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ABSTRACT

The popularity of smartphones has grown at an unprecedented
rate, which makes smartphone based imaging especially appealing.
In this paper, we develop a novel acoustic imaging system using
only an off-the-shelf smartphone. It is an attractive alternative to
camera based imaging under darkness and obstruction. Our system
is based on Synthetic Aperture Radar (SAR). To image an object, a
user moves a phone along a predefined trajectory to mimic a vir-
tual sensor array. SAR based imaging poses several new challenges
in our context, including strong self and background interference,
deviation from the desired trajectory due to hand jitters, and se-
vere speaker/microphone distortion. We address these challenges
by developing a 2-stage interference cancellation scheme, a new
algorithm to compensate trajectory errors, and an effective method
to minimize the impact of signal distortion. We implement a proof-
of-concept system on Samsung S7. Our results demonstrate the
feasibility and effectiveness of acoustic imaging on a mobile.
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1 INTRODUCTION

Motivation: The ability to image an object has profound applica-
tions to the society, such as health care, entertainment, news, and
much more. With the unprecedented growth of smartphone popu-
larity, smartphone based imaging is very appealing. While smart-
phone cameras are getting increasingly powerful, they still lack in
many scenarios, such as imaging in darkness or under obstruction.
RF based imaging is an interesting alternative. For instance, RF
imaging radars [43] have been widely used to monitor weather
and identify military targets. However, these radars are big, power
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Figure 1: Penetration coefficients of sounds.

hungry, and mechanically complex. Recently, [1, 31, 60, 65] develop
pioneering RF imaging systems based on light-weight devices, such
as drones, RFID arrays, and millimeter-wave transceivers. While
these devices are more accessible and affordable than radars, they
still require special hardware and significant effort to set up.

Acoustic imaging is another alternative. It complements camera
based imaging in the following scenarios. First, its performance does
not depend on lighting condition and it can be used in darkness.
An interesting application is using acoustic imaging for indoor
mapping, which is preferred to perform at night to minimize the
impact of human activities. A user can also use acoustic imaging to
detect obstacles on the road at night or in caves.

Second, acoustic signals can penetrate many materials as shown
in Figure 1, and support imaging objects covered by these materials.
With this capability, a policeman can use acoustic imaging to detect
weapons under clothes, which may potentially help prevent recent
shooting tragedies [56, 63].

Third, acoustic signals can propagate around obstructions through
diffraction on their edges [49] or reflection from nearby furniture
or walls. This capability supports imaging objects behind obstruc-
tions even if the signals cannot penetrate them directly. With this
capability, a robot can use acoustic imaging to see around corner
[6] and plan its movement correspondingly.

Compared with RF based approaches, acoustic imaging has two
advantages. First, we can easily customize transmission signals
and process received signals in software without special hardware.
Thus, acoustic imaging can be implemented as a mobile app. Second,
acoustic signals are much slower than RF signals. This helps achieve
high image resolution, which is determined by the ratio between
the signal propagation speed and bandwidth [28]. To achieve the
same resolution of acoustic imaging using 10 KHz bandwidth, an
RF based system needs around 9 GHz bandwidth!

Challenges: While acoustic imaging is attractive, enabling it on a
mobile involves significant challenges. Ultrasound medical imag-
ing uses transducer arrays to send and receive signals to generate
high-quality images. However, a smartphone has a small number of
microphones and speakers, which are insufficient to form a sizable
array. To solve this problem, we apply synthetic aperture radar
(SAR) for imaging [12, 44]. As shown in Figure 2, we move a phone
in front of the target to mimic a virtual microphone array. To realize
SAR imaging on a smartphone, we should address the following
challenges that are unique to smartphone based acoustic imaging:
1) Self and background interference: In addition to reflection from
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Figure 2: Smartphone based acoustic imaging,.

the target, signals received by the microphone contain direct trans-
mission from the speaker and background reflection. These signals
overlap in time with target reflection and cause significant interfer-
ence, making the image too noisy to see. In comparison, RF based
imaging systems use directional antennas to limit interference.

2) Deviation from the trajectory: SAR requires the user to move a
phone along a predefined path (e.g., a straight line), but it is hard
for a hand to exactly follow the desired trajectory. Trajectory er-
rors translate to phase errors of received signals and significantly
blur the image. Several autofocus algorithms are proposed for RF
based systems to estimate and compensate for these errors [12].
Among them, Phase Gradient Algorithm (PGA) is the most effec-
tive [17, 59]. However, our experiments show that PGA cannot be
directly applied to our context. A close examination reveals that
PGA assumes narrow beam signals (i.e., the carrier frequency is
much larger than bandwidth), well separated dominant reflectors,
and no quantization errors. These assumptions do not hold for mo-
bile acoustic imaging systems due to low carrier frequency, short
imaging distance, and digital signal processing.

3) Speaker and microphone distortion: To get high-quality images,
we use signals with large bandwidth (10 KHz to 22 KHz). However,
the frequency response of speakers and microphones on mobiles
is not flat across the selected band. This is not surprising since
frequencies above 15 KHz are hardly audible and not optimized.
The uneven response introduces significant distortion to signals and
blurs the generated images. Commodity speakers and microphones
introduce such strong distortion. RF and ultrasound transceivers
designed for imaging purpose do not have this problem.

Our approach: We develop an Acoustic Imaging system on a
Mobile, called AIM. It is based on SAR, where a user holds a mobile
and swipes over a line in front of an object, as shown in Figure 2.

We address (1) by developing a 2-stage interference cancellation
scheme. In the first stage, we cancel the self interference by sub-
tracting pre-recorded direct path signals from received samples.
We account for automatic gain control (AGC) of the microphone
to enhance the cancellation. In the second stage, we remove the
background interference by exploiting the fact that it has different
propagation delay from the target reflection.

We address (2) by developing a new phase error correction al-
gorithm called MPGA. MPGA consists of two major components:
(i) estimating and compensating for quantization errors, which are
ignored in existing SAR imaging, (ii) using stochastic methods to
study received signals and estimate phase errors so that we can
remove the assumption of narrow beam signals and capture the
impact of closely spaced dominant reflectors.

We address (3) based on a key observation that speaker and
microphone distortion blurs the image in a deterministic way. We
measure their frequency response and find out the distortion pattern
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Figure 3: AIM system.

introduced by them. A distorted image is expressed by the product

of that pattern and the corresponding undistorted image. We solve

the undistorted image using Lasso regression. Meanwhile, this
procedure also removes the noise from the image.

The processing flow of AIM is summarized in Figure 3. Upon
receiving acoustic samples, AIM applies our 2-stage cancellation
approach to remove interference. It then performs the standard
dechirp process and uses our MPGA to compensate phase errors.
Following that, it uses the standard Range Mitigation Algorithm
(RMA) [12] to get an image. Finally, it applies focus and denoise pro-
cedure to remove distortion and noise from the image. To evaluate
AIM, we implement a proof-of-concept system based on commercial
smartphones. The experiment results show that AIM can effectively
capture images for various objects with a similarity of 0.7 to 0.9 in
line-of-sight (LoS), under-clothes, and in-bag scenarios. Processing
delay of AIM is only 1.2 s on Samsung S7.

The contribution of this paper is summarized as follows:

e We propose a new phase error correction algorithm MPGA for
acoustic imaging under mobile contexts. It can be applied to other
scenarios to remove the impact of imperfect motion.

e We develop an approach to remove distortion and noise from
images. The idea is beneficial to other applications where speaker
and microphone distortion is a concern, such as acoustic tracking.

e We implement an acoustic imaging system on a mobile, and
demonstrate its feasibility using experiments.

2 BACKGROUND ON SAR IMAGING

Radio-frequency imaging is widely used for remote sensing appli-
cations, such as earth observation and military surveillance. The
commonly used signal frequency is from 1 GHz to 40 GHz [43]. The
key technique behind such imaging system is Synthetic Aperture
Radar (SAR). Its main idea is moving a radar with small aperture
over a long distance to emulate a large-aperture radar that helps
generate images with much higher resolution. A linear SAR system
is shown in Figure 4(a), where the radar moves along the x-axis
(called azimuth direction). The total distance moved is called syn-
thetic aperture, denoted as L.

During the movement, the radar sends chirps periodically, whose
frequency linearly sweeps from the minimum to the maximum over
time, as shown in Figure 4(b). Meanwhile, it collects the reflected
signals to generate images. The separation between two chirps is
large enough to ensure that all reflected signals of the current chirp
are received before the next chirp is transmitted.

We use n to denote the index of transmitted chirps, called azimuth
index, since the chirps are sent as the radar moves along the azimuth
direction. For each transmitted chirp, we use k to denote the index
of the received samples, called range index, since early samples
are reflected by the objects with a shorter range to the radar. By
multiplying with the transmitted chirps (i.e., dechirp), the received
samples are down-converted and stored as a 2-D data matrix s(n, k),
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Figure 4: Synthetic aperture radar.

called intermediate-frequency (IF) signals. Following that, IF signals
go through a series of signal processing known as data formatting.
The obtained signals are called image signals and denoted by i(n, k).
The purpose of data formatting is to make the image signals for a
point reflector located at (x, y, 0) have the following expression

i(n, k) = Aefcxn+yk), (1)

where A is the magnitude of received signals and c is a constant.
Note that Equation 1 is a simplified formula based on the assump-
tions that the distance between the radar and target is long and the
signal propagation speed is high. These assumptions are valid for
RF radar applications. Refer to [12] for the complete expression of
Equation 1 and its derivation. Importantly, we notice that i(n, k) is a
2-D sinusoid signal. By applying 2-D Fast Fourier Transform (FFT),
we can observe a spike located at (cx, cy) in the 2-D frequency space.
Thus, the above procedure maps a point in the physical space (i.e.,
the xy plane in Figure 4(a)) to a point in the 2-D frequency space.
Since the mapping is linear and one-to-one, the shape of an object
in the physical space is preserved in the frequency space. Hence,
2-D FFT of the image signals produces an image of the object.

The details for SAR processing, including dechirp and data for-
matting, are explained in [12]. In our implementation, we use Range
Mitigation Algorithm (RMA) for data formatting due to its effective-
ness in near field imaging [12], but our approaches are compatible
with other algorithms. RMA consists of the following steps: (i) per-
form FFT on each column of IF signal matrix; (ii) apply the matched
filter and variable substitution to convert the signals to the desired
format as Equation 1; (iii) use Stolt interpolation [12] to get uni-
formly sampled image signals; and (iv) apply 2-D FFT on image
signals to obtain the object image.

New challenges emerge when applying SAR to acoustic imaging
on a mobile. First, since smartphone speakers and microphones
are omni-directional, signals propagating directly from the speaker
to microphone interfere with target reflection. Second, moving a
mobile by hand incurs large motion errors. Existing error correction
algorithms do not work because the underlying assumptions do not
hold in our context. Third, smartphone speakers and microphones
severely distort acoustic signals, which blurs the generated images.
To address these challenges, AIM adds three new components to
the SAR processing pipeline, as highlighted in Figure 3. We will
explain these components in the following sections.

3 INTERFERENCE CANCELLATION

Two types of interference: Since the smartphone speaker and mi-
crophone are omni-directional, signals received by the microphone
include not only desired reflection from the target, but also two

MobiSys ’18, June 10-15, 2018, Munich, Germany

types of interference: (i) direct transmission and (ii) background
reflection, as shown by Figure 5. These signals overlap in time be-
cause the difference between their propagation delay is smaller
than the chirp duration (e.g., 10 ms in our system). Even worse,
the direct transmission is 3 - 4 orders of magnitude larger than
the target reflection. To minimize the impact of interference, we
develop a two-stage interference cancellation scheme. In the first
stage, we cancel the self interference by subtracting pre-recorded
direct path signals from received samples. In the second stage, we
remove the residual self interference and background interference
by leveraging the fact that they have different propagation delay
from the target reflection.

Stage 1: This stage aims to remove interference of the direct path
between the speaker and microphone. To this end, we record the
direct transmission by putting the mobile in a clean space, where
no major reflectors are within one meter distance in front of the
speaker and microphone. When we use the mobile to image a
target object, we subtract the pre-recorded direct path signals from
the received samples. We take into account synchronization and
sampling offset between the pre-recorded signals and currently
received samples as in [45].

In practice, simple subtraction cannot achieve optimal cancella-
tion. Our key observation is that the automatic gain control (AGC)
in the microphone [16] normalizes received signals such that the
highest magnitude is close to 1. The AGC gains are slightly dif-
ferent under various environments, since received signals contain
different background reflection. This makes the direct transmission
scaled differently from recordings to recordings. Since it is orders
of magnitude larger than the target reflection, a small scaling dif-
ference will lead to significant residual interference. To address
this issue, we find a scaling coefficient ¢ for each chirp period that
minimizes ||S — ¢Sy||, where S represents received samples in the
current period and S; denotes pre-recorded direct signals. The in-
tuition behind the optimization is that when ¢ exactly compensates
the scale difference between S and Sy, the direct path signals will
be fully removed and the magnitude of remaining signals is mini-
mized. Figure 6 plots the optimal ¢ over time in a real trace. Once ¢
is determined, we subtract ¢S, from S to remove the direct transmis-
sion. Our evaluation shows that we can cancel 30 dB interference
without scaling the pre-recorded signals and 36 dB with scaling.
Stage 2: The previous stage removes most of the direct path in-
terference. However, there are still some residuals due to imper-
fect synchronization and scaling between received samples and
pre-recorded signals. This stage aims to remove residual direct
transmission and background reflection. For this purpose, we ex-
ploit different propagation delay of these signals from that of target
reflection, as shown in Figure 5. The signals after the first-stage can-
cellation can be described using the well-known multipath channel
model [57]:

ylnl = >\ hixln—i]+ > hxin =],
iet; jet,
where x denotes the transmitted signals, and h stands for the
channel taps. U; includes the indices such that dj < i-ts - v <
dy, where t, is the sampling interval, vs is the sound speed, and

[d1, d2] is the range that the target object falls into. Thus, the first
summation in the above equation contains the target reflection.
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U includes all other indices, and the second summation consists
of residual direct transmission and background reflection. Since
both y and x are known, we apply Least Square channel estima-
tion [50] to determine channel taps, i.e., finding {h;} such that
2nyln] = Zicwivuz) hixln - i])? is minimized. Figure 7 shows
an example of estimated channel taps from real traces. Once the
taps are determined, we remove the interference by subtracting
2 jeu, hjx[n = j] from y[n]. As shown in Section 8, this stage can
cancel additional 5 dB interference.

Our two-stage strategy is the key to achieve large cancellation.
Stage 1 is needed to remove the direct path signals. Otherwise,
strong direct transmission will overwhelm the target and back-
ground reflection, which severely degrades the channel estimation
on the corresponding taps and cancellation performance. Stage 2 is
necessary to remove the remaining background interference.

4 MPGA

In this section, we first introduce PGA and its limitations in our
context, and then present our MPGA to address these issues.

4.1 PGA

The phase error caused by imperfect motion is one of the most chal-
lenging issues in SAR. When the motion deviates from the desired
path (e.g., a straight line) by &4, the received signals experience a
phase shift equal to 2 - 27157", where 2 is the signal wavelength and
a multiplier of 2 accounts for round-trip propagation. When the
radar moves over the whole synthetic aperture, the motion error
can be expressed as §;(n), where n is the azimuth index. Let e(n)
denote the phase error introduced by §;(n).

To remove phase error e(n), several phase correction algorithms
are developed [7, 12, 33]. Among them, Phase Gradient Algorithm
(PGA) is considered the most effective [17, 59]. PGA is designed
to remove the second or higher order phase errors with respect to
n since a constant phase error has no impact on the image and a
linear phase error only results in a shift to the image.

The basic idea for PGA is explained as follows. Equation 1 models
the image signals without motion errors. As discussed above, when
the errors are present, received signals experience extra phase shifts
(i.e., e(n)). These phase shifts remain in the signals after dechirp
and data formatting. As a result, the image signals i(n, k) under
imperfect motion are given by Ael¢*m+cyk+e(m] [12] For simplicity,
we let ir.(n) denote the k-th column of the image signals, » denote
cx, and ¢ denote cky. Thus, we have

ir(n) = i(n, k) = Ae/l@n+o+en), ()

PGA estimates the phase error e(n) based on ij. Specifically, we
first apply FFT to derive the spectrum of ix, and then identify the
frequency component with the maximum magnitude, denoted as

Time (s)

Figure 6: Scaling coefficients.

’ Direct P
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Tap index

Figure 7: Estimated channel taps.

&. Note that & ~ . After circularly shifting iz(n) by @ in the
frequency domain, the time domain signal becomes [} (n) and is
approximated by Ae/($+¢(")_ The derivative of Ii(n) is given by
l(n) = jAé(n)e/(#+e(M) Then the derivative of phase error e(n)
Im(l; [})
Il
of x, and I; denotes the conjugate of ;.. The previous equation
holds for any k. Therefore, we can use all available k for estimation
to improve the accuracy as [17]:

g Im(l )
A

The phase error e(n) can be estimated by integrating its derivative.
The detailed derivations for PGA can be found in [12, 17, 59].

can be obtained by é = , where Im(x) is the imaginary part

(3)

4.2 Limitations of PGA

The effectiveness of PGA depends on whether Equation 2 holds.
Equation 2 requires four assumptions, which do not hold in smart-
phone based acoustic imaging systems.

Supporting only narrow beam signals: First, it assumes narrow
beam signals: the carrier frequency is much larger than the band-
width [55]. This assumption easily holds for RF based radars and
ultrasound based sonars. The former uses GHz carrier frequency
and tens of MHz bandwidth [12, 43], and the latter uses MHz carrier
frequency and tens of KHz bandwidth [24]. Without this assump-
tion, the motion error interacts with o and ¢ in Equation 2 and we
cannot separate it as an individual phase term in image signals.

However, the assumption does not hold in our context, since the
highest frequency supported by smartphone speakers is around 20
KHz. To provide high image resolution, our system uses frequencies
from 10 KHz to 22 KHz. In this case, the carrier frequency is 16
KHz and the bandwidth is 12 KHz, which clearly does not satisfy
the narrow beam requirement. Thus, directly applying PGA cannot
effectively remove phase errors in our system.

To illustrate that, we simulate imaging a point with acoustic
signals. We use simulation in this section because we need to control
the presence of phase errors to demonstrate their impact on imaging.
For simulation, we generate synthetic received signals for a point
reflector, and apply the imaging algorithms to produce images.
Also, we inject random motion errors as the phone moves across
the synthetic aperture. These motion errors translate to phase errors
linearly. We observe that the estimated phase errors by PGA (dashed
lines) do not match with the ground-truth motion errors (solid lines),
as shown in Figure 8(a). Figure 8(b) shows the image without phase
error correction, while Figure 8(c) shows the image using PGA
correction. Figure 10(b) shows the ground truth for imaging a point.
As we can see, due to inaccurate phase error estimation, the image
with PGA correction is severely blurred. These results indicate that
PGA is insufficient for our purpose.
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Supporting only isolated reflectors: Second, the derivation of
Equation 3 assumes that the target object is a point. This is the
case when there is only one dominant reflector in the imaged re-
gion, whose reflection is much stronger than other surrounding
objects [17]. When there are multiple dominant reflectors, as long
as there is a reflector well separated from the others, we can first
use filtering in frequency domain to isolate it and then apply PGA.
This works well for remote sensing applications [12, 43].

In comparison, we focus on imaging an object from a short
distance (e.g., 0.5 m). In this case, the object is treated as an array of
closely spaced homogeneous reflectors (or array reflectors). Filtering
does not work in this case. Instead, we need to generalize PGA to
model phase errors in received signals for array reflectors.

Ignoring secondary phase terms: Third, PGA assumes negligi-
ble impact of secondary phase terms (i.e., non-linear phase terms
with respect to (x, y) omitted in Equation 1 [59]). These terms are
inversely proportional to the signal speed and imaging distance
[12]. Due to slow acoustic propagation and short imaging distance,
these secondary terms cannot be ignored in our case. To correctly
compensate phase errors, we need to minimize the impact of these
secondary phase terms. It is especially challenging to determine
their impact based on the received signals of array reflectors.

To illustrate that, we simulate imaging a horizontal bar with the
length equal to 20 cm. The mobile scans over synthetic aperture
without any motion error. As a result, the ground truth phase error
should be zero for all azimuth indices. As shown in Figure 9(a), PGA
significantly over-estimates the phase error since the impact of
secondary phase terms is not considered. Therefore, the image with
PGA phase correction in Figure 9(c) shows significant distortion,
compared with the ground truth shown in Figure 9(b).
Quantization errors: In addition to the motion error, which is the
major source for the phase error in received signals, our system also
incurs the quantization error for the following reason. For SAR pro-
cessing, the received samples are first shifted forward by 2R, /vs,
where vy is the signal speed and R, is the distance between the cen-
ter of imaged region and the current position of the radar assuming
no motion error. The shifted samples are then multiplied with the
transmitted chirp and pass through a low-pass filter. This process is
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called dechirp [12] and required by any chirp based SAR system. For
radars, shifting samples is performed in the analog domain and is
precise. However, in our case, we have to shift received samples in
the digital domain, since we use a built-in smartphone microphone.
Thus, we can only shift the samples by multiple sample intervals.
Given the sample interval t,, the shift is ¢; - round(2R, /(vsts)). The
presence of quantization errors introduces additional phase errors,
which is not considered in PGA.

4.3 MPGA

Overview: To correct phase errors of received signals for mobile
acoustic imaging, we develop a new algorithm, called MPGA. MPGA
advances PGA in the following ways. First, it estimates quantization
errors due to the low sampling rate of acoustic signals. Second, it
uses IF signals instead of image signals to estimate motion errors so
that we can remove the assumption of narrow-beam signals. Third,
it explicitly takes array reflectors and secondary phase terms into
account when estimating motion errors. In this way, MPGA can
effectively support acoustic imaging in a mobile context.

Removing quantization errors: MPGA first removes the phase
errors introduced by quantization. We make an important obser-
vation: these errors can be determined given a specific synthetic
trajectory, because they only depend on 2R, /vs. Therefore, we
calculate these phase errors in advance and remove them from
received signals. To compute these errors, we simulate the SAR
imaging with and without quantization for the given trajectory,
and compare image signals in two cases to derive the errors. For
a given trajectory, these errors are only calculated once. They are
cached to avoid real-time computation.

Figure 10(a) shows the ground-truth phase errors introduced by
quantization (solid line) versus those estimated using MPGA with-
out removing them in advance (dotted line). The latter essentially
treats quantization as part of motion errors. As we can see, the phase
errors caused by quantization have sharp changes. These changes
lead to singularities in the derivatives of phase errors. Since MPGA
relies on the derivatives to estimate phase errors, the presence of
singularities has a negative impact on the estimation accuracy. This
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explains the difference between the ground truth and estimated
values in Figure 10(a), and justifies the need to remove the quanti-
zation phase errors in advance. Figure 10(b), (c), and (d) show the
images for a point reflector without quantization errors (i.e., ground
truth), using MPGA but without compensating quantization errors
in advance, and MPGA, respectively. As we can see, the image with
MPGA is much closer to the ground truth.

Estimating motion errors: Next, MPGA estimates and removes
phase errors induced by imperfect motion. Different from PGA,
which uses image signals for estimation [59], MPGA uses IF signals
for two reasons. First, using IF signals removes narrow-beam as-
sumption while still allows us to transform the signals to a desired
format as Equation 1. Second, we can explicitly handle secondary
phase terms, because they can be easily derived from IF signals.

Similar to PGA, we manipulate received samples to get an ex-
pression similar to Equation 2 to estimate the derivatives of phase
errors. The challenge lies in supporting array reflectors and deter-
mining the impact of the secondary phase terms. In Section 4.4, we
prove the following theorem:

THEOREM 1. The motion error R(n) can be estimated by E(n) —
Rs(n), where n is the azimuth index, Rs(n) is the offset introduced by
the secondary phase terms and is a 2-order polynomial of n, E(n) =

Dk Im(K—lks'ks;)

§ : . :
n T Sesest Sk is the k-th column of IF signal matrix s(n, k),

Sk is its derivative, s

k
k - .
x, and Ky, is a constant depending on k.

is its conjugate, Im(x) is the imaginary part of

Based on Theorem 1, we first compute E(n) based on IF signals.
To calculate R¢(n), we need to know its expression. However, it
depends on the shapes of imaged objects and is not known in
advance. Theorem 1 indicates that Rg(n) is a 2-order polynomial of n.
Thus, we only need to figure out its second order coefficient, because
the first order and constant phase errors have no impact on imaging.
We observe that the hand motion error R, (n) is dominated by noise-
like fluctuation around zero when intentionally moving along a
straight line. If fitting such a pattern using a 2-order polynomial,
the second order coeflicient is usually close to zero, as shown in
Figure 11. As a result, we obtain the second order coefficient of
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Figure 11: Motion errors in a real trace.

Rs(n) by fitting E(n) using a 2-order polynomial, since the second
order coefficient of their difference is zero. Then, we compute E(n)—
Rs(n) to get the motion error R.(n). Once R (n) is estimated, the
corresponding phase errors can be determined and removed from
the signals. As shown in Figure 8, 9, and 10, MPGA gives clear
images of the target.

4.4 Proof of Theorem 1

The development of MPGA depends on the correctness of Theorem
1. In this section, we provide the key steps about how the theorem
is derived. Refer to [39] for the detailed proof.

PGA uses image signals to estimate phase errors. Instead, we
use IF signals to remove the assumption of narrow-beam signals
and explicitly handle secondary phase terms. According to [12], the
k-th column of IF signals is given by:

Sk(fl) — s(n,k) — Z ej{wfn+¢f+K§Re(n)+9!‘(n)}’

1
where n is the azimuth index, k is the range index, and i is the index
for reflectors, a){.‘, ¢f‘ and K’é are constants. Re(n) is the motion

error. The phase errors introduced by Re(n) vary with k since K Ilg
is different. Therefore, instead of directly estimating phase errors
like PGA, we first determine motion errors and then scale them
to get phase errors for various k. 95 (n) captures the secondary
phase terms, which are non-linear with respect to n and can be
approximated by a 2-order polynomial of n [12].

The intuition of our proof is to derive a formula similar to Equa-
tion 3. That is, we establish the relationship between R.(n) and
[>x Im(%ﬁékSZ)]/[Zk sksZ]. The challenge is that s; in our case

is much more complicated than [ in PGA derivation, since we
consider array reflectors and secondary phase terms. To solve this
problem, we define @f(n) = col’Fn + gb{c + Qf(n). Since @;‘(n) isa
phase, we only care about its remainder divided by 27. Our key
observation is that @f(n) varies significantly for different i (e.g., 0
to 60 rad in our case) so that its remainder widely distributes over
the range of [0, 27]. To simplify sz, we treat (-Bf(n) as a uniform
random variable over [0, 27], and @f and @}‘ are independent when
i # j. Then s is given by

Z KRR +OF ()}

1

sk(n) =

Based on this transform, we can approximate i sgs, using its
expectation if the standard deviation is small. We show that
E[Z sksp] = KM and Var[z sEsp] = KM(M = 1),
k k
where K is the number of range indices and M is the number
of reflectors. When K is large (e.g., 592 in our implementation),
E[Xk SkSZ] is much larger than the standard deviation /KM(M — 1).
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Figure 12: Combined freq. response of speaker & mic.

Thus, it is reasonable to approximate X ¢ sgs;. with its expectation.
By applying a similar trick, we show that

1 . 1
Zlm(ﬁsksz) x Re(n)Zsksz + Z Z IFG)I. (n),
k R k ki R
Thus, we have
Sem(esesy)  Zk B e ()
—f— 2R+ —2——.
Dk SkSy. KM

Let E(n) denote the integral of the above equation. Then,

Sk Im(KL,};s'ks]’;) 2k 2i KLJ/;@;C(’?)
E(T’I) = /n Tksz = Re(n) + T

Let Rs(n) denote the last term of the above equation. Then E(n) =
Re(n) + Rs(n). Since @f is a 2-order polynomial of n for any k and
i, R¢(n) is also a 2-order polynomial.

5 FOCUS AND DENOISE

Blur and noise in images: The image resolution of AIM is de-
termined by signal bandwidth. To achieve high resolution, we use
chirps sweeping from 10 KHz to 22 KHz. However, the built-in
speaker/microphone on a mobile has different gains at these fre-
quencies, as shown in Figure 12. We see that there is 16 dB difference
between the minimum and maximum gains. As a result, acoustic
signals are distorted. The distortion causes the envelop of a received
chirp to change over time. Therefore, the signal magnitude A in
Equation 1 depends on the range index k, since k indicates the
time order of received samples. In this case, Equation 1 is not a
standard 2-D sinusoid, and its FFT is not a delta function in the 2-D
frequency space and experiences certain spread over the vertical
direction (corresponding to k). Hence, when imaging a point, we
see a blurred strip, instead of a clear point, as shown in Figure 13(a).

Also, we observe noise distributed over the whole image in Figure
13(a). This is due to imperfect interference cancellation and the
presence of environment noise. To get high-quality images, we
need to eliminate blur (focus) and remove noise (denoise).

Frequency response measurement: To minimize the blur, we
need to know the gains of the built-in speaker and microphone
at various frequencies, i.e., their frequency response. Since we only
care about the aggregate distortion of the speaker and microphone,
we measure their combined frequency response. The procedure is
outlined as follows. First, we place the mobile on a table, play the
acoustic signals with the speaker, and record them with the micro-
phone. Then, we place a 2cmx2cm cardboard at 20 cm distance in
front of the speaker and microphone, and calculate the difference
between the recorded signals with and without the cardboard to
remove all echoes except the one from the cardboard. Finally, we
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compare the obtained signals with the transmission signals to de-
rive the frequency response. This procedure requires no special
equipment and can be easily repeated by users on their own phones.

To evaluate the accuracy of this approach, we perform another
measurement in the anechoic chamber. We use two identical phones,
which have same speakers and microphones. We let one phone play
acoustic signals and the other record them. Since there is no echo
in the chamber, the recorded signals only experience speaker and
microphone distortion. By comparing the recorded signals with
the transmission signals, we compute the frequency response. As
shown in Figure 12, the anechoic chamber measurement matches
the in-room measurement, which indicates the high accuracy of
in-room measurement.

Focus and denoise using Lasso regression: Once the frequency
response is known, a natural approach to cancel its effect is to
compensate the acoustic signals with the inverse response before
they are transmitted. However, since the frequency response has a
deep notch at 16 KHz as shown in Figure 12, we have to significantly
reduce the power of other frequency components to get flat gains.
This method results in severe reduction in received signal strength
and degradation on image quality.

To remove the blur, we make the following important observa-
tion: the blur introduced by speaker and microphone distortion is
deterministic, since their frequency response is unchanged. There-
fore, we can include the measured frequency response in our simu-
lation, and determine how the image of a single point spreads due
to the distortion. Such spread is called point response. There are two
observations about the point response of our system. First, it is 1-D
because the distortion makes the 2-D FFT of Equation 1 spread over
the vertical direction as discussed earlier. Second, it is invariant
to the position of the imaged point. Since any object consists of
a set of points, its generated image is the superposition of shifted
versions of point response. Mathematically, we have

I =RX,

where X is the object image without the blur, and each of its non-
zero element represents a point on the object. R captures the effect
of distortion. Each R’s column is a shifted version of the point
response. I is the generated image under the distortion. Since both
I and R are known, we can solve X to get a clear image of the object.
To this end, we use Lasso regression [25] to find X that minimizes

IT - RX|? + A|X],

where A is the regularization parameter. Lasso regression not only
removes the blur effect, but also helps suppress the noise. This is
because the noise distributes randomly and does not match the
pattern of point response, and the regularization term prevents
X from overfitting the noise pattern. The effectiveness of Lasso
regression depends on the selection of A. If it is too small, X will
overfit the noise in the raw image I. If it is too large, some weak
reflectors will be treated as noise and removed from the image.
Based on our experiments, we select A equal to 0.01 to balance these
factors. Figure 13(b) shows the image after applying our approach.

The above approach is conceptually close to the CLEAN algo-
rithms [22, 34] in radio astronomy. They are invented to remove
artifacts introduced by sidelobes of phased array antennas. In our
context, the main reason for degraded image quality is the speaker
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(a) w/o focus & denoise

(b) focus & denoise
Figure 13: Imaging a 2cmx2cm cardboard.

and microphone distortion. Hence, our approach captures and cor-
rects the impact of such distortion. The CLEAN algorithms use
deconvolution to obtain a clean image, while we use Lasso regres-
sion so that our approach can adapt to different ambient noise levels
by tuning the regularization parameter.

6 DISCUSSION
We discuss potential ways to further improve the usability of AIM.

Imaging range: Based on the experiments, the imaging range of
our system is about 0.6 m. A simple way to increase the range is
to increase the speaker volume. In fact, the volume of our phone
(Samsung S7) is lower than the average volume of phone speakers
[54]. Many devices support 10 - 17 dB higher volume [30]. Another
way to improve the range is to exploit multiple speakers and mi-
crophones available on a mobile, which can form a MIMO imaging
radar to improve SNR [19]. More sophisticated interference can-
cellation is also helpful to reduce interference, making it easier to
detect weak received signals.

Image resolution: The image resolution of AIM depends on two
factors. For horizontal dimension, the resolution is inversely pro-
portional to the length of synthetic aperture L. In our system, we
choose L equal to 25 cm to balance the scan effort and image qual-
ity. Increasing L is helpful to improve the resolution. For vertical
dimension, the resolution is inversely proportional to the signal
bandwidth. The built-in speaker on our phone can send signals
up to 22 KHz, while external miniature speakers (e.g., ones used
in headphones) may support up to 43 KHz [5]. One can attach
such miniature speaker on the mobile to replace the built-in one.
This greatly helps improve the image resolution while remaining
compact and easy to move.

3-D imaging: Our system can be extended to support 3-D imaging
by using two microphones. The phase difference between them
provides the position information on the third dimension [44].

7 IMPLEMENTATION

We implement our system on an off-the-shelf smartphone (Samsung
Galaxy S7 unlocked version). We use its built-in speaker to play the
pre-generated audio file to transmit acoustic signals. The signals
are linear chirps whose frequency sweeps from 10 KHz to 22 KHz
during 10 ms. The interval between two consecutive chirps is 90 ms
to minimize interference between them.

We use the built-in microphone at the bottom of our mobile to
receive signals. The sampling rate is 48 KHz, which is supported
by most phones. The separation between the speaker and micro-
phone is only 5 mm, and hence the interference caused by direct
transmission is significant. We develop an Android app to process
received signals and generate images. We use NDK to implement
our processing algorithms to maximize the efficiency. We use FFTW
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Figure 15: Non-linear hand motion errors.

package [20] for FFT operations. We use GNU Scientific Library
(GSL) for other mathematical operations in our algorithm.

8 EVALUATION

In this section, we evaluate each component of AIM and its overall
performance. For experiments, we put the target object on a stand,
and remove objects within 1 m from the target. A user stands in
front of the target, holds a phone in hand, and swipes 25 cm along
a straight line, as shown in Figure 2. We put two markers separated
by 25 cm on the user’s clothes to provide rough reference positions
for the start and end of synthetic aperture. The swipe takes 5s. A
timer is displayed on the UI of our app to provide time reference.
The distance between the phone and target is 0.4 m. Although
some rough reference is provided, the user hand movement cannot
exactly follow the desired trajectory and speed. Deviation in either
of them causes motion errors. We use MPGA to correct these errors.

8.1 Micro Benchmark

Interference cancellation: To measure the performance of inter-
ference cancellation, we collect five traces without placing an object
in our experiment setup. We quantify the interference cancellation
by comparing the signal strength before and after the cancellation.
We compare our approach with two common digital interference
cancellation methods: 1) subtract the pre-recorded direct transmis-
sion without considering AGC; 2) directly estimate channel taps
using Least Square and remove ones outside the target region (0.4 m
- 0.6 m from the mobile).

As shown in Figure 14, the subtraction based method (SUB) can-
cels 30 dB interference. The channel estimation based method (CE)
only cancels 29 dB because the presence of direct transmission
overwhelms the target and background reflection and degrades the
estimation accuracy on the corresponding channel taps. Our first
stage cancellation (S1) is based on subtraction based method but
takes AGC into account. It achieves 6 dB higher cancellation than
subtraction based method. Our 2-stage cancellation scheme (S1+52)
cancels 41 dB in total by removing residual interference using the
channel estimation.

Hand motion errors: To quantify hand motion errors, we ask 5
users to swipe a mobile by hand as described in our experiment
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Figure 17: Images with various amounts of phase errors.

setup. Each user has 5 minutes to get familiar with our system and
then swipes a mobile for 5 times. We use two cameras (Microsoft
Q2F-00013 [15]) to record hand motions by tracking two green
markers on each user’s hand. One camera tracks motions in the x
and z axes, and the other tracks those in the y-axis. The tracking is
implemented based on color filtering using OpenCV 3.0 [10]. The
distance between the camera and hand is 40 cm. We create favorable
lighting condition so that camera based tracking is accurate. The
motion errors are derived by comparing the tracked coordinates
with the desired trajectory. Also, we remove the linear and constant
motion errors by fitting the coordinates over time using a linear
model. As discussed, these errors have no impact on image quality.
The non-linear motion errors for each axis are shown in Figure
15. The distribution of these errors can be modeled by Gaussian
functions with zero mean, and the standard deviations for three axes
are 6 mm, 2 mm, and 2 mm. We observe that the x-axis (azimuth
direction) has the largest error since users cannot keep a desired
speed when swiping along this direction and speed errors translate
to motion errors. The non-linear motion errors are within 1 cm in
most cases. This is as expected because it is not difficult for users
to keep a linear hand motion over a short distance (i.e., 25 cm).

MPGA: Next, we evaluate MPGA by comparing the actual and esti-
mated phase errors using MPGA. Although camera based tracking
is acceptable for capturing motion errors, its accuracy is insuffi-
cient to derive phase errors, since a small tracking error (e.g., 1 mm)
translates to a large phase change (e.g., 0.6 rad). Thus, we generate
synthetic motion traces and received signals for imaging rectangle,
triangle, and diamond shapes. The motion errors follow the distri-
butions as shown in Figure 15. In this way, we have the ground
truth for the motion trajectory and corresponding phase errors. We
apply MPGA on the synthetic traces to estimate the phase errors.
For comparison, MPGA without compensating quantization errors
(w/o Quan) and PGA are also evaluated, as shown in Figure 16.
We observe that MPGA yields the lowest median estimation error:
0.2 rad. Without compensating quantization, the error increases to
0.5 rad. PGA has the median error of 1.6 rad, which indicates it is
ineffective in our context. To illustrate the impact of the remaining
phase errors not corrected by these algorithms, we show the images
of a point with different amounts of phase errors in Figure 17. We
see that the image quality is degraded when the average phase error
is larger than 0.4 rad.
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Ongoing proc. Post processing
Dechirp | Intf. cancel | MPGA | RMA | FFT | Focus
0.005 s 0.04 s 0.16s | 0.46s | 0.35s | 0.26 s

Table 1: Running time of AIM.

The effect of MPGA on imaging a real object is shown in Figure
18, where the target is a bar-shape cardboard as shown in Figure
18(a). Without applying MPGA, the images are severely distorted
as shown in Figure 18(b) and (c). Figure 18(e) shows that the image
quality is significantly improved when MPGA is applied.

Focus and denoise: Figure 18 also shows the effectiveness of our
focus and denoise algorithm. As discussed in Section 5, speaker and
microphone distortion blurs the image along the vertical direction.
The effect can be easily observed when imaging a horizontal bar, as
shown in Figure 18(d). By applying our focus and denoise algorithm,
the blur effect is removed and the noise in the image is effectively
suppressed, as shown in Figure 18(e).

We repeat the above experiment using various phones (Samsung
S7 AT&T version and S8), which have different speaker and mi-
crophone frequency response from our main phone (S7 unlocked
version), as shown by Figure 12 and 19. Although various response
causes different distortion on images, our algorithm can remove
the blur and provide clean images on both phones as shown by
Figure 19(b) and (c). This demonstrates the robustness of our focus
and denoise algorithm and shows that our system is general and
applicable to different phones.

Resolution: We evaluate the resolution of our system by imaging
a point-like object and measure its spread. Since the wavelength of
our signals is around 2 cm, we use a 2 cmx2 cm cardboard as the
target. A smaller object can cause signals to traverse it via diffrac-
tion. The generated image is shown in Figure 13(b). The spread,
which is computed from the pixel with the maximum magnitude to
the pixel with 3 dB degradation, is 1.8 cm in the vertical direction
and 1.9 cm in the horizontal direction. This resolution is sufficient
to capture the shapes of many daily objects.

Audibility: To achieve high image resolution, we use signals from
10 KHz to 22 KHz. To quantify the audibility, we measure the loud-
ness of our signals using a software sound meter [4]. At 0.5 m
distance from the speaker and using the same volume as other
experiments (50% of the maximum), the loudness is around 49 dB.
For reference, the loudness of ambient sounds in our lab is 35 dB.
while that of human talking is 62 dB. Also, our signals are only
played when the mobile scans over synthetic aperture, which takes
about 5 s to complete. Thus, the impact of the sound coming from
our imaging system is small.

Running time: Table 1 shows the running time of major compo-
nents in AIM. Dechirp and interference cancellation are performed
every time when reflected signals of a transmitted chirp are re-
ceived. Their processing time for one chirp period is 5 ms and 40
ms, respectively. Their total time is within the interval between
two consecutive chirps (90 ms). As a result, once we finish moving
the mobile over the synthetic aperture, dechirp and interference
cancellation are also done and have no impact on processing delay.
MPGA, RMA formatting, FFT, and focus and denoise are applied
after all signals are collected. In total, they take 1.2 s to complete.
As a result, the processing delay of AIM is 1.2 s.
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(a) Object ) No focus or MPGA

(c) Only focus
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Figure 18: Imaging a horizontal bar: (a) ground truth; (b)(c)(d)(e) images with applying MPGA / focus or not.
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Figure 19: Imaging a horizontal bar with different phones.

8.2 System Benchmark

We evaluate the performance of AIM using various objects. To mea-

sure the image quality, we consider the following metrics:

o Szymkiewicz-Simpson similarity s = S/ \/S,_S , where S; and S
are the object areas in the generated image and ground truth
image, respectively, and S¢ is their intersection. The area is cal-
culated by checking if the magnitude of each pixel is greater
than a threshold 0.3 (the maximum pixel is normalized to 1). The
pixel with smaller magnitude indicates no reflection from the
corresponding position and is not counted as a part of the object.
The similarity value equal to 1 indicates perfect matching.

o Height error he, defined as |h; — hy|/hg, Where h; is the object
height in our image and hy is the ground truth.

e Width error we, defined similarly to the height error.

e Ratio error re, defined as |rj—r4|/rg, where r; and r are estimated
and actual ratios between the height and width.

To smooth the object boundary, the images are linearly interpolated

from 60x24 pixels to 160x120 pixels. To remove noise out of the

interested region, we apply a binary mask on the images. The size of
the mask is 40 cmx25 cm. The image is displayed using gray scale,
where brighter points indicate higher magnitude. Each experiment
is repeated for 5 times. We report the average performance of each
experiment and show the images with the median Szymkiewicz-

Simpson similarity.

Imaging shapes: We image the cardboards with various shapes un-

der Line-of-Sight (LoS) scenarios, including rectangle (25 cmx18 cm),

diamond (23 cmX17 cm), triangle (24 cmX17 cm), circle (19 cmx19 cm),

and hollow rectangle (28 cmx18 cm). Their pictures (ground truth)
are shown in the first row of Figure 20, and the images generated
by AIM are shown in the second row. We observe the object shapes
in the generated images match the ground truth well, and the simi-
larity metrics are from 0.72 to 0.89 for different shapes, as shown in
Table 2. The height, width, and ratio errors are also small, ranging
from 0.01 to 0.11. These results indicate the effectiveness of AIM.

Imaging weapons: Weapon detection is a potential application of
our techniques. In this experiment, we evaluate the performance of

l Object ‘ Setup ‘ s ‘ he ‘ We ‘ Te ‘
Rectangle LoS 0.89 | 0.02 | 0.08 | 0.07
Triangle LoS 0.85 | 0.03 | 0.07 | 0.10
Diamond LoS 0.86 | 0.06 | 0.03 | 0.03
Circle LoS 0.79 | 0.10 | 0.01 | 0.11
Hollow rect. LoS 0.72 | 0.06 | 0.07 | 0.01
Gun LoS 0.81 | 0.01 | 0.02 | 0.03
Cleaver LoS 0.87 | 0.04 | 0.03 | 0.07
Gun In bag 0.76 | 0.05 | 0.02 | 0.06
Cleaver In bag 0.75 | 0.02 | 0.13 | 0.14
Gun Under clothes | 0.76 | 0.02 | 0.02 | 0.00
Cleaver Under clothes | 0.77 | 0.08 | 0.06 | 0.14
Hollow rect. | Under music | 0.70 | 0.13 | 0.11 | 0.02
Hollow rect. | Under voice | 0.71 | 0.07 | 0.09 | 0.02
Rectangle 60 cm Dist 0.84 | 0.01 | 0.10 | 0.11
Rectangle 80 cm Dist 0.70 | 0.06 | 0.11 | 0.20
Rectangle 100 cm Dist | 0.64 | 0.16 | 0.23 | 0.09

Table 2: Performance metrics for various experiments.

imaging a toy gun (18 cmx14 cm) and cleaver (27 cmx10 cm). The
ground truth pictures and images generated by AIM are shown in
Figure 21(a), (b), (d), and (e). We see that our images clearly show
the outline of the weapons, and the similarity metrics for the gun
and cleaver are 0.81 and 0.87, respectively, as shown in Table 2.

In-bag imaging: We evaluate AIM when the weapons are put in
a black trash bag. Visually, we cannot see what object is in the
bag. However, as shown by Figure 1, acoustic signals are able to
penetrate through the bag and sense the object. As shown in Figure
21(c), (f), and Table 2, the images still capture the shapes of the
weapons, but the similarity metrics for the gun and cleaver are
reduced to 0.76 and 0.75, respectively. The degradation is because
acoustic signals are attenuated when penetrating through the bag.

Under-clothes imaging: To explore under-clothes weapon de-
tection, we let a person wear a hoodie with a front pocket. The
weapons are put in the pocket and not visible. We sweep the mobile
at 40 cm distance in front of the person and generate images using
AIM. When weapons are not present, there is only noise in the
image, as shown in Figure 22(a). This is because (i) the reflection
from clothes is weak and (ii) body reflection is weak as the acoustic
signals are damped by multiple layers of clothes on the person be-
fore arriving at his body. When the weapons are present, acoustic
signals penetrating the pocket are reflected by the weapons. These
signals are received by the microphone and used to generate images,
as shown in Figure 22(b) and (c). From these images, we can see the
shapes of weapons. The similarity metrics for the gun and cleaver
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(a) Rectangle (b) Diamond c) Triangle (d) Circle ) Hollow rect.
(f) Rectangle (g) Diamond (h) Triangle ) Circle ) Hollow rect.

Figure 20: Imaging various shapes. 1) First row: objects; 2) second row: images.
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Figure 21: Imaging weapons.

are 0.76 and 0.77, respectively. If the weapons are hidden under
multiple layers of clothes, speakers with high volume are required.

Imaging under environment noise: We evaluate the imaging
performance under environment noise. We consider 1) different
types of music (Jazz, Pop, and Classic) played together using the
same volume as imaging signals and 2) two people keep talking
during the experiment. The noise sources are 1 m away from the
mobile. Under these conditions, the imaging results for a hollow
rectangle are shown in Figure 23 and Table 2. Compared to the
case without noise, the performance does not degrade, because the
environment noise is usually lower than 10 KHz [62], while our
signals for imaging are above 10 KHz.

Impact of nearby objects: To evaluate the impact of background
reflection from objects close to the target, we place a whiteboard
near our experiment setup. The board is in the yz-plane as shown by
Figure 4(a) and at 0.5 m distance from the center of synthetic aper-
ture. In this way, the board does not occlude the target reflection but
introduces background reflection with one-way propagation dis-
tance 0.4 - 0.6 m. Such reflection is not removed in our interference
cancellation, because it has similar propagation distance as the tar-
get reflection. To clearly observe its impact, we compare the images
of a bar with and without the board, as shown in Figure 24(a) and
(b). We see that background interference introduces artifacts in the
image. To quantify them, we count the pixels with magnitude larger
than 0.1 (barely visible) outside the target area. Without the board,

(a) No weapon (b) Gun ) Cleaver

Figure 22: Imaging weapons under clothes.
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Figure 23: Imaging under environment noise.

the image only has 1% such pixels, which indicates that the image
is clean. With the board, the percentage increases to 7%. When the
board is moved 0.1 m away from the target, the amount of artifacts
is reduced to 3%, as shown in Figure 24(c). In this case, background
interference is partially separable from the target reflection, and can
be mitigated by our interference cancellation. Also, the interference
strength is reduced due to increased propagation distance.

Imaging at various distances: To evaluate imaging performance
at a longer distance, we produce the images for a rectangle at 0.6 m,
0.8 m, 1.0 m from the mobile. The results are shown in Figure 25.
We observe that the image quality degrades as the imaging distance
increases due to the reduced received signal strength. At 0.6 m,
the shape of the target is preserved and the similarity between the
image and ground truth is 0.84, as shown in Table 2. At 0.8 m and
1 m, the similarity values reduce to 0.7 and 0.64, respectively.

9 RELATED WORK

Acoustic based imaging and sensing: Holography is a com-
monly used approach in acoustic imaging [23, 26, 36]. It uses 2-D
receiver array to collect signals reflected by the target object, and
applies 2-D FFT on the received signals for imaging. If a 2-D array is
not available, a single receiver with precisely controlled movement
is used to emulate it.



MobiSys ’18, June 10-15, 2018, Munich, Germany
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Figure 24: Imaging under background interference.
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Figure 25: Imaging at various distances.

Pulse-echo based approach is also widely used [13, 21]. It trans-
mits acoustic pulses and estimates the propagation delay of received
signals, which is used to locate a point on the object contour. By
scanning over the space, the object contour can be constructed.
Based on this approach, harmonic imaging [58] and multi-beam
imaging [37, 48] are developed to further improve the image qual-
ity. Similar to holography, pulse-echo based approach requires a
transceiver array or scannable transceiver.

SOund Navigation And Ranging (i.e., SONAR) [21, 24, 35] is used
to detect and image objects with sounds, typically for long-distance
underwater scenarios. These systems are based on pulse-echo meth-
ods or synthetic aperture techniques. Directional receivers and re-
ceiver arrays are commonly used to determine the angle of arrival
and increase the detection range [24].

Ultrasound imaging systems are developed using pulse-echo
based methods, and widely used for medical purpose [29] and
weapon detection [2]. Due to the low propagation speed and wide
bandwidth of ultrasound, the delay of an echo can be accurately
measured. Ultrasonic transducer arrays or scannable transducers
are required to construct an image.

Recently, several new acoustic imaging systems are developed.
In [42], the authors design a system to detect the object edges
using acoustic meta-materials. The system achieves 1 cm resolu-
tion, but meta-materials are not widely available, which limits its
applications. In [27, 53], the authors develop acoustic imaging sys-
tems based on planar microphone arrays. Wideband beamforming
[27] and adaptive beamforming [53] are used to generate images.
To achieve good image resolution, both systems use sizable mi-
crophone arrays (about 20 cmx20 cm), which is unacceptable for
smartphones. [37] fuses measurements of a microphone array and a
camera to generate 3-D surface geometry of an object. The systems
developed in [32] and [3] augment FPGA platforms and smart-
phones with external ultrasound transducer arrays for imaging. In
[6], the authors develop a system to image a mannequin around the
corner using SAR techniques. To avoid trajectory errors, a motion
controller is used to precisely control the movement of the speaker
and microphone.

Different from existing work, AIM is the first acoustic imaging
system using only an off-the-shelf mobile. For imaging, we move a
mobile by hand to mimic a microphone array, and develop MPGA to
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remove the impact of hand jitters. Since speakers and microphones
on mobiles are omni-directional, we develop a 2-stage cancellation
scheme to minimize the self and background interference. Further-
more, smartphone speakers and microphones are not optimized for
imaging and introduce severe distortion, so we develop a focus and
denoise algorithm to remove the impact of distortion.

Acoustic signals are also used to measure the distance between
the mobile and target [40, 41, 46, 47, 61, 64], which can be combined
with our approach for simultaneous ranging and imaging.

RF based imaging: RF based imaging radars are widely deployed
[11, 14, 18, 51, 52], which transmit RF signals up to GHz with high
power [43]. Different signals have been adopted, including pulses,
modulated, and unmodulated continuous waves. Synthetic aperture
technique is developed for imaging radars [12, 38, 43, 43] to improve
resolution and coverage. Our system also relies on SAR technique
but faces new challenges due to low carrier frequency, short target
distance, slow propagation of the sound, and limited hardware.
[65] develops an imaging system with 60 GHz transceivers. It
uses RSS series analysis to determine 1-D information of target
objects (e.g., height and width). Our approach uses both magnitude
and phase to obtain 2-D images and requires a simpler setup (i.e.,
sweeping a mobile). [31] and [60] leverage RSS attenuation when
signals pass through an object to image its cross section. [31] uses
WiFi signals, while [60] is based on RFID. To set up these systems,
[31] needs to use two drones to transmit and receive WiFi signals,
while [60] requires deploying two RFID arrays at favored loca-
tions. In comparison, our approach only needs a smartphone and
requires minimum setup, which is critical for ubiquitous imaging.
[1] captures human skeletons through a wall with an antenna array
sending signals over 5.46 — 7.24 GHz. This approach is tailored for
moving human figure, whereas we can image general objects.

Interference cancellation: Several RF interference cancellation
schemes are developed [8, 9]. The major contribution comes from RF
and analog cancellation, which cannot be applied to our case. [45]
develops secure acoustic communication by sending and canceling
the jamming signals. Its interference cancellation is similar to Stage
1in our 2-stage scheme but does not consider the AGC scaling. Our
approach achieves 6 dB higher cancellation by considering AGC,
and additional 5 dB cancellation using Stage 2.

10 CONCLUSION

We develop a smartphone based acoustic imaging system. Our
innovation consists of (i) a new phase error correction algorithm for
imaging close-by objects using slowly propagating acoustic signals
with low carrier frequency through digital processing, and (ii) an
algorithm to remove the blur caused by the speaker and microphone
distortion. Our implementation and experiments show that it is
feasible to image an object under LoS, under-clothes, and in-bag
scenarios. As part of future work, we will improve the image quality
at longer distance and extend our system to 3-D imaging.
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