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Abstract—Change Point Detection (CPD) is the problem of discovering time points at which the behavior of a time series 
changes abruptly. In this paper, we present a novel real-time nonparametric change point detection algorithm called SEP, which 
uses Separation distance as a divergence measure to detect change points in high-dimensional time series. Through 
experiments on artificial and real-world datasets, we demonstrate the usefulness of the proposed method in comparison with 
existing methods 
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1 INTRODUCTION
hange Point Detection (CPD) is the problem of discov-
ering time points at which the behavior of a time series 

changes abruptly. CPD is a well-established area and has 
been studied over the past several decades in the fields of 
data mining, statistics, and computer science. CPD finds ap-
plication in a broad range of real-world problems such as 
medical condition monitoring [1], climate change detection 
[2][3], speech recognition [4][5], image analysis [6], and hu-
man activity analysis [7][8][9]. Many algorithms have been 
designed, enhanced, and adapted for change point detec-
tion. These techniques include both supervised and unsu-
pervised methods, chosen based on the desired outcome of 
the algorithm. While change point detection is a well-inves-
tigated field, research on real-time CPD is more recent and 
rare. In contrast with traditional CPD approaches, real-time 
CPD algorithms run concurrently with the processes they 
are monitoring, processing each data point as it becomes 
available. The goal is to detect a change point as soon as pos-
sible after it occurs, ideally before the next data point arrives 
[10]. However, online algorithms place different require-
ments on the amount of new data that must be viewed be-
fore a change can be detected.  

Recently, direct density ratio change point detection al-
gorithms have been introduced which address these chal-
lenges [11]. These algorithms detect change points between 
two consecutive windows of data by estimating their prob-
ability density ratio based on the assumption that the prob-
ability densities of two consecutive windows are the same if 
they belong to the same state. The goal of this paper is to 
further advance this line of research by improving the cur-
rent start-of-the-art method and introducing a new unsuper-
vised algorithm for change point detection in time-series 
data which we call SEParation change point detection, or 

SEP. The proposed approach can be applied to data of arbi-
trary dimensionality and detects change points in near real 
time. Our novel SEP change point detection method em-
ploys new probability metrics and improves the perfor-
mance of existing density ratio-based change point detec-
tion algorithms by providing a more sensitive change score. 
As we demonstrate, this method results in detection of more 
subtle and a greater variety of changes. 

This paper offers several contributions to change point 
detection. We first introduce a new CPD method built on the 
notion of SEParation distance and contrast the approach 
with existing CPD methodologies. Second, we further com-
plete the set of relationships that have been defined between 
existing probability metrics by relating the Separation dis-
tance and Pearson metrics. Finally, we evaluate and imple-
ment SEP using artificial datasets and benchmark datasets. 
We also evaluate SEP on a complex multidimensional real-
world application, namely detecting changes in sensor-
based human behavior data. CPD offers several valuable op-
portunities in such a setting, including health event detec-
tion, breakpoint detection, and activity segmentation  
[12][13]. Detecting change points in smart home sensor data 
is valuable for detecting health events and identifying activ-
ity transition points. Our experimental results on real and 
synthetic data indicate that SEP performs as well or better 
than existing methods at classical CPD and offers new fea-
tures that are valuable for complex real-time problems such 
as smart home-based human behavior analysis. 

2 BACKGROUND 

In order to introduce our SEP method, we first present def-
initions of key terms with a formulation of the change 
point detection problem and probability functions that we 
use throughout the paper. We also review existing change 
point detection methods, focusing primarily on those that 
employ density ratio methods. 

2.1 Definitions and Problem Formulation 

We begin this discussion with definitions of time series 
data and change points. 
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Definition 1. A time series data stream is an infinite se-
quence of elements S={x1,…,xi,…}, where xi is a d-dimen-
sional data vector arriving at time stamp i [14]. 

Time series data reflects the current status of a process 
or system. When the parameters governing the process do 
not change for a period of time, the process and corre-
sponding time series subsequence remains in a single state. 
Two consecutive distinct states are distinguished by a 
change point. Indeed, a change point represents a transi-
tion between different states in a process that generates the 
time series data. 

Definition 2. If X is a random variable defined on ℝ, for 
every subset B of ℝ we can define a measure µX that reflects 
the probability density function of the subset. This func-
tion, shown in Equation 1, is used by some methods to 
compare data distributions and detect change points.  𝜇𝑋(𝐵) = 𝑃(𝑋)   (1) 

where (ℝ, B, µX) is a probability space and P is the prob-
ability of X in B. If X is continuous, we can define proba-
bility density function f: ℝ→ [0, ∞) such that P{a ≤ X ≤ b} = ∫ 𝑓(𝑥)𝑑𝑥𝑏𝑎    (2) 

Definition 3. Given a time series S, we assume time 
stamp t is a change point if the probability density function 
f created from sliding-window data observed before and 
after t are different either in terms of the type of the func-
tion or the parameters characterizing the function change. 
Let {xm,,...,xk,…,xn} be a sequence of time series data points 
that are observed as part of times series S. Change point 
detection (CPD) can be defined as the problem of hypoth-
esis testing between two alternatives consisting of the null 
hypothesis H0:  “No change occurs in time series S at time 
stamp k*” and the alternative hypothesis HA:  “A change 
occurs in time series S at time stamp k*” [15][16]. 

H0: fxm  ≈ … ≈  fxk* ≈ … ≈ fxn 

HA: There exists m<k*<n such that  
                          fxm  ≈ … ≈  fxk* ≠ fxk*+1  ≈ … ≈ fxn 
where fxi is the probability density function of the slid-

ing window starting at point xi and k* is a time in the series 
where the process is changing states. 

A change point detection algorithm is an algorithm that 

utilizes information about time series data to determine if 

and where change points occur. Change point detection al-

gorithms typically need to consider data before and after 

potential change points to make this determination. As a 

result, we also want to consider the efficiency with which 

these decisions can be made. This leads us to the next def-

inition. 

Definition 4. A change point detection algorithm can be said 

to perform in ε-real time when the algorithm makes a deci-

sion about a change point occurring at time k* after a delay 

of ε time points. In other words, the ε-real time algorithm 

needs to examine data points xk*, xk*+1,.., xk*+ ε in order to de-

cide whether or not k* is a change point.  An offline algo-

rithm can then be viewed as ∞-real time and a completely-

online algorithm is 0-real time because for every data 

point, it can predict whether or not a change point occurs 

before the new data point. Because of their increased de-

tection efficiency, algorithms that operate with smaller ε 

values may lead to more responsive change point detection 

applications. 

2.2 Existing CPD Methods 

Change point detection algorithms have been studied for 
decades and there are multiple techniques described in the 
literature. Figure 1 provides an overview of existing 
change point detection algorithms. Both supervised and 
unsupervised methods have been used to solve CPD prob-
lems. When a supervised approach is employed for change 
point detection, machine learning algorithms can be 
trained as either binary or multi-class classifiers. If the 
number of possible process states is specified, the change 
point detection algorithm may be trained to find each state 
boundary, making it a multi-class problem. A sliding win-
dow moves through the data, considering each possible di-
vision between two data points as a possible state bound-
ary or change point [17][18][19]. While this approach has a 
simpler training phase, a sufficient amount and diversity 
of training data needs to be provided to represent not only 
each individual state class but also all possible transitions 
from one state to another. On the other hand, detecting 
each state separately may provide sufficient information to 
find both the nature and the amount of detected change.  

An alternative is to treat change point detection as a bi-
nary classification problem, where all of the possible state 
transition (change point) sequences represent one class 
and all of the within-state sequences represent a second 
class. While only two classes need to be learned in this case, 
this is a much more complex learning problem if the num-
ber of possible types of transitions is large [7][20][21]. In 
addition to detecting changes, a virtual classifier can be 
used to also interpret the change that occurs between two 
consecutive windows [22]. For each pair of consecutive 
windows, the virtual classifier attaches a hypothetical label 
(+1) to samples from the first window and (-1) to samples 
from the second window. The algorithm then trains a vir-
tual classifier (VC) using any supervised method that gen-
erates human-interpretable rules (e.g., a decision tree) 
based on the labeled data points. If there is a change point 
between two windows, the classifier should correctly clas-
sify it and the classification accuracy should be signifi-
cantly higher than random noise. Once the change point is 
detected, the classifier is re-trained using all of the samples 
in the two neighboring windows. If some features play a 
dominant role in the classifier, then they are the ones that 
characterize the difference. 

Unsupervised learning algorithms are typically used to 
discover patterns (and pattern changes) in unlabeled data. 
In the context of change point detection, such algorithms 
can be used to segment time series data by finding change 
points based on statistical features of the data. Unsuper-
vised segmentation is attractive because it may handle a 
variety of different situations without requiring prior 
training for each state and state change. One traditional so-
lution is subspace modelling, which represents a time se-
ries using state spaces and detects change points by iden-
tifying the state space distances. This approach has a 
strong connection with a system identification method, 
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which has been thoroughly studied in control theory. As-
suming we have two consecutive sliding windows, Sub-
space Identification (SI) [23] estimates an extended observ-
ability matrix based on a state space model that is gener-
ated for each sliding window and calculates the gap be-
tween subspaces as a measure of the change. Singular 
Spectrum Transformation (SST) [24] is another similar ap-
proach which calculates distance-based change point 
scores by comparing singular spectrums of two trajectory 
matrices for consecutive windows. 

 
Probabilistic methods estimate probability distributions 

for each new window based on the data that has been ob-
served since the previous candidate change point. As an 
example, the Bayesian algorithm designed by Adams and 
McKay [25] uses Bayes’ theorem to estimate a current 
state’s run-length (rt) which represents the time that has 
elapsed in the time series since the last change point. Given 
the run length at a time point t, the run length at the next 
time point t+1 can either reset back to 0 (if a change point 
occurs at time t) or increase by 1 (if the current state con-
tinues for one more time unit). Using a different type of 
probabilistic approach, the Gaussian Process (GP) algo-
rithm by Saatçi, et al. [26] defines a time series data point 
as noisy Gaussian distribution function values. Given a 
time series, the GP function will make a normal distribu-
tion-based prediction of the data point at time t. Change 
points are detected by comparing the predicted and actual 
data point values. 

Clustering methods, which are very popular for change 
point detection, group time series data into clusters of sim-
ilar data points that represent their respective states and 
find changes by identifying differences between features 
of the cluster states. Although it was designed as a time 
series segmentation algorithm, SWAB (Sliding Window 
and Bottom-up) [27] exemplies this approach and can be 

used for change detection. SWAB detects change points by 
combining sliding window and bottom-up methods. The 
original bottom-up approach first treats each data point as 
a separate subsequence, then merges subsequences with 
an associated merge cost until the stopping criteria is met. 
Extending this further, SWAB also maintains a buffer of 
size w to store enough data for 5-6 clusters. The bottom-up 
method is applied to the data in the buffer as well as the 
leftmost resulting cluster and any corresponding detected 
change point is reported. The data corresponding to the re-
ported subsequence are removed from the buffer and re-
placed with the next data in the series. In contrast, the 
MDL-based change point detection [28] is a bottom-up 
greedy search over the space of clusters which can include 
subsequences of different lengths and does not require the 
number of clusters to be specified. The Shapelet-based 
clustering method [29] is a greedy search algorithm which 
attempts to cluster the data based on the shape of the entire 
time series. This method searches for a u-shapelet which 
can separate and remove a time series state from the rest of 
the dataset. The algorithm iteratively repeats this search 
among the remaining data until no data remains to be sep-
arated. 

Kernel-based methods [30] map observations onto a 
higher-dimensional feature space and detect change points 
by comparing the homogeneity of each subsequence. 
Graph-based techniques have been used as well. The 
graph-based technique of Chen and Zhang [15] is a non-
parametric approach that represents time series as a graph 
in which its nodes are time series data points. This algo-
rithm then applies a two-sample statistical test to detect 
change points based on the graph representation. 

In this research, we focus on density ratio change point 
detection techniques. We narrow our approach to these 
methods because they are unsupervised, can detect change 
points in near-real time, and have demonstrated good per-
formance in the literature. These CPD techniques utilize 
density ratios based on the observation that the probability 
density of two consecutive windows are the same if they 
belong to the same state. A typical statistical analysis of 
change-point detection analyzes the probability distribu-
tions of data before and after a candidate change point, and 
identifies the candidate as a change point if the two distri-
butions are significantly different. One of the early re-
ported density ratio methods  is cumulative sum (CUSUM) 
[31] which accumulates deviations relative to a specified 
target of incoming measurements and indicates that a 
change point exists when the cumulative sum exceeds a 
specified threshold. The Change Finder (CF) algorithm [32] 
reduces the problem of change point detection into time 
series-based outlier detection. Since these methods rely on 
pre-designed parametric models and they are less flexible 
in real-world change point detection scenarios, some re-
cent studies introduce more flexible non-parametric varia-
tions by estimating the ratio of probability densities di-
rectly without needing to perform the actual density esti-
mations. These density ratio-based approaches to change 
point detection are among the most popular approaches 
and form the basis of our SEP method described in the next 
section. The rationale of this density-ratio estimation idea 

 

Fig. 1. Overview of change point detection algorithms.  
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is that knowing the two densities implies knowing the den-
sity ratio. However, the inverse is not true: knowing the 
ratio does not necessarily imply knowing the two densities 
because such decomposition is not unique. Thus, direct 
density-ratio estimation is substantially simpler than den-
sity estimation. Following this idea, methods of direct den-
sity-ratio estimation have been developed [33][11].  

3 SEP CHANGE POINT DETECTION 

Recent studies show compared with other change-point 
detection methods, density ratio based algorithms offer 
several advantages for real world problems [11][34]. As-
suming two probability densities, ft(x) and ft-1(x), corre-
sponding to two consecutive windows, each with length n, 
density ratio-based CPD methods use dissimilarity 
measures as a measure of difference between them to de-
termine whether or not there exists a change point between 
these two windows. These methods model the density ra-
tio by a non-parametric Gaussian kernel model, shown in 
Equations 3 and 4.  

𝑔𝑡(𝑥) = 𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) =∑𝜃𝑖∏𝐾(𝑥𝑡𝑖 , 𝑥𝑡−1𝑗 )𝑛
𝑗=1

𝑛
𝑖=1  (3) 

𝐾(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−‖𝑥1 − 𝑥2‖22𝜎2 ) (4) 

In these equations, θ=(θ1,…,θn)T represents the set of pa-
rameters for the ratio function to be learned from existing 
data points in the current windows, and σ>0 represents the 
kernel parameter. In the training phase, the parameters θ 
are determined for each window so that a chosen dissimi-
larity measure is minimized. Given a density-ratio estima-
tor gt(x), a dissimilarity measure between windows is cal-
culated during the test phase as a change point score. Since 
the higher the change point score is, the more likely the 
point is a change point [33][11], these methods identify 
change points by comparing scores to a threshold. Existing 
direct density ratio change point detection algorithms use 
different dissimilarity measures. This means each method 
uses different models and optimization processes, thus the 
change point score calculation will change based on these 
choices. 

One of the first direct density ratio CPD methods, the 
Kullback-Leibler importance estimation procedure 
(KLIEP) [35], estimates the density ratio using Kullback-
Leibler (KL) divergence. KL divergence, defined in Equa-
tion 5, is a popular choice for the dissimilarity measure. 𝐾𝐿 = −∫𝑓𝑡(𝑥)𝑙𝑜𝑔 𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) 𝑑𝑥 (5) 

This problem is a convex optimization problem, so the 
unique global optimal solution θ can be obtained, for ex-
ample, by a gradient projection method. The resulting ap-
proximation of KL divergence is given in Equation 6 [35]. 
The notation 𝐾�̂� and �̂� represent the estimator of KL and g, 
respectively. 

𝐾�̂� = 1𝑛∑𝑙𝑜𝑔𝑔(𝑥𝑖)𝑛
𝑖=1  (6) 

Another direct density ratio estimator is uLSIF (Uncon-
strained Least-Squares Importance Fitting) [36], which 
uses Pearson (PE) divergence as a dissimilarity measure, 
as shown in Equation 7.  𝑃𝐸 = ∫𝑓𝑡(𝑥) (𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) − 1)2 𝑑𝑥 (7) 

As part of the uLSIF training criterion, the density-ratio 
model is fitted to the true density ratio under the squared 
loss. An approximator of the PE divergence is shown in 
Equation 8. 

𝑃�̂� = − 12𝑛∑𝑔(𝑥𝑖)2𝑛
𝑖=1 + 1𝑛∑𝑔(𝑥𝑖)𝑛

𝑖=1 − 12 (8) 

Depending on the value of the second window density 
function, the density-ratio value can be unbounded. To 
overcome this problem, 𝛼-relative PE divergence for 0≤ <1 
is used as a dissimilarity measure in an approach known 
as Relative uLSIF (RuLSIF) [11]. The RuLSIF dissimilarity 
measure is defined in Equation 9. 𝑃𝐸𝛼 = 𝑃𝐸(𝑓𝑡−1(x), 𝛼𝑓𝑡−1(x) + (1 − 𝛼)𝑓𝑡(x)) (9) 

The -relative density ratio is reduced to a plain density 
ratio if =0 [11][37]. 

As mentioned, one of the key elements for density ratio-
based methods is the choice of dissimilarity or divergence 
measure function. This function computes the difference 
between the probability density functions for two consec-
utive windows of data.  

A function d(·, ·) provides an appropriate measure of 
difference if and only if the following four conditions are 
satisfied [38]: 

• Non-negativity: Ɐ x, y, d(x, y) ≥ 0 
• Non-degeneracy: d(x, y) = 0 ↔ x = y 
• Symmetry: Ɐ x, y, d(x, y) = d(y, x) 
• Triangle inequality: Ɐ x, y, z, d(x, z) ≤ d(x, y) + d(y, z) 

A dissimilarity / divergence is a pseudo-difference if it 
violates some of the above conditions. There are several 
metrics available to quantify the difference between prob-
ability density functions in change point detection algo-
rithms. For example, the KLIEP change point detection al-
gorithm [35] uses the Kullback-Leibler divergence for its 
metric, while both uLSIF [36] and RuLSIF [11] use Pearson 
divergence. The question is, how does one choose an opti-
mal metric? Alternatively, what are the issues that affect a 
metric’s desirability? To answer these questions and deter-
mine if there is another potential metric that can further 
improve change point detection, we start by investigating 
existing metrics and their relationships. 

Table 1 lists different probability metrics found in the 
literature. In this table, µ and ν represent two probability 
measures while f and q represent their corresponding prob-
ability density functions based on Definition 2. Figure 2 
pictorially describes the relationship between these met-
rics. A directed edge from node A to node B annotated by 
h(x) means that dA ≤ h(dB), where dA is the difference calcu-
lated by dissimilarity measure A. For example, comparing 
Kullback-Leibler and Pearson we can see a directed edge 
from KL to PE annotated with dKL ≤ log(1+dPE), which 
means the difference calculated by Kullback-Leibler metric 
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is bounded by the one Pearson metric calculates [39].  
When detecting change points, one goal is to generate 

change point scores that are maximally sensitive to subtle 
changes in the data, because this will offer the greatest po-
tential to identify both subtle and dramatic changes in the 
time series. In terms of difference values, this sensitivity 
results in a larger range of difference values. Because the 
metrics that appear at the end of a chain in Figure 2 have 
the largest value, we hypothesize that metrics at the top of 
the graph such as Kullback-Leibler divergence, Pearson di-
vergence, and Separation distance are preferable for CPD 
algorithms. This hypothesis is supported by a study com-
paring uLSIF and KLIEP change point detection algo-
rithms. Liu et al. [11] showed that both uLSIF and RuLSIF 
(using the Pearson metric) outperformed KLIEP (using the 
Kullback-Leibler metric). Sugiyama [40] also showed that 
the Pearson divergence has higher numerical stability and 
is more robust against outliers than Kullback-Leibler di-
vergence. These are the only metrics in Figure 2 that have 
been utilized to date in CPD algorithms. 

Another metric that provides a large difference is the 
Separation distance metric (S). While the graph in Figure 2 
indicates that Separation distance has a greater value range 
than Total Variation distance (TV), information is not 
available about its relationship with the Pearson (PE) or 
Kullback-Leibler (KL) metrics. Furthermore, it has nott 

been investigated for use as a sensitive CPD measure. One 
of the unique contributions of this work is to use the Sepa-
ration distance metric to develop a new density ratio-based 
change point detection algorithm. To the best of our 
knowledge there is not any change point detection algo-
rithm using this metric. We also further complete Figure 2 
by adding edges that relate Separation distance to other 
known metrics. 

We start by deriving the metric for our SEParation dis-
tance CPD algorithm, called SEP. As with the previous 
methods, we compare the probability densities of ft(x) and 
ft-1(x) corresponding to two consecutive windows in the 
time series data, each with length n. We model the density 
ratio between these probability densities without estimat-
ing the densities ft(x) and ft-1(x) using Equation 10. 

𝑔𝑡(𝑥) = 𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) =∑𝜃𝑖∏𝐾(𝑥𝑡𝑖 , 𝑥𝑡−1𝑗 )𝑛
𝑗=1

𝑛
𝑖=1  (10) 

The parameters θ in the model g will be determined 
from data samples and K is a non-negative basis function. 
One appropriate basis function choice is Kernel functions. 
We determine the parameters θ in the model such that the 
difference between the actual and estimated ratios is mini-
mized, as shown in Equation 11. 𝐽(𝑥) = ∫ |𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) − 𝑔𝑡(𝑥)| 𝑓𝑡(𝑥) 𝑑𝑥                                                         

= {  
  ∫−[𝑓𝑡−1(𝑥) − 𝑔𝑡(𝑥)𝑓𝑡(𝑥)] 𝑑𝑥,  𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) < 𝑔𝑡(𝑥)∫[𝑓𝑡(𝑥) − 𝑔𝑡(𝑥)𝑓𝑡(𝑥)] 𝑑𝑥,  𝑓𝑡−1(𝑥)𝑓𝑡(𝑥) ≥ 𝑔𝑡(𝑥) 

(11) 

Since the first term in Equation 11 is constant in each 
window and does not relate to the estimated ratio, we will 
remove it from the minimization process and only use the 
second term. By substituting gt(x) in Equation 11 with the 
model from Equation 10, we can generate the optimization 
problem as shown in Equation 12. 

𝐽(𝑥) = {  
  ∫𝑔𝑡(𝑥)𝑓𝑡(x) 𝑑𝑥, 𝑓𝑡−1(x)𝑓𝑡(x) < 𝑔𝑡(𝑥)∫−𝑔𝑡(𝑥)𝑓𝑡(x) 𝑑𝑥, 𝑓𝑡−1(x)𝑓𝑡(x) ≥ 𝑔𝑡(𝑥)                            

=
{  
  ∑𝜃𝑖(∫∏𝐾(𝑥𝑡𝑖 , 𝑥𝑡−1𝑗 )𝑛

𝑗=1 𝑓𝑡(x))𝑑𝑥𝑛
i=1 , 𝑓𝑡−1(x)𝑓𝑡(x) < 𝑔𝑡(𝑥)
−∑𝜃𝑖(∫∏𝐾(𝑥𝑡𝑖, 𝑥𝑡−1𝑗 )𝑛

𝑗=1 𝑓𝑡(x))𝑑𝑥𝑛
i=1 , 𝑓𝑡−1(x)𝑓𝑡(x) ≥ 𝑔𝑡(𝑥) 

(12) 

Approximating the integrals using empirical averages, 
we obtain Equation 13.                        𝐽(𝑥)

=
{  
  ∑𝜃𝑖(1𝑛∑∏𝐾(𝑥𝑡𝑖, 𝑥𝑡−1𝑗 )𝑛

𝑗=1
𝑛
𝑗=1 )𝑛

i=1 , 𝑓𝑡−1(x)𝑓𝑡(x) < 𝑔(𝑥)
−∑𝜃𝑖(1𝑛∑∏𝐾(𝑥𝑡𝑖, 𝑥𝑡−1𝑗 )𝑛

𝑗=1
𝑛
𝑗=1 )𝑛

i=1 , 𝑓𝑡−1(x)𝑓𝑡(x) ≥ 𝑔(𝑥) (13) 

TABLE 1 
PROBABILITY METRICS [39] 

Abbreviation Metric Definition 

D Discrepancy 𝑆𝑈𝑃|𝜇 − 𝜈| 
H Hellinger distance ∫(√𝑓 − √𝑞)2𝑑𝑥 

KL 
Kullback-Leibler divergence 

(relative entropy) 
∫𝑓𝑙𝑜𝑔(𝑓𝑞)𝑑𝑥 

P Prokhorov metric inf  {𝜖: 𝜇 ≤ 𝜈 + 𝜖} 
PE 

Pearson divergence (χ2 dis-
tance) 

∫(𝑓 − 𝑞)2𝑞 𝑑𝑥 

S Separation distance 𝑀𝑎𝑥(1 − 𝜇𝜈) 
TV Total variation distance 

12∑|𝜇 − 𝜈| 

 

Fig. 2. Relationships among probability metrics [39]. 
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             = {  
  ℎ̂𝑇𝜃, 𝑓𝑡−1(x)𝑓𝑡(x) < 𝑔(𝑥)−ℎ̂𝑇𝜃, 𝑓𝑡−1(x)𝑓𝑡(x) ≥ 𝑔(𝑥) = |ℎ̂𝑇𝜃| 

where ℎ̂ is the n-dimensional vector given by Equation 
14. ℎ̂ = 1𝑛∑∏𝐾(𝑥𝑡𝑖 , 𝑥𝑡−1𝑗 )𝑛

𝑗=1
𝑛
𝑖=1  (14) 

Next, we will add the penalty term for the purpose of 
regularization and convergence and generate the optimi-
zation problem shown in Equation 15. Here, λ≥0 denotes 
the regularization parameter, which is chosen empirically 
by cross-validation [11]. 𝑚𝑖𝑛𝜃 [|ℎ̂𝑇𝜃| + 𝜆2𝜃𝑇𝜃] (15) 

When solving the optimization by setting the first-order 
differential to zero, parameter θ can be analytically ob-
tained as shown in Equation 16. 𝜃 = −1𝜆 ℎ̂ (16) 

Given a density-ratio estimator g(x), an approximator of 
the SEP change point score can finally be constructed as 
shown in Equation 17. 

𝑆𝐸�̂� = max (0, (12 − 1𝑛∑𝑔(𝑥𝑖)𝑛
𝑖=1 )) (17) 

Similar to RuLSIF and ulSIF method, SEP change detec-
tion offers an analytical solution and is stable. We can then 
use SEP scores to detect change points. Considering the 
fact that a greater SEP score means that the probability of 
a change point is greater, as with the other methods in this 
category we reject all candidate points whose SEP values 
are lower than a threshold value. To reduce the chance of 
false alarms and avoid double change points, we only con-
sider the peak score value as a change point. The threshold 
value (Th) will be chosen based on optimal performance 
for a particular time series. In our experiments, we identify 
a threshold value that optimizes a tradeoff between TPR 
and FPR for a subset of the data. Another important pa-
rameter in the SEP algorithm is the length of window (n). 
As with the threshold value, we vary the window size for 
each dataset in order to find the best window length in 
terms of both acceptable accuracy and real-time detection. 

In the next step, we need to compare the SEP score ap-
proximation from Equation 17 to the Pearson score ap-
proximation in Equation 8. To find the relation between 
SEP and PE, we can rewrite Equation 8 as Equation 18. 1𝑛∑𝑔(𝑥𝑖)𝑛

𝑖=1 = 𝑃�̂� + 12𝑛∑𝑔(𝑥𝑗)2𝑛
𝑗=1 + 12 (18) 

Assuming function g in both equations represents the 
ratio between probability densities, we can substitute 
Equation 18 into Equation 17, yielding Equation 19. 

𝑆𝐸�̂� = |12 − 𝑃�̂� − 12𝑛∑𝑔(𝑥𝑗)2𝑛
𝑗=1 − 12| (19) 

Considering the third term on the right hand side as a 

new parameter k, we can rewrite the relation as given in 
Equation 20. 𝑆𝐸�̂� = |𝑘 − 𝑃�̂�| (20) 

Since k is non-positive, from Equation 20 we know that 
the SEP score is always greater than or equal to the PE 
score. Thus, we can complete the relationship for metric S 
in Figure 2, yielding the graph shown in Figure 3. Based on 
our earlier claim that metrics at the end of the chain pro-
vide the most useful metrics for CPD algorithms, we hy-
pothesize that change point detection using Separation dis-
tance (S) will generally outperform Pearson divergence for 
change point detection. Because the arrow from TV to S is 
annotated with a function that is asymptotically larger 
than the function annotating the arrow from TV to KL, we 
postulate that S will also generally outperform Kullback-
Leibler divergence for change point detection as well. 

4 RESULTS AND DISCUSSION 

In this section, we evaluate our proposed SEP change point 
detection and compare results with other popular CPD 
methods. First, we introduce performance measures that 
are used to evaluate aspects of the CPD process. Next, we 
summarize results for artificial and real-world datasets in-
cluding smart home activity data, ECG data, and hand out-
line data. 

4.1 Performance Measures 

A number of measures are commonly used to evaluate the 
performance of change point detection methods. We use 
four different performance measures to evaluate the ability 
of our proposed SEP change point detection algorithm to 
detect both change points and non-change points in time 
series. 

Sensitivity, also referred to as Recall or the True Posi-
tive Rate (TP Rate). This refers to the portion of a class of 
interest (in this case, change points) that was recognized 
correctly. Here TP denotes the number of change points 
that were correctly detected and FN denotes the number of 
change points that were not detected. This measure pro-
vides an indication of how effectively a CPD algorithm will 
detect true state changes. S𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑅𝑎𝑡𝑒 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (21) 

False Positive Rate (FP Rate). This refers to the ratio of 
negative examples (in this case, the number of data points 
in a time series which are not change points) which are rec-
ognized as change points to the total number of negative 
examples. Here FP denotes the number of non-change 
points that were incorrectly identified as change points 
and TN denotes the number of non-change points that 
were not labeled as change points. This measure reflects 

 

Fig. 3. Relationships among Separation and Pearson metrics. 
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how many false alarms would be generated by a CPD al-
gorithm. F𝑃 𝑅𝑎𝑡𝑒 = 𝐹P𝐹𝑃 + 𝑇𝑁 (22) 

G-mean. A supervised learning algorithm that attempts 
to perform change point detection typically faces an imbal-
anced class distribution because the ratio of changes to to-
tal data is usually small. As a result, G-mean is commonly 
used as an indicator of CPD performance. This utilizes 
both Sensitivity and Specificity measures to assess the per-
formance of the algorithm in terms of the ratio of positive 
accuracy (Sensitivity) and the ratio of negative accuracy 
(Specificity).  G −𝑚𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖t𝑦 ×  𝑆𝑝𝑒𝑐𝑖fi𝑐𝑖𝑡y= √ 𝑇𝑃𝑇𝑃 + 𝐹𝑁 × 𝑇𝑁𝐹𝑃 + 𝑇𝑁 

(23) 

Detection Delay. This directly measures how close the 
time value of each correctly-predicted CP is to the actual 
CP time value in the series. The absolute value of the time 
difference between the true predicted and actual CP time 
points is summed and normalized over the total number of 
change points. Delay = ∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝐶𝑃) − 𝐴𝑐𝑡𝑢𝑎𝑙(𝐶𝑃)|#𝐶𝑃𝑖=1 #𝐶𝑃  

(24) 

Following the strategy found in previous research 
[7][11], we assume a detected change point is correct if 
there exists a change point in the data that occurs soon be-
fore or after the detected change point. In other words, a 
detected change point at time t* is correct if a true change 
point occurs in the time interval [t* − λ, t* + λ]. In our ex-
periments, we consider λ=1 second for the evaluation of 
exact change point detection and λ=5 and 10 seconds for 
evaluation of change point detection with a small time off-
set.  

4.2 Artificial Dataset 
We use the following three artificial time-series datasets 
[11] that contain manually inserted change points to show 
the effectiveness of SEP method in detecting different 
changes and compare the performance to existing similar 
methods.  

Dataset 1(Jumping mean). The following 1-dimensional 
auto-regressive model is used to generate 1000 samples:  y(𝑡) = 0.6𝑦(𝑡 − 1) − 0.5𝑦(𝑡 − 2) + 𝜖𝑡 (25) 

where єt is Gaussian noise with mean μ and standard 
deviation 0.5. The initial values are set as y(1) = y(2) = 0. A 
change point is inserted at every 100 time steps by increas-
ing the noise mean μ by 2. 

Dataset 2 (Scaling variance). The same auto-regressive 
model as Dataset 1 is used, but a change point is inserted 
at every 100 time steps by infusing origin-centered noise 
with a random standard deviation between 0.01 and 1. 

Dataset 3 (Changing frequency). 1-dimensional samples 
of size 1000 are generated as: 𝑦(𝑡) = 𝑠𝑖𝑛(𝑤𝑡) + 𝜖𝑡 (26) 

Where єt is origin-centered Gaussian noise with stand-
ard deviation 0.8. A change point is inserted at every 100 
points by multiplying the frequency ω by 5. 

To  investigate the sensitivity of SEP performance on 
different choices of window size (n) and threshold value 
(Th), we calculate G-mean values because these reflect the 
ability of the algorithm to detect both change and non-
change points. Figures 4 through 6 show the sensitivity 
analysis of SEP using the artificial datasets for exact, 
within-5-seconds and within-10-seconds CPD. For each 
case, the top figure shows the 3d plot of G-mean values for 
different threshold and window length values and the bot-
tom figure shows the corresponding filled contour plot. 
The color bar demonstrates the value range of each color. 
As we can see from the graphs, by increasing the accepta-
ble delay value the overall performance will improve for 
all datasets. We observe an almost flawless performance of 
SEP with no delay for the Jumping Mean and Scaling Var-
iance datasets. In the case of the Changing Frequency da-
taset some detection delay is observed. Based on the results 
of this sensitivity analysis, the selected window lengths for 
Datasets 1, 2, and 3 are 30, 20, and 20, respectively. The 
threshold values are selected as 0.5 for Datasets 1 and 2 and 
0.2 of the maximum score for Dataset 3. 

Figures 7-9 visualize examples of these datasets as well 
as the corresponding change point score obtained by SEP, 
RuLSIF, and uLSIF. When there is a change in mean value, 
the change-point score obtained by all methods increases 
rapidly, but the value of the score is different for each 
method. The RuLSIF algorithm generates the same value 
regardless of the degree of change in the mean. In contrast, 
the SEP change score is more sensitive to these changes. 
For example, the largest SEP score occurs at time 900 where 
the mean increases from 10 to 50 while the smallest score 
occurs at time 100, 200 , and 700 where the mean increases 
only 5. But RuLSIF score is constant for all of these changes. 
When the data variance changes, both SEP and RuLSIF 
catch these changes in addition to capturing false positive 
changes. When the data frequency changes, all CPD meth-
ods increase the change scores because the mean is also 
changing. As Figure 9 shows, SEP can generative the small-
est number of false positive change points. In summary, 
SEP is more robust than the other methods against noise 
and outliers. We can see when there is no change and the 
data contains noise, the SEP score changes minimallywhile 
RuLSIF and uLSIF exhibit much larger change in their 
scores. This reflects the sensitivity of RuLSIF and uLSIF to 
noise and thus the change points are not consistently de-
tected. On the other hand, the SEP method detects the ex-
istence of true change points in these complex situations. 

Next, we compare the performance of SEP with both 
RuLSIF and uLSIF in detecting within-10-seconds CPs us-
ing the TPR, FPR and G-mean measures. We also compare 
these methods with a simple baseline change detection. 
The baseline method performs a t-test comparison be-
tween two windows and reports a CP if the change in data 
is significant (p<.05). Table 2 summarizes these results. The 
window length for uLSIF and RuLSIF algorithm was set to 
30, 20, and 60 for Datasets 1, 2, and 3, respectively, based 
on the highest performance we can achieve for this 
method. For the t-test these values are 40, 70, and 70 for 
each dataset because these values generated the best re-
sults for this baseline method.  



8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

 
The results show, in the case of the Jumping Mean da-

taset, the SEP, RuLSIF, and t-test methods successfully de-
tect all change points although SEP and RuLSIF reduce the 
false alarms in comparison to a basic t-test. However, there 
is not a significant difference in performance between SEP 
and RuLSIF. uLSIF algorithm exhibits the lowest FPR but 
since the TPR is not high we can conclude the small FPR 
value is because of its corresponding low detection rate. 
When there is a change in the variance of the data, the SEP 
and RuLSIF change point detection algorithms are signifi-
cantly better than a basic t-test in detecting change points, 
but the uLSIF algorithm does not even outperform the 
baseline. Although there is not a significant difference be-
tween RuLSIF and SEP, SEP performs slightly better in de-
tecting non-change points. For the Changing Frequency 
dataset, although SEP and RuLSIF again perform signifi-
cantly better than a basic t-test and both of them detect all 

 

Fig. 9. Changing frequency time-series samples and the change-point 
score obtained by different methods. 

 

Fig. 5. SEP algorithm sensitivity analysis for artificial dataset 2, Scaling 
Variance. The top row of graphs contains the 3d plots of G-mean values 
and the bottom row contains the corresponding contour plots. 

 

Fig. 6. SEP algorithm sensitivity analysis for artificial dataset 3, Chang-
ing Frequency. The top row of graphs contains the 3d plots of G-mean 
values and the bottom row contains the corresponding contour plots. 

 

Fig. 4. SEP algorithm sensitivity analysis for artificial dataset 1, Jump-
ing Mean. The top row of graphs contains the 3d plots of G-mean val-
ues and the bottom row contains the corresponding contour plots. 

 

Fig. 8. Scaling variance time-series samples and the change-point score 
obtained by different methods. 

 

Fig. 7. Jumping mean time-series samples and the change-point score 
obtained by different methods. 
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change points, SEP is significantly better than RuLSIF in 
detecting non-change points (the FPR value is almost half 
that of RuLSIF). In summary, we conclude that the SEP 
change point detection algorithm can detect changes in the 
mean, variance, and frequency of time series data. Further-
more, when detecting frequency changes SEP significantly 
outperforms the current state-of-the-art CPD algorithms. 
In addition, SEP can detect changes in frequency much 
faster than RuLSIF because of its smaller window length. 

4.3 Smart Home Activity Transition Detection 

Next, we apply the proposed change-point detection 
method to the real-world data. For this task, we select the 
CASAS smart home dataset [41]. This experiment allows 
us to validate our SEP algorithm on unscripted activity-la-
beled smart home data to determine if it can detect changes 
between activity states. Detecting transitions between ac-
tivities in real time is useful for many applications. First, 
transition detection can be used to segment smart home 
sensor data into non-overlapping activity sequences and 
provide insights on the start time, stop time, and duration 
of activities performed in the home [42]. This segmentation 
can also boost the performance of activity recognition be-
cause the feature vector does not contain information from 
more than one activity and can include features such as ac-
tivity start time and duration so far. Second, detection of 
activity transitions facilitates activity-aware delivery of no-
tifications, automation and behavioral intervention tech-
nologies. Receiving notifications at inopportune times is 
not only annoying, but can increase a resident’s cognitive 
load [43], introduce task errors [44], and reduce acceptance 
of the technology [45]. Timing prompts and notifications 
during activity transitions can improve user response rates 
and support independent living [46]. 

4.3.1 CASAS Smart Home 

The data used during this research was collected by the 
CASAS (Center for Advanced Studies in Adaptive Sys-
tems) smart home system [41] [47] developed at Washing-
ton State University. Using embedded sensors, the CASAS 

smart homes collect information about the state of the 
home and the resident(s) to monitor and analyze daily ac-
tivities. Sensors generate “events” to report their state. An 
event contains a date, time, sensor identifier, and message 
sent from the sensor. 

Each of the CASAS smart homes has at least one bed-
room, a kitchen, a dining area, a living area, and at least 
one bathroom. All of the CASAS smart homes have differ-
ent sizes and layouts, yet they all include the standard sen-
sor setup. Each of the smart apartments is equipped with a 
network of wireless motion and door sensors and houses a 
single older adult resident who performs normal daily rou-
tines. Figure 10 shows the layout of one of the smart homes 
we analyze in this paper. Sensor labels starting with “M” 
indicate motion sensors and “D” indicates door sensors. 

The primary sensor found in CASAS smart homes is an 
overhead motion sensor. The motion sensors are used to 
determine when motion is occurring in the area covered by 
the sensor. The motion sensor reports an ON message 
when motion is detected, followed by an OFF message 
when the movement stops. In cases when the resident is 
walking under the motion sensor to some other location, 
the motion sensor has a gap between the ON and OFF mes-
sages that is roughly 1.25 seconds. However, if the activity 
results in continuous movement under the motion sensor, 
(e.g., dancing near the motion sensor), the sensor will not 
generate an OFF message until 1.25 seconds after the activ-
ity has stopped. 

There are two types of motion sensors configurations 
utilized in the CASAS smart home system. The most com-
mon motion sensors used are the narrow-field motion sen-
sors. In the case of narrow-field motion sensors, the sen-
sor’s field of view is limited to a radius of a few feet. These 
sensors are placed on the ceiling of the home and detect 
movement within the sensor’s field of view. The other mo-
tion sensor configuration that is used throughout the smart 
home system is the wide-field motion sensor; the wide-
field motion sensor has a much larger field of view. These 
area sensors are usually placed on the walls to determine 
whether there has been movement anywhere in an entire 
room. The wide-field motion sensor can only detect motion 
in the room, not localize where the resident is located in-
side the room. In contrast, the narrow-field motion sensors 
provides a finer-resolution localization of the resident. 

 

Fig. 10. Smart home floorplan and positions of motion/light sensors 
(red) and door/temperature sensors (green). 

TABLE 2 
PERFORMANCE OF CPD ALGORITHM FOR ARTIFICIAL DA-

TASETS.  

 Dataset 1 – Jumping Mean 

 SEP RuLSIF uLSIF T test 

TPR 1.00 1.00 0.56 1.00 

FPR 0.03 0.05 0.01 0.14 

G-mean 0.99 0.98 0.74 0.93 

 Dataset 2 – Scaling Variance 

 SEP RuLSIF uLSIF T test 

TPR 1.00 1.00 1.00 0.11 

FPR 0.14 0.14 0.15 0.01 

G-mean 0.93 0.93 0.92 0.33 

 Dataset 3 – Changing Frequency 

 SEP RuLSIF uLSIF T test 

TPR 1.00 1.00 0.44 0.22 

FPR 0.13 0.25 0.01 0.06 

G-mean 0.93 0.87 0.66 0.46 
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Another sensor used in the CASAS smart home system 
is the magnetic door sensor. Door sensors use a magnetic 
switch to determine whether the doors are opened or 
closed. These are usually mounted on the external doors of 
the smart home to indicate when the resident enters or 
leaves the home, though some door sensors are also placed 
in strategic locations such as doors to cabinets that hold 
medicine dispensers. 

We evaluate our SEP algorithm using data collected 
over two months in smart home testbeds that were in-
stalled in six apartments [41]. Each of the apartments house 
a single older adult (age 75+) resident who performs a nor-
mal daily routine while sensors in the apartment generate 
and store events. To provide ground truth activity labels, 
annotators are given the house floor plan, the positions of 
the sensors, a resident-completed form indicating when 
and where they typically perform daily activities, and the 
sequence of sensor events. Multiple annotators are used to 
provide consistent labels and the inter-annotator agree-
ment is =0.80. The activity classes that we use for our 
analyses are Bathe, Enter Home, Wash Dishes, Personal 
Hygiene, Relax, Work, Sleep, Leave Home, Cook, Bed Toi-
let Transition, Eat, and Other Activity. Because all events 
that do not fit into the 11 predefined activity classes are la-
beled as “Other Activity”, the activities are skewed toward 
this activity class. Activity transitions are time in the sensor 
event data sequence when the activity changes from one 
label to a different label. These represent the change points 
we want to detect using our CPD algorithms. Distribution 
of transitions between all activities in six apartments are 
described in supplementary material section.  

4.3.2 CASAS Smart Home Activity Transition Detection 

For detecting activity transitions, our time series data was 
created in the following manner using continuous sensor 
events collected from CASAS smart homes. We slide a 
window over the sensor data that looks at 30 events and 
extract a corresponding feature vector. These features in-
clude general information such as window time duration, 
event time, and the most dominant sensor in the window 
which is most frequent triggered sensor, number of occur-
rence of each sensor in current window, the time when 
each sensor last fired till the end of current window, etc. 
Thus, the feature vector dimension varies depending on 
home floorplans and sensor placements. 

The feature space is then updated when a new event oc-
curs to yield our time series data. The raw data we collect 
in smart homes together with the features we use to learn 
activity models from smart home data are summarized in 
Table 3. Figure 12 plots a subset of CASAS smart home fea-
tures (5 out of the 51 features) which comprises our multi 
dimensional time series. This figure contains seven differ-
ent activities which are separated by vertical black lines. 

For the smart home data, we again investigate the sen-
sitivity of SEP’s G-Mean performance for different choices 
of window size (n) and threshold value (Th). We perform 
the sensitivity analysis for one of the CASAS homes over 
two months of data and then use the chosen parameters for 
the other smart home sites to show the generality of the 
model. Figure 13 shows the sensitivity analysis of SEP-

based activity transition detection in Apartment 1 for ex-
act, within 5 seconds, and within 10 seconds CP detection. 
As we can see from the graphs, by increasing the accepta-
ble delay the overall performance improves and SEP can 
detect more transitions. There is not a significant difference 
in performance for a small window length (less than 20 
sensor events) but increasing the window length can de-
crease the ability of SEP to find activity transitions. Based 
on the results of this preprocessing step, the selected value 
of n for all apartments was 2 sensor events which means 
our algorithm is 2-real time. Finally, the threshold value 
was set to 0.1. 

Next, we compare the performance of SEP with two 
other density ratio based methods, RuLSIF and uLSIF [11]. 
Figure 14 plots the within-10-second change detection 

TABLE 3 
RAW SMART HOME DATA, FEATURES, AND ACTIVITY CLASS DE-

SCRIPTORS.  

Domain Number Types of Features 

Raw Sensor 
data 

3 sensor 
types 

infrared motion (ON/OFF), magnetic door 
(OPEN/CLOSE), ambient light (continuous) 

Timing fea-
tures 

3 features 
day of week, hour of day, seconds past mid-
night 

Window fea-
tures 

9 features 

most recent sensor in window, first sensor in 
window, window duration, most frequent 
sensors from previous two windows, last 
sensor location in window, last motion sen-
sor location in window, entropy-based data 
complexity of window, time elapsed since 
last sensor event in window 

Sensor fea-
tures (n sen-
sors in home) 

2*n features 
count of events for each sensor in window, 
elapsed time for each sensor since last event 

 

 

Fig. 12. Sample CASAS smart home features. The true activity transi-
tions are marked by black vertical lines. 

 

Fig. 13. SEP algorithm sensitivity analysis for activity transition detec-
tion in Apartment 1. The top row of graphs contains the 3d plots of G-
mean values and the bottom contains the corresponding contour plots. 
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ROC curves for these methods over different threshold 
values for two of the apartments. The experimental results 
show that the ROC curves of all of these methods exhibit 
similar behavior when changing the threshold value. 
Overall, the SEP algorithm outperforms the other methods 
with the largest area under ROC curve (AUC) value. Since 
the experimental conditions are similar for the alternative 
CPD algorithms, we can conclude the difference is because 
of the SEP dissimilarity measure that we introduce. As Fig-
ure 14 indicates, the Separation distance is more successful 
than the Pearson measure in detecting activity transitions.  

Figure 15 plots the sensitivity of the Detection Delay 
value to the threshold value for our selected direct density 
ratio CPD methods. When increasing the threshold value, 
there is a subsequent increase in both TPR and FPR. Addi-
tionally, the average distance between detected change 
points and the actual change point increases for all algo-
rithms. However, as we can see in the figure SEP has the 
smallest Detection Delay value and lowest sensitivity to 
the threshold. This provides evidence not only that SEP 
can detect transitions closer to their actual occurrence, but 
also that changing the threshold value does not greatly af-
fect this performance. Since all of these algorithms are 2-
real time and as we demonstrated, SEP outperforms RuL-
SIF and uLSIF in terms of both AUC and Detection Delay, 
we can conclude that the SEP algorithm offers superior 
performance for detecting activity change points in real 
time. 

Figure 16 through Figure 18 show the TPR, FPR, and G-
Mean values for the SEP, RuLSIF, uLSIF, Bayesian, and t-
test methods [25] based on exact CP and CP within 10 sec-
onds, respectively. The figures show that as expected, ex-
cept for the t-test baseline, change point detection within 
10 seconds exhibits better performance than exact change 
point detection. This is because all of the CPD algorithms 
experience a delay in detecting changes or transitions. SEP 
outperforms all other methods in detecting activity transi-
tions with an average True Positive Rate = 0.89 for a 
within-10-seconds detection. As we can see in figure, the 
result indicates the difference is significant at the (p < .05) 
level. 

SEP algorithm has a lower False Positive Rate (average 
= 0.12) than RuLSIF and uLSIF, but its FPR is higher than 
the Bayesian algorithm. Recalling that the Bayesian CPD 
has a very low TPR and thus it cannot detect changes con-
sistently, we conclude the small FPR value in this method 
is because of its overall low detection rate. This result is 
consistant with our previous finding that SEP is more ro-
bust against noise or outliers than the other methods. Be-
cause human behavior (and therefore smart home sensor 
data) is noisy, SEP performs better in this case and detects 
fewer false alarms. The one-way ANOVA test indicates the 
difference between FPR values for SEP and the other algo-
rithms is significant at the (p < .05) level. The G-Mean re-
sults are similar to those for TPR and show in summary 
that SEP outperforms all other algorithms in detecting both 
transitions and non-transitions with an average of 0.88. 
The one-way ANOVA test indicates the difference be-
tween G-Mean performances is significant at the (p < .05) 
level. In summary, the baseline t-test experiment between 

 

Fig. 15. Detection Delay value for activity transition detection. 

 

Fig. 14. ROC curve and AUC values for activity transition detection 
based on two smart homes. 

 

  Fig. 16. TPR scores for activity transition detection. 

 

   Fig. 17. FPR scores for activity transition detection. 
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two consecutive windows reveals that a simple t-test de-
tects almost all windows as transitions, so both TPR and 
FPR values are 1 and the G-Mean is 0. This result indicates 
that using change point detection algorithms is necessary 
for detecting activity transitions. Although the Bayesian al-
gorithm exhibits better performance than baseline, it is not 
a promising tool for detecting activity transitions. One pos-
sible explanation is that the nature of human behavior data 
is highly variable and thus is difficult to predict using 
purely Bayesian methods with relatively small amounts of 
data. 

Finally, the Detection Delay for all algorithms is plotted 
in Figure 19. The Detection Delay can be thought of as the 
average time between when a transition occurs and when 
the transition is detected. For the SEP algorithm, the aver-
age value is close to 60.5 seconds, or 1.01 minutes, which is 
lower than all other methods. The delay values for the 
RuLSIF, uLSIF, and Bayesian methods are 1.76, 1.83, and 
6.00 minutes, respectively. Ideally, we would like to mini-
mize these times to have more accurate activity bounda-
ries. By considering the length of activities in the real world 
(12 minutes is the average for our datasets), we determine 
all density ratio based methods have an acceptable Detec-
tion Delay for many automation and notification applica-
tions, but still have room for improved responsiveness. 
From the above results, we can see that the best perfor-
mance for activity transition detection results from apply-
ing the SEP algorithm. The baseline t-test Detection Delay 
was not calculated due its poor performance based on FPR 
and G-mean measures. 

4.4 Other Real-World Datasets  
To show the generality of SEP change point detection, we 
evaluate the performance of SEP and other existing 
change-point detection methods using two additional real-
world datasets: ECG and hand outline. Both datasets are 
drawn from the UCR Time Series Data Mining Archive 
[48]. 

The ECG dataset is a respiration dataset which records 
patients’ respiration measured by thorax extension as they 
wake up. The series is manually segmented by a medical 
expert. Table 4 shows the results of ECG change point de-
tection using the SEP, RuLSIF, and Bayesian algorithms. 
The results again show both SEP and RuLSIF yield supe-
rior performance to the Bayesian method. We can see SEP 
has a high FPR which can be because of the periodic nature 
of this time series. Thus, although it has a slightly better 
TPR than RulSIF, the G-Mean score is lower. In terms of 
the distance between actual and detected change points, 
SEP exhibits the lowest Detection Delay. The one-way 
ANOVA test indicates that the difference between alterna-
tive algorithm performances is not significant at the (p < 
.05) level. Performing a t-test to compare the performance 
of algorithms shows that SEP and RuLSIF have similar per-
formances for this dataset but both of them have signifi-
cantly better performances than uLSIF and the Bayesian 
method at the (p < .05) level. 

Next, we apply the alternative CPD methods to the 
hand outline dataset. Table 5 shows the results for the SEP, 
RuLSIF, uLSIF, and Bayesian algorithms. Again, we can 
see from the results that SEP outperforms the other meth-
ods in terms of TPR, G-Mean, and Detection Delay, but still 
has a slightly higher FPR than the other approaches. The 
one-way ANOVA test indicates the difference between al-
ternative algorithm TPR and G-mean value is significant at 
the (p < .05) level. 

In summary, the results show that our SEP change point 
detection method outperforms other methods for many 
time series datasets. The results also indicate that although 
the performance of change point detection algorithm is 
highly dependent upon the nature of the data set, the uL-
SIF and Bayesian algorithms are not useful for these types 
of real-world change point detection problems.  

With respect to other direct density ratio methods 
(KLIEP, uLSIF, RuLSIF) as well as the well-known Bayes-
ian method, these methods are also ε-real time, however, 

 

    Fig. 18. G-Mean scores for activity transition detection. 

TABLE 4 
ECG DATASET RESULT.  

 SEP RuLSIF uLSIF Bayesian 

TPR 0.80 0.75 0.02 0.24 

FPR 0.24 0.12 0.00 0.01 

G-Mean 0.78 0.81 0.14 0.49 

Detection Delay 13 55 - 87 

 

   Fig. 19. Detection Delay scores for activity transition detection. 

TABLE 5 
HAND OUTLINE DATASET RESULT.  

 SEP RuLSIF uLSIF Bayesian 

TPR 0.72 0.50 0.04 0.02 

FPR 0.14 0.03 0.00 0.00 

G-Mean 0.79 0.70 0.21 0.15 

Detection Delay 52 154 - 1227 
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as we demonstrated, SEP outperforms them in terms of 
TPR, G-Mean, and Detection Delay, which provides evi-
dence that the SEP algorithm can detect changes more ac-
curately and with less detection delay. 

With respect to other unsupervised CPD methods (in-
cluding SWAB, CF, MDL, kernel-based, and graph-based 
approaches), SEP is preferable because it is nonparametric, 
closer to real time, and handles arbitrary dimensionality. 
In contrast, CF [32], CUSUM [31], SI [23], and SST [24] are 
parametric methods. Clustering change point detection 
methods such as SWAB [27], MDL [28], and Shapelet [29] 
are offline or near offline, and both kernel-based methods 
[30] and graph-based methods [15] can only handle inde-
pendent and identically distributed (i.i.d.) time series. 

5 CONCLUSION 

In this paper, we formulate the problem of change point 
detection. Based on a review of existing change point de-
tection methods and difference measures used in density 
ratio-based approaches, we hypothesized that metrics with 
larger range of difference value perform better for consist-
ently detecting change points in complex data. In response, 
we introduce a change point algorithm based on Separa-
tion distance for real-time detection of change points. From 
the experimental validation of artificial and real-world da-
tasets, we observe that the proposed algorithm outper-
forms existing methods such as smart home activity tran-
sition detection. However, the method does not always 
outperform other approaches, as observed in the case of 
the ECG dataset. Our proposed SEP algorithm hands high-
dimensional data and detects change points in near-real 
time using most commonly a 2-data point look ahead. Alt-
hough other density ratio based methods also address 
these situations, our experimental results show in many 
cases SEP demonstrates superior performance. 

Although the proposed method was shown to work 
well in most cases, its performance may improve further 
by adding the effect of previous windows to the CP score 
calculation. We will experiment with these enhancements 
in future work. Additionally, the selection of a threshold 
value has a great impact on the performance of density ra-
tio-based change point detection algorithms. In this work 
we used constant increments when we were testing thresh-
old values. Using other methods like gradient descent or a 
Gaussian approach may result in a more optimal threshold 
value. Another limitation of SEP and all of density ratio 
change point detection methods is their computational 
cost. One important direction for future work is to improve 
the computational efficiency of this algorithm. Decreasing 
computational cost will aid our integration of the SEP al-
gorithm into real-world applications such as activity seg-
mentation and delivery of behavioral interventions. We 
can then elicit user feedback on the appropriate determi-
nation of change points and their use in interventions. 
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