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1. Introduction and main results

In the classical proof of static vacuum black hole uniqueness,
the last case to be considered was that in which degenerate com-
ponents of the event horizon were present. As was shown in [3,4],
such black hole configurations cannot occur. This result applies
to the 4-dimensional setting with vanishing cosmological constant
A =0. The authors in [4] also obtained certain restrictions in the
higher dimensional setting and in the presence of a nonzero cos-
mological constant, but were ultimately unable to extend their
result to these situations. The purpose of the present paper is to
do just that for A > 0. The main result is as follows.

Theorem 1.

(i) There do not exist static vacuum black holes having a degenerate
horizon component in the presence of a positive cosmological con-
stant A > 0.

(ii) A complete solution of the static vacuum equations with A = 0 can
have no more than one connected component of a degenerate hori-
zon.

(iii) A solution of the static vacuum equations with A = 0 and having
an asymptotically flat end' cannot have a degenerate horizon com-
ponent.

E-mail addresses: khuri@math.sunysb.edu (M. Khuri), ewoolgar@ualberta.ca
(E. Woolgar).
! This refers to the standard notion of asymptotic flatness within the black hole
uniqueness context, see e.g. [7].
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An immediate consequence of part (iii) is a generalized version
of the classical static black hole uniqueness result. In dimensions
D > 4 the uniqueness proofs [6-8] rely on the positive mass theo-
rem and require all horizon components to be nondegenerate. Here
we have shown that degenerate components do not exist, which
when combined with [6-8] leads to the following statement.

Theorem 2. In any dimension D > 4, an asymptotically flat static vac-
uum black hole is isometric to a Schwarzschild-Tangherlini solution.

Let (M", g) be a Riemannian manifold of dimension n > 3 on
which a function ¢ is defined. Consider the associated static space-
time (R x M", G) where the spacetime metric takes the form

G=—e2dt* +g. (1.1)

It is assumed that the lapse function is positive on M" (hence we
write it as e¥), and vanishes on the topological boundary dM" =
M \ M™ which itself should be a compact smooth manifold. The
vacuum Einstein equations

Ric(G) — %R(G)G +AG=0, (1.2)

are equivalent to the following set of equations on M"

. 2A
Ric(g) + Hessgp —dp @ dp = n—g,

-1
2A

Agp — |d§0|§ “n_1

(1.3)
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The second equation carries little independent information, and is
only slightly more than an integrability condition for the first. The
first equation together with the twice contracted second Bianchi
identity shows that

2A
Agp — |dol; = T Ce*, (14)

where C is a constant. The second equation of (1.3) is recovered in
the case that C =0.

Recall that a Killing horizon is a null hypersurface defined by
the vanishing in norm of a Killing field V, which is normal to the
horizon. In the static case above V = 9; and the Killing horizon
corresponds to R x dM™". Killing horizons come naturally equipped
with a notion of surface gravity «, defined through the equation

diV>=—-2«V. (1.5)

A component of the horizon is referred to as degenerate (or ex-
treme) if its surface gravity vanishes x =0.

An important observation is that the static vacuum equations
can be expressed in terms of the N-Bakry-Emery-Ricci tensor

Ricg(g) :=Ric(g) + Hessgp — ﬁd(p Rdy . (1.6)
In general N may take values in the compactified real line, where
the last term in (1.6) is removed when N = +oo. When N is
an integer and greater than n, this expression arises when an
N-dimensional metric splits as a warped product over (M", g). The
N-dimensional Ricci tensor splits and its projection onto the base
yields Ricj). Specifically, if M" x FN=" has metric

G=gy®e ¥/NMgr  ¢:M->R, (1.7)

then (since gy is independent of F and gr is independent of M)

1
Ric(G) = [RiC(gM) + Hessg,, ¢ — md(p ® d(p} ® [Ric(g;)

1

1 0w o2
MCEDE 2 (Seue 'd‘”'gM)]

= Ricg (gm) ® [Ric(gf)

1

_~ p—2¢/(N-n) _ 2
+(N_n)e g]-‘(AgM(P Idsolgm)]

(1.8)

The term synthetic dimension for N arises since, in this context,
N is the dimension of the total space. Note that the leaves M"
lie in M™ x FN=" as totally geodesic submanifolds (i.e., having
vanishing second fundamental form). If F is 1-dimensional then
Ric(gr) =0, N=n+ 1, and equation (1.2), written in the form
Ric(G) = (NZTZ)AG, splits into equations (1.3). Thus the first static
vacuum equation in (1.3) may be rewritten as

2A
(n—=1)

Metrics which satisfy this relation are referred to as quasi-
Einstein [2]. It turns out that many of the basic Ricci curvature
results of Riemannian geometry are known to hold as well for the
Bakry-Emery-Ricci curvature. In particular we will exploit Bakry-
Emery versions of Myers’ Theorem, the Splitting Theorem, and
arguments used in the proof of Synge’'s Theorem [12]. It is the
purpose of this paper to introduce these techniques into the study

Ricy™' (g) =

2. (1.9)

of static black hole uniqueness, and thereby establish Theorem 1.
More precisely, Myers’ Theorem and the Splitting Theorem will
yield special cases of Theorem 1 in Section 3, and in Section 4 the
Synge type methods will produce a full proof. Section 2 is ded-
icated to recording technical results concerning degenerate hori-
zons for use in later sections. We note that the theory associated
with Bakry-Emery-Ricci curvature has previously been applied to
study static solutions of the Einstein equations which are geodesi-
cally complete, in [1,14,15].
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2. Degenerate components of the horizon
2.1. Degenerate horizons as asymptotic ends

Consider a degenerate component of the Killing horizon in a
static black hole spacetime. A key prerequisite for application of
the Riemannian geometric techniques mentioned in the introduc-
tion, is the fact that within time-symmetric slices such degenerate
components lie infinitely far away from any other point. This has
been shown in [3], although here we offer a simple proof using
Gaussian null coordinates [10]. These coordinates may be intro-
duced near a degenerate horizon, and give the following form of
the spacetime metric

1
G =2dv (dr + ErzF(r, X)dv + rha(r, x)dx“) + hap (r, x)dx%dxP.
1)

In keeping with conventions commonly used in near horizon ge-
ometry, here and onward V = 9, represents the timelike Killing
field (9; in the coordinates of equation (1.1)), r = 0 coincides with
the horizon, and hg, denotes the induced metric on A the horizon
cross-section. The orbit space metric on a constant time slice M"
is then given by

Giijv Giijv

8ij =Gij — G =Gjj + 2IF| (2.2)

with coordinates xi = (r, x%). Note that since the Killing field is
timelike away from the horizon

F(r,x) <0 for r>0. (2.3)
It follows that

g(0r. 0p) = rff;| - #

80, ) = Grfzv'ialv _ —ri'f?w (2.4)
g(0xa, Iyp) = Ggp + G:Z‘"iTV =hap h|a:|b .

Let y (r) = (r,x%(r)), r € [0, 9] be a smooth curve in the orbit space
intersecting H, with tangent vector y. On this curve |hgx?| + |F| <
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c? independent of r, as these two functions are continuous on a
compact interval. We then have

.5 (1 —rhex®)? a.p . (1 —=10c?)? 1
N*= — "+ h.,x9%° > >
Y@l Ty T TR
1
> —— 2.5
~ 4c2r2 (235)

for g sufficiently small, and hence the length of this curve diverges

T T
b 1 (dr
S(T)=/|)/(T)|dTZ—/——>oo as r—0. (2.6)
2c r
r r

Lemma 3. A degenerate component of the horizon cross-section is in-
finitely distant from any point in a constant time slice of a smooth static
spacetime.

The derivation above used only (2.1) and the timelike nature of
the static Killing field in the interior. The result did not require the
Einstein equations to hold, and in fact also holds on the orbit space
of a stationary Killing field.

2.2. Near-horizon geometry

Typically the geometry of (M",g) is asymptotically cylindri-
cal in a neighborhood of a degenerate component of the horizon
cross-section, and thus one expects appropriate decay of certain
geometric quantities upon approach to . In order to establish the
desired estimates take the near-horizon limit v — % r— er, and

& — 0, which produces the near-horizon geometry metric
1
Gnu = 2dv (dr + Er21r(x)dv + rha(x)dxa> + hagy (x)dx%dx. (2.7)

If G satisfies the vacuum Einstein equations then the near-horizon
data (F, hg, hgp) solve the near-horizon geometry equations on H

1
Rap = Ehahb — Viahpy + Ahgp,
(2.8)
F:1|h|2—1V h% + A
2 2 a k]

where Rg, denotes the Ricci tensor of the Levi-Civita connection
V of the metric hg,. Note that the first equation is the ab com-
ponent of the Einstein equations, whereas the second is the +—
component with e, =3, — $r?Fd. and e_ = 9. If A >0, then in-
tegrating the second equation in (2.8) and using the divergence
theorem yields

/F:f<%|h|2+A>zo,
H H

since it is assumed that 7 is compact without boundary. In light of
(2.3) it must be the case that F(x) <0, and hence (2.9) shows that
F(x) =0. In fact we immediately obtain the following nonexistence
result when A > 0 and strong restrictions when A =0.

(2.9)

Proposition 4. In any spacetime dimension D > 4, there do not exist
static vacuum black holes with A > 0 and having a degenerate horizon
component. Moreover, if (F, hq, hgp) is the near-horizon data of a degen-
erate horizon component in a static vacuum black hole with A =0, then
F = hg = 0 and hgy, is Ricci flat.

The derivation given above leading to this result made no use
of Lemma 3. Moreover, it should be pointed out that although
the Schwarzschild-de Sitter black hole may have a degenerate
horizon, when this occurs the hypotheses of Proposition 4 are
not satisfied. More precisely, in Schwarzschild-de Sitter e=2¢ =
1 —2m/r — (A/3)r* and the various horizons occur at the zeros
of this function. In order for there to be three real roots the mass

P . 1 1 .
must lie in the interval m e ( ENIR _3JK)' Degenerate horizons

only occur when m agrees with one of the endpoints of the in-
terval, or equivalently two of the roots coincide. However, in both
of these cases the static Killing field fails to be timelike near the
horizon.

The second part of this proposition concerning the case A =0
has been independently proved in [4]. It implies the nonexistence
of such static vacuum solutions with a degenerate horizon compo-
nent when D =4, as the Ricci flat condition is not compatible with
the topological restrictions [10]| on extreme horizons in this case.

2.3. The vanishing of F

While we have seen that the A = 0 near-horizon equations lead
us to conclude that F vanishes on approach to degenerate horizons
in vacuum spacetimes, the set-up of subsection 2.1 leads to a more
general result for all A > 0.

To see this, consider a smooth curve y(s) = (r(s), x(s)), pa-
rameterized by arclength, which as above connects a point inte-
rior to M" to the degenerate horizon cross-section . Recall that
—2¢ =log(—|dy|?) =log(r?|F|), and let y =dy /dr. Then

@ )dr_l_(a )dx“
r ¥ ds xa d

ds(@oy) S

e X0
7R
_8rlog(r [FI) = %% log (ry/TF])
B 71 4
_ B (rVTFT) | rx*9a JTF]
- rJIFyL - rJIFIY L

Now observe that according to (2.5) we have r/[F[|y| > 1/2 for
small r. Furthermore, since F — 0 as r — 0 a Taylor expansion
shows that o, (ry/[F]) = 0(r'/?). Thus, combining this with x* =
0(1) and 0y +/]F] = 0(1), it follows that

(2.10)

19s(@oy)=0a"?) as  r—0. (211)

This implies the following result.

Lemma 5. Let (R x M", —e~2¢dt? + g) be a static vacuum spacetime
with nonnegative cosmological constant A > 0. If v (s) is a smooth curve
in the orbit space parameterized by arclength and connecting a point
interior to M" to a degenerate horizon cross-section, then F oy — 0
and ds(¢p oY) — 0as s — oo.

3. Application of Myers’ theorem and the splitting theorem

In the last section, we showed how Proposition 4 (and thus
much of Theorem 1) followed easily from the second of the two
equations in (2.8). In this section, we show that parts (i) and (ii)
of Theorem 1 follow easily from the first of the two equations in
(2.8), together with Lemma 3, by application of known results from
Riemannian geometry.

A classical result in Riemannian geometry asserts that a com-
plete manifold with Ricci curvature bounded below by a uniform
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positive constant must have finite diameter. This is known as My-
ers’ Theorem [12]. It turns out that such a result is valid when
the boundedness condition Ric > ¢ > 0 for the Ricci curvature is
replaced by Ric’}’ > ¢ > 0 for the N-Bakry-Emery-Ricci tensor, for
any twice differentiable f and any N > n.

Theorem 6 (13, Theorem 5]). Let (M™, g) be a complete Riemannian
manifold. If for some N > n there exists a C? function ¢ such that
Ric(’;)'(g) > Ag, A > 0, then (M", g) has finite diameter.

The static vacuum equations imply (1.9), and therefore the hy-
potheses of this version of Myers’ Theorem are satisfied when the
cosmological constant is positive and nondegenerate horizons (i.e.,
minimal surface boundaries) are not present. It follows that the
constant time slices of this solution are of finite diameter. How-
ever, if degenerate horizon components were present, this would
contradict Lemma 3. This yields the next result which partially
generalizes the main result of [9] in the static case.

Proposition 7. There do not exist complete static vacuum solutions with
A > 0 and having a degenerate horizon component.

Another basic result for complete Riemannian manifolds of non-
negative Ricci curvature is the Splitting Theorem of Cheeger and
Gromoll [12]. This result states that if such a manifold admits a
line; i.e., a complete geodesic which realizes the distance between
any two of its points; then it must isometrically split off a Eu-
clidean factor. Extensions of this theorem have been established
in the Bakry-Emery setting. For N = oo this was accomplished by
Lichnérowicz in [11, §26, pg 90|. The following statement treats
the case of finite N > n.

Theorem 8 ([5, Theorem 1.3]). Let (M™, g) be a complete connected
Riemannian manifold with a smooth function ¢ and N > n such that
Ricg(g) > 0. If (M", g) admits a line then it splits isometrically as

E' x N with1 > 1, where A/ contains no line and ! is Euclidean I-space.
Furthermore ¢ is constant on E!, and N has nonnegative (N —I)-Bakry-
Emery-Ricci curvature.

This may be applied to static vacuum black holes as follows.

Proposition 9. A complete solution of the static vacuum equations with
A > 0 can have no more than one connected component of a degenerate
horizon.

Proof. Suppose that the time slice (M", g) has at least two de-
generate horizon components. Then Lemma 3 implies that it is
disconnected at infinity, and hence must contain a line [12, Lemma
41] connecting two horizon components.

As a solution of the static vacuum equations with A > 0,
(M", g) has nonnegative (n+ 1)-Bakry-Emery-Ricci curvature. The
splitting theorem in [5] now applies to show that M" = E! x A/
isometrically, for some N and [ > 1. Moreover —e 2% = |3|? is
constant on the Euclidean factor E' which contains the line. How-
ever this is impossible since the Killing field d; is timelike on the
interior of M" but null on the horizon. O

4. Synge type arguments and the proof of Theorem 1

In this section we will make use of second variation arguments
for geodesics, reminiscent of those used in the typical proof of Syn-
ge’s Theorem [12, p 172, Theorem 26] from Riemannian geometry,
in order to give an alternative proof of part (i) and establish part

(iii) of Theorem 1. Note that parts (i) and (ii) have already been
proved in previous sections.

Consider a minimizing geodesic y(s) in M" parameterized by
arclength s € [0, c0), connecting an interior point to a degenerate
component of the horizon cross-section. Let yr(s), T € (—¢, &) be
a 1-parameter family of curves such that yp = y, and denote the
variation vector field along y by X = d;:)p. The energy of each
curve on a finite interval is defined by

S0
1
B = [ yeias (41)
0

and the second variation formula states that

S0

E”<0)=/(|VSX|2— (RGsy, X)X, 357) ) ds + (VxX, ) [
0
(4.2)

Let {e; ?;]] denote an orthonormal basis for the orthogonal com-
plement of 8;¥(0) in Ty )M", and parallel transport this basis
along the geodesic to obtain variation fields X; = f(s)e;(s) where
f is a smooth function on [0, sg]. If E; denotes the energy associ-
ated with this variation, then utilizing the static vacuum equation
(1.3) and integrating by parts produces

n—1 S0

Y E{(0) =/ [(n = 1)f" ~ Ric(asy . 35y f | ds
i=1 0
n—1 S0

+ f2) (Veei, dsy)

i=1 s=0

S0 2
A
=/ [(n -Df"? - (ﬁ — Vsds + (as<o>2) fz] ds

0

n—1 S0
+ f2 Z(Veieis 0sy)

i=1 s=0

So
2A
= / [(n— Df'? - (nfl + <as¢)2) F? —2ff’3s<p}ds
0

So

n—1
+ f? (asw + ) (Veer, asw)

i=1

s=0
So

20 1
5/ [(n—}—l)f’z - <—n_1 +3 (8S(p)2> fz}ds
0

n—1 So
+ f? (asw + D (Veei, asw)

i=1

s=0
(4.3)

In the last step we used Young’s inequality 2ab < % + 2b? with
a= fosp and b= —f".

The sum of second variations of energy is nonnegative if the
variation vector fields vanish at the endpoints; i.e. if f(0) =
f(so) =0. Thus we are motivated to minimize the integral in the
last line of (4.3). Consider the Rayleigh quotient
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j‘OSO (f/z _ %fZ) ds
5 2ds

which gives the principal Dirichlet eigenvalue for the operator
% + nffl on the interval [0, sg]. A computation shows that this
value is A = 72/s5 — 2A/(n* — 1). Since A > 0, for a suffi-
ciently long interval along the geodesic A1 < 0. Thus by choosing
f(s) =sin(ms/sp) to be the principal eigenfunction a contradiction
is achieved from (4.3). This proves (i) of Theorem 1.

For part (iii) the setting is an asymptotically flat static vacuum
solution. Assume that it has a degenerate component of the event
horizon. Let y : [0,so] — M" be a geodesic which minimizes the
distance between an r-level set (intersected with M") #, > y(0)
in Gaussian null coordinates near the degenerate component, and
a coordinate sphere S; > ¥ (sp) in the asymptotically flat end. This
geodesic must remain within the interior of M". To see this, ob-
serve that it cannot intersect a nondegenerate horizon component
tangentially since such surfaces are totally geodesic, and it can-
not intersect these boundaries transversely since it would not be
minimizing. Moreover, for similar reasons y must meet #, and
Sy orthogonally. We may now follow the second variation ar-
guments above, choosing a variation )/,i(s) for each orthogonal
variational vector field X; = f(s)e;(s) such that yti(O) C Hr and
¥4(s0) C Sr. Then E/(0) > 0. Furthermore, setting f(s) = e~%¥°Y()
where 0 < o < 1/4/2(m + 1) yields

A=

= inf , (4.4)
F(0)=f(s0)=0

1 1
n+1)f? - 5|as<p|2f2 = [(n +1a? - 5} e 29|30/ < 0.
(4.5)

By letting r — 0 and r — oo a contradiction is obtained with (4.3)
as follows. The left-hand side of (4.3) is nonnegative, while the
integral on the right-hand side tends to a negative number in light
of (4.5), and the boundary terms converge to zero. This last fact is
a consequence of the asymptotically flat fall-off which implies that

e =1+00""), dp=0a""),

n—1

Z(ve,,e,-,asw =0 ") as r— oo, (4.6)
i=1

and the asymptotics

n—1
Z(Ve,,ei, dy)—>0 as r—0,
i=1

e 2% 50, 3¢9 —0,

(4.7)

which result from the vanishing of |d;| at the horizon and
Lemma 5. In particular, the last of these limits shows that the
mean curvature of H, tends to zero. This can be seen from the
fact that the horizon cross-section #p is a future apparent hori-
zon lying in a time symmetric, so the mean curvatures 7{, agree
with the corresponding future null expansions for any r so that
H =6, — 0. This completes the proof of Theorem 1.(iii).
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