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CrossMark
Abstract
We establish the conjectured area-angular momentum-charge inequality for
stable apparent horizons in the presence of a positive cosmological constant, and
show that it is saturated precisely for extreme Kerr—Newman-de Sitter horizons.
As with previous inequalities of this type, the proof is reduced to minimizing an
‘area functional’ related to a harmonic map energy; in this case maps are from the
2-sphere to the complex hyperbolic plane. The proof here is simplified compared
to previous results for less embellished inequalities, due to the observation that
the functional is convex along geodesic deformations in the target.
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1. Introduction

Motivated in part by black hole thermodynamics, in particular the desire for a nonnegative black
hole temperature [15], several inequalities relating the area, angular-momentum, and charge of
horizons have been established [1, 3-6, 11-14, 17, 18, 20, 21, 23, 24]. Inequalities elucidating
how a cosmological constant A constrains these quantities have also been proved [21, 22, 28]. The
most recent in this direction is the result of Clement, Reiris, and Simon [14] who have treated the
area-angular momentum inequality with A > 0 for axisymmetric stable apparent horizons

A AA AA
|j|<87r\/(1_47r> <1_127r>’ (1.1)

and showed that it is saturated precisely for extreme Kerr-de Sitter black holes. The purpose
of the present work is to obtain the most general form of this inequality by including charge,
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as well as to establish the corresponding rigidity result for extreme Kerr—-Newman-de Sitter
(KNdS) horizons.

We take an initial data point of view. Recall that an initial data set (M, g, k, E, B) for the
Einstein-Maxwell equations consists of a 3-manifold M, Riemannian metric g, symmetric
2-tensor k representing extrinsic curvature, and vector fields £ and B which constitute the
electromagnetic field. Let ;2 and J be the energy and momentum densities of the matter fields,
then the constraint equations are given by

1671 = R+ (Trgk)? — |k|* — 24, 87J = divy(k — (Trek)g), (1.2)

where R denotes scalar curvature. When contributions from the electromagnetic field are
removed we have

1 2 2 1
MEMZM—§(|E| + |B[%), Jem =J + EEXB, (1.3)

where (E x B); = €;;E/B! is the cross product with € the volume form of g. The typical energy
condition employed for geometric inequalities associated with such initial data is referred to
as the charged dominant energy condition

pem = |[Jeml. (1.4)

Consider a closed 2-dimensional surface S embedded in the initial data, with induced met-
ric v and unit normal n pointing inside M. We say that the surface is axially symmetric if
the group of isometries of the Riemannian submanifold (S, ) has a subgroup isomorphic to
U(1), and (1.5) holds. Let n denote the Killing field associated with this symmetry. It will be
assumed that the integral curves of 7 are normalized to have an affine length of 27. Moreover
we require that

gy = Lyk(n,n) = £yE(n) = £,B(n) =0, (1.5)

where £, is Lie differentiation. Axisymmetry allows for a canonical expression [7, 9, 19] for
the angular momentum associated with the surface S, namely

T = g | (enn) + () = b)) aa, (1.6)
where y and v are potentials for the electric and magnetic field, respectively, to be defined
in the next section. The first term in the integral is the standard expression arising from the
Komar angular momentum, and the remaining parts are included so as to achieve conservation
of angular momentum in the Einstein-Maxwell context. In particular, if the full initial data set
is axisymmetric and there is no charged matter as well as no nonelectromagnetic momentum
density in the Killing direction, then the angular momentum (1.6) does not vary [19] among
surfaces which are homologous to one another. Furthermore the electric and magnetic charge
of the surface are given by

1 1
- [0, 0= - [ B, (7

and the square of the total charge is 0> = Q? + Q2.
Recall that the strength of the gravitational field near the surface S may be measured by the
null expansions

Hi = HsiTI'_gk, (]8)

Q.
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where Hy is the mean curvature with respect to the unit outward normal n. The null expan-
sions measure the rate of change of area for a shell of light emitted by the surface in the
outward future direction (64), and outward past direction (6_). Thus the gravitational field
is interpreted as being strong near S if 64 < 0 or 6_ < 0, in which case S is referred to as
a future (past) trapped surface. Future (past) apparent horizons arise as boundaries of future
(past) trapped regions and satisfy the equation §, = 0 (f_ = 0). Apparent horizons may be
thought of as quasi-local notions of event horizons, and in fact, assuming cosmic censorship,
they must generically be contained inside black holes [29].

In analogy with minimal surfaces, apparent horizons come with a notion of stability. In
order to define this in the current setting, consider normal variations of the (future) apparent
horizon S with variational vector field 9, = pn where ¢ € C°°(S). Then a computation [2]
shows that

00+ ]i—0 = Ly := —Ay + 2(X, Vi) + (W + div, X — |X[*)¢, (1.9)

where
W:K—SW(M+J(n))—A—%|II|2, X =k(n,-), (1.10)

with K the Gauss curvature of y and II;; = h;; + k;; the null second fundamental form associ-
ated with 0 ; here  is the second fundamental form of S C M. Although L is not necessarily
self adjoint, it has a real principal eigenvalue \; and corresponding positive unique (up to
scaling) principal eigenfunction (. The future apparent horizon S is referred to as stable if
A1 = 0. A similar statement holds for past apparent horizons. We remark that, according to
[2, section 5], this notion of stability is consistent with that which is used in [14] to establish
(1.1). Our main result is as follows.

Theorem 1.1. Let (M, g, k, E, B) be an initial data set for the Einstein—-Maxwell equa-
tions with positive cosmological constant A > 0, and let S C M be an axisymmetric stable
apparent horizon on which the charged dominant energy condition (1.4) holds. Then

, O _ A AA AA 2AQ?
T san | w)\m) s ) (-1

and equality is achieved if and only if (S,v,k(n,-),E,B) arises from an extreme Kerr—
Newman-de Sitter horizon.

The inequality (1.11) may be derived by requiring nonnegativity of the temperature for
KNdS black holes (see [10]), and was conjectured to hold under the above hypotheses in [14].
It can be interpreted as yielding, for a black hole of fixed area, an upper bound on the amount
of angular momentum and charge that it may contain; this gives a variational characteriza-
tion of the extreme KNdS configuration as the unique horizon which optimizes this bound.
Theorem 1.1 implies previously established inequalities [22, 28] giving variational charac-
terizations of extreme Schwarzschild-dS and extreme Reissner—Nordstrom-dS respectively,

AA? —47A + 16720 <0, (1.12)

in addition to (1.1) associated with extreme Kerr-dS. These results have been used to show
how the cosmological constant constrains the amount of angular momentum and charge within
a black hole, for instance they naturally imply the universal bounds



Class. Quantum Grav. 34 (2017) 125017 E T Bryden and M A Khuri

L Y32-Vv3) 1
16A2  ° 4A°
Inequality (1.11) further improves such bounds. For instance, by maximizing the right-hand
side of (1.11) over A and performing some algebra we arrive at

J? L B4
(3 +4A02)3/2 48A2 T 24AY

0’ < (1.13)

(1.14)

which reduces to the bounds in (1.13) by setting either 7 = 0 or Q = 0. See appendix C for
the derivation of (1.12) and (1.14).

There is a standard approach to proving area inequalities for stable horizons. Namely, from
stability one may derive a lower bound for the area in terms of an ‘area functional’ related to
a harmonic map energy, and the desired inequality arises by minimizing this functional and
showing that the infimum is achieved precisely for the relevant extreme stationary vacuum
configuration. The proof of theorem 1.1 follows this basic prescription, with the added dif-
ficulty that the area functional also depends on the area as a consequence of having a nonzero
cosmological constant. This is problematic in that the area functional is no longer simply
a regularized version of a harmonic map energy. In [14] this issues was resolved through a
clever scaling argument, and the same type of strategy works here as well. Our main contrib-
ution with regards to the proof of these type of inequalities is to observe that the minimization
procedure may be simplified, and also enhanced by providing a gap lower bound. This is
achieved by observing that the area functional is convex along geodesic deformations of the
functional within the target symmetric space, which in the current context will be the complex
hyperbolic plane HZ. Thus, one immediately achieves a unique minimizer through elementary
means. This type of argument is motivated by the work of Schoen and Zhou [27] on the mass-
angular momentum-charge inequalities.

This paper is organized as follows. In the next section we describe the construction of
potentials associated with angular momentum and charge. These are then used in section 3
together with the stability property to derive the appropriate area functional. In section 4 we
study the rescaled area functional and show that it possesses a unique minimizer for fixed
angular momentum and charge, namely the extreme KNdS horizon. Lastly, various formulas
and aspects of the Kerr—-Newman-de Sitter black holes are described in the appendix, along
with a proof of the existence of canonical coordinates used for axisymmetric geometries on
a sphere.

2. Construction of potentials

In this section we will derive the expression for potentials associated with electric and magn-
etic charge, as well as angular momentum. Our approach will be to motivate this construction
on the horizon S, as the restriction of potentials naturally defined in the bulk M which arise
from the study of a related geometric inequality, namely the mass-angular momentum-charge
inequality [25]. For this it will be necessary to place added restrictions on the initial data,
which are ultimately not necessary for the existence of potentials on S (or the validity of
theorem 1.1), but serve the purpose of allowing the following motivational discussion. Thus,
for the time being we will assume that the axisymmetry of S extends to axisymmetry of M,
that M is simply connected, and that there is no charged matter or momentum density in the
Killing direction:

Lng=Lyk=LE=L,B=0, div,E = div,B = Jgu(n) = 0. @D

4
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Under these conditions it is straightforward to obtain a potential for the electric field on the
bulk. To see this observe that

d(ty xE) = £y xE — 1,dx E = 0, (2.2)

where ¢ denotes interior product and x is the Hodge star. It follows from simple connectivity
that there is an electric potential satisfying

dx = 1, x E = n'Elejpdx’. (23)
Since exterior derivatives commute with pullback, we may restrict this equation to S to find
dx = E(n)1,e?, (2.4)

where £(?) is the volume form of  and x = i*x with i : § < M the inclusion map. Now note
that equation (2.4) has a solution x € C*°(S) independent of any hypotheses on M, since
stability implies that the apparent horizon S is topologically a 2-sphere and hence simply
connected. The desired electric potential y is then defined as a solution to (2.4). Similarly, we
define the magnetic potential to be a solution of the equation

dyp = B(n)1,e®. (2.5)

Note that both x and ) are axisymmetric, as it is clear that ¢, dx = ¢,dy = 0.
In order to construct the angular momentum potential, let p = k — (Trgk)g be the momen-
tum tensor with associated 1-form

P =x(p(n) An) =1, xp(n), (2.6)
where A denotes the wedge product. Then

dP = L, *p(n) — tyd * p(n) = —iy * [xd* p(n)] = 15y x 87J (1) = 15y * [87Jpu(n) — 2E x B(n)].

. (2.7)
Since E x B = *(E A B) and

Ly * [ty % (EAB)] = 1y % dY(E) = 1,y (xE A do)) :(Ln*E)/\dd;:%d()Z/\diEfdi/\d_J),

(2.8)
we have
d (73 — xdy + @d)z) = 8miy % Jem(n) = 0. (2.9)
It follows that there exists a ‘charged twist potential’ such that
dw =P — xdy + dy. (2.10)

In analogy with the electromagnetic potentials, we may restrict this equation to S and set
w = i*w to find

dw = k(n, 77)L,7€(2) — xdv) + dx. (2.11)

As above, this equation has a solution w € C*°(S) independent of any hypotheses on M, and
thus the desired charged twist potential w is then defined to be a solution of (2.11). Note that
tydw = 0 so that this potential is also axisymmetric.

We now record how the potentials just constructed encode the angular momentum (1.6)
and charge (1.7) of S. In what follows, as well as in the remaining sections, we will make use
of a convenient coordinate system on S. By virtue of the fact that S is axisymmetric and topo-
logically a 2-sphere, there exists a global set of polar coordinates (6, ¢), with 6 € [0, 7] and
¢ € [0,27), such that n = J,, and the metric takes the form

5
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v = e*77dh* + e sin® Ad¢?, (2.12)

where o € C°°(S) depends only on € and c is a constant related to the area by A = 4me€. Note
that in order to avoid conical singularities at the two axis points I' = {# = 0, 7}, we must have

27 - Radius . foe e 7/2df c—o(0)

_ (2.13)
050 /2 sin 0 ©

1 = lim —
6—0 Circumference

and a similar expression at § = , so that 0(0) = o(7) = c. Although arguments for the exis-
tence of such a coordinate system have been given previously [8, 20], we provide a detailed
proof in appendix B which is appropriate for the current setting. In these coordinates the
electromagnetic potentials are given by

X' = E(n)esin, Y = B(n)e“ sin 6, (2.14)
where the prime represents %. Hence
1 1 x(m) = x(0)
=— [ E(n)dA, = — 'dd A dp = Z——F
Qe = 4n /S (mdd, = 2 /SX Ade 2 2.15)
and similarly
m) — (0
Oy = ¥lm) —4(0) (2.16)

As for the angular momentum, we find that the charged twist potential is given in coordinates
by

W' = k(n,n)esinh — x' + X/, (2.17)

and therefore

J = %/(k(rzn) + ¢E(n) — xB(n))dA, = SL /w’d& Adgp = M (2.18)

N T™Js 4

3. The area functional

In this section the horizon stability condition will be used to derive a lower bound for the area
in terms of a set of quantities related to harmonic maps from S* — HZ. From now on it will
be assumed that the surface S is a stable future apparent horizon; similar arguments hold if S
is a stable past apparent horizon. Stability asserts that the principal eigenvalue of the stability
operator (1.9) is nonnegative. Therefore, if (; denotes the positive principal eigenfunction
then for any test function v € C°°(S) we have

0 S/vzgol_ngol
s
z/Vapl V(e +2(X - Ver) op v+ (W +diva X — |X]) 1
s

:/f ([Vloggi|* —2X - Viog o + [X[*) v +2v(Vieg o) — X) - Vv + Wi,
s (3.1
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Let
1
= 78 s
eo/2sing ¢
be an orthonormal frame on S, and consider an axisymmetric test function so that e3(v) = 0.
This, together with £,k(n, 1) = 0 from (1.5), and an integration by parts shows that

e = n, er = e7/27¢9,, e3 (3.2)

/X(e3)e3(log gol)vz =0. (3.3)
s

Then (3.1) implies that

0< /|Vv\2 + W — X(€3)2V2 — les(log <p1)|2v2 — |(ea(log 1) — X(e2))v — 62(V>|2.
s
(3.4)

Lemma 3.1. Under the hypotheses of theorem 1.1, for any axisymmetric v € C*°(S) the
following stability inequality holds

/S (VP + K7 dA, > /S (k(mes) + E(n) + B(n)® + A)dA,.  (3.5)

Proof. In light of (3.4), the desired inequality follows from the charged dominant energy
condition (1.4) and the computation

1 1 1
p+J(n) = pem + Jen(n) + g(\mz + |B]*) — EE x B(n) > & (E(n)* + B(n)*).
(3.6)

In order to choose an appropriate test function v, we rely on the intuition that the stability
inequality (3.5) should be saturated for the extreme KNdS black hole. By analyzing the sec-
ond variation of area one may verify that this is indeed the case for a test function of the form
below. We then choose

27
v=1/Ce 7, Ca=1+ aT cos? 6, (.7)

where a is a constant to be specified. Each term of (3.5) will be computed separately. Observe
that (2.14) and (2.17) yield

—0

/ (E(n)? + B(n)2) vdA, = | e ¢~ — (X?+ ) da, (3.8)
s ) sin“ 0
and
2.2 e—Zo / ’ "2
/k(n,e;) vidA, = e G 7 (W' +x¥" —¥x')" da, (3.9)
s s? sin” 6

where dA is the area form on the round sphere S?. Furthermore, calculations show that the
Gauss curvature is given by

eo’—Zc

1 1
K= [sinﬁ — o' cosf — 50’2 sinf — E(Sin 6a')' |, (3.10)

sin 0



Class. Quantum Grav. 34 (2017) 125017 E T Bryden and M A Khuri

and

6726 2
Vv = =~ (g — (0 + caa’z) . 3.11)

It follows that

2 ! ! 2 !/ 3 "/
/(|Vv|2 L KR)dA, :/ o [ “ - Go' o™ (uo'cost  (u(sinfo’)
s 5

4¢, 2 4 sin 6 2sin 6
. (3.12)
Integrating the last two terms by parts produces
!/ : N/
/ - _Caa. cosf Ca(su'wa) “
s sin 6 2sinf
—c <;0J ! —C
= € ) + (Gaeot O — (o)o | dA +2me™ (a0 (0) + Cuo (7)),
2
s (3.13)
so that
2 <a0.12
/(|Vv|2 + Kv?)dA, = 4mcae ™ + / R e — (14 Ad?cos® )0 | dA,
s s 4¢, 4
(3.14)
where
A, 2
= Gu(0) = Gu(m) = 1 + Ta (3.15)
and we have used
¢ cot® — ¢ = —(1 + Ad® cos® 6). (3.16)
By combining (3.8), (3.9), and (3.14), the stability inequality lemma 3.1 yields
drea, + By = T,(0), (3.17)
where
72
ﬁ“ - / V. + Ca dA’ \I/ = (U’W,X’ ¢)’ (318)
S? 4<a
and
Z,(7) :/ (1 + Ad? cos? 0)odA
S2
a” e ’ ’ "2 e’ n ”n (A )2 -
o - - A=) e ) da
+/SZC ( 4 T T ) (AT A ) e
(3.19)
Finally, by recalling that A = 4e€, (3.17) may be rewritten as
A > dme e (3.20)

Inequality (3.20) is the desired area lower bound which will play a central role in the proof
of theorem 1.1. Typically when establishing geometric inequalities in the spirit of (1.11),
after a lower bound has been achieved for the area in terms of a functional related to a har-
monic map energy, the next step is to show that the functional attains a global minimum at an
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appropriate extreme black hole configuration. This is fairly straightforward when the cosmo-
logical constant is not present, since in that case the functional Z, is simply a renormalized
harmonic map energy. In the current situation, when A # 0, the primary difficulty arises from
the fact that Z, depends on the area A. A consequence of this is that an infimum may not exist
when minimizing the functional over all maps ¥ with fixed angular momentum 7 and charge
0, since the triple (4, 7, Q) may not arise from an extreme KNdS black hole. A similar situa-
tion occurs in [14], and is resolved with a scaling argument which we now generalize.

Lemma 3.2. Given (A, J.Q) € R3, there exists a unique (A, J.0) € R3 which saturates
(1.11) and satisfies

47

. - . N
= — == < —. .
AzA , 0 AA, A< A (3.21)
Moreover, inequality (1.11) is equivalent to the inequality A=A
Proof. Consider the curve in R given by
J 5, 0
70) = (4. T (7). () = (7. 2. 2r). 62)

For small 7 the two sides of (1.11) have the asymptotics

P Q0 RO [ MO (MO 2000 s

4 ’ 6472 47 127 3
(3.23)

Thus, for small 7 inequality (1.11) holds when restricted to the curve f, although for large 7 it
is clear that the opposite inequality holds. It follows that there exists a time 7 = A for which
(1.11) is saturated. Further analysis of the zeros of the associated quartic equation show that
this time is unique among those for which 7 = A(7) < i

Lastly, the inequality A > A holds if and only if the point (4, 7, Q) lies below the surface
in Ri defined by equality in (1.11); here ‘below’ refers to the interpretation of the 7 -axis as

measuring height. Therefore A > Aif and only if the inequality (1.11) holds. |

The fact that (A . Q) saturates (1.11) implies that these values for the area, angular
momentum, and charge arise from an extreme KNdS solution. This particular extreme KNdS
solution yields a map ¥y (see appendix A) which is a candidate minimizer for a rescaled ver-
sion of the functional in (3.19). To construct the rescaled functional let M(j s Q) denote the
mass of the extreme KNdS black hole, and set

A 7 . . A A2 A A
a= m, U= (6,0, 09) = (U + log A’A2w’AX’A¢> . (3.24)

Note that a is the value of the parameter a in the extreme KNdS solution (appendix A) having
angular momentum 7 and charge Q, and moreover

; _ w(m) —w(0) 5 _ x(m) = x(0) o P(m) —(0)
J=—"7" Qe=""75"" O=—5 (3.25)
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A calculation shows that

A - A
T4(¥) = Z,(¥) — 2log I / (1 + Aé® cos® 0)dA = T,(¥) — 8ma, log T
S?

(3.26)
and therefore (3.20) becomes
Z,(¥) -6, A2
A > 4me e —, 3.27)
A2

Lemma 3.3. The area-angular momentum-charge-A inequality (1.11) holds if
Ta(¥) > Za(Wo).

Proof. Computation of the area of the extreme KNdS horizon yields

dme M A (3.28)
From (3.27) we then have A> A, and the desired result follows lemma 3.2. O

4. Minimization and the proof of theorem 1.1

In this section we study the minimization properties of the functional Z,, when the param-
eters a and A defining the functional arise from an extreme KNdS black hole; it will be
extremized over the space of maps ¥ = (o,w, X, %) : S* — ]HI«Z: having angular momentum
and charge 7, Q., and Q,, arising from the same extreme KNdS solution. The fundamental
reason behind the success of the minimization procedure to follow, is the fact that Z, is closely
related to a harmonic map energy. To give the precise relationship, let  C S? be a domain
which does not intersect the axis I', and consider the functional Zg(¥) which is obtained
from (3.19) by restricting the domain of integration to €. Let u = —o /2 — log sin § and set

U = (u,w,x,9) : S*\ I' — HZ, then the quasi-harmonic map energy over ( is given by

2
EQ(\i/) _ /QCa (u/Z +e4“(w/ +X¢l o wX/)Z +€2u(X,2 +w/Z) +A <4Ij_‘_) eZu SiIl2 9) dA.
4.1)

Recall that the complex hyperbolic plane H2 is the homogeneous Riemannian manifold
(R*, ho) with metric

hy = du?® + e**(dv 4 xdy) — dy)? + e*(dx? + dy?), 4.2)

and therefore the pseudo-energy (4.1) differs from the harmonic energy by the factor ¢, and
the last term involving A. Now integrate by parts and use (3.16) in the form

dive: (¢,Vlogsinf) = —(1 + Ad® cos” §) 4.3)
to obtain
Ta(¥) = Eq(V) — / (1 + Ad? cos® 0) log sin dA — / Ca(o + 2logsin 0)0, log sin Ods,
Q 0

4.4
where v is the unit outer normal to 9€2. This shows that 7, may be considered as a regulariza-
tion of E since the infinite term | {,(log sin #)"> has been removed. Furthermore, since the two

10
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functionals differ only by a boundary term and a constant, they must have the same critical
points.

Let Uy = (09, wo, X0, %0) be the renormalized map arising from the extreme KNdS solu-
tion which is associated with the functional Z,. As is shown in appendix A, ¥y is a critical
point of Z,. It is the purpose of this section to show that ¥y realizes the global minimum for
L.

Theorem 4.1.  Suppose that V = (o,w, x, ) is smooth and satisfies the asymptotics (4.10)
with w|r = wolr, X|r = Xolr, ¥|r = Yo|r, then for any p > 1 there exists a constant C > 0
such that

T, (0) — T,(Wg) > c/ (distHé(\i/,\i!o) - D)sz, 45)

S2

where D is the average value of disty; (T, ).

The proof of this result is based on convexity of the quasi-harmonic energy under geodesic
deformations; such a property is well-known for the pure harmonic energy when the target
space is nonpositively curved. To explain how this works, let Q. = {(0, ) € S* | sin@ > &}.
Then with a cut-and-paste argument it will be shown that we may assume that ¥ satisfies

supp(w — wo, X — X0,¥ — o) C Q. (4.6)
Next, let \i/,, t € [0, 1] be a geodesic in H% connecting @1 = U and \ilo, this means that for each
(6, ¢) in the domain, t — ¥,(6, ¢) is a geodesic. It then follows that (wy, X1, ¥;) = (wo, Xo» 0)

on S?\ €., so that in particular 0; = oo + t(c — 0) on this domain. The fact that o, is linear
together with convexity of the quasi-harmonic energy yields

d? S~
—I,(¥,) >2 / |Vdisty (¥, Tg)[dA. 4.7)
dr 2 C

Furthermore, since U is a critical point
4 () = 0 .8)
dr a t)|t=0 — Y. .

Theorem 4.1 may then be established by integrating (4.7) and applying the Poincaré inequal-
ity. In the remainder of this section we will justify each of these steps.

Before proceeding we record the appropriate asymptotic behavior of W. Our assumptions
here are based on the asymptotics (§ — 0, 7) of the extreme KNdS map ¥, which are given
by

=1 A =0(1
oolr =log { — . wo. X0, %0 = O(1),
T, Whs X W = O(sin 8), wh + X0l — Yoxp = O(sin® ). 4.9)

We then require that U satisfies

olr = log (‘%) , wx.=0(1), o, ¥, ¢ =0(@ind), o +x —vx = O(SinH“s ),
(4.10)
for some § > 0.
In order to carry out the proof of theorem 4.1 as outlined above, we first show that it is
possible to approximate Z,(¥) by replacing ¥ with a map ¥, which satisfies (4.6). This is

achieved with a cut and paste argument. Define a Lipschitz cut-off function
1
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0 if sinf < &,
log(Si‘ge) if i
0. (0) = s () if ¢ <sinf < /g, “.11)
1 if sinf > /e,
and let
\I’E - (U’ We, XE’ wé‘)’ (OJE’ X€9 ws) - (WO’ XO? ¢0) + @E(w - wO’X - X09w - wo%;l. 12)

so that ¥, = (o, wo, X0, %0) on S? \ Q..
Lemma 4.2. lim. ,Z,(%.) = Z,(7).
Proof. Write
Ia(\lla) = I‘l(\IjE”Sin o<e + Id(\IJE)|E<sin </ +Iu(\l’5)‘sin 0>/ (413)
and observe that

Zo(Ye)lsino= vz — Za(W) (4.14)

by the dominated convergence theorem. Moreover

4

o(1)

2
A
Ta(V.)|sin o<e :/ (1 + Ad*cos? 0)o + CA (7) e 7 | dA
sin < —_—
- o(n) _

0/2 e—ZU / / 1\2 e’ 2 2
+/ G| = +——= (wo + x0%0 — Yoxo)” +——= (xo + %) | dA
sin 0<e 4 sin” 6 Sin” 0 ~—_—_—
O(sin® 0) O(sin? 0)

o(1)
0.
- (4.15)

Next consider the region € < sinf < /¢, and note that uniform boundedness of the fol-
lowing integrand implies

2
/ ((1 + Ad® cos® B)o + (A (A) e") dA = 0(Ve). (4.16)
e<sin 0</e 4

To proceed further use the fact that w|r = wolr, X|r = Xo|r, ¥|r = ¥o|r together with (4.9)

and (4.10) yields

lw —wol + |x — xo| + ¥ — ol :O(Sinzﬂ). (4.17)
Then since
Xe = @X" + (1 = @)x0 + ¢(x — X0) (4.18)

and similarly for 1, we have that for some constant C independent of ¢

12
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-’ (X/2+¢,2)

/<sln 9<\[ Sln 9

X2+ X et —x0)l+ Y7+ %2 +¢2( — o)’ | o
e<sin </ sm0 ~~—~ ~—~ N———— ~—~ N —
O(sin? )  O(sin? 9) o(sine )2 O(sin” 0) o(sin2 0) ozt )

log e loge

= O(e).
(4.19)

Finally a calculation shows that
WL A XePL = Pexe = (W' + X1 = Px) + (1 = @e) (Wh + X0ty — Yoxo) + ©L(w — wo)
+ L (xot — Pox) + @ (1 — ) [(¥ — vo)(x — x0)" — (x — x0) (¥ — o)l
(4.20)
and hence

e—20’
/ CaT(W; + Xawé - wexla)sz
e<sinf< /e Sl 0

C
< / O = ) (ot — oy + (e — ) | d6
<sinf<4/c S 0

O(sin>+2% 9) O(sin® 9) 0( sin 6 )2
og <

+ / C; @2 (X0t — Yox)” + (1 — )’ (X' — x0)* + (X — x0)* (' — )* | 4@
<sin</e S 0

0( sin 0 )2 O(sin® 0) O(sin® 9)

1
= (gt *.21)

It follows that Z,(V. )|, cgin o<z — 0- O

The next proposition establishes the primary tool used in the minimization procedure.
Namely, the quasi-harmonic energy (4.1) is convex along geodesic deformations.

Proposition 4.3. Let F, : Q — H2 be a family of smooth maps, where Q) is a domain in S2.
Suppose that for each (0, ¢) € Q the curve t — Fy(0, ¢), t € [0, 1] is a geodesic, then

2

7 Eq(F) >2 / |Vdistyzz (F1, Fo)|*dA. (4.22)
Q

Proof. Let , and A denote the metrics on the round 2-sphere and complex hyperbolic
plane, respectively. Then the square of the harmonic energy density is

|dFy|* = 7] (ho)mOiFLO;F)". (4.23)

A 2
EQ(F,):/Ca <|dF,|2+A(47T> e sin29> dA, (4.24)
Q

13
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where F; = (u;,wr, X1, ;). Observe that since F; is a geodesic and Hé is negatively curved
853 [ GlaEPar = [ ol (VOF V0 + (V908 0F )

:/ Ca’)’(l)] <ViatFt,vjatFt>ho + <RHé(8,F,,8iF,)8,F,,((3jF,>hO)dA
Q

>/@wmﬂm;m
Q

> / |Vdisty: (F1, Fo)|*dA, (4.25)
Q

where the last step follows from the fact that {, > 1 and F; is a geodesic parameterized on the
interval [0, 11, so that |0,F|,, = distHzrc (F1, Fp).

In what follows, for simplicity of notation, we refrain from indicating dependence on ¢. To
complete the proof it is sufficient to show that

ore™ = 2(it + 2i*)e* > 0, (4.26)

where &t = O;u. From the geodesic equation we have

i+ TYFIF =0, (4.27)

and a computation of Christoffel symbols for Ag yields
Ly, =Tu, =Tu =T, =0, ¥, =-2e" T¢ =2¢pe*, T¥, =—2xe",
(4.28)
™ = —opPet, TY, = —e™ —2x%eM, TV, =2xiet.  (4.29)

It follows that
it = 2eM0% 4 (€2 + 240%™ % + (2 + 2x%e™)? — dhetiox + dxe i — dyapet .
(4.30)

Note that the expression on the right-hand side is related to the constant squared length of the
velocity vector for the geodesic

F2 = ii? + e (@ + x — ¥x)* + (¢ + ). (4.31)

Therefore
i+ 207 = 2|F[; — e (* +47) > (4.32)
O

We are now in a position to prove the main result of this section.

Proof of theorem 4.1.  Recall that V. satisfies (4.6). Thus, if \11’5 is the geodesic connecting
U, to U, as described at the beginning of this section, then o’ = o + (0 — 09). Observe that
d? d2

d

d2

I L

14
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Then using the linearity of ¢’ together with proposition 4.3 produces

d? ~ d?
I = —Eq_ (¥.) — — Calo0 + t(o — 0¢) + 21og sin )9, log sin fds
drz dr Joq.
>2 / |Vdistye (W, ¥) |2dA. (4.34)
Q. ¢

On the other hand, direct computation yields

o—09)?  4(o —op)le 2
nef <a<< ", Ho— o) <wg+xw3—woxa>2>dA

2 sin* 0

—09)%e™ AN\ ,
+ /SZ\QE Ca ((000)6%2 +YF) + A (4F> (0 —09)%e™® ) dA

sin’ 0

2/ (0 — Uo)’sz
2\ Q. 2

=2 / |Vdisty (T, ¥o)[*dA, (4.35)
SZ\QE -

since distyp, (B, Tg) = |u— uo| on S?\ Q.. Note that the passing of S—; into the integral in
(4.38) is justified, since each term on the right-hand side of the first equality is uniformly inte-
grable. Combining (4.37) and (4.38) gives the desired convexity statement

d? —
@Ia(\p;) >2 / 2 |Vdisty: (W, Uo)[*dA. (4.36)
: 2

We next observe that (4.8) holds. To see this, use that the extreme KNdS map ¥ satisfies
the Euler-Lagrange equations for the functional Z, (see appendix A), together with the fact

that $w! = SxL = S4L = 0 in a neighborhood of the axis T, to find

d 1 o
&Ia(\llt)hzo = EC,;O'(I)(O' —09)sinf|j_, = 0. (4.37)

Note that justification for passing % into the integral is analogous to that in the previous para-
graph. Now integrating (4.36) twice and applying the Poincaré inequality produces

- - - - 2
To(U.) — T,(Wg) > 2/ [Vdistyg: (., Uo)dA > c/ (distH%(\I/e,\Ilo) fDE) da,
S2? s?
4.38)
where D, is the average value of distHé (\TIE, \ilo).

By lemma 4.2 lim. 0 Z,(¥.) = Z,(¥), and thus in order to complete the proof it suffices
to show that the limit may be passed under the integral on the right-hand side. By the triangle
inequality and some algebra, it is enough to show

lim distﬂzﬂzc(\ils, ¥)dA = 0. (4.39)

€0 Js2

15
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To see this, use the triangle inequality and direct calculation to find

distHé(\i’E, j;) < distHzC((u,we,Xe,we), (u, w, Xes¥e)) + distH%((u,w,XaJ/)s), (u,w, X5 e ))
—+ diStHé ((M, W, X, ws)’ (I/t, W, X, 7/’))

< C [ (|lw — wel + [ellx = x| + Ixl[¥ = vel) + e (Ix = xel + [ = ¢e])] -
(4.40)

Since the right-hand side is uniformly bounded independent of ¢, the dominated convergence
theorem applies to give (4.39). [

Proof of theorem 1.1. From the given initial data (M, g, k, E, B) we obtain the four quanti-
ties (o, w, X, ) consisting of a metric component and three potentials, as explained in sec-
tion 2. Let (A, J, Q) be the area, angular momentum, and charge of the horizon S C M. From

lemma 3.2 there exists a corresponding triple (A, . Q) which arises from an extreme KNdS
solution, and is such that the desired inequality (1.11) is reduced to showing A > A. Let

X J N A AT A A
- == \IJ - s Wy X - 1 D A0 T X T s
.0 ) (H R Aw)
(4.41)
then lemma 3.3 asserts that A > A is valid as long as
Ta(¥) = Tu(Wo), (4.42)

where @ is the extreme KNdS map with the same angular momentum and charge (j , Q)
Finally, observe that theorem 4.1 is applicable, since smoothness of the initial data together
with the potential formulas (2.14) and (2.17) guarantee that the asymptotics (4.10) hold for 0.
This establishes (4.42) and completes the proof of inequality (1.11).

Consider now the case of equality in (1.11). From the proof of lemma 3.2, this yields
(A,J,0) = (A, J,0) and hence ¥ = . In particular, the equality of areas implies that
Z,(¥) > Z,(¥y) which gives ¥ = ¥, from the gap bound in theorem 4.1. Namely, the gap
bound gives that distg, (U, Wy) is constant, but distyp (I, Wy) = 0 at the axis I, and hence it
must vanish identically. In light of (3.27), equality of the areas also produces equality in the
stability inequality (3.5), when v is chosen as in (3.7). It follows that on S

pem — em(n)| = Jem(0p) = Jem(0g) = || = Oy log 1 = |(0g log w1 — X(0g))v — 0gv| = 0,

(4.43)
and
|E]* + |B|* — E(n)*> — B(n)* — 2E x B(n) = 0. (4.44)
A computation shows that (4.44) implies
E(ez) = B(es), E(e3) = —B(e2), (4.45)

and since the proofs above are invariant under the transformation E — —F we must then have

E(ez) = E(e3) = B(eg) = B(€3) =0. (4.46)

16
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Furthermore, the potential formulas (2.14) show that E(n) and B(n) agree with their counter-
parts in the extreme KNdS solution, and thus the full electromagnetic field (E,B) is that of the
extreme KNdS solution on the horizon.

Lastly, from (4.43) we have

e”“/2s01>
7 )

Moreover, the potential equation (2.17) implies that k(n, ;) equates with its counterpart in
the extreme KNdS spacetime. All together this shows that the coefficients of the stability
operator L arise from the extreme KNdS data, so that the eigenfunction satisfying Ly; =0
corresponds to the same quantity in the extreme KNdS setting. Hence k(n, g) agrees with its
counterpart in the extreme KNdS solution. We conclude that (S, v, k(n, -), E, B) arises from an
extreme KNdS horizon. O

k(n,09) = Oy log (%) = Oy log < (4.47)
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Appendix A. The Kerr—Newman-de sitter spacetime

The Kerr—Newman-de Sitter black hole solves the Einstein—-Maxwell equations with positive
cosmological constant

- 1~ N 1 -
Rap = 5 R8ap + Agap = 87Ty = 2 (FacFZ - 4|F|28ab) ; (A.1)

dF =0, dxy F=0. (A.2)
In Boyer-Lindquist-like coordinates the KNdS metric [10] is given by

2
A, in?0 by by Ay sin? @ 2 4 g2

> = A, Ay > =
(A.3)
where
ZA 2A
A = (P +d) (1 - ’3) ~mr + ¢, ==1 “T (A4)
@A 2 2 2
A9=1+Tcos 0, ¥ =r* +a*cos* 6, (A.5)
and the field strength and vector potential (F = d.A) take the form
ger o qprcost
A= e’ — e, )
VAES T JAsTsing (A.6)
F= % [(ge(* — a*cos® 0) — 2qpracos ) € A e' + (qp(r* — a* cos® 0) + 2g.racos§) & A €] .
(A7)

17
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Here the following orthonormal coframe is used

A asin’0 /¥
0 _ = — 1 = o
e = > (dt = d¢> s e A,dr’ (A.8)
b)) Ay r+ad?
2 _ —_— 3 = —~ g —
et =4/ A, do, e \/ > sin 0 (adt = do |, (A.9)

and the parameters m, a, and ¢ = 1/q> + qi define the mass, angular momentum, and charge
through the formulas

m am e
M=% JT=% Qe:%, Qb:%. (A.10)

The geometry of the KNdS solution depends crucially on the zeros of the polynomial A,.
In order to avoid naked singularities and other undesirable features, the relevant parameters
must satisfy certain restrictions. If

a*A <3 and m_. <m<m (A.11)

crit X crit?

where mii[ are the two positive solutions of the equation

(@A —3) (@A —3)° + 108A(@ +¢7)) ,

_ 4
0=m"+ BA AL
. (@ + ) (@A = 3)2 + 12A(a® + ¢7))° '
36A ’

then A, has four real roots r—_ < r— < r4 < r, one of which is simple and negative with the
rest positive. The roots r_ and r represent inner and outer event horizons, while the root r,
corresponds to a de Sitter cosmological horizon. An extremal black hole occurs when at least
two of the three positive roots coincide, and in this situation the geometry near the horizon
becomes asymptotically cylindrical. In particular, if m = m_ then r— = ry and if m = m;;it
then ry = re.

We now derive the quasi-harmonic map ¥y = (o9, wo, X0, %o) associated with an extreme
KNS solution. At an extreme horizon A, = 0 and thus the induced metric is given by

> Ag(r2 + a®)?sin® 0
Yo = 7(102 + 9( + — )
Ag P
This easily fits into the canonical form (2.12) by setting

de?. (A.13)

2 2 2 2
L(rjzga ), 4i e T (A.14)
= /s =

To find the electromagnetic potentials recall from (2.14) that

oo = log

Xo = E(e1)e‘ sin6, ¥y = B(ey)e sin 6, (A.15)
where {e;}, i =0, 1, 2, 3 form the frame dual to (A.8) and (A.9). Moreover
E = 1,,F = E(e))e', B =1, x4 F = Ble))e', (A.16)
with
1
E(e)) = o (qe(r?. — a® cos® ) — 2gpriacosf], (A.17)

18
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1
Bley) = 5 [qs(r%. — a* cos® 0) + 2q.ryacosf] . (A.18)
It then follows that
1
X0=~"=w (9. + a®) cos 6 + gpriasin® 0] , (A.19)
1
o = ~=5 [qb(ri +a*) cos @ — g,ryasin® 6’] ) (A.20)

In order to find the charged twist potential recall from (2.17) that
w = k(e1,9p)e sin 0 — X015 + YoXo, (A21)
where the second fundamental form may be expressed as
k(e1,05) = (0 Ve,N) = —(V,,04,N) = —€°(V,,05) (A.22)

in which N is the unit normal to the # = 0 slice. A computation with Christoffel symbols then
yields

A, asin® ary (2 +a*)Agsin® 0
(Vo 04) = 5 < o~ Erﬁ;s) == - = - (A.23)
Furthermore
2 2 2
—XoXo + YoXo = garlry +a) sin0(1 + cos? §), (A.24)

=232

and since A, = 0 the following relation holds

2 A
(L +a*)Ag = (5 +a?) (1 - r+) + é(r%F +d)¥ =2mry —¢* + é(r%r +a*)X.

3 3 3
(A.25)
By combining (A.23)—(A.25) we arrive at
2 2
A
wh = %;;M [<2mr+ + E(ri_ + az)E) sin® @ + 24 cos® 9} . (A.26)
Integration then produces
ary(ri+a*) [cos® [ m(ri+a*) ¢ A+ a?)
Wo = =2 - 2 Tt X
= Dy a’ry a 3a
+ arctan (acosﬂ) (m(rz;aZ) o ;12 o A(ri:-a2)2>] .
Ty a’rl a’ry 3a’ry
(A.27)

Note that in the case of an extreme Kerr—Newman horizon, that is A = 0, this simplifies so
that the second line vanishes and the entire expression reduces to the formula in [13, lemma
3.4]. Having constructed the extreme KNdS map Wy, it may be verified that the values of the
angular momentum and charge as given by (2.15), (2.16), and (2.18) coincide with those given
in (A.10).

19
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The map U satisfies the Euler—Lagrange equations for the functional Z, in (3.19):

. N 26_20 / / N2 e’ 2 2
(Cosindo’) = — 26, (<w o — ) 4 S (4 ))

sin 0 sin* 6 sin’ @
AN\2
+2(1 + a*Acos? 0) — 2A¢, (477) e, (A.28)
6720 /

(Ca 0 (W' + Xy — W)) =0, (A.29)
1 Ci ’ /_ZCaC_ZO'( /+ d]/_l/} /)'(//_0 (A30)

sin 0 “sin X Sin4 0 v X X RS :
L ¢ e 7 ¢, /+2<ae*20( "4 w/_w /) " (A31)

sinf \ “siné sin* @ wTX XX =5 :

In order to elucidate the quasi-harmonic map structure of the equations, let
uy = —0o/2 —logsin® and ¥y = (up,wo, X0, %o). Then ¥, satisfies the Euler-Lagrange
equations for the functional E in (4.1):

1
7 (Casin ') = 20e™ (W + X0 + ) + Cae™ ,

” 2 i 2-2
X"+ + A pym sin” 0

Sin
(A32)
(Casinbe (W' + xv' — X)) =0, (A33)
g (Gasin 0e2x')" — 20, (W + xv' — X )Y =0, (A.34)
1 . 2u, .\’ dug, 1 ’ Nt
e (Casin0e® ') + 2¢e™ (W' + x¥' — ¥x' )X’ = 0. (A.35)

These clearly reduce to the axisymmetric harmonic map equations for S — ]HI% when A = 0.

We now indicate the derivation of the main inequality (1.11). There are two methods for
doing this. The first consists of algebraic manipulations centered on the two equations A, = 0
and 0,A, = 0, which is carried out in [14] for the uncharged case. The second method is moti-
vated by black hole thermodynamics. Consider the Smarr formula [16] for the mass of a (not
necessarily extreme) KNdS solution

A 2 AJE A A A
M2167r+§(4“72+Q4)+QJ<Q2+47r967r2>' (A.36)

The temperature is computed by varying the mass function with respect to the entropy
S = A/4, and is given by

oM 1 1672 2A A A2A?
1 - il (4JZ+Q4)—3(Q2+ )+ 2]. (A.37)

T := = —
oS 8T M A? 27 481
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Moreover, the first law of black hole thermodynamics states that
dM =TdS + QdJ + ¢dQ, (A.38)

where (2 and ® denote the angular velocity and electric potential respectively, and have the
expressions

oM _ <7 (| AS LM 0 (8 25
Q_aj’ﬂMS<1 %)’ ®_8Q_2MS<Q+ - (A39)

T 37?2

In the dynamical setting, Hawking’s area theorem (second law of black hole thermodynamics)

asserts that S > 0 where dot represents a time derivative. Thus, assuming conservation of black

hole angular momentum and charge, and the physically reasonable supposition that black hole

mass increases with area, then the first law (A.38) implies that the temperature is nonnegative.

In conclusion, heuristic physical reasoning leads to T > 0 which is equivalent to (1.11).

Lastly, we mention that given a triple (4, 7, Q) which saturates (1.11) (with A < 4x/A)

as in lemma 3.2, we may insert these values into the Smarr formula to obtain the mass as a

function of 7 and Q. This gives the angular momentum parameter as a function of the same
quantities via the formula
J

“TM(7.0 (40

From here all the remaining parameters m, q., and g, of (A.10) may be determined in terms

of J and Q, and we may construct a KNdS spacetime. This solution must be extreme, since

according to (A.37) saturation of (1.11) implies that M (as a function of A) has a critical point

at the given triple (A, 7, Q), and hence m achieves one of the extreme values m=

> a calcul-
ation shows that a(J, Q) satisfies (A.11).

Appendix B. Canonical coordinates

The purpose of this appendix is to establish the existence of the coordinate system introduced
in section 2 which yields the simple expression for the horizon metric (2.12). As previously
mentioned, arguments for the existence of such a coordinate system have been given previ-
ously [8, 20] under certain hypotheses. Here we provide a detailed proof in the context appro-
priate for the current results.

Proposition B.1. Let v be a smooth axisymmetric Riemannian metric on a topological
2-sphere S, and denote the associated Killing field by 7. Then there exist global coordinates
(0, ) with 8 € [0, 7] and ¢ € [0,27), such that ) = O, and the metric takes the form

v = e*79d#* + e sin® Ad¢?, (B.1)

where o € C*(S) depends only on 0 and c is a constant related to the area by A = 4me°.

Proof. Let {S;} C S denote the components of the zero set of 7. Then each S; is of even
codimension [26, theorem 34], and is therefore a point. Moreover, according to [26, theorem
40] we have the following relation between Euler characteristics 2 = x(S§) = >_. x(S;), and
hence the zero set of 7 consists of exactly two points, a north and south pole { p4,p_}.

Let a(t), t € [0,1] be a minimizing geodesic parameterized by arclength connecting the
south to north pole, that is @(0) = p_, a(l) = p4. Let @, s € [0, 27) denote the 1-parameter
flamily of isometries associated to 7, and set ay(z) = ®;(«()). Then for each s the curve
t+— ay(r) is a geodesic, and ag(f) = aax(t) = a(f). By construction (¢, s) forms a system
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of global coordinates on S\ a, and v(8;,9,) = 1 as well as (0;, 3;) = |n|*. In addition, the
geodesic and Killing equations imply that

(0, m) = (0, Van) = 0. (B.2)

Thus, since (0, 1) = 0 at p,. we must have y(9;, 9s) = v(d;, 1) = 0 everywhere. It follows
that

v = df* + |n|*ds*. (B.3)

In order to put the metric in the form (B.1) we will make use of a potential for the volume
form £(). By Cartan’s formula and the fact that 7 is a Killling field

0= 2,,5(2) = dbna(z) + Lnd&'(z) = dLnE(z). (B.4)

Since S is simply connected there exists a function f such that df = Lns(z). Note that

n(f) =e®(n,n) = 0 so that f is a function of ¢ alone. Moreover, since |df| vanishes only

at the north and south poles, it may be assumed that f'is strictly increasing. Therefore a new
coordinate system may be defined by # = f(7) and ¢ = 5. Observe that

2= Vf]F =P (Vf.n) =f(0,0,) =f'Inl. (B.5)

and hence ' = |n)|. It follows that

v = [l 72d6> + n|*dg’. (B.6)
Now set
_ . 2(6-£(0))
COSG—I—f(l)_f(O), (B.7)
then

(f(1) = £(0)) sin 0

7P do? + |n*d¢?*. (B.8)

’)/:

Finally, defining e~% = |n|"2sin?@ and e = (f(I) —f(0))/2 produces the desired
result. O

Appendix C. Justification of secondary inequalities

Here we show how the inequalities in (1.12) and (1.14) follow from the main inequality (1.11).
The first inequality of (1.12) is straightforward. To obtain the second, observe that theorem
1.1 implies

1, AA* A? AA AA
— — . —— ] <0.
4Q + 967r2Q 6472 ! 47 ! 127 ) = 0 €D

Viewing the left-hand side as a quadratic polynomial in Q? yields the factorization

, A AA , A AA
(e (-3)) (0= 5 (%)) <o “
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Since the first factor is nonnegative the second factor must be nonpositive, and from this the
second inequality of (1.12) directly follows.
Consider now the right-hand side of (1.11) as a function of A, that is

A2 AA AA 2A0?
FA) = G Kl a 47r) (1 B 127r> 3 ] ' €3
The derivative
, A 242 2 28 A2
(A) =z (A% = 127AA + 2477 — 167°AQ7) €4

may be used to determine that the maximum of fon the interval 0 < A < 47/A occurs at

P (3 3+ 4AQ2> . (C.5)

A

A computation then reveals the maximum value

(3 +4AQ2)3/2 Q4 Q2 3

Ny wrTr) 2 2 _ — C.6
F(Ama) 24A2 12 2A  16A%° )
According to inequality (1.11)
Q4
T+ e <f(A) <f(Amax), (C.7)

which together with (C.6) yields the desired inequality (1.14).
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