by (19). The term

E[τ(Ni,`)] on the right-hand side of (17) is finite since

E[log(p
ui,`

i,` (yk,`)/maxj 6=i p
ui,`

j,` (yk,`))] is the KL divergence

between the two probability measures, which is positive and

finite (see [25]). Thus, combining equation (17), (20) and

the finiteness of Ei[τ(Ni,`)], as c→ 0 we get (7).

The proofs of Theorem 2 and 3 are omitted for space

reasons, but they are available to the reader in [25].

VII. CONCLUSIONS AND FUTURE WORK

We proposed a DCT which is parsimonious in terms of

communications, and is asymptotically optimal in terms of

detection performance, when the observation cost per unit time

vanishes.

One major advantage of sensor networks is their robustness

to node failures and external attacks. From this viewpoint,

although we have presented our results assuming the pres-

ence of a fusion center, alternative solutions where all the

information processing is completely distributed and there

is no central unit, are certainly desirable. Our design could

also be implemented in a fully distributed architecture. The

key quantity I(i) computed in the initialization phase can

be obtained by gossip protocols using consensus techniques

[26]–[28]. Similarly, once all the sensors reach the triggering

condition (6), the final decision can also be easily computed

in a distributed way.

Unlike the classic Chernoff test for isolated sensors, the

proposed DCT has two critical times: the time required to

reach the triggering condition in (6), and the delay between

the time of triggering and the final decision at the fusion center.

As in other sequential tests, unexpected long runs can occur

in our setting as well, when these two times significantly

deviate from their average. In the first case, one or more

“outlier” sensors can take unusually long time to reach the

local decision, and the remaining sensors would need to keep

sending their decisions to the fusion center until the outliers

have also reached their local decisions. This situation can

lead to unusually large communication overhead, and can be

triggered by even a single sensor. In the second case, when c
is not sufficiently close to 0, sensors can reach incorrect local

decisions which are likely to be different. This would also

result in additional communication overhead until the time all

sensors have agreed upon a single hypothesis. We plan to study

these effects in our future work.
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