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Abstract

We establish the conjectured area-angular momentum-charge inequality for 

stable apparent horizons in the presence of a positive cosmological constant, and 

show that it is saturated precisely for extreme Kerr–Newman-de Sitter horizons. 

As with previous inequalities of this type, the proof is reduced to minimizing an 

‘area functional’ related to a harmonic map energy; in this case maps are from the 

2-sphere to the complex hyperbolic plane. The proof here is simplified compared 

to previous results for less embellished inequalities, due to the observation that 

the functional is convex along geodesic deformations in the target.

Keywords: black hole, cosmological constant, area inequality

1. Introduction

Motivated in part by black hole thermodynamics, in particular the desire for a nonnegative black 

hole temperature [15], several inequalities relating the area, angular-momentum, and charge of 

horizons have been established [1, 3–6, 11–14, 17, 18, 20, 21, 23, 24]. Inequalities elucidating 

how a cosmological constant Λ constrains these quantities have also been proved [21, 22, 28]. The 

most recent in this direction is the result of Clement, Reiris, and Simon [14] who have treated the 

area-angular momentum inequality with Λ > 0 for axisymmetric stable apparent horizons

|J | �
A

8π

√

(

1 −
ΛA

4π

)(

1 −
ΛA

12π

)

, (1.1)

and showed that it is saturated precisely for extreme Kerr-de Sitter black holes. The purpose 

of the present work is to obtain the most general form of this inequality by including charge, 
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as well as to establish the corresponding rigidity result for extreme Kerr–Newman-de Sitter 

(KNdS) horizons.

We take an initial data point of view. Recall that an initial data set (M, g, k, E, B) for the 

Einstein–Maxwell equations  consists of a 3-manifold M, Riemannian metric g, symmetric 

2-tensor k representing extrinsic curvature, and vector fields E and B which constitute the 

electromagnetic field. Let µ and J be the energy and momentum densities of the matter fields, 

then the constraint equations are given by

16πµ = R + (Trgk)2 − |k|2 − 2Λ, 8πJ = divg(k − (Trgk)g), (1.2)

where R denotes scalar curvature. When contributions from the electromagnetic field are 

removed we have

µEM = µ−
1

8π
(|E|2 + |B|2), JEM = J +

1

4π
E × B, (1.3)

where (E × B)i = εijlE
jBl is the cross product with ε the volume form of g. The typical energy 

condition employed for geometric inequalities associated with such initial data is referred to 

as the charged dominant energy condition

µEM � |JEM|. (1.4)

Consider a closed 2-dimensional surface S embedded in the initial data, with induced met-

ric γ and unit normal n pointing inside M. We say that the surface is axially symmetric if 

the group of isometries of the Riemannian submanifold (S, γ) has a subgroup isomorphic to 

U(1), and (1.5) holds. Let η denote the Killing field associated with this symmetry. It will be 

assumed that the integral curves of η are normalized to have an affine length of 2π. Moreover 

we require that

Lηγ = Lηk(n, η) = LηE(n) = LηB(n) = 0, (1.5)

where Lη is Lie differentiation. Axisymmetry allows for a canonical expression [7, 9, 19] for 

the angular momentum associated with the surface S, namely

J =
1

8π

∫

S

(k(n, η) + ψE(n)− χB(n)) dAγ (1.6)

where χ and ψ are potentials for the electric and magnetic field, respectively, to be defined 

in the next section. The first term in the integral is the standard expression arising from the 

Komar angular momentum, and the remaining parts are included so as to achieve conservation 

of angular momentum in the Einstein–Maxwell context. In particular, if the full initial data set 

is axisymmetric and there is no charged matter as well as no nonelectromagnetic momentum 

density in the Killing direction, then the angular momentum (1.6) does not vary [19] among 

surfaces which are homologous to one another. Furthermore the electric and magnetic charge 

of the surface are given by

Qe =
1

4π

∫

S

E(n)dAγ , Qb =
1

4π

∫

S

B(n)dAγ , (1.7)

and the square of the total charge is Q2 = Q2
e + Q2

b.

Recall that the strength of the gravitational field near the surface S may be measured by the 

null expansions

θ± := HS ± TrSk, (1.8)
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where HS is the mean curvature with respect to the unit outward normal n. The null expan-

sions measure the rate of change of area for a shell of light emitted by the surface in the 

outward future direction (θ+), and outward past direction (θ−). Thus the gravitational field 

is interpreted as being strong near S if θ+ < 0 or θ− < 0, in which case S is referred to as 

a future (past) trapped surface. Future (past) apparent horizons arise as boundaries of future 

(past) trapped regions and satisfy the equation θ+ = 0 (θ− = 0). Apparent horizons may be 

thought of as quasi-local notions of event horizons, and in fact, assuming cosmic censorship, 

they must generically be contained inside black holes [29].

In analogy with minimal surfaces, apparent horizons come with a notion of stability. In 

order to define this in the current setting, consider normal variations of the (future) apparent 

horizon S with variational vector field ∂t = ϕn where ϕ ∈ C∞(S). Then a computation [2] 

shows that

∂tθ+|t=0 = Lϕ := −∆γϕ+ 2〈X,∇ϕ〉+ (W + divγX − |X|2)ϕ, (1.9)

where

W = K − 8π(µ+ J(n))− Λ−
1

2
|II|2, X = k(n, ·), (1.10)

with K the Gauss curvature of γ and IIij = hij + kij  the null second fundamental form associ-

ated with θ+; here h is the second fundamental form of S ⊂ M . Although L is not necessarily 

self adjoint, it has a real principal eigenvalue λ1 and corresponding positive unique (up to 

scaling) principal eigenfunction ϕ1. The future apparent horizon S is referred to as stable if 

λ1 � 0. A similar statement holds for past apparent horizons. We remark that, according to 

[2, section 5], this notion of stability is consistent with that which is used in [14] to establish 

(1.1). Our main result is as follows.

Theorem 1.1. Let (M, g, k, E, B) be an initial data set for the Einstein–Maxwell equa-

tions with positive cosmological constant Λ > 0, and let S ⊂ M  be an axisymmetric stable 

apparent horizon on which the charged dominant energy condition (1.4) holds. Then

J
2 +

Q4

4
�

A2

64π2

[(

1 −
ΛA

4π

)(

1 −
ΛA

12π

)

−
2ΛQ2

3

]

, (1.11)

and equality is achieved if and only if (S, γ, k(n, ·), E, B) arises from an extreme Kerr– 

Newman-de Sitter horizon.

The inequality (1.11) may be derived by requiring nonnegativity of the temperature for 

KNdS black holes (see [10]), and was conjectured to hold under the above hypotheses in [14]. 

It can be interpreted as yielding, for a black hole of fixed area, an upper bound on the amount 

of angular momentum and charge that it may contain; this gives a variational characteriza-

tion of the extreme KNdS configuration as the unique horizon which optimizes this bound. 

Theorem 1.1 implies previously established inequalities [22, 28] giving variational charac-

terizations of extreme Schwarzschild-dS and extreme Reissner–Nordström-dS respectively,

A �
4π

Λ
, ΛA2 − 4πA + 16π2Q2

� 0, (1.12)

in addition to (1.1) associated with extreme Kerr-dS. These results have been used to show 

how the cosmological constant constrains the amount of angular momentum and charge within 

a black hole, for instance they naturally imply the universal bounds

E T Bryden and M A Khuri Class. Quantum Grav. 34 (2017) 125017
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J 2
�

√
3(2 −

√
3)

16Λ2
, Q2

�
1

4Λ
. (1.13)

Inequality (1.11) further improves such bounds. For instance, by maximizing the right-hand 

side of (1.11) over A and performing some algebra we arrive at

J 2

(3 + 4ΛQ2)3/2
+

(3 + 4ΛQ2)1/2

48Λ2
�

1

24Λ2
, (1.14)

which reduces to the bounds in (1.13) by setting either J = 0 or Q  =  0. See appendix C for 

the derivation of (1.12) and (1.14).

There is a standard approach to proving area inequalities for stable horizons. Namely, from 

stability one may derive a lower bound for the area in terms of an ‘area functional’ related to 

a harmonic map energy, and the desired inequality arises by minimizing this functional and 

showing that the infimum is achieved precisely for the relevant extreme stationary vacuum 

configuration. The proof of theorem 1.1 follows this basic prescription, with the added dif-

ficulty that the area functional also depends on the area as a consequence of having a nonzero 

cosmological constant. This is problematic in that the area functional is no longer simply 

a regularized version of a harmonic map energy. In [14] this issues was resolved through a 

clever scaling argument, and the same type of strategy works here as well. Our main contrib-

ution with regards to the proof of these type of inequalities is to observe that the minimization 

procedure may be simplified, and also enhanced by providing a gap lower bound. This is 

achieved by observing that the area functional is convex along geodesic deformations of the 

functional within the target symmetric space, which in the current context will be the complex 

hyperbolic plane H2
C

. Thus, one immediately achieves a unique minimizer through elementary 

means. This type of argument is motivated by the work of Schoen and Zhou [27] on the mass-

angular momentum-charge inequalities.

This paper is organized as follows. In the next section  we describe the construction of 

potentials associated with angular momentum and charge. These are then used in section 3 

together with the stability property to derive the appropriate area functional. In section 4 we 

study the rescaled area functional and show that it possesses a unique minimizer for fixed 

angular momentum and charge, namely the extreme KNdS horizon. Lastly, various formulas 

and aspects of the Kerr–Newman-de Sitter black holes are described in the appendix, along 

with a proof of the existence of canonical coordinates used for axisymmetric geometries on 

a sphere.

2. Construction of potentials

In this section we will derive the expression for potentials associated with electric and magn-

etic charge, as well as angular momentum. Our approach will be to motivate this construction 

on the horizon S, as the restriction of potentials naturally defined in the bulk M which arise 

from the study of a related geometric inequality, namely the mass-angular momentum-charge 

inequality [25]. For this it will be necessary to place added restrictions on the initial data, 

which are ultimately not necessary for the existence of potentials on S (or the validity of 

theorem 1.1), but serve the purpose of allowing the following motivational discussion. Thus, 

for the time being we will assume that the axisymmetry of S extends to axisymmetry of M, 

that M is simply connected, and that there is no charged matter or momentum density in the 

Killing direction:

Lηg = Lηk = LηE = LηB = 0, divgE = divgB = JEM(η) = 0. 
(2.1)

E T Bryden and M A Khuri Class. Quantum Grav. 34 (2017) 125017
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Under these conditions it is straightforward to obtain a potential for the electric field on the 

bulk. To see this observe that

d(ιη � E) = Lη � E − ιηd � E = 0, (2.2)

where ι denotes interior product and � is the Hodge star. It follows from simple connectivity 

that there is an electric potential satisfying

dχ̄ = ιη � E = η
iEl

εijldx j. (2.3)

Since exterior derivatives commute with pullback, we may restrict this equation to S to find

dχ = E(n)ιηε
(2), (2.4)

where ε(2) is the volume form of γ and χ = i∗χ̄ with i : S ↪→ M  the inclusion map. Now note 

that equation  (2.4) has a solution χ ∈ C∞(S) independent of any hypotheses on M, since 

stability implies that the apparent horizon S is topologically a 2-sphere and hence simply 

connected. The desired electric potential χ is then defined as a solution to (2.4). Similarly, we 

define the magnetic potential to be a solution of the equation

dψ = B(n)ιηε
(2). (2.5)

Note that both χ and ψ are axisymmetric, as it is clear that ιηdχ = ιηdψ = 0.

In order to construct the angular momentum potential, let p = k − (Trgk)g be the momen-

tum tensor with associated 1-form

P = �( p(η) ∧ η) = ιη � p(η), (2.6)

where ∧ denotes the wedge product. Then

dP = Lη � p(η)− ιηd � p(η) = −ιη � [�d � p(η)] = ιη � 8πJ(η) = ιη � [8πJEM(η)− 2E × B(η)] .
 

(2.7)
Since E × B = �(E ∧ B) and

ιη � [ιη � (E ∧ B)] = ιη � dψ̄(E) = ιη
(

�E ∧ dψ̄
)

= (ιη � E) ∧ dψ̄ =
1

2
d
(

χ̄ ∧ dψ̄ − dχ̄ ∧ ψ̄
)

,

 (2.8)

we have

d
(

P − χ̄dψ̄ + ψ̄dχ̄
)

= 8πιη � JEM(η) = 0. (2.9)

It follows that there exists a ‘charged twist potential’ such that

dω̄ = P − χ̄dψ̄ + ψ̄dχ̄. (2.10)

In analogy with the electromagnetic potentials, we may restrict this equation  to S and set 

ω = i∗ω̄ to find

dω = k(n, η)ιηε
(2) − χdψ + ψdχ. (2.11)

As above, this equation has a solution ω ∈ C∞(S) independent of any hypotheses on M, and 

thus the desired charged twist potential ω is then defined to be a solution of (2.11). Note that 

ιηdω = 0 so that this potential is also axisymmetric.

We now record how the potentials just constructed encode the angular momentum (1.6) 

and charge (1.7) of S. In what follows, as well as in the remaining sections, we will make use 

of a convenient coordinate system on S. By virtue of the fact that S is axisymmetric and topo-

logically a 2-sphere, there exists a global set of polar coordinates (θ,φ), with θ ∈ [0,π] and 

φ ∈ [0, 2π), such that η = ∂φ and the metric takes the form

E T Bryden and M A Khuri Class. Quantum Grav. 34 (2017) 125017
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γ = e2c−σdθ2 + eσ sin2 θdφ2, (2.12)

where σ ∈ C∞(S) depends only on θ and c is a constant related to the area by A = 4πec. Note 

that in order to avoid conical singularities at the two axis points Γ = {θ = 0,π}, we must have

1 = lim
θ→0

2π · Radius

Circumference
= lim

θ→0

∫ θ

0
ec−σ/2dθ

eσ/2 sin θ
= ec−σ(0) (2.13)

and a similar expression at θ = π, so that σ(0) = σ(π) = c. Although arguments for the exis-

tence of such a coordinate system have been given previously [8, 20], we provide a detailed 

proof in appendix B which is appropriate for the current setting. In these coordinates the 

electro magnetic potentials are given by

χ
′ = E(n)ec sin θ, ψ′ = B(n)ec sin θ, (2.14)

where the prime represents d
dθ. Hence

Qe =
1

4π

∫

S

E(n)dAγ =
1

4π

∫

S

χ
′dθ ∧ dφ =

χ(π)− χ(0)

2
, (2.15)

and similarly

Qb =
ψ(π)− ψ(0)

2
. (2.16)

As for the angular momentum, we find that the charged twist potential is given in coordinates 

by

ω′ = k(n, η)ec sin θ − χψ′ + ψχ′, (2.17)

and therefore

J =
1

8π

∫

S

(k(n, η) + ψE(n)− χB(n)) dAγ =
1

8π

∫

S

ω′dθ ∧ dφ =
ω(π)− ω(0)

4
.

 

(2.18)

3. The area functional

In this section the horizon stability condition will be used to derive a lower bound for the area 

in terms of a set of quantities related to harmonic maps from S2
→ H

2
C

. From now on it will 

be assumed that the surface S is a stable future apparent horizon; similar arguments hold if S 

is a stable past apparent horizon. Stability asserts that the principal eigenvalue of the stability 

operator (1.9) is nonnegative. Therefore, if ϕ1 denotes the positive principal eigenfunction 

then for any test function v ∈ C∞(S) we have

0 �

∫

S

v2ϕ−1
1 Lϕ1

=

∫

S

∇ϕ1 · ∇(ϕ−1
1 v2) + 2 (X · ∇ϕ1)ϕ

−1
1 v2 +

(

W + divγX − |X|2
)

v2

=

∫

S

−
(

|∇ logϕ1|
2 − 2X · ∇ logϕ1 + |X|2

)

v2 + 2v (∇ logϕ1 − X) · ∇v + Wv2.

 (3.1)

E T Bryden and M A Khuri Class. Quantum Grav. 34 (2017) 125017
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Let

e1 = n, e2 = eσ/2−c∂θ, e3 =
1

eσ/2 sin θ
∂φ, (3.2)

be an orthonormal frame on S, and consider an axisymmetric test function so that e3(v)  =  0. 

This, together with Lηk(n, η) = 0 from (1.5), and an integration by parts shows that
∫

S

X(e3)e3(logϕ1)v
2 = 0. (3.3)

Then (3.1) implies that

0 �

∫

S

|∇v|2 + Wv2 − X(e3)
2v2 − |e3(logϕ1)|

2v2 − |(e2(logϕ1)− X(e2))v − e2(v)|
2

.

 (3.4)

Lemma 3.1. Under the hypotheses of theorem 1.1, for any axisymmetric v ∈ C∞(S) the 

following stability inequality holds
∫

S

(

|∇v|2 + Kv2
)

dAγ �

∫

S

(

k(n, e3)
2 + E(n)2 + B(n)2 + Λ

)

v2dAγ . (3.5)

Proof. In light of (3.4), the desired inequality follows from the charged dominant energy 

condition (1.4) and the computation

µ+ J(n) = µEM + JEM(n) +
1

8π
(|E|2 + |B|2)−

1

4π
E × B(n) �

1

8π

(

E(n)2 + B(n)2
)

.

 (3.6)

In order to choose an appropriate test function v, we rely on the intuition that the stability 

inequality (3.5) should be saturated for the extreme KNdS black hole. By analyzing the sec-

ond variation of area one may verify that this is indeed the case for a test function of the form 

below. We then choose

v =
√

ζae−σ/2, ζa = 1 +
a2Λ

3
cos2 θ, (3.7)

where a is a constant to be specified. Each term of (3.5) will be computed separately. Observe 

that (2.14) and (2.17) yield
∫

S

(

E(n)2 + B(n)2
)

v2dAγ =

∫

S2

e−cζa

e−σ

sin2 θ

(

χ′2 + ψ′2
)

dA, (3.8)

and

∫

S

k(n, e3)
2v2dAγ =

∫

S2

e−cζa

e−2σ

sin4 θ
(ω′ + χψ′ − ψχ′)

2
dA, (3.9)

where dA is the area form on the round sphere S2. Furthermore, calculations show that the 

Gauss curvature is given by

K =
eσ−2c

sin θ

[

sin θ − σ′ cos θ −
1

2
σ′2 sin θ −

1

2
(sin θσ′)′

]

, (3.10)

E T Bryden and M A Khuri Class. Quantum Grav. 34 (2017) 125017
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and

|∇v|2 =
e−2c

4

(

ζ ′2a

ζa

− 2ζaσ
′ + ζaσ

′2

)

. (3.11)

It follows that

∫

S

(|∇v|2 + Kv2)dAγ =

∫

S2

e−c

[

ζ ′2a

4ζa

+ ζa −
ζ ′aσ

′

2
−

ζaσ
′2

4
−

ζaσ
′ cos θ

sin θ
−

ζa(sin θσ
′)′

2 sin θ

]

dA.

 
(3.12)

Integrating the last two terms by parts produces
∫

S2

e−c

[

−
ζaσ

′ cos θ

sin θ
−

ζa(sin θσ
′)′

2 sin θ

]

dA

=

∫

S2

e−c

[

ζ ′aσ
′

2
+ (ζ ′a cot θ − ζa)σ

]

dA + 2πe−c (ζaσ(0) + ζaσ(π)) ,

 

(3.13)
so that

∫

S

(|∇v|2 + Kv2)dAγ = 4πcαae−c +

∫

S2

e−c

(

ζ ′2a

4ζa

+ ζa −
ζaσ

′2

4
− (1 + Λa2 cos2 θ)σ

)

dA,

 (3.14)

where

αa = ζa(0) = ζa(π) = 1 +
Λa2

3
 (3.15)

and we have used

ζ ′a cot θ − ζa = −(1 + Λa2 cos2 θ). (3.16)

By combining (3.8), (3.9), and (3.14), the stability inequality lemma 3.1 yields

4πcαa + βa � Ia(Ψ), (3.17)

where

βa =

∫

S2

(

ζ ′2a

4ζa

+ ζa

)

dA, Ψ = (σ,ω,χ,ψ), (3.18)

and

Ia(Ψ) =

∫

S2

(1 + Λa2 cos2 θ)σdA

+

∫

S2

ζa

(

σ′2

4
+

e−2σ

sin4 θ
(ω′ + χψ′

− ψχ′)2 +
e−σ

sin2 θ
(χ′2 + ψ′2) + Λ

(

A

4π

)2

e−σ

)

dA.

 (3.19)

Finally, by recalling that A = 4πec, (3.17) may be rewritten as

A � 4πe
Ia(Ψ)−βa

4παa . (3.20)

Inequality (3.20) is the desired area lower bound which will play a central role in the proof 

of theorem 1.1. Typically when establishing geometric inequalities in the spirit of (1.11), 

after a lower bound has been achieved for the area in terms of a functional related to a har-

monic map energy, the next step is to show that the functional attains a global minimum at an 

E T Bryden and M A Khuri Class. Quantum Grav. 34 (2017) 125017
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appropriate extreme black hole configuration. This is fairly straightforward when the cosmo-

logical constant is not present, since in that case the functional Ia is simply a renormalized 

harmonic map energy. In the current situation, when Λ �= 0, the primary difficulty arises from 

the fact that Ia depends on the area A. A consequence of this is that an infimum may not exist 

when minimizing the functional over all maps Ψ with fixed angular momentum J  and charge 

Q, since the triple (A,J , Q) may not arise from an extreme KNdS black hole. A similar situa-

tion occurs in [14], and is resolved with a scaling argument which we now generalize.

Lemma 3.2. Given (A,J , Q) ∈ R
3
+, there exists a unique (Â, Ĵ , Q̂) ∈ R

3
+ which saturates 

(1.11) and satisfies

Ĵ =
J
A2

Â2, Q̂ =
Q

A
Â, Â �

4π

Λ
. (3.21)

Moreover, inequality (1.11) is equivalent to the inequality Â � A.

Proof. Consider the curve in R3
+ given by

f (τ) = (A(τ),J (τ), Q(τ)) =

(

τ ,
J
A2

τ
2,

Q

A
τ

)

. (3.22)

For small τ the two sides of (1.11) have the asymptotics

J 2(τ) +
Q4(τ)

4
∼ τ

4,
A2(τ)

64π2

[(

1 −

ΛA(τ)

4π

)(

1 −

ΛA(τ)

12π

)

−

2ΛQ2(τ)

3

]

∼ τ
2.

 (3.23)

Thus, for small τ inequality (1.11) holds when restricted to the curve f, although for large τ it 

is clear that the opposite inequality holds. It follows that there exists a time τ = Â for which 

(1.11) is saturated. Further analysis of the zeros of the associated quartic equation show that 

this time is unique among those for which τ = A(τ) � 4π
Λ

.

Lastly, the inequality Â � A holds if and only if the point (A,J , Q) lies below the surface 

in R3
+ defined by equality in (1.11); here ‘below’ refers to the interpretation of the J -axis as 

measuring height. Therefore Â � A if and only if the inequality (1.11) holds. □

The fact that (Â, Ĵ , Q̂) saturates (1.11) implies that these values for the area, angular 

momentum, and charge arise from an extreme KNdS solution. This particular extreme KNdS 

solution yields a map Ψ0 (see appendix A) which is a candidate minimizer for a rescaled ver-

sion of the functional in (3.19). To construct the rescaled functional let M(Ĵ , Q̂) denote the 

mass of the extreme KNdS black hole, and set

â =
Ĵ

M(Ĵ , Q̂)
, Ψ̂ = (σ̂, ω̂, χ̂, ψ̂) =

(

σ + log
Â

A
,

Â2

A2
ω,

Â

A
χ,

Â

A
ψ

)

.

 

(3.24)

Note that â is the value of the parameter a in the extreme KNdS solution (appendix A) having 

angular momentum Ĵ  and charge Q̂, and moreover

Ĵ =
ω̂(π)− ω̂(0)

4
, Q̂e =

χ̂(π)− χ̂(0)

2
, Q̂b =

ψ̂(π)− ψ̂(0)

2
.

 

(3.25)
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A calculation shows that

Iâ(Ψ) = Iâ(Ψ̂)− 2 log
Â

A

∫

S2

(1 + Λâ2 cos2
θ)dA = Iâ(Ψ̂)− 8παâ log

Â

A
,

 (3.26)

and therefore (3.20) becomes

A � 4πe
Iâ(Ψ̂)−βâ

4παâ

A2

Â2
. (3.27)

Lemma 3.3. The area-angular momentum-charge-Λ inequality (1.11) holds if 

Iâ(Ψ̂) � Iâ(Ψ0).

Proof. Computation of the area of the extreme KNdS horizon yields

4πe
Iâ(Ψ0)−βâ

4παâ = Â. (3.28)

From (3.27) we then have Â � A, and the desired result follows lemma 3.2. □

4. Minimization and the proof of theorem 1.1

In this section we study the minimization properties of the functional Ia, when the param-

eters a and A defining the functional arise from an extreme KNdS black hole; it will be 

extremized over the space of maps Ψ = (σ,ω,χ,ψ) : S2
→ H

2
C
 having angular momentum 

and charge J , Qe, and Qb arising from the same extreme KNdS solution. The fundamental 

reason behind the success of the minimization procedure to follow, is the fact that Ia is closely 

related to a harmonic map energy. To give the precise relationship, let Ω ⊂ S
2 be a domain 

which does not intersect the axis Γ, and consider the functional IΩ(Ψ) which is obtained 

from (3.19) by restricting the domain of integration to Ω. Let u = −σ/2 − log sin θ and set 

Ψ̃ = (u,ω,χ,ψ) : S2 \ Γ → H
2
C

, then the quasi-harmonic map energy over Ω is given by

EΩ(Ψ̃) =

∫

Ω

ζa

(

u′2 + e4u(ω′ + χψ′ − ψχ′)2 + e2u(χ′2 + ψ′2) + Λ

(

A

4π

)2

e2u sin2 θ

)

dA.

 (4.1)

Recall that the complex hyperbolic plane H2
C

 is the homogeneous Riemannian manifold 

(R4, h0) with metric

h0 = du2 + e4u(dv + χdψ − ψdχ)2 + e2u(dχ2 + dψ2), (4.2)

and therefore the pseudo-energy (4.1) differs from the harmonic energy by the factor ζa and 

the last term involving Λ. Now integrate by parts and use (3.16) in the form

divS2 (ζa∇ log sin θ) = −(1 + Λa2 cos2 θ) (4.3)

to obtain

IΩ(Ψ) = EΩ(Ψ̃)−

∫

Ω

(1 + Λa2 cos2 θ) log sin θdA −

∫

∂Ω

ζa(σ + 2 log sin θ)∂ν log sin θds,

 (4.4)

where ν is the unit outer normal to ∂Ω. This shows that Ia may be considered as a regulariza-

tion of E since the infinite term 
∫

ζa(log sin θ)
′2 has been removed. Furthermore, since the two 
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functionals differ only by a boundary term and a constant, they must have the same critical 

points.

Let Ψ0 = (σ0,ω0,χ0,ψ0) be the renormalized map arising from the extreme KNdS solu-

tion which is associated with the functional Ia. As is shown in appendix A, Ψ0 is a critical 

point of Ia. It is the purpose of this section to show that Ψ0 realizes the global minimum for 

Ia.

Theorem 4.1. Suppose that Ψ = (σ,ω,χ,ψ) is smooth and satisfies the asymptotics (4.10) 

with ω|Γ = ω0|Γ, χ|Γ = χ0|Γ, ψ|Γ = ψ0|Γ, then for any p � 1 there exists a constant C  >  0 

such that

Ia(Ψ)− Ia(Ψ0) � C

∫

S2

(

distH2
C

(Ψ̃, Ψ̃0)− D
)2

dA, (4.5)

where D is the average value of distH2
C

(Ψ̃, Ψ̃0).

The proof of this result is based on convexity of the quasi-harmonic energy under geodesic 

deformations; such a property is well-known for the pure harmonic energy when the target 

space is nonpositively curved. To explain how this works, let Ωε = {(θ,φ) ∈ S
2 | sin θ > ε}. 

Then with a cut-and-paste argument it will be shown that we may assume that Ψ satisfies

supp(ω − ω0,χ− χ0,ψ − ψ0) ⊂ Ωε. (4.6)

Next, let Ψ̃t, t ∈ [0, 1] be a geodesic in H2
C

 connecting Ψ̃1 = Ψ̃ and Ψ̃0, this means that for each 

(θ,φ) in the domain, t → Ψ̃t(θ,φ) is a geodesic. It then follows that (ωt,χt,ψt) ≡ (ω0,χ0,ψ0) 

on S2 \ Ωε, so that in particular σt = σ0 + t(σ − σ0) on this domain. The fact that σt is linear 

together with convexity of the quasi-harmonic energy yields

d2

dt2
Ia(Ψt) � 2

∫

S2

|∇distH2
C

(Ψ̃, Ψ̃0)|
2dA. (4.7)

Furthermore, since Ψ0 is a critical point

d

dt
Ia(Ψt)|t=0 = 0. (4.8)

Theorem 4.1 may then be established by integrating (4.7) and applying the Poincaré inequal-

ity. In the remainder of this section we will justify each of these steps.

Before proceeding we record the appropriate asymptotic behavior of Ψ. Our assumptions 

here are based on the asymptotics (θ → 0,π) of the extreme KNdS map Ψ0, which are given 

by

σ0|Γ = log

(

A

4π

)

, ω0,χ0,ψ0 = O(1),

σ
′

0,ω′

0,χ′

0,ψ′

0 = O(sin θ),ω′

0 + χ0ψ
′

0 − ψ0χ
′

0 = O(sin3 θ).
 

(4.9)

We then require that Ψ satisfies

σ|Γ = log

(

A

4π

)

, ω,χ,ψ = O(1), σ
′,ω′,χ′,ψ′ = O(sin θ), ω′ + χψ′ − ψχ′ = O(sin1+δ θ),

 (4.10)

for some δ > 0.

In order to carry out the proof of theorem 4.1 as outlined above, we first show that it is 

possible to approximate Ia(Ψ) by replacing Ψ with a map Ψε which satisfies (4.6). This is 

achieved with a cut and paste argument. Define a Lipschitz cut-off function
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ϕε(θ) =















0 if sin θ � ε,

log( sin θ

ε )
log

(
√

ε

ε

) if ε < sin θ <
√
ε,

1 if sin θ �
√
ε,

 (4.11)

and let

Ψε = (σ,ωε,χε,ψε), (ωε,χε,ψε) = (ω0,χ0,ψ0) + ϕε(ω − ω0,χ− χ0,ψ − ψ0),
 (4.12)

so that Ψε = (σ,ω0,χ0,ψ0) on S2 \ Ωε.

Lemma 4.2. limε→0 Ia(Ψε) = Ia(Ψ).

Proof. Write

Ia(Ψε) = Ia(Ψε)|sin θ�ε + Ia(Ψε)|ε<sin θ<
√

ε + Ia(Ψε)|sin θ�
√

ε, (4.13)

and observe that

Ia(Ψε)|sin θ�
√

ε → Ia(Ψ) (4.14)

by the dominated convergence theorem. Moreover

Ia(Ψε)|sin θ�ε =

∫

sin θ�ε







(1 + Λa2 cos2 θ)σ
︸ ︷︷ ︸

O(1)

+ ζaΛ

(
A

4π

)2

e−σ

︸ ︷︷ ︸

O(1)








dA

+

∫

sin θ�ε

ζa







σ′2

4
︸︷︷︸

O(1)

+
e−2σ

sin4 θ
(ω′

0 + χ0ψ
′

0 − ψ0χ
′

0)
2

︸ ︷︷ ︸

O(sin6 θ)

+
e−σ

sin2 θ
(χ′2

0 + ψ′2
0 )

︸ ︷︷ ︸

O(sin2 θ)







dA

→ 0.
 (4.15)

Next consider the region ε < sin θ <
√
ε , and note that uniform boundedness of the fol-

lowing integrand implies

∫

ε<sin θ<
√

ε

(

(1 + Λa2 cos2 θ)σ + ζaΛ

(

A

4π

)2

e−σ

)

dA = O(
√
ε). (4.16)

To proceed further use the fact that ω|Γ = ω0|Γ, χ|Γ = χ0|Γ, ψ|Γ = ψ0|Γ together with (4.9) 

and (4.10) yields

|ω − ω0|+ |χ− χ0|+ |ψ − ψ0| = O(sin2 θ). (4.17)

Then since

χ
′

ε = ϕεχ
′ + (1 − ϕε)χ

′

0 + ϕ′

ε(χ− χ0) (4.18)

and similarly for ψ′

ε, we have that for some constant C independent of ε
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∫

ε<sin θ<
√
ε

ζa

e−σ

sin2 θ
(χ′2

ε + ψ′2
ε )dA

�

∫

ε<sin θ<
√
ε

C

sin θ







χ′2

︸︷︷︸

O(sin2 θ)

+ χ′2
0

︸︷︷︸

O(sin2 θ)

+ϕ′2
ε (χ− χ0)

2

︸ ︷︷ ︸

O( sin θ

log ε )
2

+ ψ′2

︸︷︷︸

O(sin2 θ)

+ ψ′2
0

︸︷︷︸

O(sin2 θ)

+ϕ′2
ε (ψ − ψ0)

2

︸ ︷︷ ︸

O( sin θ

log ε )
2







dθ

= O(ε).
 (4.19)

Finally a calculation shows that

ω′

ε + χεψ
′

ε − ψεχ
′

ε = ϕε(ω
′ + χψ′ − ψχ′) + (1 − ϕε)(ω

′

0 + χ0ψ
′

0 − ψ0χ
′

0) + ϕ′

ε(ω − ω0)

+ ϕ′

ε(χ0ψ − ψ0χ) + ϕε(1 − ϕε)[(ψ − ψ0)(χ− χ0)
′ − (χ− χ0)(ψ − ψ0)

′],
 (4.20)

and hence

∫

ε<sin θ<
√
ε

ζa

e−2σ

sin4 θ
(ω′

ε + χεψ
′
ε − ψεχ

′
ε)

2dA

�

∫

ε<sin θ<
√
ε

C

sin3 θ






(ω′ + χψ′ − ψχ′)2

︸ ︷︷ ︸

O(sin2+2δ θ)

+(ω′
0 + χ0ψ

′
0 − ψ0χ

′
0)

2

︸ ︷︷ ︸

O(sin6 θ)

+ϕ′2
ε (ω − ω0)

2

︸ ︷︷ ︸

O( sin θ

log ε )
2









dθ

+

∫

ε<sin θ<
√
ε

C

sin3 θ






ϕ′2
ε (χ0ψ − ψ0χ)

2

︸ ︷︷ ︸

O( sin θ

log ε )
2

+(ψ − ψ0)
2(χ′ − χ′

0)
2

︸ ︷︷ ︸

O(sin6 θ)

+(χ− χ0)
2(ψ′ − ψ′

0)
2

︸ ︷︷ ︸

O(sin6 θ)









dθ

= O

(

1

| log ε|

)

.

 

(4.21)

It follows that Ia(Ψε)|ε<sin θ<
√
ε → 0. □

The next proposition establishes the primary tool used in the minimization procedure. 

Namely, the quasi-harmonic energy (4.1) is convex along geodesic deformations.

Proposition 4.3. Let Ft : Ω → H
2
C

 be a family of smooth maps, where Ω is a domain in S2. 

Suppose that for each (θ,φ) ∈ Ω the curve t �→ Ft(θ,φ), t ∈ [0, 1] is a geodesic, then

d2

dt2
EΩ(Ft) � 2

∫

Ω

|∇distH2
C

(F1, F0)|
2dA. (4.22)

Proof. Let γ0 and h0 denote the metrics on the round 2-sphere and complex hyperbolic 

plane, respectively. Then the square of the harmonic energy density is

|dFt|
2 = γ

ij

0 (h0)lm∂iF
l
t∂jF

m
t . (4.23)

We then have

EΩ(Ft) =

∫

Ω

ζa

(

|dFt|
2
+ Λ

(

A

4π

)2

e2ut sin
2
θ

)

dA, (4.24)
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where Ft = (ut,ωt,χt,ψt). Observe that since Ft is a geodesic and H2
C

 is negatively curved

d2

dt2

1

2

∫

Ω

ζa|dFt|
2dA =

∫

Ω

ζaγ
ij

0 (〈∇t∂iFt,∇t∂jFt〉h0
+ 〈∇t∇i∂tFt, ∂jFt〉h0

) dA

=

∫

Ω

ζaγ
ij

0

(

〈∇i∂tFt,∇j∂tFt〉h0
+ 〈RH

2
C(∂tFt, ∂iFt)∂tFt, ∂jFt〉h0

)

dA

�

∫

Ω

ζa|∇|∂tFt|h0
|2
γ0

dA

�

∫

Ω

|∇distH2
C

(F1, F0)|
2dA,

 

(4.25)

where the last step follows from the fact that ζa � 1 and Ft is a geodesic parameterized on the 

interval [0, 1], so that |∂tFt|h0
= distH2

C

(F1, F0).

In what follows, for simplicity of notation, we refrain from indicating dependence on t. To 

complete the proof it is sufficient to show that

∂2
t e2u = 2(ü + 2u̇2)e2u

� 0, (4.26)

where u̇ = ∂tu. From the geodesic equation we have

ü + Γ
u
jlḞ

jḞl
= 0, (4.27)

and a computation of Christoffel symbols for h0 yields

Γ
u
uu = Γ

u
uω = Γ

u
uχ = Γ

u
uψ = 0, Γ

u
ωω = −2e4u, Γ

u
ωχ = 2ψe4u, Γ

u
ωψ = −2χe4u,

 (4.28)

Γ
u
χχ = −e2u − 2ψ2e4u, Γ

u
ψψ = −e2u − 2χ2e4u, Γ

u
χψ = 2χψe4u. (4.29)

It follows that

ü = 2e4uω̇2 + (e2u + 2ψ2e4u)χ̇2 + (e2u + 2χ2e4u)ψ̇2 − 4ψe4uω̇χ̇+ 4χe4uω̇ψ̇ − 4χψe4uχ̇ψ̇.
 (4.30)

Note that the expression on the right-hand side is related to the constant squared length of the 

velocity vector for the geodesic

|Ḟ|2h0
= u̇2 + e4u(ω̇ + χψ̇ − ψχ̇)2 + e2u(χ̇2 + ψ̇2). (4.31)

Therefore

ü + 2u̇2 = 2|Ḟ|2h0
− e2u(χ̇2 + ψ̇2) � 0. (4.32)

 □

We are now in a position to prove the main result of this section.

Proof of theorem 4.1. Recall that Ψε satisfies (4.6). Thus, if Ψ̃t
ε is the geodesic connecting 

Ψ̃0 to Ψ̃ε as described at the beginning of this section, then σt = σ0 + t(σ − σ0). Observe that

d2

dt2
Ia(Ψ

t
ε) =

d2

dt2
IΩε

(Ψt
ε)

︸ ︷︷ ︸

I1

+
d2

dt2
IS2\Ωε

(Ψt
ε)

︸ ︷︷ ︸

I2

.
 (4.33)
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Then using the linearity of σt  together with proposition 4.3 produces

I1 =
d2

dt2
EΩε

(Ψ̃t
ε)−

d2

dt2

∫

∂Ωε

ζa(σ0 + t(σ − σ0) + 2 log sin θ)∂ν log sin θds

� 2

∫

Ωε

|∇distH2
C

(Ψ̃ε, Ψ̃0)|
2dA.

 

(4.34)

On the other hand, direct computation yields

I2 =

∫

S2\Ωε

ζa

(

(σ − σ0)
′2

2
+

4(σ − σ0)
2e−2σt

sin4
θ

(ω′
0 + χ0ψ

′
0 − ψ0χ

′
0)

2

)

dA

+

∫

S2\Ωε

ζa

(

(σ − σ0)
2e−σt

sin2
θ

(χ′2
0 + ψ′2

0 ) + Λ

(

A

4π

)2

(σ − σ0)
2e−σt

)

dA

�

∫

S2\Ωε

(σ − σ0)
′2

2
dA

= 2

∫

S2\Ωε

|∇distH2
C

(Ψ̃ε, Ψ̃0)|
2dA,

 

(4.35)

since distH2
C

(Ψ̃ε, Ψ̃0) = |u − u0| on S2 \ Ωε. Note that the passing of d2

dt2 into the integral in 

(4.38) is justified, since each term on the right-hand side of the first equality is uniformly inte-

grable. Combining (4.37) and (4.38) gives the desired convexity statement

d2

dt2
Ia(Ψ

t
ε) � 2

∫

S2

|∇distH2
C

(Ψ̃ε, Ψ̃0)|
2dA. (4.36)

We next observe that (4.8) holds. To see this, use that the extreme KNdS map Ψ0 satisfies 

the Euler–Lagrange equations for the functional Ia (see appendix A), together with the fact 

that d
dt
ωt
ε =

d
dt
χ

t
ε =

d
dt
ψt
ε = 0 in a neighborhood of the axis Γ, to find

d

dt
Ia(Ψt)|t=0 =

1

2
ζaσ

′

0(σ − σ0) sin θ|
π

θ=0 = 0. (4.37)

Note that justification for passing d
dt

 into the integral is analogous to that in the previous para-

graph. Now integrating (4.36) twice and applying the Poincaré inequality produces

Ia(Ψε)− Ia(Ψ0) � 2

∫

S2

|∇distH2
C

(Ψ̃ε, Ψ̃0)|
2dA � C

∫

S2

(

distH2
C

(Ψ̃ε, Ψ̃0)− Dε

)2

dA,

 (4.38)

where Dε is the average value of distH2
C

(Ψ̃ε, Ψ̃0).

By lemma 4.2 limε→0 Ia(Ψε) = Ia(Ψ), and thus in order to complete the proof it suffices 

to show that the limit may be passed under the integral on the right-hand side. By the triangle 

inequality and some algebra, it is enough to show

lim
ε→0

∫

S2

dist2
H2

C

(Ψ̃ε, Ψ̃)dA = 0. (4.39)
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To see this, use the triangle inequality and direct calculation to find

distH2
C

(Ψ̃ε, Ψ̃) � distH2
C

((u,ωε,χε,ψε), (u,ω,χε,ψε)) + distH2
C

((u,ω,χε,ψε), (u,ω,χ,ψε))

+ distH2
C

((u,ω,χ,ψε), (u,ω,χ,ψ))

� C
[

e2u(|ω − ωε|+ |ψε||χ− χε|+ |χ||ψ − ψε|) + eu(|χ− χε|+ |ψ − ψε|)
]

.
 (4.40)

Since the right-hand side is uniformly bounded independent of ε, the dominated convergence 

theorem applies to give (4.39). □

Proof of theorem 1.1. From the given initial data (M, g, k, E, B) we obtain the four quanti-

ties (σ,ω,χ,ψ) consisting of a metric component and three potentials, as explained in sec-

tion 2. Let (A,J , Q) be the area, angular momentum, and charge of the horizon S ⊂ M . From 

lemma 3.2 there exists a corresponding triple (Â, Ĵ , Q̂) which arises from an extreme KNdS 

solution, and is such that the desired inequality (1.11) is reduced to showing Â � A. Let

â =
Ĵ

m(Ĵ , Q̂)
, Ψ̂ = (σ̂, ω̂, χ̂, ψ̂) =

(

σ + log
Â

A
,

Â2

A2
ω,

Â

A
χ,

Â

A
ψ

)

,

 (4.41)

then lemma 3.3 asserts that Â � A is valid as long as

Iâ(Ψ̂) � Iâ(Ψ0), (4.42)

where Φ0 is the extreme KNdS map with the same angular momentum and charge (Ĵ , Q̂). 

Finally, observe that theorem 4.1 is applicable, since smoothness of the initial data together 

with the potential formulas (2.14) and (2.17) guarantee that the asymptotics (4.10) hold for Ψ̂. 

This establishes (4.42) and completes the proof of inequality (1.11).

Consider now the case of equality in (1.11). From the proof of lemma 3.2, this yields 

(Â, Ĵ , Q̂) = (A,J , Q) and hence Ψ̂ = Ψ. In particular, the equality of areas implies that 

Ia(Ψ) � Ia(Ψ0) which gives Ψ = Ψ0 from the gap bound in theorem 4.1. Namely, the gap 

bound gives that distH2
C

(Ψ̃, Ψ̃0) is constant, but distH2
C

(Ψ̃, Ψ̃0)  =  0 at the axis Γ, and hence it 

must vanish identically. In light of (3.27), equality of the areas also produces equality in the 

stability inequality (3.5), when v is chosen as in (3.7). It follows that on S

µEM − |JEM(n)| = JEM(∂θ) = JEM(∂φ) = |II| = ∂φ logϕ1 = |(∂θ logϕ1 − X(∂θ))v − ∂θv| = 0,
 (4.43)

and

|E|2 + |B|2 − E(n)2 − B(n)2 − 2E × B(n) = 0. (4.44)

A computation shows that (4.44) implies

E(e2) = B(e3), E(e3) = −B(e2), (4.45)

and since the proofs above are invariant under the transformation E �→ −E we must then have

E(e2) = E(e3) = B(e2) = B(e3) = 0. (4.46)
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Furthermore, the potential formulas (2.14) show that E(n) and B(n) agree with their counter-

parts in the extreme KNdS solution, and thus the full electromagnetic field (E,B) is that of the 

extreme KNdS solution on the horizon.

Lastly, from (4.43) we have

k(n, ∂θ) = ∂θ log
(ϕ1

v

)

= ∂θ log

(

eσ0/2ϕ1√
ζa

)

. (4.47)

Moreover, the potential equation (2.17) implies that k(n, ∂φ) equates with its counterpart in 

the extreme KNdS spacetime. All together this shows that the coefficients of the stability 

operator L arise from the extreme KNdS data, so that the eigenfunction satisfying Lϕ1 = 0 

corresponds to the same quantity in the extreme KNdS setting. Hence k(n, ∂θ) agrees with its 

counterpart in the extreme KNdS solution. We conclude that (S, γ, k(n, ·), E, B) arises from an 

extreme KNdS horizon. □
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Appendix A. The Kerr–Newman-de sitter spacetime

The Kerr–Newman-de Sitter black hole solves the Einstein–Maxwell equations with positive 

cosmological constant

R̃ab −
1

2
R̃g̃ab + Λg̃ab = 8πTab = 2

(

FacFc
b −

1

4
|F|2g̃ab

)

, (A.1)

dF = 0, d �4 F = 0. (A.2)

In Boyer–Lindquist-like coordinates the KNdS metric [10] is given by

g̃ = −
∆r

Σ

(

dt −
a sin2 θ

Ξ
dφ

)2

+
Σ

∆r

dr2
+

Σ

∆θ
dθ2

+
∆θ sin

2 θ

Σ

(

adt −
r2 + a2

Ξ
dφ

)2

,

 (A.3)

where

∆r = (r2 + a2)

(

1 −
r2Λ

3

)

− 2mr + q2, Ξ = 1 +
a2Λ

3
, (A.4)

∆θ = 1 +
a2Λ

3
cos2 θ, Σ = r2 + a2 cos2 θ, (A.5)

and the field strength and vector potential (F = dA) take the form

A =
qer√
∆rΣ

e0 − qb cos θ√
∆θΣsin θ

e3, (A.6)

F =
1

Σ2

[(

qe(r
2 − a2

cos
2 θ)− 2qbra cos θ

)

e0
∧ e1 +

(

qb(r
2 − a2

cos
2 θ) + 2qera cos θ

)

e2
∧ e3

]

.

 (A.7)
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Here the following orthonormal coframe is used

e0 =

√

∆r

Σ

(

dt −
a sin2

θ

Ξ
dφ

)

, e1
=

√

Σ

∆r

dr, (A.8)

e2
=

√

Σ

∆θ
dθ, e3

=

√

∆θ

Σ
sin θ

(

adt −
r2 + a2

Ξ
dφ

)

, (A.9)

and the parameters m, a, and q =

√

q2
e + q2

b  define the mass, angular momentum, and charge 

through the formulas

M =
m

Ξ2
, J =

am

Ξ2
, Qe =

qe

Ξ
, Qb =

qb

Ξ
. (A.10)

The geometry of the KNdS solution depends crucially on the zeros of the polynomial ∆r . 

In order to avoid naked singularities and other undesirable features, the relevant parameters 

must satisfy certain restrictions. If

a2Λ < 3 and m−

crit � m � m+

crit, (A.11)

where m±

crit
 are the two positive solutions of the equation

0 = m4 +
(a2Λ− 3)

(

(a2Λ− 3)2 + 108Λ(a2 + q2)
)

35Λ
m2

+
(a2 + q2)

(

(a2Λ− 3)2 + 12Λ(a2 + q2)
)2

36Λ
,

 (A.12)

then ∆r  has four real roots r−− < r− � r+ � rc, one of which is simple and negative with the 

rest positive. The roots r− and r+ represent inner and outer event horizons, while the root rc 

corresponds to a de Sitter cosmological horizon. An extremal black hole occurs when at least 

two of the three positive roots coincide, and in this situation the geometry near the horizon 

becomes asymptotically cylindrical. In particular, if m = m−

crit
 then r− = r+ and if m = m+

crit
 

then r+ = rc.

We now derive the quasi-harmonic map Ψ0 = (σ0,ω0,χ0,ψ0) associated with an extreme 

KNdS solution. At an extreme horizon ∆r = 0 and thus the induced metric is given by

γ0 =
Σ

∆θ
dθ2 +

∆θ(r
2
+ + a2)2 sin2 θ

ΣΞ2
dφ2. (A.13)

This easily fits into the canonical form (2.12) by setting

σ0 = log
∆θ(r

2
+ + a2)

Ξ2Σ
,

A

4π
= ec

=
r2
+ + a2

Ξ
. (A.14)

To find the electromagnetic potentials recall from (2.14) that

χ′

0 = E(e1)e
c sin θ, ψ′

0 = B(e1)e
c sin θ, (A.15)

where {ei}, i  =  0, 1, 2, 3 form the frame dual to (A.8) and (A.9). Moreover

E = ιe0
F = E(e1)e

1, B = ιe0
�4 F = B(e1)e

1, (A.16)

with

E(e1) =
1

Σ2

[

qe(r
2
+ − a2 cos2 θ)− 2qbr+a cos θ

]

, (A.17)
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B(e1) =
1

Σ2

[

qb(r
2
+ − a2 cos2

θ) + 2qer+a cos θ
]

. (A.18)

It then follows that

χ0 = −
1

ΞΣ

[

qe(r
2
+ + a2) cos θ + qbr+a sin2 θ

]

, (A.19)

ψ0 = −
1

ΞΣ

[

qb(r
2
+ + a2) cos θ − qer+a sin2 θ

]

. (A.20)

In order to find the charged twist potential recall from (2.17) that

ω′

0 = k(e1, ∂φ)e
c sin θ − χ0ψ

′

0 + ψ0χ
′

0, (A.21)

where the second fundamental form may be expressed as

k(e1, ∂φ) = 〈∂φ,∇e1
N〉 = −〈∇e1

∂φ, N〉 = −e0(∇e1
∂φ) (A.22)

in which N is the unit normal to the t  =  0 slice. A computation with Christoffel symbols then 

yields

e0(∇e1
∂φ) =

∆r

Σ

(

Γt
rφ −

a sin2 θ

Ξ
Γφ

rφ

)

= −
ar+(r

2
+ + a2)∆θ sin

2 θ

Ξ
. (A.23)

Furthermore

−χ0χ
′

0 + ψ0χ
′

0 =
q2ar+(r

2
+ + a2)

Ξ2Σ2
sin θ(1 + cos2

θ), (A.24)

and since ∆r = 0 the following relation holds

(r2
+ + a2)∆θ = (r2

+ + a2)

(

1 −
r2
+Λ

3

)

+
Λ

3
(r2

+ + a2)Σ = 2mr+ − q2 +
Λ

3
(r2

+ + a2)Σ.

 (A.25)

By combining (A.23)–(A.25) we arrive at

ω′

0 =
ar+(r

2
+ + a2)

Ξ2Σ2

[(

2mr+ +
Λ

3
(r2

+ + a2)Σ

)

sin2 θ + 2q2 cos2 θ

]

.

 

(A.26)

Integration then produces

ω0 =
ar+(r

2
+ + a2)

Ξ2

[

cos θ

Σ

(

−
m(r2

+ + a2)

a2r+
+

q2

a2
+

Λ(r2
+ + a2)

3a2
Σ

)

+ arctan

(

a cos θ

r+

)(

m(r2
+ − a2)

a3r2
+

−
q2

a3r+
−

Λ(r2
+ + a2)2

3a3r+

)]

.

 
(A.27)

Note that in the case of an extreme Kerr–Newman horizon, that is Λ = 0, this simplifies so 

that the second line vanishes and the entire expression reduces to the formula in [13, lemma 

3.4]. Having constructed the extreme KNdS map Ψ0, it may be verified that the values of the 

angular momentum and charge as given by (2.15), (2.16), and (2.18) coincide with those given 

in (A.10).
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The map Ψ0 satisfies the Euler–Lagrange equations for the functional Ia in (3.19):

1

sin θ
(ζa sin θσ

′)
′

=− 2ζa

(

2e−2σ

sin4 θ
(ω′ + χψ′ − ψχ′)2 +

e−σ

sin2 θ
(χ′2 + ψ′2)

)

+ 2(1 + a2Λ cos2 θ)− 2Λζa

(

A

4π

)2

e−σ,

 

(A.28)

(

ζa

e−2σ

sin3 θ
(ω′ + χψ′ − ψχ′)

)′

= 0, (A.29)

1

sin θ

(

ζa

e−σ

sin θ
χ′

)′

−
2ζae−2σ

sin4 θ
(ω′ + χψ′ − ψχ′)ψ′ = 0, (A.30)

1

sin θ

(

ζa

e−σ

sin θ
ψ′

)′

+
2ζae−2σ

sin4 θ
(ω′ + χψ′ − ψχ′)χ′ = 0. (A.31)

In order to elucidate the quasi-harmonic map structure of the equations, let 

u0 = −σ0/2 − log sin θ and Ψ̃0 = (u0,ω0,χ0,ψ0). Then Ψ̃0 satisfies the Euler–Lagrange 

equations for the functional E in (4.1):

1

sin θ
(ζa sin θu′)

′

= 2ζae4u(ω′ + χψ′ + ψχ′)2 + ζae2u

[

(χ′2 + ψ′2) + Λ

(

A

4π

)2

sin2 θ

]

,

 (A.32)
(

ζa sin θe4u(ω′ + χψ′ − ψχ′)
)′

= 0, (A.33)

1

sin θ

(

ζa sin θe2uχ′
)′

− 2ζae4u(ω′ + χψ′ − ψχ′)ψ′ = 0, (A.34)

1

sin θ

(

ζa sin θe2uψ′
)′

+ 2ζae4u(ω′ + χψ′ − ψχ′)χ′ = 0. (A.35)

These clearly reduce to the axisymmetric harmonic map equations for S2
→ H

2
C

 when Λ = 0.

We now indicate the derivation of the main inequality (1.11). There are two methods for 

doing this. The first consists of algebraic manipulations centered on the two equations ∆r = 0 

and ∂r∆r = 0, which is carried out in [14] for the uncharged case. The second method is moti-

vated by black hole thermodynamics. Consider the Smarr formula [16] for the mass of a (not 

necessarily extreme) KNdS solution

M
2
=

A

16π
+

π

A

(

4J 2 + Q4
)

+
Q2

2
−

ΛJ 2

3
−

ΛA

24π

(

Q2 +
A

4π
−

ΛA2

96π2

)

.

 

(A.36)

The temperature is computed by varying the mass function with respect to the entropy 

S = A/4, and is given by

T :=
∂M

∂S
=

1

8πM

[

1 −
16π2

A2

(

4J 2 + Q4
)

−
2Λ

3

(

Q2 +
A

2π

)

+
Λ2A2

48π2

]

.

 

(A.37)
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Moreover, the first law of black hole thermodynamics states that

dM = TdS +ΩdJ +ΦdQ, (A.38)

where Ω and Φ denote the angular velocity and electric potential respectively, and have the 

expressions

Ω =
∂M

∂J
=

πJ

MS

(

1 −
ΛS

3π

)

, Φ =
∂M

∂Q
=

πQ

2MS

(

Q2
+

S

π

−
ΛS2

3π2

)

.

 

(A.39)

In the dynamical setting, Hawking’s area theorem (second law of black hole thermodynamics) 

asserts that Ṡ � 0 where dot represents a time derivative. Thus, assuming conservation of black 

hole angular momentum and charge, and the physically reasonable supposition that black hole 

mass increases with area, then the first law (A.38) implies that the temperature is nonnegative. 

In conclusion, heuristic physical reasoning leads to T � 0 which is equivalent to (1.11).

Lastly, we mention that given a triple (A,J , Q) which saturates (1.11) (with A � 4π/Λ) 

as in lemma 3.2, we may insert these values into the Smarr formula to obtain the mass as a 

function of J  and Q. This gives the angular momentum parameter as a function of the same 

quantities via the formula

a =
J

M(J , Q)
. (A.40)

From here all the remaining parameters m, qe, and qb of (A.10) may be determined in terms 

of J  and Q, and we may construct a KNdS spacetime. This solution must be extreme, since 

according to (A.37) saturation of (1.11) implies that M (as a function of A) has a critical point 

at the given triple (A,J , Q), and hence m achieves one of the extreme values m±

crit
; a calcul-

ation shows that a(J , Q) satisfies (A.11).

Appendix B. Canonical coordinates

The purpose of this appendix is to establish the existence of the coordinate system introduced 

in section 2 which yields the simple expression for the horizon metric (2.12). As previously 

mentioned, arguments for the existence of such a coordinate system have been given previ-

ously [8, 20] under certain hypotheses. Here we provide a detailed proof in the context appro-

priate for the current results.

Proposition B.1. Let γ be a smooth axisymmetric Riemannian metric on a topological 

2-sphere S, and denote the associated Killing field by η. Then there exist global coordinates 

(θ,φ) with θ ∈ [0,π] and φ ∈ [0, 2π), such that η = ∂φ and the metric takes the form

γ = e2c−σdθ2 + eσ sin2 θdφ2, (B.1)

where σ ∈ C∞(S) depends only on θ and c is a constant related to the area by A = 4πec.

Proof. Let {Si} ⊂ S denote the components of the zero set of η. Then each Si is of even 

codimension [26, theorem 34], and is therefore a point. Moreover, according to [26, theorem 

40] we have the following relation between Euler characteristics 2 = χ(S) =
∑

i χ(Si), and 

hence the zero set of η consists of exactly two points, a north and south pole { p+, p−}.

Let α(t), t ∈ [0, l] be a minimizing geodesic parameterized by arclength connecting the 

south to north pole, that is α(0) = p−, α(l) = p+. Let Φs, s ∈ [0, 2π) denote the 1-parameter 

flamily of isometries associated to η, and set αs(t) = Φs(α(t)). Then for each s the curve 

t �→ αs(t) is a geodesic, and α0(t) = α2π(t) = α(t). By construction (t, s) forms a system 
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of global coordinates on S \ α, and γ(∂t, ∂t) = 1 as well as γ(∂s, ∂s) = |η|2. In addition, the 

geodesic and Killing equations imply that

∂tγ(∂t, η) = γ(∂t,∇∂t
η) = 0. (B.2)

Thus, since γ(∂t, η) = 0 at p± we must have γ(∂t, ∂s) = γ(∂t, η) = 0 everywhere. It follows 

that

γ = dt2 + |η|2ds2. (B.3)

In order to put the metric in the form (B.1) we will make use of a potential for the volume 

form ε(2). By Cartan’s formula and the fact that η is a Killling field

0 = Lηε
(2)

= dιηε
(2) + ιηdε(2)

= dιηε
(2). (B.4)

Since S is simply connected there exists a function f such that df = ιηε
(2). Note that 

η( f ) = ε
(2)(η, η) = 0 so that f is a function of t alone. Moreover, since |df | vanishes only 

at the north and south poles, it may be assumed that f is strictly increasing. Therefore a new 

coordinate system may be defined by θ̃ = f (t) and φ = s. Observe that

f ′2 = |∇f |2 = ε
(2)(∇f , η) = f ′ε(2)(∂t, ∂s) = f ′|η|, (B.5)

and hence f ′ = |η|. It follows that

γ = |η|−2dθ̃2 + |η|2dφ2. (B.6)

Now set

cos θ = 1 −
2(θ̃ − f (0))

f (l)− f (0)
, (B.7)

then

γ =
( f (l)− f (0))2 sin

2 θ

4|η|2
dθ2

+ |η|2dφ2. (B.8)

Finally, defining e−σ = |η|−2 sin2 θ and ec = ( f (l)− f (0))/2 produces the desired  

result. □

Appendix C. Justification of secondary inequalities

Here we show how the inequalities in (1.12) and (1.14) follow from the main inequality (1.11). 

The first inequality of (1.12) is straightforward. To obtain the second, observe that theorem 

1.1 implies

1

4
Q4 +

ΛA2

96π2
Q2 −

A2

64π2

(

1 −
ΛA

4π

)(

1 −
ΛA

12π

)

� 0. (C.1)

Viewing the left-hand side as a quadratic polynomial in Q2 yields the factorization
(

Q2 +
A

4π

(

1 −
ΛA

12π

))(

Q2 −
A

4π

(

1 −
ΛA

4π

))

� 0. (C.2)
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Since the first factor is nonnegative the second factor must be nonpositive, and from this the 

second inequality of (1.12) directly follows.

Consider now the right-hand side of (1.11) as a function of A, that is

f (A) =
A2

64π2

[(

1 −
ΛA

4π

)(

1 −
ΛA

12π

)

−
2ΛQ2

3

]

. (C.3)

The derivative

f ′(A) =
A

768π4

(

Λ2A2 − 12πΛA + 24π2 − 16π2ΛQ2
)

 (C.4)

may be used to determine that the maximum of f on the interval 0 � A � 4π/Λ occurs at

Amax =
2π

Λ

(

3 −
√

3 + 4ΛQ2

)

. (C.5)

A computation then reveals the maximum value

f (Amax) =
(3 + 4ΛQ2)3/2

24Λ2
−

Q4

12
−

Q2

2Λ
−

3

16Λ2
. (C.6)

According to inequality (1.11)

J 2 +
Q4

4
� f (A) � f (Amax), (C.7)

which together with (C.6) yields the desired inequality (1.14).
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