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The inequality m3 ≥ 27π=4jJ 2jjJ 1 − J 2j relating total mass and angular momenta is established for

(possibly dynamical) spacetimes admitting black holes of ring (S1 × S2) topology. This inequality is shown

to be sharp in the sense that it is saturated precisely for the extreme Pomeransky-Sen’kov black ring

solutions. The physical significance of this inequality and its relation to new evidence of black ring

instability, as well as the standard picture of gravitational collapse, are discussed.
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The standard picture of gravitational collapse rests on

two conjectures. Namely, weak cosmic censorship (WCC)

asserts that collapse always results in a black hole, and the

final state conjecture (FSC) contends that spacetime must

settle down to a stationary (electro)vacuum final state. In

four dimensions the no hair theorem [1] implies that the

final state must then be a Kerr black hole (electromagnetic

contributions will be ignored for simplicity). Although

angular momentum may be radiated away with gravita-

tional waves, if the spacetime is axisymmetric then total

angular momentum is conserved so that the angular

momentum of an initial state J agrees with that of the

final state J 0. In addition, since gravitational radiation also

carries away positive energy the mass of an initial state

must be larger than that of the final state, m ≥ m0. These

observations then yield the following inequality between

mass and angular momentum for any initial state

m2 ≥ jJ j; ð1Þ

since it is also satisfied by the Kerr final state having mass

m0 and angular momentum J 0.

In higher dimensions D > 4 all known stationary vac-

uum black hole spacetimes admit multiple rotational

symmetries, and are thus multiaxisymmetric. A typical

symmetry group is Uð1ÞD−3, and the only dimension

greater than 4 for which this amount of symmetry is

compatible with an asymptotically flat structure, necessary

for the ADM (total) mass, is 5. The generalization of Kerr

to D ¼ 5 is given by the Myers-Perry solution [2], which

has a spherical S3 black hole topology and a Uð1Þ2

symmetry with two associated angular momenta J i,

i ¼ 1, 2. A similar derivation as above, with the role of

Kerr played by the Myers-Perry black hole, shows that any

initial state of a five-dimensional black hole spacetime with

S3 horizon topology should satisfy

m3 ≥
27π

32
ðjJ 1j þ jJ 2jÞ

2: ð2Þ

Because the derivations of Eqs. (1) and (2) rely so heavily

onWCC and the FSC, any violation of these mass–angular-

momentum inequalities would provide a counterexample to

the standard picture of gravitational collapse in their

respective dimensions. On the other hand a rigorous

verification of Eqs. (1) and (2) lends credence to the

standard picture, since there does not seem to be an

alternate explanation for why such nontrivial inequalities

should hold other than the arguments based on WCC and

the FSC. In fact, both inequalities have been proven [3,4].

An important special case of the FSC is the question of

stability for stationary vacuum black holes. Kerr is known

to be linearly stable [5,6], and although a complete proof

has not yet been given all evidence strongly supports the

conclusion that it is nonlinearly stable as well [7–9].

Although ultraspinning instabilities have been observed

[10–12] in D > 5 Myers-Perry black holes, in D ¼ 5 the

Myers-Perry solution is expected to be linearly stable [13].

Thus, it is not a surprise that Eqs. (1) and (2) have been

confirmed, as this is consistent with the stability analysis.

A dramatically different feature of higher dimensional

black holes is their ability to take on nonspherical topol-

ogies [14]. In D ¼ 5, the initial discovery of the Emparan-

Reall (singly spinning) black ring [15] with horizon

topology S1 × S2 showed that the no hair theorem defini-

tively fails. There is hope, however, that this theorem could

be revived with the additional hypothesis of stability.

Namely, it is conjectured that there is a unique stable
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stationary vacuum black hole determined by its mass and

angular momenta, and that this solution is a (slowly rotating

inD > 5) Myers-Perry black hole. This suggests that black

rings, and the more complicated black lenses [16,17], are

unstable. Indeed, recently there has been much numerical

work all of which gives strong evidence that the family of

black ring solutions is unstable [12,18,19]. It is therefore

natural to assume that a mass–angular-momentum inequal-

ity for black ring (and black lens) spacetimes is not

possible. Surprisingly, this turns out not to be the case,

and it is the purpose of this Letter to establish an inequality

relating mass and angular momentum for black ring

spacetimes, namely,

m3 ≥
27π

4
jJ 2jjJ 1 − J 2j; ð3Þ

where J 1 and J 2 are the angular momenta associated with

S1 and S2, respectively. This inequality is derived in the

same fashion as the previous two inequalities, with the final

state being the doubly spinning Pomeransky-Sen’kov (PS)

black ring [20]. The validity of this inequality then offers

indirect evidence for WCC and the FSC, in the setting of

D ¼ 5 black ring spacetimes. In particular, it provides

implicit support for the possible nonlinear stability of the

PS black rings in contrast to recent developments.

Interpreted with Newtonian considerations, Eq. (3) states

that the gravitational binding force of the black hole

(∼m2=r3) dominates the centripetal repulsive forces

(∼J 2=mr3) to prevent the system from flying apart.

This simple picture does not, however, differentiate

between Eqs. (2) and (3). In addition, the regularity

condition jJ 1j ≥ jJ 2j will be imposed, which inhibits

the black ring from collapsing. We also point out that

Eq. (3) is sharp in the sense that it admits a rigidity

statement, identifying the extreme PS black ring as the only

spacetime that saturates the inequality. This then naturally

provides a variational characterization of the extreme PS

black rings as possessing the absolute minimal mass with

fixed angular momentum among black ring spacetimes.

In order to establish these claims, consider a maximal

initial data set (M4, g, k) consisting of a complete

Riemannian 4-manifold with metric g and extrinsic curva-

ture k satisfying the constraint equations

16πμ ¼ R − jkj2; 8πJ ¼ divk: ð4Þ

Here, μ and J are the energy and momentum density of the

matter fields, and R denotes the scalar curvature of g. The
data have one designated asymptotically flat end from

which the ADM mass m arises, and a second end that is

either Kaluza-Klein-asymptotically flat (KK-AF) or

asymptotically cylindrical (AC). In both cases the topology

of this second end is ð0;∞Þ × S1 × S2. In addition, it is

assumed that the data set is biaxisymmetric, that is,

LηðiÞ
g ¼ LηðiÞ

k ¼ LηðiÞ
μ ¼ LηðiÞ

J ¼ 0; ð5Þ

where ηðiÞ, i ¼ 1, 2 are the two Killing field generators

associated with the Uð1Þ2 action, and LηðiÞ
denotes Lie

differentiation. This is then referred to as a black ring initial

data set ifM4 is diffeomorphic to R4#ðS2 ×D2Þ, where D2

is the open unit disk. The orbit space M4=Uð1Þ2 is

diffeomorphic to the right-half plane fðρ; zÞjρ ≥ 0g [21]

such that the z axis Γ is divided into intervals serving as

axes of rotation for the symmetry generators. In particular,

Γ ¼ I1∪I2∪I3 with I1 ¼ ða;∞Þ, I2 ¼ ð0; aÞ, and

I3 ¼ ð−∞; 0Þ, where the Killing vectors ηð1Þ and ηð2Þ
vanish on I1 and I2∪I3, respectively. The point ð0; aÞ
serves as a “corner”where two rotation axes meet, and (0,0)

represents the second end with ring type topology.

This class of data is motivated as follows. According to

Refs. [22,23], the maximal constant time slices in the

domain of outer communication of the stationary black ring

family are diffeomorphic to R4#ðS2 ×D2Þ. Naturally, the
extreme black ring data are complete with two ends, one

asymptotically flat and the other AC; their orbit space is as

above. For the nonextreme black ring, however, the orbit

space rod structure has an additional interval H represent-

ing the S1 × S2 boundary horizon, that is, Γ ¼
I01∪I

0
2∪H∪I03 with I01¼ðc;∞Þ, I02 ¼ ðb; cÞ, H ¼ ð−b; bÞ,

and I03 ¼ ð−∞;−bÞ. To obtain a complete manifold, it is

standard to double the data by reflecting across the horizon,

to obtain two isometric copies attached along the

horizon. This “doubling” procedure results in a manifold

with two asymptotically flat ends, and has topology

R
4#ðS2 × S2Þ#R4. Thus, in marked contrast with the

familiar case of spherical horizons in which doubling

producesR × S3, the complete (doubled) nonextreme black

rings have a different topology from their extreme counter-

parts and thus do not fall into the category of black ring

initial data. Nonetheless, the class of data considered here

does include a suitable completion of the nonextreme

stationary black ring. In particular, one way to show this

is to appropriately modify certain global existence results

[24] to construct a solution of the vacuum constraints on a

second KK-AF end, which may then be glued at the

horizon to the domain of outer communication.

The metric g is determined by two functions U and α, a

symmetric 2 × 2 matrix λij with det λ ¼ ρ2, and a pair of

gauge fields AðiÞ, i ¼ 1, 2 on the orbit space, all of which

are specified using Brill’s ansatz [25]. Let ðρ; z;ϕ1;ϕ2Þ be
global cylindrical (Brill) coordinates where ϕi ∈ ½0; 2π�
correspond to the rotational Killing directions, that is,

ηðiÞ ¼ ∂ϕi . Then, the metric is given as follows with all

coefficients independent of rotational coordinates:

g ¼
e2Uþ2α

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p ðdρ2 þ dz2Þ

þ e2Uλijðdϕ
i þ AðiÞÞðdϕj þ AðjÞÞ: ð6Þ
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Appropriate asymptotics for the coefficients in the desig-

nated asymptotically flat end and AC end may be found in

Ref. [4]. Along the KK-AF end as r2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p

→ 0,

the primary coefficients exhibit the following behavior:

U ∼ −2 log r, α ∼ − log r, and λij ∼ diagðρ2=r4; r4Þ.
The relevant part of the second fundamental form is

characterized by two potentials that encode the angular

momentum. Consider the 1-form PðiÞ ¼ 2⋆½kðηðiÞÞ ∧

ηð1Þ ∧ ηð2Þ� on M4, where ⋆ is the Hodge dual. A compu-

tation utilizing the momentum constraint JðηðiÞÞ ¼ 0,

i ¼ 1, 2, and the fact that ηðiÞ is a Killing field show that

dPðiÞ ¼ 0 [26]. Since M4 is simply connected, twist

potentials exist globally and satisfy dζi ¼ PðiÞ. It follows

from the definition of PðiÞ that these potentials are constant

on the positive (Γþ) and negative (Γ−) z axis. Moreover the

ADM angular momenta arise as the difference between

these constants,

J i ¼
π

4
ðζijΓ−

− ζijΓþ
Þ: ð7Þ

InD ¼ 5 the stationary biaxisymmetric vacuum Einstein

equations reduce to a sigma model [27] with domain R3nΓ
and target space SLð3;RÞ=SOð3Þ ≅ R5. For general black

ring initial data (off shell) the fields that relate to the latent

sigma model structure are Ψ ¼ ðU; λij; ζ
iÞ. Assuming non-

negative energy density, μ ≥ 0, an analysis of the Einstein-

Hilbert action yields a lower bound [4] for the ADM mass

in terms of these variables,

m ≥ MðΨÞ; ð8Þ

where the mass functional is given by

MðΨÞ

¼
1

8

Z

R
3

�

e−6U

2ρ2

X

2

i;j¼1

λijδ3ð∇ζi;∇ζjÞþ6j∇Uj2 −
det∇λ

2ρ2

�

dx

þ
π

2

X

3

i¼1

Z

Ii

αð0; zÞdz: ð9Þ

Here, δ3 ¼ dρ2 þ dz2 þ ρ2dϕ2 is a flat metric on an

auxiliary R3, and ∇ and dx are the connection and volume

form with respect to δ3.

Unfortunately, Eq. (9) is not manifestly non-negative and

does not exhibit the underlying sigma model structure.

This, however, may be rectified by an appropriate change of

variables. Observe that since det λ ¼ ρ2, there are only two

independent functions contained in the matrix λ. Thus,

guided by the geometry on the axis, appropriate new

variables (V,W) may be constructed and implicitly defined

through the relations

λ11 ¼ fa−e
V coshW;

λ22 ¼ faþe
−V coshW;

λ12 ¼ ρ sinhW; ð10Þ

where fa� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − aÞ2
p

� ðz − aÞ. Then, using the

fact that conical singularities are absent on the axes Ii,
which is equivalent to

2αð0; zÞ ¼ ð−1Þiði−1Þ=2Vð0; zÞ þ log

�

jzj

jz − aj

�

; ð11Þ

a computation shows that

MðΨÞ ¼
1

16

Z

R
3

12j∇Uj2 þ j∇Vj2 þ j∇Wj2dx

þ
1

16

Z

R
3

sinh2Wj∇ðV þ h2Þj
2dx

þ
1

16

Z

R
3

e−6h1−6Uþh2þV coshW

× je−h2−V tanhW∇ζ1 −∇ζ2j2dx

þ
1

16

Z

R
3

e−6h1−6U−h2−V

coshW
j∇ζ1j2dx; ð12Þ

where the functions h1 ¼
1
2
log ρ and h2 ¼

1
2
log ðfa−=f

a
þÞ

are harmonic on R3nΓ with respect to δ3.

Expression (12) clearly identifies the mass lower bound

as the reduced energy for a sigma model, and provides a

version of the positive mass theorem for black ring initial

data. Setting u ¼ U þ h1, v ¼ V þ h2, and w ¼ W and

using integration by parts shows that the reduced energyM

is up to boundary terms the harmonic energy Eð ~ΨÞ of a

singular map ~Ψ ¼ ðu; v; w; ζ1; ζ2Þ∶R3nΓ → SLð3;RÞ=
SOð3Þ in which the symmetric space target is naturally

endowed with a left invariant metric of nonpositive curva-

ture [27]. In particular, for compact domains Ω ⊂ R3nΓ the

following relation holds:

16MΩðΨÞ ¼ EΩð ~ΨÞ − 12

Z

∂Ω

ðh1 þ 2UÞ∂νh1

−

Z

∂Ω

ðh2 þ 2VÞ∂νh2; ð13Þ

where ν denotes the unit outer normal to the boundary ∂Ω.

This shows that the two functionals have the same critical

points. Moreover, since the extreme PS black ring solves

the stationary biaxisymmetry vacuum Einstein equations,

its associated map Ψ0 ¼ ðU0; V0;W0; ζ
1
0; ζ

2
0Þ is a critical

point. In fact it is a global minimum as expressed by the

following energy gap theorem.

Theorem 1: Among all black ring initial data with fixed

angular momenta, the extreme PS black ring achieves the

minimum reduced energy. More precisely, given Ψ arising

PRL 119, 071101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

18 AUGUST 2017

071101-3



from black ring initial data, and the extreme PS black ring

map Ψ0 with ζij
Γ
¼ ζi0jΓ, i ¼ 1, 2, we have

MðΨÞ −MðΨ0Þ ≥ C

�
Z

R
3

dist6ðΨ;Ψ0Þdx

�1
3

ð14Þ

for some universal constant C > 0.

The proof is based on the convexity of harmonic energy

along geodesic deformations in nonpositively curved target

spaces [28]. In the current setting, however, this cannot be

applied directly since the maps ~Ψ, at which the energy E is

evaluated, are singular on the axes. Thus, it must be shown

that convexity is inherited by the finite reduced energy, and

this is accomplished with a cut-and-paste procedure. Let

δ; ε > 0 be small parameters and define sets Ωδ;ε ¼ fδ <

r < 2=δ; ρ > εg and Aδ;ε ¼ B2=δnΩδ;ε, where B2=δ ⊂ R
3 is

the ball of radius 2=δ centered at the origin. Smooth cutoff

functions may then be used to construct cut-and-paste data

Ψδ;ε, which agree with the PS black ring harmonic map Ψ0

near the axes and at spatial infinity, and agree with Ψ

elsewhere. More precisely, the support of the difference of

component functions satisfies

suppðUδ;ε −U0Þ ⊂ B2=δ;

suppðVδ;ε − V0;Wδ;ε −W0; ζ
1
δ;ε − ζ10; ζ

2
δ;ε − ζ20Þ ⊂ Ωδ;ε:

As in Ref. [4], it can be shown that the change in reduced

energy from this cut-and-paste construction can be made

arbitrarily small, that is,

lim
δ→0

lim
ε→0

MðΨδ;εÞ ¼ MðΨÞ: ð15Þ

Next, let ~Ψt, t ∈ ½0; 1� be a geodesic in SLð3;RÞ=SOð3Þ

that connects ~Ψδ;ε and ~Ψ0. By the construction above

Ψt ≡Ψ0 outside B2=δ and on a neighborhood of Aδ;ε, so

that in these regions the geodesic is linear in the first two

components, Ut ¼ U0 þ tðUδ;ε − U0Þ and Vt ¼ V0. Then,

since E is convex along geodesics, by using relation (13)

and the linearity ofUt and Vt to handle the boundary terms,

we have

d2

dt2
MðΨtÞ ≥ 2

Z

R
3

j∇distðΨ;Ψ0Þj
2dx: ð16Þ

In addition, since Ψ0 is a critical point ofM, by integrating

Eq. (16) twice and applying a Sobolev inequality, the proof

is complete. We arrive at the main result.

Theorem 2: Let (M4, g, k) be a black ring initial data set
with non-negative energy density, μ ≥ 0, and zero momen-

tum density in the direction of rotation JðηðiÞÞ ¼ 0, i ¼ 1,

2. If the circular angular momentum dominates the spheri-

cal angular momentum, that is, jJ 1j ≥ jJ 2j, then the mass–

angular-momentum inequality (3) holds. Moreover if

jJ 1j > jJ 2j > 0, then Eq. (3) is saturated if and only if

the data arise from the canonical slice of an extreme

Pomeransky-Sen’kov black ring spacetime.

The main ideas in the proof are the following. By

choosing appropriate orientations for rotation, it may be

assumed without loss of generality that both angular

momenta are positive. The regularity conditionJ 1 > J 2 >
0 ensures that the extreme PS black ring spacetime with

these angular momenta is nonsingular. Let ~Ψ0 be the

harmonic map associated with this spacetime, then a

calculation shows that the mass is given by

m0 ¼ MðΨ0Þ ¼

�

27π

4
J 2ðJ 1 − J 2Þ

�1
3

; ð17Þ

see the (J 1, J 2) phase diagram at fixed m given in

Ref. [29] for a more general statement. The desired

mass–angular-momentum inequality (3) now follows by

combining Eqs. (8) and (17) and Theorem 1. Moreover, if

equality is achieved in Eq. (3) then according to Theorem 1

we have that Ψ ¼ Ψ0, and from here analogous arguments

to those in Ref. [4] imply that the data (M4, g, k) coincide
with the canonical slice of the Pomeransky-Sen’kov black

hole. If it is only assumed that jJ 1j ≥ jJ 2j, then by

perturbing the initial data to achieve a strict regularity

condition, the above arguments apply and yield the mass–

angular-momentum inequality for the perturbation. By

taking a limit we find that the original data must also

satisfy the inequality.

We observe that for the subset of data with J 2 ¼ 0, the

inequality (3) reduces to the positive mass theorem. The

canonical example of such data is that corresponding to

the Emparan-Reall black ring. There is no rigidity state-

ment in this case, as extreme rings must have J 2 > 0.

These results demonstrate another qualitative feature of

black rings differentiating them from spherical black holes.

For the latter, at fixed mass it is clear from Eq. (2) that there

is an upper bound on the total magnitude of the angular

momenta. In contrast, Eq. (3) implies that only a certain

combination of spins J i is bounded. In particular, spin

along the S1 direction of the ring can become arbitrarily

large. This was known to be true in the stationary case, but

our result shows that it is a characteristic of black rings in

the dynamical regime as well. We expect that the methods

developed here to treat the ring case will lead to analogous

results for black holes of other exotic topologies.

In summary, we have proven a highly nontrivial relation

between the mass and angular momentum of spacetimes

admitting black holes of ring type. This inequality is

intimately tied with and derived from the FSC and the

WCC conjecture. The FSC and WCC underlie our funda-

mental understanding of gravitational collapse and forma-

tion of black holes. Indeed, the observational data from

gravitational waves emitted during binary black hole

mergers [30] corroborate the expectation that the endpoint
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is a stationary Kerr black hole. A failure of WCC in general

relativity implies a serious breakdown of the theory in the

sense that predictive power is lost in the presence of naked

singularities. Geometric inequality (3) provides rigorous

evidence in support of these two conjectures in the setting

of the dynamical evolution of black rings.

This result is particularly striking because recent numeri-

cal work, focusing on dynamical black rings [19] and

“ultraspinning’ black holes [31], suggests violations of

WCC occur in D ≥ 5. Although our proof is given for

biaxisymmetric initial data, the same result is expected to

hold for small perturbations away from biaxisymmetry,

which is the regime where the numerical studies are set. We

note that these potential violations of WCC are closely tied

to a change in black hole topology during evolution. On the

other hand, our rigorous proof of Eq. (3) suggests that the

physical reasoning underlying the FSC (which in our case

presupposes that the topology does not change), is in fact

correct. We anticipate that future investigations will resolve

the tension between these two sets of results.
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