
Classical and Quantum Gravity

LETTER

Nonexistence of extremal de Sitter black rings
To cite this article: Marcus Khuri and Eric Woolgar 2017 Class. Quantum Grav. 34 22LT01

 

View the article online for updates and enhancements.

Related content

Near-horizon symmetries of extremal black
holes
Hari K Kunduri, James Lucietti and Harvey
S Reall

-

Electrovacuum near-horizon geometries in
four and five dimensions
Hari K Kunduri

-

Black hole uniqueness theorems in higher
dimensional spacetimes
Stefan Hollands and Akihiro Ishibashi

-

This content was downloaded from IP address 129.49.5.35 on 26/10/2017 at 06:16



1

Classical and Quantum Gravity

Nonexistence of extremal de Sitter black 

rings

Marcus Khuri1 and Eric Woolgar2

1 Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, 

United States of America
2 Department of Mathematical and Statistical Sciences, University of Alberta,  

Edmonton, AB, T6G 2G1, Canada

E-mail: khuri@math.sunysb.edu and ewoolgar@ualberta.ca

Received 21 August 2017, revised 2 October 2017

Accepted for publication 5 October 2017

Published 25 October 2017

Abstract

We show that near-horizon geometries in the presence of a positive 

cosmological constant cannot exist with ring topology. In particular, de Sitter 

black rings with vanishing surface gravity do not exist. Our result relies on 

a known mathematical theorem which is a straightforward consequence of a 

type of energy condition for a modified Ricci tensor, similar to the curvature-

dimension conditions for the m-Bakry–Émery–Ricci tensor.
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The discovery of the Emparan–Reall singly spinning black ring [3] and the Pomeransky–Sen’kov 

doubly spinning black ring [11] have played an important role in the theory of higher dimen-

sional black holes. A basic open question has been whether such solutions may be generalized 

to the cosmological setting? There has been relatively little progress in constructing such solu-

tions. One potential reason for this is that dimensional reduction of the Einstein equations with 

nonzero cosmological constant Λ �= 0 fails to yield a sigma model structure [6], in contrast to the 

Λ = 0 case. Thus, standard solution generating techniques do not apply in this context. In fact, it 

turns out that in the extremal case these solutions cannot exist for topological reasons.

In order to state the main result we first introduce a bit of terminology. Consider the 

Einstein equations

Rµν = Λgµν + Tµν −

1

n
gρσTρσgµν , (1)
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where T is the energy-momentum tensor and n = D − 2, with D � 4 denoting the dimen-

sion of the spacetime. A de Sitter black ring is taken to mean a regular spacetime satisfying 

the Einstein equations with Λ > 0 and having a Killing horizon with cross-section topology 

S1
× Σ where Σ is an arbitrary compact manifold of dimension D − 3. Recall that a Killing 

horizon is a null hypersurface defined by the vanishing in norm of a Killing field V, which 

is normal to the horizon. These come naturally equipped with a notion of surface gravity κ 

defined through the equation

∇VV = κV (2)

on the horizon.

Theorem 1. There do not exist de Sitter black rings with zero surface gravity and matter 

fields satisfying the energy condition (8). In particular this conclusion holds in vacuum.

It should be noted that this theorem does not require any symmetry hypotheses beyond the 

Killing horizon assumption. Previous nonexistence results have been established in [5, 8], in which 

regular supersymmetric anti-de Sitter black rings have been found not to exist in 5D minimal 

gauged supergravity. In addition, a general physical argument against the existence of supersym-

metric AdS black rings may be found in [2]. Since supersymmetry is not compatible with Λ > 0, 

these results imply nonexistence of such ring solutions in the presence of a nonvanishing cosmo-

logical constant. On the other hand, there is strong evidence for the existence of non-extremal (A) 

dS black rings and in fact a perturbative construction of them has been given [2] (see also [1]). In 

addition, in the AdS case non-extremal black rings have been numerically constructed in [4].

The proof of theorem 1 is based on what we view as an important unrecognized relation-

ship between near-horizon geometries and the mathematical notion of m-quasi-Einstein met-

rics. When a degenerate (κ = 0) Killing horizon is present, Gaussian null coordinates [7] may 

be introduced in a neighborhood of the horizon so that the spacetime metric takes the form

g = 2dv

(

dr +
1

2
r2F(r, x)dv + rha(r, x)dxa

)

+ γab(r, x)dxa
dxb

, (3)

where V = ∂v, the horizon is located at r = 0 and γ represents the induced metric on the hori-

zon cross-section H. By taking the near-horizon limit v →
v

ε
, r → εr  and ε → 0, we obtain 

the near-horizon geometry

gNH = 2dv

(

dr +
1

2
r2F(x)dv + rha(x)dxa

)

+ γab(x)dxa
dxb

 (4)

which is determined by the near-horizon data (γab, ha, F) living on H. These must satisfy the 

near-horizon geometry equations

Rab =
1

2
hahb −∇(ahb) + Λγab + Pab,

F =
1

2
|h|2 −

1

2
∇aha + Λ+ E,

 

(5)

where

Pab = Tab −
1

n
(trgNH

TNH) γab = Tab −
1

n

(

γ
cdTcd + 2T+−

)

γab,

E =−

(

n − 2

n

)

T+−
+

1

n
γ

abTab.

 

(6)
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Here T+− denotes the v − r  component in the near-horizon limit of the energy-momentum 

tensor, parameterized in [7] as

TNH = 2T+−
drdv + 2r (βa + T+−

ha) dxa
dv + r2 (α+ T+−

F) dv
2 + Tabdxa

dxb
.

 

(7)

The relevant energy condition states that the symmetric matrix P is nonnegative definite,  

that is

P � 0. (8)

On the other hand, the modified Ricci tensor of [9] on H is defined by

Ric
m
X = Ric +

1

2
LXγ −

1

m
X ⊗ X, (9)

where X is a vector field/1-form (we use the same notation for both) on H and L denotes Lie 

differentiation. We note that in the special case where X = ∇f , the modified Ricci tensor 

becomes the m-Bakry–Émery–Ricci tensor Ric
m
f  (or sometimes Ric

n+m
f , depending on con-

vention); here however, we do not assume X to be a gradient vector field. We will refer to the 

metric γ as an m-quasi-Einstein metric3 if there exists X and a constant λ such that

Ric
m
X = λγ. (10)

Thus we find that by setting X = h and m = 2, a vacuum near-horizon geometry defines an 

m-quasi-Einstein metric.

It turns out that the theory of m-quasi-Einstein metrics parallels that of Riemannian geom-

etry. By this we mean that many standard results of Riemannian geometry have extensions to 

the setting of m-quasi-Einstein metrics. One of the most important is that of Myers theorem, 

which asserts that a positive lower bound for the Ricci curvature of a complete manifold 

implies a corresponding upper bound for the diameter [10]. The version of this theorem for 

m-quasi-Einstein metrics [9] is what we will use to prove theorem 1.

Theorem 2 ([9] theorem 1.2). Let (H, γ) be a complete and connected Riemannian  

n-manifold satisfying

Ric
m
X � λγ > 0

for some m > 0. Then

diam(H) � π

√

n − 1 + m

λ
.

We are now in a position to establish theorem 1 using a standard topological consequence 

of this result.

Proof of theorem 1. Suppose that a de Sitter black ring exists with zero surface gravity and 

matter fields satisfying the energy condition (8). The associated near-horizon  geometry then sat-

isfies the hypotheses of theorem 2 with h = X, λ = Λ and m = 2. By pulling back the relevant 

geometric quantities to the universal covering manifold, so that it also satisfies the hypotheses 

of theorem 2, we find that the diameter of the universal cover must be finite. This implies that 

the base H must have finite fundamental group. However π1(H) = π1(S
1 × Σ) = Z× π1(Σ) 

which is infinite, a contradiction. □ 

3 In contrast to our usage, some authors reserve this term for the X = ∇f  case.
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This line of argument may be interpreted as follows in the realm of near-horizon geom-

etries and is of independent interest.

Theorem 3. There do not exist de Sitter near-horizon geometries of ring type with matter 

fields satisfying the energy condition (8). In particular this conclusion holds in vacuum.

Finally, we interpret the energy condition (8) in terms of perfect fluids. Perfect fluids have 

energy-momentum tensors of the form

T = (ρ+ p) u ⊗ u + pg, (11)

where ρ is the non-gravitational energy density, p is the pressure and u is a unit timelike vector. 

Then trgNH
TNH = −ρ+ (D − 1) p = −ρ+ (n + 1) p and we obtain

Pab = Tab −
1

n
(trgNH

TNH) γab = (ρ+ p)uaub +
1

n
(ρ− p)γab. (12)

It follows that (8) is assured to hold for all (timelike) u if ρ � | p|. But ρ � | p| is the dominant 

energy condition for perfect fluids.

Lemma 4. If matter is described by a perfect fluid obeying the dominant energy condition, 

then the energy condition (8) holds.

We close by noting that, while the brevity of our argument arises in part from the fact that 

the proof of theorem 2 is already available in the literature, the proof of theorem 2 in [9] is 

itself brief and direct and uses only familiar methods in geodesic geometry. This to us suggests 

that the further exploitation of geodesic geometry of quasi-Einstein metrics may yield further 

results in horizon geometry with little fuss or effort.
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