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ABSTRACT

The popularity of smartphones has grown at an unprecedented

rate, which makes smartphone based imaging especially appealing.

In this paper, we develop a novel acoustic imaging system using

only an off-the-shelf smartphone. It is an attractive alternative to

camera based imaging under darkness and obstruction. Our system

is based on Synthetic Aperture Radar (SAR). To image an object, a

user moves a phone along a predefined trajectory to mimic a vir-

tual sensor array. SAR based imaging poses several new challenges

in our context, including strong self and background interference,

deviation from the desired trajectory due to hand jitters, and se-

vere speaker/microphone distortion. We address these challenges

by developing a 2-stage interference cancellation scheme, a new

algorithm to compensate trajectory errors, and an effective method

to minimize the impact of signal distortion. We implement a proof-

of-concept system on Samsung S7. Our results demonstrate the

feasibility and effectiveness of acoustic imaging on a mobile.
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1 INTRODUCTION

Motivation: The ability to image an object has profound applica-

tions to the society, such as health care, entertainment, news, and

much more. With the unprecedented growth of smartphone popu-

larity, smartphone based imaging is very appealing. While smart-

phone cameras are getting increasingly powerful, they still lack in

many scenarios, such as imaging in darkness or under obstruction.

RF based imaging is an interesting alternative. For instance, RF

imaging radars [43] have been widely used to monitor weather

and identify military targets. However, these radars are big, power
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Figure 1: Penetration coefficients of sounds.

hungry, and mechanically complex. Recently, [1, 31, 60, 65] develop

pioneering RF imaging systems based on light-weight devices, such

as drones, RFID arrays, and millimeter-wave transceivers. While

these devices are more accessible and affordable than radars, they

still require special hardware and significant effort to set up.

Acoustic imaging is another alternative. It complements camera

based imaging in the following scenarios. First, its performance does

not depend on lighting condition and it can be used in darkness.

An interesting application is using acoustic imaging for indoor

mapping, which is preferred to perform at night to minimize the

impact of human activities. A user can also use acoustic imaging to

detect obstacles on the road at night or in caves.

Second, acoustic signals can penetrate many materials as shown

in Figure 1, and support imaging objects covered by these materials.

With this capability, a policeman can use acoustic imaging to detect

weapons under clothes, which may potentially help prevent recent

shooting tragedies [56, 63].

Third, acoustic signals can propagate around obstructions through

diffraction on their edges [49] or reflection from nearby furniture

or walls. This capability supports imaging objects behind obstruc-

tions even if the signals cannot penetrate them directly. With this

capability, a robot can use acoustic imaging to see around corner

[6] and plan its movement correspondingly.

Compared with RF based approaches, acoustic imaging has two

advantages. First, we can easily customize transmission signals

and process received signals in software without special hardware.

Thus, acoustic imaging can be implemented as a mobile app. Second,

acoustic signals are much slower than RF signals. This helps achieve

high image resolution, which is determined by the ratio between

the signal propagation speed and bandwidth [28]. To achieve the

same resolution of acoustic imaging using 10 KHz bandwidth, an

RF based system needs around 9 GHz bandwidth!

Challenges: While acoustic imaging is attractive, enabling it on a

mobile involves significant challenges. Ultrasound medical imag-

ing uses transducer arrays to send and receive signals to generate

high-quality images. However, a smartphone has a small number of

microphones and speakers, which are insufficient to form a sizable

array. To solve this problem, we apply synthetic aperture radar

(SAR) for imaging [12, 44]. As shown in Figure 2, we move a phone

in front of the target to mimic a virtual microphone array. To realize

SAR imaging on a smartphone, we should address the following

challenges that are unique to smartphone based acoustic imaging:

1) Self and background interference: In addition to reflection from
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Figure 2: Smartphone based acoustic imaging.

the target, signals received by the microphone contain direct trans-

mission from the speaker and background reflection. These signals

overlap in time with target reflection and cause significant interfer-

ence, making the image too noisy to see. In comparison, RF based

imaging systems use directional antennas to limit interference.

2) Deviation from the trajectory: SAR requires the user to move a

phone along a predefined path (e.g., a straight line), but it is hard

for a hand to exactly follow the desired trajectory. Trajectory er-

rors translate to phase errors of received signals and significantly

blur the image. Several autofocus algorithms are proposed for RF

based systems to estimate and compensate for these errors [12].

Among them, Phase Gradient Algorithm (PGA) is the most effec-

tive [17, 59]. However, our experiments show that PGA cannot be

directly applied to our context. A close examination reveals that

PGA assumes narrow beam signals (i.e., the carrier frequency is

much larger than bandwidth), well separated dominant reflectors,

and no quantization errors. These assumptions do not hold for mo-

bile acoustic imaging systems due to low carrier frequency, short

imaging distance, and digital signal processing.

3) Speaker and microphone distortion: To get high-quality images,

we use signals with large bandwidth (10 KHz to 22 KHz). However,

the frequency response of speakers and microphones on mobiles

is not flat across the selected band. This is not surprising since

frequencies above 15 KHz are hardly audible and not optimized.

The uneven response introduces significant distortion to signals and

blurs the generated images. Commodity speakers and microphones

introduce such strong distortion. RF and ultrasound transceivers

designed for imaging purpose do not have this problem.

Our approach: We develop an Acoustic Imaging system on a

Mobile, called AIM. It is based on SAR, where a user holds a mobile

and swipes over a line in front of an object, as shown in Figure 2.

We address (1) by developing a 2-stage interference cancellation

scheme. In the first stage, we cancel the self interference by sub-

tracting pre-recorded direct path signals from received samples.

We account for automatic gain control (AGC) of the microphone

to enhance the cancellation. In the second stage, we remove the

background interference by exploiting the fact that it has different

propagation delay from the target reflection.

We address (2) by developing a new phase error correction al-

gorithm called MPGA. MPGA consists of two major components:

(i) estimating and compensating for quantization errors, which are

ignored in existing SAR imaging, (ii) using stochastic methods to

study received signals and estimate phase errors so that we can

remove the assumption of narrow beam signals and capture the

impact of closely spaced dominant reflectors.

We address (3) based on a key observation that speaker and

microphone distortion blurs the image in a deterministic way. We

measure their frequency response and find out the distortion pattern
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Figure 3: AIM system.

introduced by them. A distorted image is expressed by the product

of that pattern and the corresponding undistorted image. We solve

the undistorted image using Lasso regression. Meanwhile, this

procedure also removes the noise from the image.

The processing flow of AIM is summarized in Figure 3. Upon

receiving acoustic samples, AIM applies our 2-stage cancellation

approach to remove interference. It then performs the standard

dechirp process and uses our MPGA to compensate phase errors.

Following that, it uses the standard Range Mitigation Algorithm

(RMA) [12] to get an image. Finally, it applies focus and denoise pro-

cedure to remove distortion and noise from the image. To evaluate

AIM, we implement a proof-of-concept system based on commercial

smartphones. The experiment results show that AIM can effectively

capture images for various objects with a similarity of 0.7 to 0.9 in

line-of-sight (LoS), under-clothes, and in-bag scenarios. Processing

delay of AIM is only 1.2 s on Samsung S7.

The contribution of this paper is summarized as follows:

• We propose a new phase error correction algorithm MPGA for

acoustic imaging under mobile contexts. It can be applied to other

scenarios to remove the impact of imperfect motion.

• We develop an approach to remove distortion and noise from

images. The idea is beneficial to other applications where speaker

and microphone distortion is a concern, such as acoustic tracking.

• We implement an acoustic imaging system on a mobile, and

demonstrate its feasibility using experiments.

2 BACKGROUND ON SAR IMAGING

Radio-frequency imaging is widely used for remote sensing appli-

cations, such as earth observation and military surveillance. The

commonly used signal frequency is from 1 GHz to 40 GHz [43]. The

key technique behind such imaging system is Synthetic Aperture

Radar (SAR). Its main idea is moving a radar with small aperture

over a long distance to emulate a large-aperture radar that helps

generate images with much higher resolution. A linear SAR system

is shown in Figure 4(a), where the radar moves along the x-axis
(called azimuth direction). The total distance moved is called syn-

thetic aperture, denoted as L.
During the movement, the radar sends chirps periodically, whose

frequency linearly sweeps from the minimum to the maximum over

time, as shown in Figure 4(b). Meanwhile, it collects the reflected

signals to generate images. The separation between two chirps is

large enough to ensure that all reflected signals of the current chirp

are received before the next chirp is transmitted.

We usen to denote the index of transmitted chirps, called azimuth

index, since the chirps are sent as the radar moves along the azimuth

direction. For each transmitted chirp, we use k to denote the index

of the received samples, called range index, since early samples

are reflected by the objects with a shorter range to the radar. By

multiplying with the transmitted chirps (i.e., dechirp), the received

samples are down-converted and stored as a 2-D data matrix s(n,k),
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(a) System view (b) Chirp signals

Figure 4: Synthetic aperture radar.

called intermediate-frequency (IF) signals. Following that, IF signals

go through a series of signal processing known as data formatting.

The obtained signals are called image signals and denoted by i(n,k).
The purpose of data formatting is to make the image signals for a

point reflector located at (x ,y, 0) have the following expression

i(n,k) = Ae jc(xn+yk), (1)

where A is the magnitude of received signals and c is a constant.
Note that Equation 1 is a simplified formula based on the assump-

tions that the distance between the radar and target is long and the

signal propagation speed is high. These assumptions are valid for

RF radar applications. Refer to [12] for the complete expression of

Equation 1 and its derivation. Importantly, we notice that i(n,k) is a
2-D sinusoid signal. By applying 2-D Fast Fourier Transform (FFT),

we can observe a spike located at (cx , cy) in the 2-D frequency space.

Thus, the above procedure maps a point in the physical space (i.e.,

the xy plane in Figure 4(a)) to a point in the 2-D frequency space.

Since the mapping is linear and one-to-one, the shape of an object

in the physical space is preserved in the frequency space. Hence,

2-D FFT of the image signals produces an image of the object.

The details for SAR processing, including dechirp and data for-

matting, are explained in [12]. In our implementation, we use Range

Mitigation Algorithm (RMA) for data formatting due to its effective-

ness in near field imaging [12], but our approaches are compatible

with other algorithms. RMA consists of the following steps: (i) per-

form FFT on each column of IF signal matrix; (ii) apply the matched

filter and variable substitution to convert the signals to the desired

format as Equation 1; (iii) use Stolt interpolation [12] to get uni-

formly sampled image signals; and (iv) apply 2-D FFT on image

signals to obtain the object image.

New challenges emerge when applying SAR to acoustic imaging

on a mobile. First, since smartphone speakers and microphones

are omni-directional, signals propagating directly from the speaker

to microphone interfere with target reflection. Second, moving a

mobile by hand incurs large motion errors. Existing error correction

algorithms do not work because the underlying assumptions do not

hold in our context. Third, smartphone speakers and microphones

severely distort acoustic signals, which blurs the generated images.

To address these challenges, AIM adds three new components to

the SAR processing pipeline, as highlighted in Figure 3. We will

explain these components in the following sections.

3 INTERFERENCE CANCELLATION

Two types of interference: Since the smartphone speaker and mi-

crophone are omni-directional, signals received by the microphone

include not only desired reflection from the target, but also two

types of interference: (i) direct transmission and (ii) background

reflection, as shown by Figure 5. These signals overlap in time be-

cause the difference between their propagation delay is smaller

than the chirp duration (e.g., 10 ms in our system). Even worse,

the direct transmission is 3 - 4 orders of magnitude larger than

the target reflection. To minimize the impact of interference, we

develop a two-stage interference cancellation scheme. In the first

stage, we cancel the self interference by subtracting pre-recorded

direct path signals from received samples. In the second stage, we

remove the residual self interference and background interference

by leveraging the fact that they have different propagation delay

from the target reflection.

Stage 1: This stage aims to remove interference of the direct path

between the speaker and microphone. To this end, we record the

direct transmission by putting the mobile in a clean space, where

no major reflectors are within one meter distance in front of the

speaker and microphone. When we use the mobile to image a

target object, we subtract the pre-recorded direct path signals from

the received samples. We take into account synchronization and

sampling offset between the pre-recorded signals and currently

received samples as in [45].

In practice, simple subtraction cannot achieve optimal cancella-

tion. Our key observation is that the automatic gain control (AGC)

in the microphone [16] normalizes received signals such that the

highest magnitude is close to 1. The AGC gains are slightly dif-

ferent under various environments, since received signals contain

different background reflection. This makes the direct transmission

scaled differently from recordings to recordings. Since it is orders

of magnitude larger than the target reflection, a small scaling dif-

ference will lead to significant residual interference. To address

this issue, we find a scaling coefficient c for each chirp period that

minimizes | |S − cSd | |, where S represents received samples in the

current period and Sd denotes pre-recorded direct signals. The in-

tuition behind the optimization is that when c exactly compensates

the scale difference between S and Sd , the direct path signals will

be fully removed and the magnitude of remaining signals is mini-

mized. Figure 6 plots the optimal c over time in a real trace. Once c
is determined, we subtract cSd from S to remove the direct transmis-

sion. Our evaluation shows that we can cancel 30 dB interference

without scaling the pre-recorded signals and 36 dB with scaling.

Stage 2: The previous stage removes most of the direct path in-

terference. However, there are still some residuals due to imper-

fect synchronization and scaling between received samples and

pre-recorded signals. This stage aims to remove residual direct

transmission and background reflection. For this purpose, we ex-

ploit different propagation delay of these signals from that of target

reflection, as shown in Figure 5. The signals after the first-stage can-

cellation can be described using the well-known multipath channel

model [57]:

y[n] =
∑
i ∈U1

hix[n − i] +
∑
j ∈U2

hjx[n − j],

where x denotes the transmitted signals, and h stands for the

channel taps. U1 includes the indices such that d1 < i · ts · vs <
d2, where ts is the sampling interval, vs is the sound speed, and

[d1,d2] is the range that the target object falls into. Thus, the first
summation in the above equation contains the target reflection.
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Figure 5: Received signals. Figure 6: Scaling coefficients. Figure 7: Estimated channel taps.

U2 includes all other indices, and the second summation consists

of residual direct transmission and background reflection. Since

both y and x are known, we apply Least Square channel estima-

tion [50] to determine channel taps, i.e., finding {hi } such that∑
n (y[n] −

∑
i ∈(U 1∪U 2) hix[n − i])2 is minimized. Figure 7 shows

an example of estimated channel taps from real traces. Once the

taps are determined, we remove the interference by subtracting∑
j ∈U2

hjx[n − j] from y[n]. As shown in Section 8, this stage can

cancel additional 5 dB interference.

Our two-stage strategy is the key to achieve large cancellation.

Stage 1 is needed to remove the direct path signals. Otherwise,

strong direct transmission will overwhelm the target and back-

ground reflection, which severely degrades the channel estimation

on the corresponding taps and cancellation performance. Stage 2 is

necessary to remove the remaining background interference.

4 MPGA

In this section, we first introduce PGA and its limitations in our

context, and then present our MPGA to address these issues.

4.1 PGA

The phase error caused by imperfect motion is one of the most chal-

lenging issues in SAR. When the motion deviates from the desired

path (e.g., a straight line) by δd , the received signals experience a

phase shift equal to 2 · 2π δd
λ
, where λ is the signal wavelength and

a multiplier of 2 accounts for round-trip propagation. When the

radar moves over the whole synthetic aperture, the motion error

can be expressed as δd (n), where n is the azimuth index. Let e(n)
denote the phase error introduced by δd (n).

To remove phase error e(n), several phase correction algorithms

are developed [7, 12, 33]. Among them, Phase Gradient Algorithm

(PGA) is considered the most effective [17, 59]. PGA is designed

to remove the second or higher order phase errors with respect to

n since a constant phase error has no impact on the image and a

linear phase error only results in a shift to the image.

The basic idea for PGA is explained as follows. Equation 1 models

the image signals without motion errors. As discussed above, when

the errors are present, received signals experience extra phase shifts

(i.e., e(n)). These phase shifts remain in the signals after dechirp

and data formatting. As a result, the image signals i(n,k) under

imperfect motion are given byAe[cxn+cyk+e(n)] [12]. For simplicity,

we let ik (n) denote the k-th column of the image signals, ω denote

cx , and ϕ denote cky. Thus, we have

ik (n) = i(n,k) = Ae j(ωn+ϕ+e(n)). (2)

PGA estimates the phase error e(n) based on ik . Specifically, we
first apply FFT to derive the spectrum of ik , and then identify the

frequency component with the maximum magnitude, denoted as

ω̃. Note that ω̃ ≈ ω. After circularly shifting ik (n) by ω̃ in the

frequency domain, the time domain signal becomes lk (n) and is

approximated by Ae j(ϕ+e(n)). The derivative of lk (n) is given by
�lk (n) = jA�e(n)e j(ϕ+e(n)). Then the derivative of phase error e(n)

can be obtained by �e =
Im( �lk l

∗
k
)

lk l
∗
k

, where Im(x) is the imaginary part

of x , and l∗
k
denotes the conjugate of lk . The previous equation

holds for any k . Therefore, we can use all available k for estimation

to improve the accuracy as [17]:

�e =

∑
k Im( �lk l

∗
k
)∑

k lk l
∗
k

. (3)

The phase error e(n) can be estimated by integrating its derivative.

The detailed derivations for PGA can be found in [12, 17, 59].

4.2 Limitations of PGA

The effectiveness of PGA depends on whether Equation 2 holds.

Equation 2 requires four assumptions, which do not hold in smart-

phone based acoustic imaging systems.

Supporting only narrow beam signals: First, it assumes narrow

beam signals: the carrier frequency is much larger than the band-

width [55]. This assumption easily holds for RF based radars and

ultrasound based sonars. The former uses GHz carrier frequency

and tens of MHz bandwidth [12, 43], and the latter uses MHz carrier

frequency and tens of KHz bandwidth [24]. Without this assump-

tion, the motion error interacts with ω and ϕ in Equation 2 and we

cannot separate it as an individual phase term in image signals.

However, the assumption does not hold in our context, since the

highest frequency supported by smartphone speakers is around 20

KHz. To provide high image resolution, our system uses frequencies

from 10 KHz to 22 KHz. In this case, the carrier frequency is 16

KHz and the bandwidth is 12 KHz, which clearly does not satisfy

the narrow beam requirement. Thus, directly applying PGA cannot

effectively remove phase errors in our system.

To illustrate that, we simulate imaging a point with acoustic

signals.We use simulation in this section becausewe need to control

the presence of phase errors to demonstrate their impact on imaging.

For simulation, we generate synthetic received signals for a point

reflector, and apply the imaging algorithms to produce images.

Also, we inject random motion errors as the phone moves across

the synthetic aperture. Thesemotion errors translate to phase errors

linearly.We observe that the estimated phase errors by PGA (dashed

lines) do notmatchwith the ground-truthmotion errors (solid lines),

as shown in Figure 8(a). Figure 8(b) shows the image without phase

error correction, while Figure 8(c) shows the image using PGA

correction. Figure 10(b) shows the ground truth for imaging a point.

As we can see, due to inaccurate phase error estimation, the image

with PGA correction is severely blurred. These results indicate that

PGA is insufficient for our purpose.
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(a) Error estimation (b) No correction

(c) PGA correction (d) MPGA correction

Figure 8: (a) Phase errors due to imperfect motion; (b)(c)(d)

images with different phase error correction.

Supporting only isolated reflectors: Second, the derivation of

Equation 3 assumes that the target object is a point. This is the

case when there is only one dominant reflector in the imaged re-

gion, whose reflection is much stronger than other surrounding

objects [17]. When there are multiple dominant reflectors, as long

as there is a reflector well separated from the others, we can first

use filtering in frequency domain to isolate it and then apply PGA.

This works well for remote sensing applications [12, 43].

In comparison, we focus on imaging an object from a short

distance (e.g., 0.5 m). In this case, the object is treated as an array of

closely spaced homogeneous reflectors (or array reflectors). Filtering

does not work in this case. Instead, we need to generalize PGA to

model phase errors in received signals for array reflectors.

Ignoring secondary phase terms: Third, PGA assumes negligi-

ble impact of secondary phase terms (i.e., non-linear phase terms

with respect to (x ,y) omitted in Equation 1 [59]). These terms are

inversely proportional to the signal speed and imaging distance

[12]. Due to slow acoustic propagation and short imaging distance,

these secondary terms cannot be ignored in our case. To correctly

compensate phase errors, we need to minimize the impact of these

secondary phase terms. It is especially challenging to determine

their impact based on the received signals of array reflectors.

To illustrate that, we simulate imaging a horizontal bar with the

length equal to 20 cm. The mobile scans over synthetic aperture

without any motion error. As a result, the ground truth phase error

should be zero for all azimuth indices. As shown in Figure 9(a), PGA

significantly over-estimates the phase error since the impact of

secondary phase terms is not considered. Therefore, the image with

PGA phase correction in Figure 9(c) shows significant distortion,

compared with the ground truth shown in Figure 9(b).

Quantization errors: In addition to the motion error, which is the

major source for the phase error in received signals, our system also

incurs the quantization error for the following reason. For SAR pro-

cessing, the received samples are first shifted forward by 2Ra/vs ,
wherevs is the signal speed and Ra is the distance between the cen-

ter of imaged region and the current position of the radar assuming

no motion error. The shifted samples are then multiplied with the

transmitted chirp and pass through a low-pass filter. This process is

(a) Error estimation (b) Ground truth image

(c) PGA correction (d) MPGA correction

Figure 9: (a) Phase error estimation for array reflectors;

(b)(c)(d) images with different phase error correction.

called dechirp [12] and required by any chirp based SAR system. For

radars, shifting samples is performed in the analog domain and is

precise. However, in our case, we have to shift received samples in

the digital domain, since we use a built-in smartphone microphone.

Thus, we can only shift the samples by multiple sample intervals.

Given the sample interval ts , the shift is ts · round(2Ra/(vs ts )). The
presence of quantization errors introduces additional phase errors,

which is not considered in PGA.

4.3 MPGA

Overview: To correct phase errors of received signals for mobile

acoustic imaging, we develop a new algorithm, calledMPGA. MPGA

advances PGA in the following ways. First, it estimates quantization

errors due to the low sampling rate of acoustic signals. Second, it

uses IF signals instead of image signals to estimate motion errors so

that we can remove the assumption of narrow-beam signals. Third,

it explicitly takes array reflectors and secondary phase terms into

account when estimating motion errors. In this way, MPGA can

effectively support acoustic imaging in a mobile context.

Removing quantization errors:MPGA first removes the phase

errors introduced by quantization. We make an important obser-

vation: these errors can be determined given a specific synthetic

trajectory, because they only depend on 2Ra/vs . Therefore, we
calculate these phase errors in advance and remove them from

received signals. To compute these errors, we simulate the SAR

imaging with and without quantization for the given trajectory,

and compare image signals in two cases to derive the errors. For

a given trajectory, these errors are only calculated once. They are

cached to avoid real-time computation.

Figure 10(a) shows the ground-truth phase errors introduced by

quantization (solid line) versus those estimated using MPGA with-

out removing them in advance (dotted line). The latter essentially

treats quantization as part of motion errors. As we can see, the phase

errors caused by quantization have sharp changes. These changes

lead to singularities in the derivatives of phase errors. Since MPGA

relies on the derivatives to estimate phase errors, the presence of

singularities has a negative impact on the estimation accuracy. This
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(a) Error estimation (b) Ground truth image

(c) MPGA w/o pre-comp (d) MPGA correction

Figure 10: (a) Phase errors due to quantization; (b)(c)(d) im-

ages with different phase error correction.

explains the difference between the ground truth and estimated

values in Figure 10(a), and justifies the need to remove the quanti-

zation phase errors in advance. Figure 10(b), (c), and (d) show the

images for a point reflector without quantization errors (i.e., ground

truth), using MPGA but without compensating quantization errors

in advance, and MPGA, respectively. As we can see, the image with

MPGA is much closer to the ground truth.

Estimating motion errors: Next, MPGA estimates and removes

phase errors induced by imperfect motion. Different from PGA,

which uses image signals for estimation [59], MPGA uses IF signals

for two reasons. First, using IF signals removes narrow-beam as-

sumption while still allows us to transform the signals to a desired

format as Equation 1. Second, we can explicitly handle secondary

phase terms, because they can be easily derived from IF signals.

Similar to PGA, we manipulate received samples to get an ex-

pression similar to Equation 2 to estimate the derivatives of phase

errors. The challenge lies in supporting array reflectors and deter-

mining the impact of the secondary phase terms. In Section 4.4, we

prove the following theorem:

Theorem 1. The motion error Re (n) can be estimated by E(n) −
Rs (n), where n is the azimuth index, Rs (n) is the offset introduced by
the secondary phase terms and is a 2-order polynomial of n, E(n) =

∫
n

∑
k Im( 1

K
k

R

�sk s
∗
k
)

∑
k sk s

∗
k

, sk is the k-th column of IF signal matrix s(n,k),

�sk is its derivative, s∗
k
is its conjugate, Im(x) is the imaginary part of

x , and Kk
R
is a constant depending on k .

Based on Theorem 1, we first compute E(n) based on IF signals.

To calculate Rs (n), we need to know its expression. However, it

depends on the shapes of imaged objects and is not known in

advance. Theorem 1 indicates thatRs (n) is a 2-order polynomial ofn.
Thus, we only need to figure out its second order coefficient, because

the first order and constant phase errors have no impact on imaging.

We observe that the hand motion error Re (n) is dominated by noise-

like fluctuation around zero when intentionally moving along a

straight line. If fitting such a pattern using a 2-order polynomial,

the second order coefficient is usually close to zero, as shown in

Figure 11. As a result, we obtain the second order coefficient of

Figure 11: Motion errors in a real trace.

Rs (n) by fitting E(n) using a 2-order polynomial, since the second

order coefficient of their difference is zero. Then, we compute E(n)−
Rs (n) to get the motion error Re (n). Once Re (n) is estimated, the

corresponding phase errors can be determined and removed from

the signals. As shown in Figure 8, 9, and 10, MPGA gives clear

images of the target.

4.4 Proof of Theorem 1

The development of MPGA depends on the correctness of Theorem

1. In this section, we provide the key steps about how the theorem

is derived. Refer to [39] for the detailed proof.

PGA uses image signals to estimate phase errors. Instead, we

use IF signals to remove the assumption of narrow-beam signals

and explicitly handle secondary phase terms. According to [12], the

k-th column of IF signals is given by:

sk (n) = s(n,k) =
∑
i

e j {ω
k

i
n+ϕk

i
+Kk

R
Re (n)+θ

k

i
(n)},

where n is the azimuth index, k is the range index, and i is the index

for reflectors, ωk
i , ϕ

k
i , and Kk

R
are constants. Re (n) is the motion

error. The phase errors introduced by Re (n) vary with k since Kk
R

is different. Therefore, instead of directly estimating phase errors

like PGA, we first determine motion errors and then scale them

to get phase errors for various k . θki (n) captures the secondary

phase terms, which are non-linear with respect to n and can be

approximated by a 2-order polynomial of n [12].

The intuition of our proof is to derive a formula similar to Equa-

tion 3. That is, we establish the relationship between Re (n) and
[
∑
k Im( 1

Kk

R

�sks
∗
k
)]/[

∑
k sks

∗
k
]. The challenge is that sk in our case

is much more complicated than lk in PGA derivation, since we

consider array reflectors and secondary phase terms. To solve this

problem, we define Θk
i (n) = ωk

i n + ϕ
k
i + θ

k
i (n). Since Θk

i (n) is a
phase, we only care about its remainder divided by 2π . Our key

observation is that Θk
i (n) varies significantly for different i (e.g., 0

to 60 rad in our case) so that its remainder widely distributes over

the range of [0, 2π ]. To simplify sk , we treat Θ
k
i (n) as a uniform

random variable over [0, 2π ], andΘk
i andΘk

j are independent when

i � j. Then sk is given by

sk (n) =
∑
i

e j {K
k

R
Re (n)+Θ

k

i
(n)} .

Based on this transform, we can approximate
∑
k sks

∗
k
using its

expectation if the standard deviation is small. We show that

E[
∑
k

sks
∗
k
] = KM and Var[

∑
k

sks
∗
k
] = KM(M − 1),

where K is the number of range indices and M is the number

of reflectors. When K is large (e.g., 592 in our implementation),

E[
∑
k sks

∗
k
] is much larger than the standard deviation

√
KM(M − 1).
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Figure 12: Combined freq. response of speaker & mic.

Thus, it is reasonable to approximate
∑
k sks

∗
k
with its expectation.

By applying a similar trick, we show that

∑
k

Im(
1

Kk
R

�sks
∗
k
) ≈ �Re (n)

∑
k

sks
∗
k
+
∑
k

∑
i

1

Kk
R

�Θk
i (n),

Thus, we have

∑
k Im( 1

Kk

R

�sks
∗
k
)

∑
k sks

∗
k

≈ �Re (n) +

∑
k
∑
i

1
Kk

R

�Θk
i (n)

KM
.

Let E(n) denote the integral of the above equation. Then,

E(n) =

∫
n

∑
k Im( 1

Kk

R

�sks
∗
k
)

∑
k sks

∗
k

= Re (n) +

∑
k
∑
i

1
Kk

R

Θk
i (n)

KM
.

Let Rs (n) denote the last term of the above equation. Then E(n) =

Re (n) + Rs (n). Since Θ
k
i is a 2-order polynomial of n for any k and

i , Rs (n) is also a 2-order polynomial.

5 FOCUS AND DENOISE

Blur and noise in images: The image resolution of AIM is de-

termined by signal bandwidth. To achieve high resolution, we use

chirps sweeping from 10 KHz to 22 KHz. However, the built-in

speaker/microphone on a mobile has different gains at these fre-

quencies, as shown in Figure 12.We see that there is 16 dB difference

between the minimum and maximum gains. As a result, acoustic

signals are distorted. The distortion causes the envelop of a received

chirp to change over time. Therefore, the signal magnitude A in

Equation 1 depends on the range index k , since k indicates the

time order of received samples. In this case, Equation 1 is not a

standard 2-D sinusoid, and its FFT is not a delta function in the 2-D

frequency space and experiences certain spread over the vertical

direction (corresponding to k). Hence, when imaging a point, we

see a blurred strip, instead of a clear point, as shown in Figure 13(a).

Also, we observe noise distributed over thewhole image in Figure

13(a). This is due to imperfect interference cancellation and the

presence of environment noise. To get high-quality images, we

need to eliminate blur (focus) and remove noise (denoise).

Frequency response measurement: To minimize the blur, we

need to know the gains of the built-in speaker and microphone

at various frequencies, i.e., their frequency response. Since we only

care about the aggregate distortion of the speaker and microphone,

we measure their combined frequency response. The procedure is

outlined as follows. First, we place the mobile on a table, play the

acoustic signals with the speaker, and record them with the micro-

phone. Then, we place a 2cm×2cm cardboard at 20 cm distance in

front of the speaker and microphone, and calculate the difference

between the recorded signals with and without the cardboard to

remove all echoes except the one from the cardboard. Finally, we

compare the obtained signals with the transmission signals to de-

rive the frequency response. This procedure requires no special

equipment and can be easily repeated by users on their own phones.

To evaluate the accuracy of this approach, we perform another

measurement in the anechoic chamber.We use two identical phones,

which have same speakers and microphones. We let one phone play

acoustic signals and the other record them. Since there is no echo

in the chamber, the recorded signals only experience speaker and

microphone distortion. By comparing the recorded signals with

the transmission signals, we compute the frequency response. As

shown in Figure 12, the anechoic chamber measurement matches

the in-room measurement, which indicates the high accuracy of

in-room measurement.

Focus and denoise using Lasso regression: Once the frequency

response is known, a natural approach to cancel its effect is to

compensate the acoustic signals with the inverse response before

they are transmitted. However, since the frequency response has a

deep notch at 16 KHz as shown in Figure 12, we have to significantly

reduce the power of other frequency components to get flat gains.

This method results in severe reduction in received signal strength

and degradation on image quality.

To remove the blur, we make the following important observa-

tion: the blur introduced by speaker and microphone distortion is

deterministic, since their frequency response is unchanged. There-

fore, we can include the measured frequency response in our simu-

lation, and determine how the image of a single point spreads due

to the distortion. Such spread is called point response. There are two

observations about the point response of our system. First, it is 1-D

because the distortion makes the 2-D FFT of Equation 1 spread over

the vertical direction as discussed earlier. Second, it is invariant

to the position of the imaged point. Since any object consists of

a set of points, its generated image is the superposition of shifted

versions of point response. Mathematically, we have

I = RX ,

where X is the object image without the blur, and each of its non-

zero element represents a point on the object. R captures the effect

of distortion. Each R’s column is a shifted version of the point

response. I is the generated image under the distortion. Since both

I and R are known, we can solveX to get a clear image of the object.

To this end, we use Lasso regression [25] to find X that minimizes

|I − RX |2 + λ |X |,

where λ is the regularization parameter. Lasso regression not only

removes the blur effect, but also helps suppress the noise. This is

because the noise distributes randomly and does not match the

pattern of point response, and the regularization term prevents

X from overfitting the noise pattern. The effectiveness of Lasso

regression depends on the selection of λ. If it is too small, X will

overfit the noise in the raw image I . If it is too large, some weak

reflectors will be treated as noise and removed from the image.

Based on our experiments, we select λ equal to 0.01 to balance these
factors. Figure 13(b) shows the image after applying our approach.

The above approach is conceptually close to the CLEAN algo-

rithms [22, 34] in radio astronomy. They are invented to remove

artifacts introduced by sidelobes of phased array antennas. In our

context, the main reason for degraded image quality is the speaker
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(a) w/o focus & denoise (b) focus & denoise

Figure 13: Imaging a 2cm×2cm cardboard.

and microphone distortion. Hence, our approach captures and cor-

rects the impact of such distortion. The CLEAN algorithms use

deconvolution to obtain a clean image, while we use Lasso regres-

sion so that our approach can adapt to different ambient noise levels

by tuning the regularization parameter.

6 DISCUSSION

We discuss potential ways to further improve the usability of AIM.

Imaging range: Based on the experiments, the imaging range of

our system is about 0.6 m. A simple way to increase the range is

to increase the speaker volume. In fact, the volume of our phone

(Samsung S7) is lower than the average volume of phone speakers

[54]. Many devices support 10 - 17 dB higher volume [30]. Another

way to improve the range is to exploit multiple speakers and mi-

crophones available on a mobile, which can form a MIMO imaging

radar to improve SNR [19]. More sophisticated interference can-

cellation is also helpful to reduce interference, making it easier to

detect weak received signals.

Image resolution: The image resolution of AIM depends on two

factors. For horizontal dimension, the resolution is inversely pro-

portional to the length of synthetic aperture L. In our system, we

choose L equal to 25 cm to balance the scan effort and image qual-

ity. Increasing L is helpful to improve the resolution. For vertical

dimension, the resolution is inversely proportional to the signal

bandwidth. The built-in speaker on our phone can send signals

up to 22 KHz, while external miniature speakers (e.g., ones used

in headphones) may support up to 43 KHz [5]. One can attach

such miniature speaker on the mobile to replace the built-in one.

This greatly helps improve the image resolution while remaining

compact and easy to move.

3-D imaging: Our system can be extended to support 3-D imaging

by using two microphones. The phase difference between them

provides the position information on the third dimension [44].

7 IMPLEMENTATION

We implement our system on an off-the-shelf smartphone (Samsung

Galaxy S7 unlocked version). We use its built-in speaker to play the

pre-generated audio file to transmit acoustic signals. The signals

are linear chirps whose frequency sweeps from 10 KHz to 22 KHz

during 10 ms. The interval between two consecutive chirps is 90 ms

to minimize interference between them.

We use the built-in microphone at the bottom of our mobile to

receive signals. The sampling rate is 48 KHz, which is supported

by most phones. The separation between the speaker and micro-

phone is only 5 mm, and hence the interference caused by direct

transmission is significant. We develop an Android app to process

received signals and generate images. We use NDK to implement

our processing algorithms to maximize the efficiency. We use FFTW

Figure 14: Interference cancellation performance.

(a) x-axis (b) y-axis (c) z-axis

Figure 15: Non-linear hand motion errors.

package [20] for FFT operations. We use GNU Scientific Library

(GSL) for other mathematical operations in our algorithm.

8 EVALUATION

In this section, we evaluate each component of AIM and its overall

performance. For experiments, we put the target object on a stand,

and remove objects within 1 m from the target. A user stands in

front of the target, holds a phone in hand, and swipes 25 cm along

a straight line, as shown in Figure 2. We put two markers separated

by 25 cm on the user’s clothes to provide rough reference positions

for the start and end of synthetic aperture. The swipe takes 5 s. A

timer is displayed on the UI of our app to provide time reference.

The distance between the phone and target is 0.4 m. Although

some rough reference is provided, the user hand movement cannot

exactly follow the desired trajectory and speed. Deviation in either

of them causes motion errors. We use MPGA to correct these errors.

8.1 Micro Benchmark

Interference cancellation: To measure the performance of inter-

ference cancellation, we collect five traces without placing an object

in our experiment setup. We quantify the interference cancellation

by comparing the signal strength before and after the cancellation.

We compare our approach with two common digital interference

cancellation methods: 1) subtract the pre-recorded direct transmis-

sion without considering AGC; 2) directly estimate channel taps

using Least Square and remove ones outside the target region (0.4 m

- 0.6 m from the mobile).

As shown in Figure 14, the subtraction based method (SUB) can-

cels 30 dB interference. The channel estimation based method (CE)

only cancels 29 dB because the presence of direct transmission

overwhelms the target and background reflection and degrades the

estimation accuracy on the corresponding channel taps. Our first

stage cancellation (S1) is based on subtraction based method but

takes AGC into account. It achieves 6 dB higher cancellation than

subtraction based method. Our 2-stage cancellation scheme (S1+S2)

cancels 41 dB in total by removing residual interference using the

channel estimation.

Hand motion errors: To quantify hand motion errors, we ask 5

users to swipe a mobile by hand as described in our experiment
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Figure 16: Difference of actual and estimated phase err.

(a) 0 rad (b) 0.2 rad (c) 0.4 rad (d) 0.8 rad (e) 1.6 rad

Figure 17: Images with various amounts of phase errors.

setup. Each user has 5 minutes to get familiar with our system and

then swipes a mobile for 5 times. We use two cameras (Microsoft

Q2F-00013 [15]) to record hand motions by tracking two green

markers on each user’s hand. One camera tracks motions in the x
and z axes, and the other tracks those in the y-axis. The tracking is

implemented based on color filtering using OpenCV 3.0 [10]. The

distance between the camera and hand is 40 cm.We create favorable

lighting condition so that camera based tracking is accurate. The

motion errors are derived by comparing the tracked coordinates

with the desired trajectory. Also, we remove the linear and constant

motion errors by fitting the coordinates over time using a linear

model. As discussed, these errors have no impact on image quality.

The non-linear motion errors for each axis are shown in Figure

15. The distribution of these errors can be modeled by Gaussian

functions with zeromean, and the standard deviations for three axes

are 6 mm, 2 mm, and 2 mm. We observe that the x-axis (azimuth

direction) has the largest error since users cannot keep a desired

speed when swiping along this direction and speed errors translate

to motion errors. The non-linear motion errors are within 1 cm in

most cases. This is as expected because it is not difficult for users

to keep a linear hand motion over a short distance (i.e., 25 cm).

MPGA: Next, we evaluate MPGA by comparing the actual and esti-

mated phase errors using MPGA. Although camera based tracking

is acceptable for capturing motion errors, its accuracy is insuffi-

cient to derive phase errors, since a small tracking error (e.g., 1 mm)

translates to a large phase change (e.g., 0.6 rad). Thus, we generate

synthetic motion traces and received signals for imaging rectangle,

triangle, and diamond shapes. The motion errors follow the distri-

butions as shown in Figure 15. In this way, we have the ground

truth for the motion trajectory and corresponding phase errors. We

apply MPGA on the synthetic traces to estimate the phase errors.

For comparison, MPGA without compensating quantization errors

(w/o Quan) and PGA are also evaluated, as shown in Figure 16.

We observe that MPGA yields the lowest median estimation error:

0.2 rad. Without compensating quantization, the error increases to

0.5 rad. PGA has the median error of 1.6 rad, which indicates it is

ineffective in our context. To illustrate the impact of the remaining

phase errors not corrected by these algorithms, we show the images

of a point with different amounts of phase errors in Figure 17. We

see that the image quality is degraded when the average phase error

is larger than 0.4 rad.

Ongoing proc. Post processing

Dechirp Intf. cancel MPGA RMA FFT Focus

0.005 s 0.04 s 0.16 s 0.46 s 0.35 s 0.26 s

Table 1: Running time of AIM.

The effect of MPGA on imaging a real object is shown in Figure

18, where the target is a bar-shape cardboard as shown in Figure

18(a). Without applying MPGA, the images are severely distorted

as shown in Figure 18(b) and (c). Figure 18(e) shows that the image

quality is significantly improved when MPGA is applied.

Focus and denoise: Figure 18 also shows the effectiveness of our

focus and denoise algorithm. As discussed in Section 5, speaker and

microphone distortion blurs the image along the vertical direction.

The effect can be easily observed when imaging a horizontal bar, as

shown in Figure 18(d). By applying our focus and denoise algorithm,

the blur effect is removed and the noise in the image is effectively

suppressed, as shown in Figure 18(e).

We repeat the above experiment using various phones (Samsung

S7 AT&T version and S8), which have different speaker and mi-

crophone frequency response from our main phone (S7 unlocked

version), as shown by Figure 12 and 19. Although various response

causes different distortion on images, our algorithm can remove

the blur and provide clean images on both phones as shown by

Figure 19(b) and (c). This demonstrates the robustness of our focus

and denoise algorithm and shows that our system is general and

applicable to different phones.

Resolution: We evaluate the resolution of our system by imaging

a point-like object and measure its spread. Since the wavelength of

our signals is around 2 cm, we use a 2 cm×2 cm cardboard as the

target. A smaller object can cause signals to traverse it via diffrac-

tion. The generated image is shown in Figure 13(b). The spread,

which is computed from the pixel with the maximum magnitude to

the pixel with 3 dB degradation, is 1.8 cm in the vertical direction

and 1.9 cm in the horizontal direction. This resolution is sufficient

to capture the shapes of many daily objects.

Audibility: To achieve high image resolution, we use signals from

10 KHz to 22 KHz. To quantify the audibility, we measure the loud-

ness of our signals using a software sound meter [4]. At 0.5 m

distance from the speaker and using the same volume as other

experiments (50% of the maximum), the loudness is around 49 dB.

For reference, the loudness of ambient sounds in our lab is 35 dB.

while that of human talking is 62 dB. Also, our signals are only

played when the mobile scans over synthetic aperture, which takes

about 5 s to complete. Thus, the impact of the sound coming from

our imaging system is small.

Running time: Table 1 shows the running time of major compo-

nents in AIM. Dechirp and interference cancellation are performed

every time when reflected signals of a transmitted chirp are re-

ceived. Their processing time for one chirp period is 5 ms and 40

ms, respectively. Their total time is within the interval between

two consecutive chirps (90 ms). As a result, once we finish moving

the mobile over the synthetic aperture, dechirp and interference

cancellation are also done and have no impact on processing delay.

MPGA, RMA formatting, FFT, and focus and denoise are applied

after all signals are collected. In total, they take 1.2 s to complete.

As a result, the processing delay of AIM is 1.2 s.
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(a) Object (b) No focus or MPGA (c) Only focus (d) Only MPGA (e) Focus and MPGA

Figure 18: Imaging a horizontal bar: (a) ground truth; (b)(c)(d)(e) images with applying MPGA / focus or not.

(a) Response (b) AT&T S7 (c) S8

Figure 19: Imaging a horizontal bar with different phones.

8.2 System Benchmark

We evaluate the performance of AIM using various objects. To mea-

sure the image quality, we consider the following metrics:

• Szymkiewicz-Simpson similarity s = Sc/
√
SiSд , where Si and Sд

are the object areas in the generated image and ground truth

image, respectively, and Sc is their intersection. The area is cal-
culated by checking if the magnitude of each pixel is greater

than a threshold 0.3 (the maximum pixel is normalized to 1). The

pixel with smaller magnitude indicates no reflection from the

corresponding position and is not counted as a part of the object.

The similarity value equal to 1 indicates perfect matching.

• Height error he , defined as |hi − hд |/hд , where hi is the object
height in our image and hд is the ground truth.

• Width errorwe , defined similarly to the height error.

• Ratio error re , defined as |ri−rд |/rд , where ri and rд are estimated

and actual ratios between the height and width.

To smooth the object boundary, the images are linearly interpolated

from 60×24 pixels to 160×120 pixels. To remove noise out of the

interested region, we apply a binary mask on the images. The size of

the mask is 40 cm×25 cm. The image is displayed using gray scale,

where brighter points indicate higher magnitude. Each experiment

is repeated for 5 times. We report the average performance of each

experiment and show the images with the median Szymkiewicz-

Simpson similarity.

Imaging shapes:We image the cardboards with various shapes un-

der Line-of-Sight (LoS) scenarios, including rectangle (25 cm×18 cm),

diamond (23 cm×17 cm), triangle (24 cm×17 cm), circle (19 cm×19 cm),

and hollow rectangle (28 cm×18 cm). Their pictures (ground truth)

are shown in the first row of Figure 20, and the images generated

by AIM are shown in the second row. We observe the object shapes

in the generated images match the ground truth well, and the simi-

larity metrics are from 0.72 to 0.89 for different shapes, as shown in

Table 2. The height, width, and ratio errors are also small, ranging

from 0.01 to 0.11. These results indicate the effectiveness of AIM.

Imaging weapons:Weapon detection is a potential application of

our techniques. In this experiment, we evaluate the performance of

Object Setup s he we re

Rectangle LoS 0.89 0.02 0.08 0.07

Triangle LoS 0.85 0.03 0.07 0.10

Diamond LoS 0.86 0.06 0.03 0.03

Circle LoS 0.79 0.10 0.01 0.11

Hollow rect. LoS 0.72 0.06 0.07 0.01

Gun LoS 0.81 0.01 0.02 0.03

Cleaver LoS 0.87 0.04 0.03 0.07

Gun In bag 0.76 0.05 0.02 0.06

Cleaver In bag 0.75 0.02 0.13 0.14

Gun Under clothes 0.76 0.02 0.02 0.00

Cleaver Under clothes 0.77 0.08 0.06 0.14

Hollow rect. Under music 0.70 0.13 0.11 0.02

Hollow rect. Under voice 0.71 0.07 0.09 0.02

Rectangle 60 cm Dist 0.84 0.01 0.10 0.11

Rectangle 80 cm Dist 0.70 0.06 0.11 0.20

Rectangle 100 cm Dist 0.64 0.16 0.23 0.09

Table 2: Performance metrics for various experiments.

imaging a toy gun (18 cm×14 cm) and cleaver (27 cm×10 cm). The

ground truth pictures and images generated by AIM are shown in

Figure 21(a), (b), (d), and (e). We see that our images clearly show

the outline of the weapons, and the similarity metrics for the gun

and cleaver are 0.81 and 0.87, respectively, as shown in Table 2.

In-bag imaging: We evaluate AIM when the weapons are put in

a black trash bag. Visually, we cannot see what object is in the

bag. However, as shown by Figure 1, acoustic signals are able to

penetrate through the bag and sense the object. As shown in Figure

21(c), (f), and Table 2, the images still capture the shapes of the

weapons, but the similarity metrics for the gun and cleaver are

reduced to 0.76 and 0.75, respectively. The degradation is because

acoustic signals are attenuated when penetrating through the bag.

Under-clothes imaging: To explore under-clothes weapon de-

tection, we let a person wear a hoodie with a front pocket. The

weapons are put in the pocket and not visible. We sweep the mobile

at 40 cm distance in front of the person and generate images using

AIM. When weapons are not present, there is only noise in the

image, as shown in Figure 22(a). This is because (i) the reflection

from clothes is weak and (ii) body reflection is weak as the acoustic

signals are damped by multiple layers of clothes on the person be-

fore arriving at his body. When the weapons are present, acoustic

signals penetrating the pocket are reflected by the weapons. These

signals are received by the microphone and used to generate images,

as shown in Figure 22(b) and (c). From these images, we can see the

shapes of weapons. The similarity metrics for the gun and cleaver
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(a) Rectangle (b) Diamond (c) Triangle (d) Circle (e) Hollow rect.

(f) Rectangle (g) Diamond (h) Triangle (i) Circle (j) Hollow rect.

Figure 20: Imaging various shapes. 1) First row: objects; 2) second row: images.

(a) Gun (b) Image (LoS) (c) Image (in bag)

(d) Cleaver (e) Image (LoS) (f) Image (in bag)

Figure 21: Imaging weapons.

are 0.76 and 0.77, respectively. If the weapons are hidden under

multiple layers of clothes, speakers with high volume are required.

Imaging under environment noise: We evaluate the imaging

performance under environment noise. We consider 1) different

types of music (Jazz, Pop, and Classic) played together using the

same volume as imaging signals and 2) two people keep talking

during the experiment. The noise sources are 1 m away from the

mobile. Under these conditions, the imaging results for a hollow

rectangle are shown in Figure 23 and Table 2. Compared to the

case without noise, the performance does not degrade, because the

environment noise is usually lower than 10 KHz [62], while our

signals for imaging are above 10 KHz.

Impact of nearby objects: To evaluate the impact of background

reflection from objects close to the target, we place a whiteboard

near our experiment setup. The board is in theyz-plane as shown by
Figure 4(a) and at 0.5 m distance from the center of synthetic aper-

ture. In this way, the board does not occlude the target reflection but

introduces background reflection with one-way propagation dis-

tance 0.4 - 0.6 m. Such reflection is not removed in our interference

cancellation, because it has similar propagation distance as the tar-

get reflection. To clearly observe its impact, we compare the images

of a bar with and without the board, as shown in Figure 24(a) and

(b). We see that background interference introduces artifacts in the

image. To quantify them, we count the pixels with magnitude larger

than 0.1 (barely visible) outside the target area. Without the board,

(a) No weapon (b) Gun (c) Cleaver

Figure 22: Imaging weapons under clothes.

(a) Music (b) Human voice

Figure 23: Imaging under environment noise.

the image only has 1% such pixels, which indicates that the image

is clean. With the board, the percentage increases to 7%. When the

board is moved 0.1 m away from the target, the amount of artifacts

is reduced to 3%, as shown in Figure 24(c). In this case, background

interference is partially separable from the target reflection, and can

be mitigated by our interference cancellation. Also, the interference

strength is reduced due to increased propagation distance.

Imaging at various distances: To evaluate imaging performance

at a longer distance, we produce the images for a rectangle at 0.6 m,

0.8 m, 1.0 m from the mobile. The results are shown in Figure 25.

We observe that the image quality degrades as the imaging distance

increases due to the reduced received signal strength. At 0.6 m,

the shape of the target is preserved and the similarity between the

image and ground truth is 0.84, as shown in Table 2. At 0.8 m and

1 m, the similarity values reduce to 0.7 and 0.64, respectively.

9 RELATEDWORK

Acoustic based imaging and sensing: Holography is a com-

monly used approach in acoustic imaging [23, 26, 36]. It uses 2-D

receiver array to collect signals reflected by the target object, and

applies 2-D FFT on the received signals for imaging. If a 2-D array is

not available, a single receiver with precisely controlled movement

is used to emulate it.
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(a) No board (b) Board at 0.5 m (c) Board at 0.6 m

Figure 24: Imaging under background interference.

(a) 60 cm (b) 80 cm (c) 100 cm

Figure 25: Imaging at various distances.

Pulse-echo based approach is also widely used [13, 21]. It trans-

mits acoustic pulses and estimates the propagation delay of received

signals, which is used to locate a point on the object contour. By

scanning over the space, the object contour can be constructed.

Based on this approach, harmonic imaging [58] and multi-beam

imaging [37, 48] are developed to further improve the image qual-

ity. Similar to holography, pulse-echo based approach requires a

transceiver array or scannable transceiver.

SOund Navigation And Ranging (i.e., SONAR) [21, 24, 35] is used

to detect and image objects with sounds, typically for long-distance

underwater scenarios. These systems are based on pulse-echo meth-

ods or synthetic aperture techniques. Directional receivers and re-

ceiver arrays are commonly used to determine the angle of arrival

and increase the detection range [24].

Ultrasound imaging systems are developed using pulse-echo

based methods, and widely used for medical purpose [29] and

weapon detection [2]. Due to the low propagation speed and wide

bandwidth of ultrasound, the delay of an echo can be accurately

measured. Ultrasonic transducer arrays or scannable transducers

are required to construct an image.

Recently, several new acoustic imaging systems are developed.

In [42], the authors design a system to detect the object edges

using acoustic meta-materials. The system achieves 1 cm resolu-

tion, but meta-materials are not widely available, which limits its

applications. In [27, 53], the authors develop acoustic imaging sys-

tems based on planar microphone arrays. Wideband beamforming

[27] and adaptive beamforming [53] are used to generate images.

To achieve good image resolution, both systems use sizable mi-

crophone arrays (about 20 cm×20 cm), which is unacceptable for

smartphones. [37] fuses measurements of a microphone array and a

camera to generate 3-D surface geometry of an object. The systems

developed in [32] and [3] augment FPGA platforms and smart-

phones with external ultrasound transducer arrays for imaging. In

[6], the authors develop a system to image a mannequin around the

corner using SAR techniques. To avoid trajectory errors, a motion

controller is used to precisely control the movement of the speaker

and microphone.

Different from existing work, AIM is the first acoustic imaging

system using only an off-the-shelf mobile. For imaging, we move a

mobile by hand to mimic a microphone array, and develop MPGA to

remove the impact of hand jitters. Since speakers and microphones

on mobiles are omni-directional, we develop a 2-stage cancellation

scheme to minimize the self and background interference. Further-

more, smartphone speakers and microphones are not optimized for

imaging and introduce severe distortion, so we develop a focus and

denoise algorithm to remove the impact of distortion.

Acoustic signals are also used to measure the distance between

the mobile and target [40, 41, 46, 47, 61, 64], which can be combined

with our approach for simultaneous ranging and imaging.

RF based imaging: RF based imaging radars are widely deployed

[11, 14, 18, 51, 52], which transmit RF signals up to GHz with high

power [43]. Different signals have been adopted, including pulses,

modulated, and unmodulated continuous waves. Synthetic aperture

technique is developed for imaging radars [12, 38, 43, 43] to improve

resolution and coverage. Our system also relies on SAR technique

but faces new challenges due to low carrier frequency, short target

distance, slow propagation of the sound, and limited hardware.

[65] develops an imaging system with 60 GHz transceivers. It

uses RSS series analysis to determine 1-D information of target

objects (e.g., height and width). Our approach uses both magnitude

and phase to obtain 2-D images and requires a simpler setup (i.e.,

sweeping a mobile). [31] and [60] leverage RSS attenuation when

signals pass through an object to image its cross section. [31] uses

WiFi signals, while [60] is based on RFID. To set up these systems,

[31] needs to use two drones to transmit and receive WiFi signals,

while [60] requires deploying two RFID arrays at favored loca-

tions. In comparison, our approach only needs a smartphone and

requires minimum setup, which is critical for ubiquitous imaging.

[1] captures human skeletons through a wall with an antenna array

sending signals over 5.46 – 7.24 GHz. This approach is tailored for

moving human figure, whereas we can image general objects.

Interference cancellation: Several RF interference cancellation

schemes are developed [8, 9]. Themajor contribution comes fromRF

and analog cancellation, which cannot be applied to our case. [45]

develops secure acoustic communication by sending and canceling

the jamming signals. Its interference cancellation is similar to Stage

1 in our 2-stage scheme but does not consider the AGC scaling. Our

approach achieves 6 dB higher cancellation by considering AGC,

and additional 5 dB cancellation using Stage 2.

10 CONCLUSION

We develop a smartphone based acoustic imaging system. Our

innovation consists of (i) a new phase error correction algorithm for

imaging close-by objects using slowly propagating acoustic signals

with low carrier frequency through digital processing, and (ii) an

algorithm to remove the blur caused by the speaker andmicrophone

distortion. Our implementation and experiments show that it is

feasible to image an object under LoS, under-clothes, and in-bag

scenarios. As part of future work, we will improve the image quality

at longer distance and extend our system to 3-D imaging.
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