CHICXULUB ZIRCON (AND APATITE!)

Axel Wittmann¹

¹Eyring Materials Center, Arizona State University, Tempe, AZ 85287, axel.wittmann@asu.edu

Introduction: Zircon (ZrSiO₄) has been studied for its impact metamorphism, and its potential to record the age of the impact and source rocks for Chicxulub ejecta (e.g., [1–7]). IODP-ICDP Expedition 364 recovered 829 m of drill core down to a depth of 1334.7 meters below sea floor (mbsf) from the peak ring of the Chicxulub impact crater [8–9]. This study of the impact metamorphism of zircons in granitic rocks from the lower peak ring (LPR; 747 to 1335 mbsf) complements my study of suevites and impact melt rocks from the upper peak ring section (UPR; 617 to 747 mbsf; [7]) to obtain a comprehensive record of impact-related P-T conditions in Chicxulub's peak ring rocks.

Samples and Methods: At Arizona State University, I analyzed 10 samples from granitic and doleritic rocks of the LPR in petrographic thin sections by optical microscopy, and electron microprobe analysis. Using X-ray intensity mapping and imaging, I quantitatively characterized impact-metamorphic features in zircon assemblages.

Results: Seven of the ten LPR samples are variably brecciated granites, one is a trachyte dike, and two are a basanite dike with granite wallrock, and a phonotephrite dike with a garnet gneiss inclusion, repectively. The major granitic components are quartz, albite with patches of oligoclase, and perthitic orthoclase with a celsian component <5 mol%. Quartz exhibits multiple sets of decorated planar deformation features and occasional feather features; no high pressure polymorphs of SiO₂ or diaplectic SiO₂ glass occurs in the studied samples. This indicates a >10 - <25 GPa shock metamorphic overprint followed by post-shock annealing and aqueous alteration (e.g., [10–16]. Planar deformation features in feldspar tend to be corroded and less well developed as those in quartz. Up to ~0.7 mm apatite crystals exhibit multiple sets of planar elements, which are mostly planar fractures with irregular spacings of <10 to >100 μ m (Fig. 1A). In X-ray intensity maps of the 10 samples, we identified more than 500 zircon grains up to 190 μ m in size. Most zircon grains are intensely fractured along irregular microfaults and comminuted to <10 μ m fragments; these microfaults in zircon do not extend into the surrounding feldspar and quartz crystals. In addition, less than 10% of the zircon crystals exhibit planar elements (Fig. 1B).

Discussion & Conclusions: Brittle response suggests the shock wave affecting most zircon crystals did not exceed their Hugoniot elastic limit (HEL) at ~20 GPa [17], which is regarded as the onset of planar elements in impact metamorphosed zircon (e.g., [6,18]) and for the occurrence of planar fractures in apatite [19]. This <20 GPa shock pressure constraint agrees with the 12–18 GPa shock pressure constraints for quartz determined with universal stage measurements in the LPR (e.g., [12–16]). Heterogeneous shock pressure effects may explain the occurrence of planar elements in a small fraction of zircon crystals but seem unlikely for LPR apatite because most apatite crystals >0.5 mm exhibit multiple sets of planar elements. Thus, planar fractures in impact-metamorphosed apatite (Fig. 1A) likely indicates equilibrium shock pressures lower than 20 GPa.

Acknowledgments: Funding and support for drilling Expedition 364 by IODP, ICDP, ECORD, the Yucatán state government, and UNAM; Expedition 364 Science Party; funding through NSF grant # 1737087.

References: [1] Bohor B. F. et al. (1993) *EPSL* 119: 419–424. [2] Krogh T. E. et al. (1993) *EPSL* 119: 425–429. [3] Kamo S. L. and Krogh T. E. (1995) *Geology* 23: 281–284. [4] Kamo et al. (2011) *EPSL* 310: 401–408. [5]

Schmieder M. et al. (2017) Geol. Mag.: doi:10.1017/S0016756817000255. [6] Wittmann A. et al. (2006) MAPS 41: 433-454. [7] Wittmann A. (2018) LPS 49, Abstract #2994. [8] Morgan J. V. et al. (2016) Science 354: 878-882. [9] Morgan J. V. et al. (2017) *Proc. IODP* 364: 176 pp. [10] Grieve R. A. F. et al. (1996) Meteoritics & Planetary Science 31: 6-35. [11] Poelchau M. H. and Kenkmann T. (2011) JGR 116: doi:10.1029/2010JB007803. [12] Ferrière L. et al. (2017) LPS 48, Abstr. #1600. [13] Ferrière L. et al. (2018) LPS 49, Abstr. #2238. [14] Rae A. S. P. et al. (2017) LPS 48, Abstr. #1934. [15] Zhao J. W. et al. (2017) LPS 48, Abstr. #1421. [16] Feignon J.-G. et al. (2018) EGU General Assembly, Abstr. #EGU2018-10750-2. [17] Mashimo T. et al. (1983) Phys. Chem. Min. 9: 237-247. [18] Timms N. E. et al. (2015) Earth-Sci. Rev. 165: 185-202. [19] Cavosie A. and Lugo Centeno C. (2014) LPS 45, Abst. #1691.

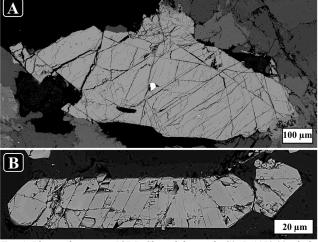


Fig. 1. Planar elements in IODP-Chicxulub sample C247_1159.99 mbsf. A – apatite; B – zircon; back-scattered electron images.