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Abstract—Falls are one of the major issues which can endanger
lives for older adults. Numerous research studies investigate the
use of wearable technologies to detect falls in everyday
environments. Although wearable sensor solutions provide good
accuracy and sensitivity for fall detection, it may not always be
convenient or desirable for older adults to wear a tag or sensor in
home environments. This paper discusses using non-wearable
UWB radar sensors as a practical, environmental fall detection
solution in home settings. Specifically, we apply unsupervised
change detection methods on UWB sensor data to detect falls.
Furthermore, to evaluate the generality of our unsupervised
approach, we also apply it to fall detections from accelerometer
sensor data. The proposed methods are assessed using the real
UWB sensor data sets acquired from the Living Lab at Australian
e-Health Research Centre and public available accelerometer
sensor data sets. The results show promising outcomes.

Keywords—Change detection, Fall detection, Unsupervised
learning algorithms, UWB sensor, Smart homes

I. INTRODUCTION

uture homes will include different types of

sensing technlogies to monitor resident

activities for different applications including
health, energy utilization, and safety. For the case
of health monitoring, smart home technology shows
promising outcomes for providing independent
living solutions for older adults in their own homes
[1]. In this platform, different types of activity and
vital sign sensors are used which monitor activities
and health status to detect and respond to any
abnormal situation [2]. Different types of activities
such as cooking, bathing, sleeping, and even moving
around the space are considered which are related to
the health status of older adults [3]. Monitoring these
activities allows researchers to detect gradual
changes in activity patterns that signify possible
changes in cognitive and physical health [4].
However, in some cases real-time monitoring of
movement and activities is required to detect falls,
which require proper and fast detection to avoid life-
threatening danger.

Recently, there has been extensive work on using
different smart technologies to detect falls. The fall
detection approaches listed in the literature can be
categorised into three different classes. Wearable
devices are one type of fall detection technologies
which use inertial sensors such as accelerometers
and gyroscopes to detect certain classes of falls [5].
For example, PerFallD [6] uses a smartphone app to
detect falls in which accuracy can be affected by the
position of the smartphone placed in body. One
limitation of using these devices for fall detection is
that they put the burden on residents to charge,
correctly place, and wear the sensors. Adherence to
these constraints is not always strong because people
usually do not like to use them while moving around
the home [6].

Vision-based technologies such as cameras
represent another technology which can also provide
an accurate solution for fall detection. Some
researchers  have employed CCD and Kinect
cameras to detect resident falls [8],[9]. Although
cameras can also provide good fall detection
accuracy [10], the corresponding privacy issue is a
concern for using them in a smart home environment.

Non-wearable and ambient devices represent
another class of technologies which can be used for
multiple smart home applications including fall
detection. As these technologies do not put any
burden on residents and do not raise many privacy
concerns, they are a promising solution for smart
home-based health monitoring. In work by Liu et al.
[10], Passive Infrared (PIR) motion sensors are used
which can produce unique motion reading patterns
that correspond to resident movement patterns. These
patterns can be analyzed using machine learning or
rule-based software to distinguish falls from other
types of movements such as walking or lying down.
WiFall is a device-free fall detection system which



leverages channel state information in order to detect
falls in smart homes [12].

In this paper, we propose to evaluate the use of an
ultra-wide-band (UWB) sensor as a non-wearable
solution to detect falls in smart home environments.
In this set-up, a UWB sensor which includes both
transmitter and receiver is installed on the ceiling to
monitor different movement activities in its detection
zone. The UWB transmitter emits a train of pulses to
the environment which are scattered by different
objects and stored by the receiver. The scattered
signal will be analyzed to detect any movement
activity including falls in the sensor monitoring area.

The use of a UWB sensor as a non-wearable
technology has been assessed in prior work [3].
However, the main focus of the earlier work is on
supervised fall detection. In contrast, in this paper we
propose to provide unsupervised fall detection.
Unsupervised methods are preferred if they provide
effective detection without time-consuming and
costly expert labeling. The main contributions of this
paper include the following:

e introducing UWB technology as a non-
wearable solution to detect falls in home
environments,

e designing unsupervised change detection
algorithms to detect falls in home
environments, and

e comparing the performance of supervised and
unsupervised fall detection algorithms based
on actual fall sensor data.

II. RELATED WORK

A. UWB technology

UWB technology has been tested in multiple
radar applications such as target and movement
detection due to its high resolution and penetrability
[6]. Recently, there has been much interest in using
this technology for smart home environments [11],
[12]. In work by Mokhtari et al. [6], this technology
is used to detect and identify residents in smart
homes. Jeon et al. [13] use this technology for the
purpose of localization. Breath monitoring
represents yet another application of this technology
in smart home environments, as investigated by
Pitella [14].

To use UWB technology for indoor applications,
usually a UWB transmitter as well as receiver are
used. The UWB transmitter propagates a train of
pulses (p(t)). The pulse train will propagate in the
environment and scatter from the objects. The
scattered signal will be received by the receiver with
different times of arrival (TOA). The received signal
corresponding to the kth pulse Ry, can be wriiten as a
vector (frame) in discrete time domain as shown in
Equation (1),

Ry = [Ri(1), R (2), ..., R (M))] (1

where M represents the number of samples in each
frame.

B. Unsupervised change point detection techniques

Change point detection, based on unsupervised
learning or supervised learning methods, represents
a well-investigated area of research. A change point
is a point within a data time series at which the
process generating the time series changes state. A
change point detection algorithm tries to find the data
point in a time series at which the state change occurs
and segment the time series based on statistical
features of the data. Segmenting time series using
unsupervised method is desirable because it does not
need prior training for each situation and can handle
a variety of real world problems.

Some successful studies demonstrated promising
change point detection performance using
probabilistic methods. When a new window of data
arrives, these algorithms estimates probability
distributions based on the data that has been
observed since the previous detected change point.
As an example, Adams and McKay [15] use Bayes’
theorem to estimate a current state’s run-length (7),
which represents the time that has elapsed, or the
number of data points in the time series that have
been observed, since the last change point. Another
example in this category is the Gaussian Process (GP)
algorithm which was introduced by Saatci, et al. [16].
They define a time series data points as noisy
Gaussian distribution function values and create a
normal distribution-based prediction of the data
point at time ¢. If the predicted data point is different
than the actual data point, it will be considered as a
change point.



Recently, density ratio change point detection
(CPD) techniques have been used to detect changes.
These CPD techniques compare the probability
distributions of data intervals before and after a
possible change point, and decide if there the
candidate is a change point or not based on the
difference  between the two corresponding
distributions. As one example, cumulative sum
(CUSUM) [17] accumulates deviations relative to a
specified target of incoming measurements and
identifies change points when the sum is greater than
a threshold. Another method in this category is
change finder (CF) [ 18], which is an outlier detection
algorithm. Both CUSUM and CF use pre-designed
parametric models to detect changes which make
them less flexible in real-world problems.

simpler than density estimation. Therefore, direct
density-ratio estimation methods have been
developed [19][20].

We hypothesize that falls represent a change in
time series data representing movement patterns in a
smart home and thus can be detected using change
point detection techniques. In this paper, we
introduce a novel direct density ratio-based change
point detection as a key component of unsupervised
fall detection. We compare the performance of this
method with the Bayesian CPD algorithm as well as
supervised fall detection techniques.

11I. UNSUPERVISED FALL DETECTION APPROACH

The proposed unsupervised fall detection process
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Fig. 1: Proposed unsupervised fall detection setup.

Some recent approaches estimate the ratio of
probability densities instead of performing density
estimation which makes the algorithm more flexible
and non-parametric. These density ratio-based
approaches to change point detection are among the
most popular approaches and form the basis of our
SEP method described in the next section. The
motivation of estimating density ratios is that it gives
us enough information about the change between
two densities without knowing the exact densities.
Thus, direct density-ratio estimation is substantially

is shown in Fig. 1. The entire process is divided into
four main steps:
e Preprocessing, which applies noise and DC
reduction to UWB data,
e Feature extraction, which changes the UWB
sequence into time series data,
e SEP change detection, which detects change
points in the time series, and
e Rule-based fall detection, distinguishes falls
from other movement activities in the sensor
coverage area.



The details of each step are described below.

A. Pre-processing

Data preprocessing consists of three tasks: DC
noise reduction, background removal, and
windowing. For each received frame these three
tasks can be performed as indicated in Equations (2)-
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where L is the frame number for static obstacle
modeling and n-m+1 is the size of the window W
which is used to extract information related to the
target.

B. Feature extraction

The UWB received signal will include multiple
paths from different body scattering centers which
arrive at the receiver with different times of arrival
(TOAs). As the value of TOA is proportional to the
distance between the sensor and the scattering center,
it can be said that when the target moves, TOAs will
change proportionally. Therefore, a TOA-based
feature as shown in Equation (5) can model each
frame into a single value which is proportional to the
average of the TOAs for the scattering centers.

TOA; = ¥z t() . Wi()? (&)

As shown by Mokhtari et al. [3], this feature can
easily extract a unique pattern for different
movement activities such as normal walk, fast walk,
climbing, sitting, lying down, and fall.

0, k<nk>m

Ri(k), n<k<m k=12,..,.M (6)

Wl-(k—n+1)={

C. SEP Change Point Detection

Detecting sudden changes in smart home data due
to emergency situations such as falls can be
formulated as a real-time change point detection
problem. After generating a time series from sensor
data, we look for changes in this data. To do this, we

need to store two consecutive windows of data in a
buffer in order to compare data between each pair of
consecutive windows.

Direct density ratio change point detection
algorithms are flexible non-parametric techniques
that estimate the ratio of probability densities
between two windows of data directly without
needing to perform density estimation. The main
idea is that estimating the density ratio is much easier
than estimating the individual densities and is still
sufficient for detecting changes [20]. Following this
idea, the Kullback-Leibler importance estimation
procedure, KLIEP, [21] was developed. KLIEP uses
a nonparametric Gaussian kernel model to estimate
the density ratio and calculates the change point
score using Kullback—Leibler (KL) divergence.
Another direct density ratio estimator is the
unconstrained least-squares importance fitting, or
uLSIF [22], which uses Pearson (PE) divergence to
calculate dissimilarity and estimates the change point
score using a Gaussian. Relative uLSIF — RuLSIF
[20] refines the dissimilarity measure using o-
relative PE divergence.

Recently, the SEParation (SEP) change point
detection [25] method was introduced based on a
hypothesis that dissimilarity metrics with higher
resolution 1in calculating distances yield more
sensitive change point detection. The SEP change
point detection algorithm uses a Separation distance
metric, S, which provides a high distance resolution.
Considering two probability densities, fi(x) and f-
1(x), corresponding to two consecutive windows,
each with length 7, the separation distance S between
them can be calculated as shown in Equation 7.

fe-a (@)
S =Max(1 —=2= 7
ax(1—==-") @)

We start by deriving the metric for our SEParation
distance CPD algorithm, called SEP. As with the
previous methods, we compare the probability
densities of fi(x) and f.;(x) corresponding to two
consecutive windows in the time series data, each
with length n. We model the density ratio between
these probability densities using a Gaussian kernel
function K, as shown in Equations 8 and 9.

9:() =120 =3 oI K(xhxl,)  ®)

ft(0)
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In these equations, 6 = (04, ...,0,)T represents
the set of parameters for the ratio function to be
learned from existing data points and o >0
represents the kernel parameter. For every pair of
consecutive windows, the parameters 6 are selected
to minimize a chosen dissimilarity measure. We
determine the parameters 6 in the model such that
the difference between the actual and estimated
ratios is minimized, as shown in Equation 10.

10 = [PE2 - g0 i ax
[ t-1
{I f ~[fe-1(x) — g: () fe ()] dx, fft(J(CJ)C) < ge(x)
| f ) - gl dr, L f(fc’)‘) > g:(x)

(10)

By substituting gsx) into Equation 10 and
approximating the integrals using empirical
averages, we can convert the minimization problem
to the one shown in Equation 11.

ming [|A76] +2670] (11)

The second term in Equation 11 is included for the
purpose of regularization. 4 > 0 represents the
regularization parameter, which 1is selected
empirically by cross-validation [20]. h is the n-
dimensional vector which is defined in Equation 12.

Ry ==X, K (x,xty) (12)
When solving the optimization by setting the first-
order differential to zero, parameter 6 can be
analytically obtained as defined in Equation 13.
1«
0 =—h (13)
In the next step an approximator of the SEP change
point score can be calculated using the density-ratio
estimator gs(x), as shown in Equation 14.

SEP = |2 —~¥, g(x) | (14)

We can then use SEP scores to detect change
points in our time series data and label these as
possible falls. Considering the fact that a larger SEP
score means that the probability of a change point is

greater, we reject all candidate points whose SEP
values are lower than a threshold value. The
threshold value will be chosen based on optimal
performance for a particular time series. In our
experiments, we identify a threshold value that
optimizes the tradeoff between TPR and FPR for a
subset of the data. Another important parameter in
SEP is the window length, n, which makes the
algorithm #n-real time. As a result, the SEP algorithm
needs to observe n data points in the future to detect
possible falls at the current point in time. As with the
threshold value, we vary the window size for each
dataset in order to find the best window length in
terms of both acceptable accuracy and real-time
detection.

Although we still need to choose both the threshold
value and the window length using a sample of pre-
labeled data, the general configuration would be
good enough to detect changes, and change-related
falls, without training.

D. Rule-Enhanced Fall Detection

Applying SEP change point detection to UWB
sensor data will remove all of the activities from
consideration as possible falls except lying on the
ground. In some cases, the lying down activity is
detected as a fall-positive fall because falls and lying
down have similar movement patterns. Although the
speed of change in a fall activity is faster than lying
down, the transition time of the lying activity is still
smaller than change point detection algorithm
window length.

In order to distinguish between falls and lying-
down activities, we design a semantic reasoner to
analyze the time series data after a change is
detected. Investigating samples of fall and lying
activity data, we find the data mean for fall activities
is higher than for lying activities. Thus, the only rule
we need after detecting change points is to examine
the data mean in the second window. If the value is
greater than a threshold there is a fall at the detected
change point.



IV. RESULTS

In this section, performance of the proposed
unsupervised fall detection method is evaluated
experimentally. We describe our experimental
conditions and performance measures then
summarize the results of the method applied to
collected sensor data. We also show the generality of
our proposed unsupervised fall detection model by
applying it on accelerometer data.

A. UWB Data

1) Experimental Setup

We employ the configuration at the Australian e-
Health Research Center for our experimental
evaluation. The UWB sensor used in this set-up is
manufactured by NOVELDA. As shown in Fig. 2,
this sensor is mounted over the door frame to detect
movement activities in its detection zone. This
sensor is connected to a computer to record the UWB
raw data. The UWB frame rate in this setup is 100
Hz while each frame includes 512 samples.
To simulate different movement activities, two
individuals participated in the experiments. For the
scenarios listed in Table 1, each individual
performed each movement activity 20 times. In
total, three datasets are collected and are labeled
Individual 1 (120 scenarios), Individual 2 (120
scenarios and Both Individuals (240 scenarios).

Fig. 2: Experimental setup.

Table 1: Experiment scenarios.

Activity Scenario Number
Fall Forward | Walk at normal speed, trip and 20
fall fall forward onto the floor.
Side fall | Walk at normal speed, trip and 20
fall sideward on the floor.
Non-fall Normal Walk through the doorway at 20
walk normal speed.
Tripand | Walk at normal speed, trip but 20
Recovery | recover and carry on walking.
(T/R)
Fast Walk through the doorway at 20
walk fast speed.
Lying Walk through the doorway, 20
stop and lay down backward
onto the floor.

2) Parameter Tuning

Determination of SEP change point detection
algorithm parameters is important because they
greatly influence its performance. A sensitivity
analysis of these parameters is very important to
validate the current model and serves to guide future
research efforts.

We apply random search on a subset of data
including two instances of each activity performed
by Individual 1 for parameter tuning of the SEP
algorithm. The random search samples algorithm
parameters from a random distribution for a fixed
number of iterations. A model is constructed and
evaluated for each chosen combination of
parameters. These parameters include window size
(n) and the threshold value for identifying a possible
fall activity from the SEP score (threshold),
respectively.

Fig. 3 shows the results of the random search. Too
small of a window does not contain enough
information about activities and as can be seen from
the plot, the resulting accuracy is very low. Larger
windows not only contain too much information and
make detecting fall-related changes more difficult,
but they also incur a greater computational cost.
Based on existing data, the best window size for fall
detection is between 50 and 150 data points.
Considering our sensor sampling rate of 0.01
seconds, this means that the SEP algorithm needs to
look ahead 0.5 to 1.5 seconds to detect a fall. This
also represents the expected delay between falling
and the smart home detecting (and responding to) a
fall. A random search of alternative threshold values
shows larger thresholds decrease the number of
detected changes. Using the random search results



and considering the fact that we prefer lower
computational cost for a real-time fall detection
process, we choose n=I100 and threshold=0.3.
Therefore, the fall detection algorithm is 100-real
time, which means the algorithm looks ahead one

hundred sensor events to detect falls.
3) Fall Detection Performance

A number of different measures are commonly
used to evaluate the performance of fall detection
methods. Among these, we use three different
performance metrics to evaluate the ability of our
system to detect both fall and non-fall data points in
the time series. These are accuracy (utilizing both
true positive and true negative measures to assess the
overall performance to distinguish falls from non-fall
activities), precision (the ratio of detected fall
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activities to all activities), and Detection Delay (the
elapsed time between the detected fall and the actual
fall activity). In these experiments, we ignore falls
detected within 10 seconds of a previously-detected
fall.

Fig. 3: SEP algorithm parameter tuning.

To evaluate the ability of detecting falls, we
compare our SEP-based approach with three
alternative methods.

Method 1: RulLSIF. Relative unconstrained
Least-Squares Importance Fitting (RuLSIF) [20] is a

non-parametric ~ window-based change point
detection algorithm which utilizes the Pearson
divergence dissimilarity measure to estimate the
change point score. After applying the sensitivity
analysis preprocessing step, the window length and
the threshold values for the RuLSIF were set to 100
and 0.75, respectively.

Method 2: BCPD. Bayesian Change Point
Detection (BCPD) [15] uses Bayes’ theorem to
estimate a current state’s run-length (7;) which
represents the time that has elapsed in the time series
since the last change point. BCPD set a run length in
each time point to 0 if a change point occurs or
increase the previous length by 1 if the current state
continues for one more time unit.

Method 3: Supervised fall detection. Our
supervised fall detection system is based on
Mokhtari et al.’s approach [3]. The z-score test was
applied to sliding window of size 10 frames to
compare the mean value between two windows and
detect the starting point of each activity. After
detecting the starting point, the streamed frames of
size 500 are buffered from the starting point. When
the buffer is full, a binary classifier is used to label
fall and non-fall activities. 3-fold cross validation is
used to evaluate the performance of this classifier.

In all cases, we evaluate the fall detection
algorithm for each individual separately as well as
for participants combined. In the case of supervised
algorithms, this type of evaluation shows the
dependency of the algorithm on subject-specific
training and testing data. For an unsupervised
method, this evaluation shows how much the
algorithm is general and can be used for different
individuals although we select parameters based on
just one individual.

We begin by studying the performance of
different classifiers including Random Forest (RF),
Logistic Regression (LR), Nearest Centroid (NC),
Decision Tree (DT), Support Vector Machine
(SVM), and Naive Bayes (NB) for supervised fall
detection. The accuracy and precision values for this
experiment are summarized in Table 2. It can be
observed that the RF, NC, and SVM classifiers each
yield a precision of 100% which means they
successfully detect all fall activities. The overall
accuracy of fall detection is almost the same in the
case of using RF or SVM classifiers but both of them



have slightly better accuracy than NC. Although
there is not a significant difference between RF and
SVM classifier models, due to its lower
computational cost we use RF as our supervised
classifier for the remainder of the paper.

Figures 4 and 5 show the accuracy and sensitivity
of the proposed SEP, RuLSIF, BCPD, and
Supervised RF methods, respectively. The graphs
show that SEP outperforms all other algorithms in
case of accuracy for each individual separately and
combined. However, in terms of sensitivity both SEP
and the supervised method are able to detect all falls.
In summary, among unsupervised algorithms, SEP
has better performance in detecting falls and non-
falls activities. Comparing to supervised method,
although both method can detect all falls, the
supervised algorithm considers more non-fall
activities as fall.  Furthermore, the supervised
method requires a sufficient number of labeled fall
examples to accurately learn the concept which is not
needed for the unsupervised method.

Table 2. Classsification accuracy (%) of movement

activities.
Classifier Individual 1 Individual 2 All data
RF AR: 95.74 AR: 91.48 AR: 92.87
PR: 100 PR: 100 PR: 100
LR AR: 90.70 AR: 86.68 AR: 88.08
PR: 99.25 PR: 99.00 PR: 99.75
NC AR:93.14 AR: 86.20 AR:92.08
PR: 100 PR: 100 PR:100
DT AR: 86.46 AR: 79.40 AR: 87.14
PR:95.75 PR: 95.25 PR:99.125
SVM AR: 9593 AR:90.55 AR:92.80
PR: 100 PR: 100 PR: 100
NB AR: 81.64 AR: 7131 AR: 77.05
PR: 77.25 PR: 81.00 PR: 76.87
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Fig. 4: Fall detection algorithm accuracy.
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Fig. 5: Fall detection algorithm sensitivity.

Finally, the detection delay for all algorithms is
plotted in Fig. 6. The detection delay can be thought
of as the average time between when a fall occurs
and when the fall is detected. Ideally, we would like
to minimize these times to identify falls and help
residents as soon as possible. For the SEP algorithm,
the average value is close to 2 seconds, which is
much lower than supervised method (5 seconds).
These values for the RuLSIF and BCPD algorithms
are 1.58 and 1.06 seconds, which both are faster than
SEP in detecting falls. By considering the fact that
SEP has much higher accuracy in detecting falls and
the difference between the detection delays is less
than 1 second, we can conclude that SEP is a better
choice for a fall detection algorithm.
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Fig. 6: Fall detection algorithm detection delay.

B. Accelerometric Data

To show the generality of our unsupervised fall
detection, we evaluate its performance on UR fall
detection dataset [26]. This dataset contains 30 falls
activities and 40 activities of daily living including
sitting down, crouching down, and picking up an
object from the floor and lying on the sofa. All events
are recorded with Microsoft Kinect cameras and



corresponding accelerometer data. Here we only use
the accelerometer data which collected using x-IMU
(256Hz) devices. The measured acceleration
components were median filtered with a window
length of three samples to suppress the sensor noise.
The x-IMU inertial device consists of triple-axis 12-
bit accelerometer. The sampled acceleration
components were used to calculate the total sum
vector as follows:

SV () = Jaz(®) + ai(t) + az(t) (15)

where ax(t), ay(t), and a:(?) are the acceleration in
the x, y, and z axes at time ¢, respectively. The SV
contains both the dynamic and static acceleration
components, and thus it is equal to 1 g for standing.

In the next step, we randomly select 3 fall and 5
non-fall activities for parameter tuning and then
apply our unsupervised fall detection to all data. We
compare the results with existing supervised SVM
algorithm which uses images and corresponding
acceleration data and threshold-based method which
only uses accelerometer data [26][27]. Table 3
demonstrates the accuracy and sensitivity different
algorithms. All three methods can detect fall activity
correctly and the sensitivity is 100 percent. But the
ability of algorithm to detect non fall ADL activities
is different which cause difference in their accuracy.
Threshold based method has lower accuracy at 95%
while supervised SVM has highest accuracy at 98%.
Our unsupervised SEP has the accuracy of 97%
which is higher than threshold based method but still
lower than supervised method. Recalling that
supervised SVM is using both accelerometer and
camera data while unsupervised SEP is working just
based on accelerometer data, we can conclude the
unsupervised SEP method 1s simpler and address the
privacy issue more than existing supervised SVM
algorithm.

Table 3. Performance of accelerometer data fall

detection
SEP SVM Threshold-based
Accuracy (%) 97.14  98.33 95.00
Sensitivity (%) 100.00 100.00 100.00

V. CONCLUSIONS

In this paper, an unsupervised approach is
proposed to use UWB sensor data to detect and

distinguish fall from other types of activities. In the
proposed experimental set-up, a UWB sensor is
mounted over the ceiling to monitor movement
activities in areas such as bathroom which are more
vulnerable. Two individuals simulate different types
of movement activities including falls, normal walk,
fast walk and lying which results in three data sets.
Unsupervised fall detection is performed using our
SEP-based change point detection algorithm. The
results of unsupervised fall detection on different
data sets are provided in results section and are
compared with the supervised fall detection. The
results indicate that SEP-based unsupervised
detection is as accurate as the supervised method, but
it can detect falls much quicker than other
algorithms, although all of the methods would
benefit from increased computational efficiency.
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