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Mass—Angular-Momentum Inequality For Black Ring Spacetimes
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The inequality m® > 277/4|7,||J | — J| relating total mass and angular momenta is established for

(possibly dynamical) spacetimes admitting black holes of ring (S' x S?) topology. This inequality is shown
to be sharp in the sense that it is saturated precisely for the extreme Pomeransky-Sen’kov black ring
solutions. The physical significance of this inequality and its relation to new evidence of black ring
instability, as well as the standard picture of gravitational collapse, are discussed.
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The standard picture of gravitational collapse rests on
two conjectures. Namely, weak cosmic censorship (WCC)
asserts that collapse always results in a black hole, and the
final state conjecture (FSC) contends that spacetime must
settle down to a stationary (electro)vacuum final state. In
four dimensions the no hair theorem [1] implies that the
final state must then be a Kerr black hole (electromagnetic
contributions will be ignored for simplicity). Although
angular momentum may be radiated away with gravita-
tional waves, if the spacetime is axisymmetric then total
angular momentum is conserved so that the angular
momentum of an initial state J agrees with that of the
final state 7. In addition, since gravitational radiation also
carries away positive energy the mass of an initial state
must be larger than that of the final state, m > mg. These
observations then yield the following inequality between
mass and angular momentum for any initial state

m? > 17|, (1)

since it is also satisfied by the Kerr final state having mass
mg and angular momentum 7.

In higher dimensions D > 4 all known stationary vac-
uum black hole spacetimes admit multiple rotational
symmetries, and are thus multiaxisymmetric. A typical
symmetry group is U(1)P=3, and the only dimension
greater than 4 for which this amount of symmetry is
compatible with an asymptotically flat structure, necessary
for the ADM (total) mass, is 5. The generalization of Kerr
to D = 5 is given by the Myers-Perry solution [2], which
has a spherical $* black hole topology and a U(1)?
symmetry with two associated angular momenta 7,
i =1, 2. A similar derivation as above, with the role of
Kerr played by the Myers-Perry black hole, shows that any
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initial state of a five-dimensional black hole spacetime with
S3 horizon topology should satisfy

3>27_ﬂ

> (71 + 17> @

m

Because the derivations of Egs. (1) and (2) rely so heavily
on WCC and the FSC, any violation of these mass—angular-
momentum inequalities would provide a counterexample to
the standard picture of gravitational collapse in their
respective dimensions. On the other hand a rigorous
verification of Egs. (1) and (2) lends credence to the
standard picture, since there does not seem to be an
alternate explanation for why such nontrivial inequalities
should hold other than the arguments based on WCC and
the FSC. In fact, both inequalities have been proven [3,4].

An important special case of the FSC is the question of
stability for stationary vacuum black holes. Kerr is known
to be linearly stable [5,6], and although a complete proof
has not yet been given all evidence strongly supports the
conclusion that it is nonlinearly stable as well [7-9].
Although ultraspinning instabilities have been observed
[10-12] in D > 5 Myers-Perry black holes, in D =5 the
Myers-Perry solution is expected to be linearly stable [13].
Thus, it is not a surprise that Eqs. (1) and (2) have been
confirmed, as this is consistent with the stability analysis.

A dramatically different feature of higher dimensional
black holes is their ability to take on nonspherical topol-
ogies [14]. In D = 5, the initial discovery of the Emparan-
Reall (singly spinning) black ring [15] with horizon
topology S' x §? showed that the no hair theorem defini-
tively fails. There is hope, however, that this theorem could
be revived with the additional hypothesis of stability.
Namely, it is conjectured that there is a unique stable
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stationary vacuum black hole determined by its mass and
angular momenta, and that this solution is a (slowly rotating
in D > 5) Myers-Perry black hole. This suggests that black
rings, and the more complicated black lenses [16,17], are
unstable. Indeed, recently there has been much numerical
work all of which gives strong evidence that the family of
black ring solutions is unstable [12,18,19]. It is therefore
natural to assume that a mass—angular-momentum inequal-
ity for black ring (and black lens) spacetimes is not
possible. Surprisingly, this turns out not to be the case,
and it is the purpose of this Letter to establish an inequality
relating mass and angular momentum for black ring
spacetimes, namely,

277
m3ZT|j2|\j1—j2v

(3)

where 7, and 7, are the angular momenta associated with
S' and S?, respectively. This inequality is derived in the
same fashion as the previous two inequalities, with the final
state being the doubly spinning Pomeransky-Sen’kov (PS)
black ring [20]. The validity of this inequality then offers
indirect evidence for WCC and the FSC, in the setting of
D =5 black ring spacetimes. In particular, it provides
implicit support for the possible nonlinear stability of the
PS black rings in contrast to recent developments.

Interpreted with Newtonian considerations, Eq. (3) states
that the gravitational binding force of the black hole
(~m?/r’) dominates the centripetal repulsive forces
(~J?/mr?) to prevent the system from flying apart.
This simple picture does not, however, differentiate
between Egs. (2) and (3). In addition, the regularity
condition || > |J,| will be imposed, which inhibits
the black ring from collapsing. We also point out that
Eq. (3) is sharp in the sense that it admits a rigidity
statement, identifying the extreme PS black ring as the only
spacetime that saturates the inequality. This then naturally
provides a variational characterization of the extreme PS
black rings as possessing the absolute minimal mass with
fixed angular momentum among black ring spacetimes.

In order to establish these claims, consider a maximal
initial data set (M*, g, k) consisting of a complete
Riemannian 4-manifold with metric g and extrinsic curva-
ture k satisfying the constraint equations

1674 = R — |k|?, 8xJ = divk. (4)

Here, u and J are the energy and momentum density of the
matter fields, and R denotes the scalar curvature of g. The
data have one designated asymptotically flat end from
which the ADM mass m arises, and a second end that is
either Kaluza-Klein-asymptotically flat (KK-AF) or
asymptotically cylindrical (AC). In both cases the topology
of this second end is (0, c0) x S' x $2. In addition, it is
assumed that the data set is biaxisymmetric, that is,

L9 =Ly b =2y,u=12,,7 =0, (5)

where 7(;), i =1, 2 are the two Killing field generators
associated with the U(1)? action, and &, denotes Lie

differentiation. This is then referred to as a black ring initial
data set if M* is diffeomorphic to R*#(S? x D?), where D?
is the open unit disk. The orbit space M*/U(1)? is
diffeomorphic to the right-half plane {(p,z)|p > 0} [21]
such that the z axis I' is divided into intervals serving as
axes of rotation for the symmetry generators. In particular,
F:IIU12UI3 with ]l = (Cl, 00), 12 = (O,a), and
I3 = (—00,0), where the Killing vectors 7 and 7
vanish on I; and I,Ul;, respectively. The point (0, a)
serves as a “‘corner’” where two rotation axes meet, and (0,0)
represents the second end with ring type topology.

This class of data is motivated as follows. According to
Refs. [22,23], the maximal constant time slices in the
domain of outer communication of the stationary black ring
family are diffeomorphic to R*#(S? x D?). Naturally, the
extreme black ring data are complete with two ends, one
asymptotically flat and the other AC; their orbit space is as
above. For the nonextreme black ring, however, the orbit
space rod structure has an additional interval H represent-
ing the S'xS?> boundary horizon, that is, T =
I'UILUHUI, with 11 =(c,0), I}, = (b,c), H=(=b,b),
and I = (—co, —b). To obtain a complete manifold, it is
standard to double the data by reflecting across the horizon,
to obtain two isometric copies attached along the
horizon. This “doubling” procedure results in a manifold
with two asymptotically flat ends, and has topology
R (S? x S?)#R*. Thus, in marked contrast with the
familiar case of spherical horizons in which doubling
produces R x $3, the complete (doubled) nonextreme black
rings have a different topology from their extreme counter-
parts and thus do not fall into the category of black ring
initial data. Nonetheless, the class of data considered here
does include a suitable completion of the nonextreme
stationary black ring. In particular, one way to show this
is to appropriately modify certain global existence results
[24] to construct a solution of the vacuum constraints on a
second KK-AF end, which may then be glued at the
horizon to the domain of outer communication.

The metric g is determined by two functions U and a, a
symmetric 2 x 2 matrix 4;; with detd = p?, and a pair of
gauge fields A i =1, 2 on the orbit space, all of which
are specified using Brill’s ansatz [25]. Let (p, z, ¢', ¢*) be
global cylindrical (Brill) coordinates where ¢’ € [0, 2x]
correspond to the rotational Killing directions, that is,
Ny = Oy Then, the metric is given as follows with all
coefficients independent of rotational coordinates:

€2U+2(1

g =——=
2 /p2+Z2

+ 2V (dg' + AD)(dp’ + AV). (6)

(dp* + dz?)
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Appropriate asymptotics for the coefficients in the desig-
nated asymptotically flat end and AC end may be found in
Ref. [4]. Along the KK-AF end as 1> = 2/p*> + 72 = 0,
the primary coefficients exhibit the following behavior:
U~ =2logr, a~—logr, and 4; ~diag(p?/r*, r*).

The relevant part of the second fundamental form is
characterized by two potentials that encode the angular
momentum. Consider the 1-form 7P = 2x[k(n:;)) A
n(1) A )] on M*, where * is the Hodge dual. A compu-
tation utilizing the momentum constraint J(;) =0,
i =1, 2, and the fact that 5(;) is a Killing field show that
dPi; =0 [26]. Since M* is simply connected, twist
potentials exist globally and satisfy d¢’ = Pp)- It follows
from the definition of P(; that these potentials are constant
on the positive (I'; ) and negative (I'_) z axis. Moreover the
ADM angular momenta arise as the difference between
these constants,

T

Ji= (Ci|r_ _§i|r+>- (7)

|

In D = 5 the stationary biaxisymmetric vacuum Einstein
equations reduce to a sigma model [27] with domain R3\I"
and target space SL(3,R)/SO(3) = R5. For general black
ring initial data (off shell) the fields that relate to the latent
sigma model structure are ¥ = (U, 4; ¢ 7). Assuming non-
negative energy density, y > 0, an analysis of the Einstein-
Hilbert action yields a lower bound [4] for the ADM mass
in terms of these variables,

m > M(¥), (8)
where the mass functional is given by
M(Y)

1 e S S detV2
=2 [ (55 476y(VE V) +6|VUP -
SAs(zzﬂ 2 VeV 2 )dx

+§Z [ (0, 2)dz. )

Here, 8; = dp® + dz> + p*d¢? is a flat metric on an
auxiliary R?, and V and dx are the connection and volume
form with respect to 8s.

Unfortunately, Eq. (9) is not manifestly non-negative and
does not exhibit the underlying sigma model structure.
This, however, may be rectified by an appropriate change of
variables. Observe that since det A = p?, there are only two
independent functions contained in the matrix A. Thus,
guided by the geometry on the axis, appropriate new
variables (V, W) may be constructed and implicitly defined
through the relations

A = fe¥ coshW,
Jyy = fLe™V cosh W,

A1y = psinh W, (10)

where f4 = +/p? + (z—a)? & (z—a). Then, using the
fact that conical singularities are absent on the axes I;,
which is equivalent to

2a(0,z) = (=1)1=D/2y(0, z) + log(|z f|a|), (11)

a computation shows that

1
M(P) = R[@ 12IVUP + [V + |[VWdx

1
+— [ sinh®W|V(V + hy)Pdx

16 R3
1
16 R3

x |77V tanh WV — V2|2 dx

1 o—Om—6U—hy=V
+ / ————— V(' P,
R%

4 6—6111—6U+h2+V cosh W

— 12
16 cosh W (12)

where the functions h; = $logp and hy = Llog (f*/f4)
are harmonic on R*\I" with respect to &;.

Expression (12) clearly identifies the mass lower bound
as the reduced energy for a sigma model, and provides a
version of the positive mass theorem for black ring initial
data. Setting u =U+ h;, v=V + hy, and w =W and
using integration by parts shows that the reduced energy M
is up to boundary terms the harmonic energy E(¥) of a
singular map W = (u,v,w, ', )R\ - SL(3,R)/
SO(3) in which the symmetric space target is naturally
endowed with a left invariant metric of nonpositive curva-
ture [27]. In particular, for compact domains Q C R3\I" the
following relation holds:

16 Mo (¥) = Eo(¥) - 12/ (hy 4 2U)d, h,
oQ

—/ (hy +2V)0,h,, (13)
0Q

where v denotes the unit outer normal to the boundary 0.
This shows that the two functionals have the same critical
points. Moreover, since the extreme PS black ring solves
the stationary biaxisymmetry vacuum FEinstein equations,
its associated map ¥y = (Uy, Vo, Wy, &}, £3) is a critical
point. In fact it is a global minimum as expressed by the
following energy gap theorem.

Theorem 1: Among all black ring initial data with fixed
angular momenta, the extreme PS black ring achieves the
minimum reduced energy. More precisely, given ¥ arising
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from black ring initial data, and the extreme PS black ring
map ¥, with ¢’ = &|, i = 1, 2, we have

3

M(\P)—M(‘Po)zc< / distﬁ(‘P,‘Po)dx) (14)

R3

for some universal constant C > 0.

The proof is based on the convexity of harmonic energy
along geodesic deformations in nonpositively curved target
spaces [28]. In the current setting, however, this cannot be

applied directly since the maps ¥, at which the energy E is
evaluated, are singular on the axes. Thus, it must be shown
that convexity is inherited by the finite reduced energy, and
this is accomplished with a cut-and-paste procedure. Let
8. > 0 be small parameters and define sets Q;, = {5 <
r<2/8p>e}tand As, = By/5\Q;s,, where By s C R¥ is
the ball of radius 2/8 centered at the origin. Smooth cutoff
functions may then be used to construct cut-and-paste data
W5 ., which agree with the PS black ring harmonic map ¥,
near the axes and at spatial infinity, and agree with W
elsewhere. More precisely, the support of the difference of
component functions satisfies

supp(Us, — Uy) C By,
Supp(vﬁ,g - V09 W{S,E - WO? é‘é,g - z.:(l)v é‘%,g - é%) C Qﬁ.e'

As in Ref. [4], it can be shown that the change in reduced
energy from this cut-and-paste construction can be made
arbitrarily small, that is,

lim lim M (¥;.,) = M(¥). (15)

50 -0

Next, let ¥,, 7 € [0, 1] be a geodesic in SL(3,R)/SO(3)
that connects lijg’g and ‘~P0. By the construction above
¥, =Y, outside B,/5 and on a neighborhood of A;,, so
that in these regions the geodesic is linear in the first two
components, U, = U, + t(Us,. — Uy) and V, = V,,. Then,
since E is convex along geodesics, by using relation (13)
and the linearity of U, and V, to handle the boundary terms,
we have

2

%M(‘P,) > 2/z |Vdist(¥, Wy)|>dx. (16)
R

In addition, since ¥ is a critical point of M, by integrating

Eq. (16) twice and applying a Sobolev inequality, the proof

is complete. We arrive at the main result.

Theorem 2: Let (M*, g, k) be a black ring initial data set
with non-negative energy density, 4 > 0, and zero momen-
tum density in the direction of rotation J (17(,»)) =0,i=1,
2. If the circular angular momentum dominates the spheri-
cal angular momentum, thatis, | 7| > |7,|, then the mass—
angular-momentum inequality (3) holds. Moreover if

|T1| > |T>| > 0, then Eq. (3) is saturated if and only if
the data arise from the canonical slice of an extreme
Pomeransky-Sen’kov black ring spacetime.

The main ideas in the proof are the following. By
choosing appropriate orientations for rotation, it may be
assumed without loss of generality that both angular
momenta are positive. The regularity condition J; > J, >
0 ensures that the extreme PS black ring spacetime with

these angular momenta is nonsingular. Let ¥, be the
harmonic map associated with this spacetime, then a
calculation shows that the mass is given by

m =) = (g =) )

see the (J;, J,) phase diagram at fixed m given in
Ref. [29] for a more general statement. The desired
mass—angular-momentum inequality (3) now follows by
combining Egs. (8) and (17) and Theorem 1. Moreover, if
equality is achieved in Eq. (3) then according to Theorem 1
we have that ¥ = W, and from here analogous arguments
to those in Ref. [4] imply that the data (M*, g, k) coincide
with the canonical slice of the Pomeransky-Sen’kov black
hole. If it is only assumed that | 7| > |J,|, then by
perturbing the initial data to achieve a strict regularity
condition, the above arguments apply and yield the mass—
angular-momentum inequality for the perturbation. By
taking a limit we find that the original data must also
satisfy the inequality.

We observe that for the subset of data with 7, = 0, the
inequality (3) reduces to the positive mass theorem. The
canonical example of such data is that corresponding to
the Emparan-Reall black ring. There is no rigidity state-
ment in this case, as extreme rings must have 7, > 0.

These results demonstrate another qualitative feature of
black rings differentiating them from spherical black holes.
For the latter, at fixed mass it is clear from Eq. (2) that there
is an upper bound on the total magnitude of the angular
momenta. In contrast, Eq. (3) implies that only a certain
combination of spins J; is bounded. In particular, spin
along the S' direction of the ring can become arbitrarily
large. This was known to be true in the stationary case, but
our result shows that it is a characteristic of black rings in
the dynamical regime as well. We expect that the methods
developed here to treat the ring case will lead to analogous
results for black holes of other exotic topologies.

In summary, we have proven a highly nontrivial relation
between the mass and angular momentum of spacetimes
admitting black holes of ring type. This inequality is
intimately tied with and derived from the FSC and the
WCC conjecture. The FSC and WCC underlie our funda-
mental understanding of gravitational collapse and forma-
tion of black holes. Indeed, the observational data from
gravitational waves emitted during binary black hole
mergers [30] corroborate the expectation that the endpoint
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is a stationary Kerr black hole. A failure of WCC in general
relativity implies a serious breakdown of the theory in the
sense that predictive power is lost in the presence of naked
singularities. Geometric inequality (3) provides rigorous
evidence in support of these two conjectures in the setting
of the dynamical evolution of black rings.

This result is particularly striking because recent numeri-
cal work, focusing on dynamical black rings [19] and
“ultraspinning’ black holes [31], suggests violations of
WCC occur in D > 5. Although our proof is given for
biaxisymmetric initial data, the same result is expected to
hold for small perturbations away from biaxisymmetry,
which is the regime where the numerical studies are set. We
note that these potential violations of WCC are closely tied
to a change in black hole topology during evolution. On the
other hand, our rigorous proof of Eq. (3) suggests that the
physical reasoning underlying the FSC (which in our case
presupposes that the topology does not change), is in fact
correct. We anticipate that future investigations will resolve
the tension between these two sets of results.
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