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1. Introduction and main results

In the classical proof of static vacuum black hole uniqueness, 
the last case to be considered was that in which degenerate com-
ponents of the event horizon were present. As was shown in [3,4], 
such black hole configurations cannot occur. This result applies 
to the 4-dimensional setting with vanishing cosmological constant 
� = 0. The authors in [4] also obtained certain restrictions in the 
higher dimensional setting and in the presence of a nonzero cos-
mological constant, but were ultimately unable to extend their 
result to these situations. The purpose of the present paper is to 
do just that for � ≥ 0. The main result is as follows.

Theorem 1.

(i) There do not exist static vacuum black holes having a degenerate 
horizon component in the presence of a positive cosmological con-
stant � > 0.

(ii) A complete solution of the static vacuum equations with � = 0 can 
have no more than one connected component of a degenerate hori-
zon.

(iii) A solution of the static vacuum equations with � = 0 and having 
an asymptotically flat end1 cannot have a degenerate horizon com-
ponent.

E-mail addresses: khuri@math.sunysb.edu (M. Khuri), ewoolgar@ualberta.ca
(E. Woolgar).
1 This refers to the standard notion of asymptotic flatness within the black hole 

uniqueness context, see e.g. [7].

An immediate consequence of part (iii) is a generalized version 
of the classical static black hole uniqueness result. In dimensions 
D > 4 the uniqueness proofs [6–8] rely on the positive mass theo-
rem and require all horizon components to be nondegenerate. Here 
we have shown that degenerate components do not exist, which 
when combined with [6–8] leads to the following statement.

Theorem 2. In any dimension D ≥ 4, an asymptotically flat static vac-
uum black hole is isometric to a Schwarzschild–Tangherlini solution.

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3 on 
which a function ϕ is defined. Consider the associated static space-
time (R × Mn, G) where the spacetime metric takes the form

G = −e−2ϕdt2 + g. (1.1)

It is assumed that the lapse function is positive on Mn (hence we 
write it as eϕ ), and vanishes on the topological boundary ∂Mn =
M

n \ Mn which itself should be a compact smooth manifold. The 
vacuum Einstein equations

Ric(G) −
1

2
R(G)G + �G = 0, (1.2)

are equivalent to the following set of equations on Mn

Ric(g) +Hessgϕ − dϕ ⊗ dϕ =
2�

n − 1
g,

�gϕ − |dϕ|2g =
2�

n − 1
.

(1.3)
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The second equation carries little independent information, and is 
only slightly more than an integrability condition for the first. The 
first equation together with the twice contracted second Bianchi 
identity shows that

�gϕ − |dϕ|2g =
2�

n − 1
+ Ce2ϕ , (1.4)

where C is a constant. The second equation of (1.3) is recovered in 
the case that C = 0.

Recall that a Killing horizon is a null hypersurface defined by 
the vanishing in norm of a Killing field V , which is normal to the 
horizon. In the static case above V = ∂t and the Killing horizon 
corresponds to R × ∂Mn . Killing horizons come naturally equipped 
with a notion of surface gravity κ , defined through the equation

d|V |2 = −2κV . (1.5)

A component of the horizon is referred to as degenerate (or ex-
treme) if its surface gravity vanishes κ = 0.

An important observation is that the static vacuum equations 
can be expressed in terms of the N-Bakry–Émery–Ricci tensor

RicNϕ (g) := Ric(g) +Hessgϕ −
1

(N − n)
dϕ ⊗ dϕ . (1.6)

In general N may take values in the compactified real line, where 
the last term in (1.6) is removed when N = ±∞. When N is 
an integer and greater than n, this expression arises when an 
N-dimensional metric splits as a warped product over (Mn, g). The 
N-dimensional Ricci tensor splits and its projection onto the base 
yields RicNϕ . Specifically, if Mn ×FN−n has metric

G = gM ⊕ e−2ϕ/(N−n)gF , ϕ : M →R , (1.7)

then (since gM is independent of F and gF is independent of M)

Ric(G) =
[

Ric(gM) +HessgM ϕ −
1

(N − n)
dϕ ⊗ dϕ

]

⊕
[

Ric(gF )

+
1

(N − n)
e−2ϕ/(N−n)gF

(

�gMϕ − |dϕ|2gM
)

]

= RicNϕ (gM) ⊕
[

Ric(gF )

+
1

(N − n)
e−2ϕ/(N−n)gF

(

�gMϕ − |dϕ|2gM
)

]

.

(1.8)

The term synthetic dimension for N arises since, in this context, 
N is the dimension of the total space. Note that the leaves Mn

lie in Mn × FN−n as totally geodesic submanifolds (i.e., having 
vanishing second fundamental form). If F is 1-dimensional then 
Ric(gF ) = 0, N = n + 1, and equation (1.2), written in the form 
Ric(G) = 2

(N−2)�G , splits into equations (1.3). Thus the first static 
vacuum equation in (1.3) may be rewritten as

Ricn+1
ϕ (g) =

2�

(n − 1)
g. (1.9)

Metrics which satisfy this relation are referred to as quasi-
Einstein [2]. It turns out that many of the basic Ricci curvature 
results of Riemannian geometry are known to hold as well for the 
Bakry–Émery–Ricci curvature. In particular we will exploit Bakry–
Émery versions of Myers’ Theorem, the Splitting Theorem, and 
arguments used in the proof of Synge’s Theorem [12]. It is the 
purpose of this paper to introduce these techniques into the study 

of static black hole uniqueness, and thereby establish Theorem 1. 
More precisely, Myers’ Theorem and the Splitting Theorem will 
yield special cases of Theorem 1 in Section 3, and in Section 4 the 
Synge type methods will produce a full proof. Section 2 is ded-
icated to recording technical results concerning degenerate hori-
zons for use in later sections. We note that the theory associated 
with Bakry–Émery–Ricci curvature has previously been applied to 
study static solutions of the Einstein equations which are geodesi-
cally complete, in [1,14,15].
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2. Degenerate components of the horizon

2.1. Degenerate horizons as asymptotic ends

Consider a degenerate component of the Killing horizon in a 
static black hole spacetime. A key prerequisite for application of 
the Riemannian geometric techniques mentioned in the introduc-
tion, is the fact that within time-symmetric slices such degenerate 
components lie infinitely far away from any other point. This has 
been shown in [3], although here we offer a simple proof using 
Gaussian null coordinates [10]. These coordinates may be intro-
duced near a degenerate horizon, and give the following form of 
the spacetime metric

G = 2dv

(

dr +
1

2
r2F (r, x)dv + rha(r, x)dx

a
)

+ hab(r, x)dx
adxb.

(2.1)

In keeping with conventions commonly used in near horizon ge-
ometry, here and onward V = ∂v represents the timelike Killing 
field (∂t in the coordinates of equation (1.1)), r = 0 coincides with 
the horizon, and hab denotes the induced metric on H the horizon 
cross-section. The orbit space metric on a constant time slice Mn

is then given by

gi j = G i j −
G ivG jv

G vv
= G i j +

G ivG jv

r2|F |
, (2.2)

with coordinates xi = (r, xa). Note that since the Killing field is 
timelike away from the horizon

F (r, x) < 0 for r > 0. (2.3)

It follows that

g(∂r, ∂r) =
G2
rv

r2|F |
=

1

r2|F |
,

g(∂r, ∂xa ) =
GrvGav

r2|F |
= −

rha
r2|F |

,

g(∂xa , ∂xb ) = Gab +
GavGbv

r2|F |
= hab +

hahb
|F |

.

(2.4)

Let γ (r) = (r, xa(r)), r ∈ [0, r0] be a smooth curve in the orbit space 
intersecting H, with tangent vector γ̇ . On this curve |ha ẋa| + |F | ≤
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c2 independent of r, as these two functions are continuous on a 
compact interval. We then have

|γ̇ (r)|2 =
(1 − rha ẋa)2

r2|F |
+ hab ẋ

a ẋb ≥
(1− r0c2)2

r2|F |
≥

1

4r2|F |

≥
1

4c2r2
(2.5)

for r0 sufficiently small, and hence the length of this curve diverges

s(r) =
r0

∫

r

|γ̇ (r)|dr ≥
1

2c

r0
∫

r

dr

r
→ ∞ as r → 0 . (2.6)

Lemma 3. A degenerate component of the horizon cross-section is in-
finitely distant from any point in a constant time slice of a smooth static 
spacetime.

The derivation above used only (2.1) and the timelike nature of 
the static Killing field in the interior. The result did not require the 
Einstein equations to hold, and in fact also holds on the orbit space 
of a stationary Killing field.

2.2. Near-horizon geometry

Typically the geometry of (Mn, g) is asymptotically cylindri-
cal in a neighborhood of a degenerate component of the horizon 
cross-section, and thus one expects appropriate decay of certain 
geometric quantities upon approach to H. In order to establish the 
desired estimates take the near-horizon limit v → v

ε , r → εr, and 
ε → 0, which produces the near-horizon geometry metric

GNH = 2dv

(

dr +
1

2
r2F (x)dv + rha(x)dx

a
)

+hab(x)dx
adxb. (2.7)

If G satisfies the vacuum Einstein equations then the near-horizon 
data (F , ha, hab) solve the near-horizon geometry equations on H

Rab =
1

2
hahb − ∇(ahb) + �hab,

F =
1

2
|h|2 −

1

2
∇ah

a + �,

(2.8)

where Rab denotes the Ricci tensor of the Levi-Civita connection 
∇ of the metric hab . Note that the first equation is the ab com-
ponent of the Einstein equations, whereas the second is the +−
component with e+ = ∂v − 1

2 r
2F∂r and e− = ∂r . If � ≥ 0, then in-

tegrating the second equation in (2.8) and using the divergence 
theorem yields

∫

H

F =
∫

H

(

1

2
|h|2 + �

)

≥ 0, (2.9)

since it is assumed that H is compact without boundary. In light of 
(2.3) it must be the case that F (x) ≤ 0, and hence (2.9) shows that 
F (x) ≡ 0. In fact we immediately obtain the following nonexistence 
result when � > 0 and strong restrictions when � = 0.

Proposition 4. In any spacetime dimension D ≥ 4, there do not exist 
static vacuum black holes with � > 0 and having a degenerate horizon 
component. Moreover, if (F , ha, hab) is the near-horizon data of a degen-
erate horizon component in a static vacuum black hole with � = 0, then 
F = ha = 0 and hab is Ricci flat.

The derivation given above leading to this result made no use 
of Lemma 3. Moreover, it should be pointed out that although 
the Schwarzschild–de Sitter black hole may have a degenerate 
horizon, when this occurs the hypotheses of Proposition 4 are 
not satisfied. More precisely, in Schwarzschild–de Sitter e−2ϕ =
1 − 2m/r − (�/3)r2 and the various horizons occur at the zeros 
of this function. In order for there to be three real roots the mass 

must lie in the interval m ∈
(

− 1
3
√

�
, 1
3
√

�

)

. Degenerate horizons 

only occur when m agrees with one of the endpoints of the in-
terval, or equivalently two of the roots coincide. However, in both 
of these cases the static Killing field fails to be timelike near the 
horizon.

The second part of this proposition concerning the case � = 0
has been independently proved in [4]. It implies the nonexistence 
of such static vacuum solutions with a degenerate horizon compo-
nent when D = 4, as the Ricci flat condition is not compatible with 
the topological restrictions [10] on extreme horizons in this case.

2.3. The vanishing of F

While we have seen that the � = 0 near-horizon equations lead 
us to conclude that F vanishes on approach to degenerate horizons 
in vacuum spacetimes, the set-up of subsection 2.1 leads to a more 
general result for all � ≥ 0.

To see this, consider a smooth curve γ (s) = (r(s), xa(s)), pa-
rameterized by arclength, which as above connects a point inte-
rior to Mn to the degenerate horizon cross-section H. Recall that 
−2ϕ = log(−|∂v |2) = log(r2|F |), and let γ̇ = dγ /dr. Then

∂s(ϕ ◦ γ ) =(∂rϕ)
dr

ds
+ (∂xaϕ)

dxa

ds

= −
∂rϕ

|γ̇ |
−

ẋa∂xaϕ

|γ̇ |

=
∂r log

(

r
√

|F |
)

|γ̇ |
+

ẋa∂xa log
(

r
√

|F |
)

|γ̇ |

=
∂r

(

r
√

|F |
)

r
√

|F ||γ̇ |
+

rẋa∂xa
√

|F |
r
√

|F ||γ̇ |
.

(2.10)

Now observe that according to (2.5) we have r
√

|F ||γ̇ | ≥ 1/2 for 
small r. Furthermore, since F → 0 as r → 0 a Taylor expansion 
shows that ∂r

(

r
√

|F |
)

= O (r1/2). Thus, combining this with ẋa =
O (1) and ∂xa

√
|F | = O (1), it follows that

|∂s(ϕ ◦ γ )| = O (r1/2) as r → 0. (2.11)

This implies the following result.

Lemma 5. Let (R × Mn, −e−2ϕdt2 + g) be a static vacuum spacetime 
with nonnegative cosmological constant � ≥ 0. If γ (s) is a smooth curve 
in the orbit space parameterized by arclength and connecting a point 
interior to Mn to a degenerate horizon cross-section, then F ◦ γ → 0
and ∂s(ϕ ◦ γ ) → 0 as s → ∞.

3. Application of Myers’ theorem and the splitting theorem

In the last section, we showed how Proposition 4 (and thus 
much of Theorem 1) followed easily from the second of the two 
equations in (2.8). In this section, we show that parts (i) and (ii) 
of Theorem 1 follow easily from the first of the two equations in 
(2.8), together with Lemma 3, by application of known results from 
Riemannian geometry.

A classical result in Riemannian geometry asserts that a com-
plete manifold with Ricci curvature bounded below by a uniform 
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positive constant must have finite diameter. This is known as My-
ers’ Theorem [12]. It turns out that such a result is valid when 
the boundedness condition Ric ≥ c > 0 for the Ricci curvature is 
replaced by RicNf ≥ c > 0 for the N-Bakry–Émery–Ricci tensor, for 
any twice differentiable f and any N > n.

Theorem 6 ([13, Theorem 5]). Let (Mn, g) be a complete Riemannian 
manifold. If for some N > n there exists a C2 function ϕ such that 
RicNϕ (g) ≥ �g, � > 0, then (Mn, g) has finite diameter.

The static vacuum equations imply (1.9), and therefore the hy-
potheses of this version of Myers’ Theorem are satisfied when the 
cosmological constant is positive and nondegenerate horizons (i.e., 
minimal surface boundaries) are not present. It follows that the 
constant time slices of this solution are of finite diameter. How-
ever, if degenerate horizon components were present, this would 
contradict Lemma 3. This yields the next result which partially 
generalizes the main result of [9] in the static case.

Proposition 7. There do not exist complete static vacuum solutions with 
� > 0 and having a degenerate horizon component.

Another basic result for complete Riemannian manifolds of non-
negative Ricci curvature is the Splitting Theorem of Cheeger and 
Gromoll [12]. This result states that if such a manifold admits a 
line; i.e., a complete geodesic which realizes the distance between 
any two of its points; then it must isometrically split off a Eu-
clidean factor. Extensions of this theorem have been established 
in the Bakry–Émery setting. For N = ∞ this was accomplished by 
Lichnérowicz in [11, §26, pg 90]. The following statement treats 
the case of finite N > n.

Theorem 8 ([5, Theorem 1.3]). Let (Mn, g) be a complete connected 
Riemannian manifold with a smooth function ϕ and N > n such that 
RicNϕ (g) ≥ 0. If (Mn, g) admits a line then it splits isometrically as 

E
l ×N with l ≥ 1, where N contains no line and El is Euclidean l-space. 

Furthermore ϕ is constant on El , and N has nonnegative (N− l)-Bakry–
Émery–Ricci curvature.

This may be applied to static vacuum black holes as follows.

Proposition 9. A complete solution of the static vacuum equations with 
� ≥ 0 can have no more than one connected component of a degenerate 
horizon.

Proof. Suppose that the time slice (Mn, g) has at least two de-
generate horizon components. Then Lemma 3 implies that it is 
disconnected at infinity, and hence must contain a line [12, Lemma 
41] connecting two horizon components.

As a solution of the static vacuum equations with � ≥ 0, 
(Mn, g) has nonnegative (n + 1)-Bakry–Émery–Ricci curvature. The 
splitting theorem in [5] now applies to show that Mn = E

l × N

isometrically, for some N and l ≥ 1. Moreover −e−2ϕ = |∂t |2 is 
constant on the Euclidean factor El which contains the line. How-
ever this is impossible since the Killing field ∂t is timelike on the 
interior of Mn but null on the horizon. �

4. Synge type arguments and the proof of Theorem 1

In this section we will make use of second variation arguments 
for geodesics, reminiscent of those used in the typical proof of Syn-
ge’s Theorem [12, p 172, Theorem 26] from Riemannian geometry, 
in order to give an alternative proof of part (i) and establish part 

(iii) of Theorem 1. Note that parts (i) and (ii) have already been 
proved in previous sections.

Consider a minimizing geodesic γ (s) in Mn parameterized by 
arclength s ∈ [0, ∞), connecting an interior point to a degenerate 
component of the horizon cross-section. Let γτ (s), τ ∈ (−ε, ε) be 
a 1-parameter family of curves such that γ0 = γ , and denote the 
variation vector field along γ by X = ∂τγ0 . The energy of each 
curve on a finite interval is defined by

E(τ ) =
1

2

s0
∫

0

|∂sγτ |2ds, (4.1)

and the second variation formula states that

E ′′(0) =
s0

∫

0

(

|∇sX |2 − 〈R(∂sγ , X)X, ∂sγ 〉
)

ds + 〈∇X X, ∂sγ 〉
∣

∣

s0
s=0 .

(4.2)

Let {ei}n−1
i=1 denote an orthonormal basis for the orthogonal com-

plement of ∂sγ (0) in Tγ (0)Mn , and parallel transport this basis 
along the geodesic to obtain variation fields Xi = f (s)ei(s) where 
f is a smooth function on [0, s0]. If E i denotes the energy associ-
ated with this variation, then utilizing the static vacuum equation 
(1.3) and integrating by parts produces

n−1
∑

i=1

E ′′
i (0) =

s0
∫

0

[

(n − 1) f ′ 2 − Ric(∂sγ , ∂sγ ) f 2
]

ds

+ f 2
n−1
∑

i=1

〈∇eiei, ∂sγ 〉

∣

∣

∣

∣

∣

s0

s=0

=
s0

∫

0

[

(n − 1) f ′ 2 −
(

2�

n − 1
− ∇s∂sϕ + (∂sϕ)2

)

f 2
]

ds

+ f 2
n−1
∑

i=1

〈∇eiei, ∂sγ 〉

∣

∣

∣

∣

∣

s0

s=0

=
s0

∫

0

[

(n−1) f ′ 2 −
(

2�

n−1
+ (∂sϕ)2

)

f 2 −2 f f ′∂sϕ

]

ds

+ f 2
(

∂sϕ +
n−1
∑

i=1

〈∇eiei, ∂sγ 〉
)∣

∣

∣

∣

∣

s0

s=0

≤
s0

∫

0

[

(n + 1) f ′ 2 −
(

2�

n − 1
+

1

2
(∂sϕ)2

)

f 2
]

ds

+ f 2
(

∂sϕ +
n−1
∑

i=1

〈∇eiei, ∂sγ 〉
)∣

∣

∣

∣

∣

s0

s=0

.

(4.3)

In the last step we used Young’s inequality 2ab ≤ a2

2 + 2b2 with 
a = f ∂sϕ and b = − f ′ .

The sum of second variations of energy is nonnegative if the 
variation vector fields vanish at the endpoints; i.e., if f (0) =
f (s0) = 0. Thus we are motivated to minimize the integral in the 
last line of (4.3). Consider the Rayleigh quotient



M. Khuri, E. Woolgar / Physics Letters B 777 (2018) 235–239 239

λ1 = inf
f (0)= f (s0)=0

∫ s0
0

(

f ′ 2 − 2�
n2−1

f 2
)

ds
∫ s0
0 f 2ds

, (4.4)

which gives the principal Dirichlet eigenvalue for the operator 
d2

ds2
+ 2�

n2−1
on the interval [0, s0]. A computation shows that this 

value is λ1 = π2/s20 − 2�/(n2 − 1). Since � > 0, for a suffi-
ciently long interval along the geodesic λ1 < 0. Thus by choosing 
f (s) = sin(π s/s0) to be the principal eigenfunction a contradiction 
is achieved from (4.3). This proves (i) of Theorem 1.

For part (iii) the setting is an asymptotically flat static vacuum 
solution. Assume that it has a degenerate component of the event 
horizon. Let γ : [0, s0] → Mn be a geodesic which minimizes the 
distance between an r-level set (intersected with Mn) Hr � γ (0)
in Gaussian null coordinates near the degenerate component, and 
a coordinate sphere Sr � γ (s0) in the asymptotically flat end. This 
geodesic must remain within the interior of Mn . To see this, ob-
serve that it cannot intersect a nondegenerate horizon component 
tangentially since such surfaces are totally geodesic, and it can-
not intersect these boundaries transversely since it would not be 
minimizing. Moreover, for similar reasons γ must meet Hr and 
Sr orthogonally. We may now follow the second variation ar-
guments above, choosing a variation γ i

τ (s) for each orthogonal 
variational vector field Xi = f (s)ei(s) such that γ i

τ (0) ⊂ Hr and 
γ i
τ (s0) ⊂ Sr . Then E ′′

i (0) ≥ 0. Furthermore, setting f (s) = e−αϕ◦γ (s)

where 0 < α < 1/
√
2(n + 1) yields

(n + 1) f ′ 2 −
1

2
|∂sϕ|2 f 2 =

[

(n + 1)α2 −
1

2

]

e−2αϕ |∂sϕ|2 ≤ 0.

(4.5)

By letting r → 0 and r → ∞ a contradiction is obtained with (4.3)
as follows. The left-hand side of (4.3) is nonnegative, while the 
integral on the right-hand side tends to a negative number in light 
of (4.5), and the boundary terms converge to zero. This last fact is 
a consequence of the asymptotically flat fall-off which implies that

e−2αϕ = 1+ O (r−1), ∂sϕ = O (r−1),

n−1
∑

i=1

〈∇eiei, ∂sγ 〉 = O (r−1) as r → ∞, (4.6)

and the asymptotics

e−2αϕ → 0, ∂sϕ → 0,
n−1
∑

i=1

〈∇eiei, ∂sγ 〉 → 0 as r → 0,

(4.7)

which result from the vanishing of |∂t | at the horizon and 
Lemma 5. In particular, the last of these limits shows that the 
mean curvature of Hr tends to zero. This can be seen from the 
fact that the horizon cross-section H0 is a future apparent hori-
zon lying in a time symmetric, so the mean curvatures Hr agree 
with the corresponding future null expansions for any r so that 
H = θ+ → 0. This completes the proof of Theorem 1.(iii).
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