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Abstract

We show that near-horizon geometries in the presence of a positive
cosmological constant cannot exist with ring topology. In particular, de Sitter
black rings with vanishing surface gravity do not exist. Our result relies on
a known mathematical theorem which is a straightforward consequence of a
type of energy condition for a modified Ricci tensor, similar to the curvature-
dimension conditions for the m-Bakry—Emery—Ricci tensor.
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The discovery of the Emparan—Reall singly spinning black ring [3] and the Pomeransky—Sen’kov
doubly spinning black ring [11] have played an important role in the theory of higher dimen-
sional black holes. A basic open question has been whether such solutions may be generalized
to the cosmological setting? There has been relatively little progress in constructing such solu-
tions. One potential reason for this is that dimensional reduction of the Einstein equations with
nonzero cosmological constant A # 0 fails to yield a sigma model structure [6], in contrast to the
A = O case. Thus, standard solution generating techniques do not apply in this context. In fact, it
turns out that in the extremal case these solutions cannot exist for topological reasons.

In order to state the main result we first introduce a bit of terminology. Consider the
Einstein equations

1
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where T is the energy-momentum tensor and n = D — 2, with D > 4 denoting the dimen-
sion of the spacetime. A de Sitter black ring is taken to mean a regular spacetime satisfying
the Einstein equations with A > 0 and having a Killing horizon with cross-section topology
S' x ¥ where X is an arbitrary compact manifold of dimension D — 3. Recall that a Killing
horizon is a null hypersurface defined by the vanishing in norm of a Killing field V, which
is normal to the horizon. These come naturally equipped with a notion of surface gravity s
defined through the equation

VvV =krV 2)
on the horizon.

Theorem 1. There do not exist de Sitter black rings with zero surface gravity and matter
fields satisfying the energy condition (8). In particular this conclusion holds in vacuum.

It should be noted that this theorem does not require any symmetry hypotheses beyond the
Killing horizon assumption. Previous nonexistence results have been established in [5, 8], in which
regular supersymmetric anti-de Sitter black rings have been found not to exist in 5D minimal
gauged supergravity. In addition, a general physical argument against the existence of supersym-
metric AdS black rings may be found in [2]. Since supersymmetry is not compatible with A > 0,
these results imply nonexistence of such ring solutions in the presence of a nonvanishing cosmo-
logical constant. On the other hand, there is strong evidence for the existence of non-extremal (A)
dS black rings and in fact a perturbative construction of them has been given [2] (see also [1]). In
addition, in the AdS case non-extremal black rings have been numerically constructed in [4].

The proof of theorem 1 is based on what we view as an important unrecognized relation-
ship between near-horizon geometries and the mathematical notion of m-quasi-Einstein met-
rics. When a degenerate (x = 0) Killing horizon is present, Gaussian null coordinates [7] may
be introduced in a neighborhood of the horizon so that the spacetime metric takes the form

1
g =2dv (dr + ErzF(r,x)dv + rha(r,x)dx“> + Yap (7, x)dxdx?, 3)
where V = 0, the horizon is located at » = 0 and ~y represents the induced metric on the hori-

zon cross-section H. By taking the near-horizon limit v — g, r — er and € — 0, we obtain
the near-horizon geometry

1
gnu = 2do (dr + ErzF (x)dv + rh, (x)dx”) 4 Y () dxdx? 4)

which is determined by the near-horizon data (v,p, h,, F) living on H. These must satisfy the
near-horizon geometry equations

1
Rab = Ehahb - v(ahh) + A’Vab + Pabs
F—1|h|2 lv h+A+E (5)
- 2 2 a )
where

1 1
Pop =Tap — - (trouwTNe) Yab = Tab — p (VT ea + 2T1—) Yab»

- n—2 |
E=— " T+_ + ;’Y Ta],. (6)
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Here T4 denotes the v — r component in the near-horizon limit of the energy-momentum
tensor, parameterized in [7] as

Txu = 2T, _drdv 4 2r (B, + Ty _h,) dx*do + r* (a + T _F) dv* + Tpdxdx’. (N
The relevant energy condition states that the symmetric matrix P is nonnegative definite,
that is
P=0.
On the other hand, the modified Ricci tensor of [9] on H is defined by

®)

1 1
RicY =Ric+ —Lyy— —X®X, 9)
2 m

where X is a vector field/1-form (we use the same notation for both) on H and L denotes Lie
differentiation. We note that in the special case where X = Vf, the modified Ricci tensor
becomes the m-Bakry—Emery—Ricci tensor Ricy" (or sometimes Ric}”rm, depending on con-
vention); here however, we do not assume X to be a gradient vector field. We will refer to the
metric 7 as an m-quasi-Einstein metric® if there exists X and a constant \ such that

Ricy = M. (10)

Thus we find that by setting X = h and m = 2, a vacuum near-horizon geometry defines an
m-quasi-Einstein metric.

It turns out that the theory of m-quasi-Einstein metrics parallels that of Riemannian geom-
etry. By this we mean that many standard results of Riemannian geometry have extensions to
the setting of m-quasi-Einstein metrics. One of the most important is that of Myers theorem,
which asserts that a positive lower bound for the Ricci curvature of a complete manifold
implies a corresponding upper bound for the diameter [10]. The version of this theorem for
m-quasi-Einstein metrics [9] is what we will use to prove theorem 1.

Theorem 2 ([9] theorem 1.2). Ler (H,7) be a complete and connected Riemannian
n-manifold satisfying
Ricy > Ay >0

for some m > 0. Then

~1
diam(H) < m/%.

We are now in a position to establish theorem 1 using a standard topological consequence
of this result.

Proof of theorem 1. Suppose that a de Sitter black ring exists with zero surface gravity and
matter fields satisfying the energy condition (8). The associated near-horizon geometry then sat-
isfies the hypotheses of theorem 2 with A = X, A = A and m = 2. By pulling back the relevant
geometric quantities to the universal covering manifold, so that it also satisfies the hypotheses
of theorem 2, we find that the diameter of the universal cover must be finite. This implies that
the base 7 must have finite fundamental group. However 7 (H) = m(S' x ¥) = Z x m(X)
which is infinite, a contradiction. O

31n contrast to our usage, some authors reserve this term for the X = Vf case.
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This line of argument may be interpreted as follows in the realm of near-horizon geom-
etries and is of independent interest.

Theorem 3. There do not exist de Sitter near-horizon geometries of ring type with matter
fields satisfying the energy condition (8). In particular this conclusion holds in vacuum.

Finally, we interpret the energy condition (8) in terms of perfect fluids. Perfect fluids have
energy-momentum tensors of the form

T=(p+pu®u+pg, (11)

where p is the non-gravitational energy density, p is the pressure and u is a unit timelike vector.
Then troy,Tnu = —p+ (D — 1)p = —p + (n+ 1) p and we obtain

1 1
Puy, =Ty — . (rgnuINu) Yab = (P + P)utauty + ;(P — P)Yab- (12)

It follows that (8) is assured to hold for all (timelike) u if p > | p|. But p > | p|is the dominant
energy condition for perfect fluids.

Lemma 4. [fmatter is described by a perfect fluid obeying the dominant energy condition,
then the energy condition (8) holds.

We close by noting that, while the brevity of our argument arises in part from the fact that
the proof of theorem 2 is already available in the literature, the proof of theorem 2 in [9] is
itself brief and direct and uses only familiar methods in geodesic geometry. This to us suggests
that the further exploitation of geodesic geometry of quasi-Einstein metrics may yield further
results in horizon geometry with little fuss or effort.
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