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Abstract

We consider the problem of subset selection in the online

setting, where data arrive incrementally. Instead of stor-

ing and running subset selection on the entire dataset, we

propose an incremental subset selection framework that, at

each time instant, uses the previously selected set of repre-

sentatives and the new batch of data in order to update the

set of representatives. We cast the problem as an integer bi-

nary optimization minimizing the encoding cost of the data

via representatives regularized by the number of selected

items. As the proposed optimization is, in general, NP-hard

and non-convex, we study a greedy approach based on un-

constrained submodular optimization and also propose an

efficient convex relaxation. We show that, under appropri-

ate conditions, the solution of our proposed convex algo-

rithm achieves the global optimal solution of the non-convex

problem. Our results also address the conventional problem

of subset selection in the offline setting, as a special case.

By extensive experiments on the problem of video summa-

rization, we demonstrate that our proposed online subset

selection algorithms perform well on real data, capturing

diverse representative events in videos, while they obtain

objective function values close to the offline setting.

1. Introduction

Subset selection is the task of finding a subset of most

informative items from a ground set. Besides helping to

reduce the computational time and memory of algorithms,

due to working on a much smaller representative set [1],

it has found numerous applications, including, image and

video summarization [2, 3, 4], clustering [5, 6, 7, 8, 9], fea-

ture and model selection [10, 11, 12], speech and document

summarization [13, 14, 15], sensor placement [16, 17],

social network marketing [18] and product recommenda-

tion [19]. Compared to dictionary learning methods such

as Kmeans [20], KSVD [21] and HMMs [22], that learn

centers/atoms in the input-space, subset selection methods

choose centers/atoms from the given set of items.

The inputs to subset selection algorithms are in the form

of either feature vector representations or pairwise sim-

ilarities between items. Several subset selection criteria

have been studied in the literature, including maximum

cut objective [23, 24], maximum marginal relevance [25],

capacitated and uncapacitated facility location objectives

[26, 27], multi-linear coding [2, 28] and maximum volume

subset [14, 29], which all try to characterize the informa-

tiveness/value of a subset of items in terms of ability to rep-

resent the entire distribution and/or having minimum infor-

mation overlap among selected items. On the other hand,

optimizing almost all subset selection criteria is, in gen-

eral, NP-hard and non-convex [24, 26, 30], which has mo-

tivated the development and study of approximate methods

for optimizing these criteria. This includes greedy approxi-

mate algorithms [26] for maximizing submodular functions,

such as graph-cuts and facility location, which have worst-

case approximation guarantees, as well as sampling meth-

ods from Determinantal Point Process (DPP) [14, 29, 31],

a probability measure on the set of all subsets of a ground

set, for approximately finding the maximum volume sub-

set. Motivated by the maturity of convex optimization and

advances in sparse and low-rank recovery, recent methods

have focused on convex relaxation-based methods for sub-

set selection [5, 6, 32, 33].

Online Subset Selection. Sequential data, including

time-series, such as video and speech, and ordered

data, such as text, form a significant part of modern

datasets. Such datasets often grow incrementally, e.g., new

text/document/speech arrive as an event or discussion de-

velops, or video frames constantly get added to a database

from surveillance cameras. Given the constant arrival of

new data, waiting to gather the entire dataset, in order to

perform subset selection and summarization, not only is im-

practical, but also requires large computational and mem-

ory resources. Indeed, we often need to perform real-time

learning, inference, decision making and/or planning using

representatives. Moreover, memory and computational lim-

itations of devices capturing data do not allow to wait for

and collect the entire dataset to perform subset selection.
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Thus, there is a need for online subset selection techniques

that can select representative items from a dataset as new

items arrive and update the set of representatives accord-

ingly, to minimize information overlap among previously

selected items and new representatives.

Despite its importance, the problem of online subset se-

lection has not been properly studied in the literature and

the existing methods rely on the use of offline subset selec-

tion techniques on the new batch of data or greedy methods

that select next samples with respect to the previously se-

lected samples [16, 34, 35], hence, ignoring informativeness

of new items with respect to the old ones and the possible

need for updating the already selected set of items. Notice

that standard submoadular methods with constraints on the

number of representatives are not generally effective in the

online setting, since the number of informative items that

should be selected from each batch is different, in general.

Moreover, they lead to selection of the maximum number

of representatives, which may have information overlap.

Paper Contributions. In this paper, we propose an online

subset selection framework that can effectively deal with in-

cremental observations without requiring to store and pro-

cess the entire data. We cast the problem as an integer

binary optimization that incrementally updates the set of

representatives using already obtained representatives and

newly arrived data. As the proposed optimization is non-

convex and, in general, NP-hard, we first investigate an ef-

ficient forward-backward greedy method based on submod-

ular optimization, which has suboptimal performance guar-

antees. Moreover, we propose and study a convex relax-

ation of the original online subset selection optimization.

We prove that, under appropriate conditions, our proposed

convex algorithm is exact, i.e., it achieves the global opti-

mal solution of the original non-convex formulation. Our

theoretical results not only address online subset selection,

but also explain the success of convex relaxations for the of-

fline regime. By extensive experiments on real video data,

we demonstrate the effectiveness of our framework for on-

line summarization of videos.

Paper Organization. The organization of the paper is as

follows. In Section 2, we review the problem of subset

selection in the offline setting. In Section 3, we propose

a framework for incremental online subset selection and

study greedy and convex relaxations for the problem. In

Section 4, we investigate theoretical guarantees of the con-

vex formulation. In Section 5, we demonstrate the effec-

tiveness of our methods for the problem of video summa-

rization. Finally, Section 6 concludes the paper.

2. Subset Selection Review

In this section, we review the problem of subset selec-

tion using pairwise dissimilarities. We focus on the facil-

ity location objective function, which promotes diversity

among representatives, induces clustering of the data and

is amenable to convex relaxation. In the next section, we

build on this objective function to address the problem of

online subset selection.

Let D denote the set of N items from which we want

to select a small representative set. Let dij denote the dis-

similarity between item i and j in D. In other words, dij
indicates how well i represents j (the smaller, the better).

We assume that dij � 0 and that for every item j, we have

djj < dij for all i 6= j, i.e., each point is the best repre-

sentative for itself. Our goal is to find a small subset of D,

denoted by S , that well represents the entire set, given pair-

wise dissimilarities {dij}i,j=1,...,|D|. The facility location

objective achieves this goal by selecting a subset of items

and assigning the rest of items to one and only one repre-

sentative so that the total encoding cost of the set D via the

representatives is minimized. More precisely, we solve

min
S✓D

�|S|+
X

j2D

min
i2S

dij , (1)

where, � > 0 is a regularization parameter that puts a trade-

off between the size of the representative set, |S|, and the

encoding cost of D via S . Notice that without such a regu-

larization, i.e., with � = 0, we obtain the trivial solution of

S = D, where each item is the representative of itself.

The recent work in [5] reformulates (1) as a simultaneous

sparse recovery optimization problem, where it introduces

binary optimization variables zij 2 {0, 1} corresponding to

dij , with zij indicating if i will be a representative of j, and

proposes to solve

min
{zij}

�

X

i2D

I(
�

�

⇥

zi1 zi2 · · ·
⇤
�

�

p
) +

X

j2D

X

i2D

dijzij

s. t. zij 2 {0, 1},

N
X

i=1

zij = 1, 8 i, j 2 D.

(2)

Similar to (1), the first term in the above optimization counts

the number of representatives (I(·) denotes the indicator

function) and the second term corresponds to the encoding

of the set D via the representatives. We can obtain repre-

sentatives from (2) as items i for which zij = 1 for some j
in D. We denote the set of representatives by R. Moreover,

(2) induces a clustering of the set D, where each cluster is

formed by each representative i 2 R and items j 2 D for

which zij = 1.

Since (2) is, in general, NP-hard and non-convex, [5]

has proposed a convex relaxation, by dropping the indicator

function and relaxing the binary constraints on variables to



zij 2 [0, 1]. More precisely, one solves the optimization

min
{zij}

�

X

i2D

�

�

⇥

zi1 zi2 · · ·
⇤�

�

p
+

X

j2D

X

i2D

dijzij

s. t. zij � 0,
X

i2D

zij = 1, 8 i, j 2 D,
(3)

which is convex for p � 1. Indeed, under appropriate con-

ditions on pairwise dissimilarities, (3) obtains the true clus-

tering of the data, as shown in [5].

It is important to note that (3) performs subset selec-

tion in the offline regime, where the entire set D is avail-

able. Moreover, the theoretical guarantees under which (3)

is equivalent to the original problem (2) is unknown. To

address these problems, in the next section, we propose

an incremental subset selection algorithm to deal with on-

line observations, study greedy and convex relaxations for

the problem, and propose theoretical results that guarantee

the equivalence of the convex formulation with the original

problem in both online and offline settings.

3. Online Subset Selection

Assume we have a sequential set of items that arrive in

an incremental fashion. Our goal is to select a small subset

of items in an online fashion that effectively represents the

entire dataset. Let D
(t)
o denote the set of data points arrived

prior to time t and D
(t)
n denote the set of newly arrived items

at time t. To perform subset selection, we ideally would like

to run the offline algorithm in (2) or its convex relaxation

in (3) on the entire dataset available thus far, i.e., D
(t)
o [

D
(t)
n . However, as t grows, the set D

(t)
o grows, which has the

drawback of increasing the computational time and memory

for running the offline subset selection.

In this section, we propose an algorithm that updates rep-

resentatives at time t using previously selected representa-

tives, denoted by E
(t)
o , and the set D

(t)
n , which significantly

reduces the computational time and memory, especially in

cases where D
(t)
n is of small or moderate size compared to

D
(t)
o . More specifically, starting from D

(0)
o , we perform

subset selection to obtain E
(0)
o and at time t, we propose

a framework that uses old representatives E
(t)
o and new set

D
(t)
n to update the set of representatives, forming E

(t+1)
o that

will be used in the next time index. To do so, we need to

make sure that representatives selected from D
(t)
n are not

redundant with respect to previous representatives, E
(t)
o .

Since we only need to focus on the formulation at time t,

for simplicity of notation, we use Eo instead of E
(t)
o , and

similarly use Do, Dn. With abuse of notation, we refer

to both items and indices of items using Do, Dn and Eo.

Let {do,oij }i,j2Eo
denote dissimilarities between old repre-

sentatives, {do,nij }i2Eo,j2Dn
denote dissimilarities between

old representatives and new data, {dn,oij }i2Dn,j2Eo
is dis-

similarities between new data and old representatives and

{dn,nij }i,j2Dn
denote dissimilarities between new data. In

the paper, we let dissimilarities be asymmetric and/or vio-

late the triangle inequality.

To address the problem of incremental subset selection,

we propose an optimization by defining variables Z ,

{{zo,oij }, {zo,nij }, {zn,oij }, {zn,nij }} associated with dissimi-

larities. We consider the following encoding cost function

Jenc ,
X

i2Eo

X

j2Eo

do,oij zo,oij +
X

i2Eo

X

j2Dn

do,nij zo,nij

+
X

i2Dn

X

j2Eo

dn,oij zn,oij +
X

i2Dn

X

j2Dn

dn,nij zn,nij ,
(4)

which measures the total cost of encoding old representa-

tives and new data via representatives selected from Eo[Dn.

Similar to the offline regime, we need to restrict the size

of the representative set from Eo [ Dn. However, unlike

before, items in Eo have already shown to have representa-

tive power, i.e., they are representatives of items in Do\Eo,

hence, selecting items from Eo should not be penalized. On

the other hand, we only need to select representatives from

Dn as long as items in Eo do not have sufficient representa-

tion power. Thus, we only need to penalize the number of

representatives selected from Dn.

min
Z

Jenc + �

X

i2Dn

I(
�

�

⇥

zn,oi1 zn,oi2 · · · zn,ni1 zn,ni2 · · ·
⇤
�

�

p
)

s. t. zo,oij , zn,oij , zo,nij , zn,nij 2 {0, 1}, 8i, j
X

i2Eo

zo,oij +
X

i2Dn

zn,oij = 1, 8 j 2 Eo,

X

i2Eo

zo,nij +
X

i2Dn

zn,nij = 1, 8 j 2 Dn,

(5)

where the first term in the objective function measures the

encoding cost of Eo [ Dn via representatives selected from

Eo [ Dn and the second term penalizes the number of rep-

resentatives selected from Dn. The constraints ensure that

selection variables are binary and that each point in Eo[Dn

must be represented by one representative. In other words,

the effect of the proposed optimization is to use old rep-

resentatives to represent new items, as long as the associ-

ated encoding cost is sufficiently small (we will quantify

this later), and add new representatives from Dn when old

representatives are insufficient, e.g., when new clusters ap-

pear in data. Notice that a sufficiently large regularization

parameter � promotes selecting only old representatives, Eo,

while a small � promotes selecting a larger number of new

representatives from Dn.1

1We can allow old representatives to be removed and updated by

putting a small regularization on the selection of old representatives.



We can show that the solution of the optimization in (5)

always finds zo,oii = 1, for all i 2 Eo, and zn,oij = 0, for all

i 2 Dn and j 2 Eo. In other words, each old representa-

tive will always be selected as the representative of itself.

Hence, we consider the simpler optimization

min
Z0

J 0
enc + �

X

i2Dn

I(
�

�

⇥

zn,ni1 zn,ni2 · · ·
⇤�

�

p
)

s. t. zo,nij , zn,nij 2 {0, 1}, 8i, j,
X

i2Eo

zo,nij +
X

i2Dn

zn,nij = 1, 8 j 2 Dn,

(6)

over a smaller set of optimization variables, Z 0 , {{zo,nij },

{zn,nij }}, with J 0
enc being defined as

J 0
enc ,

X

i2Eo

X

j2Dn

do,nij zo,nij +
X

i2Dn

X

j2Dn

dn,nij zn,nij , (7)

measuring the encoding cost of new data, Dn, via items in

Eo [Dn. Indeed, we can show the following result.

Proposition 1 The optimization programs (5) and (6) are

equivalent, in that they obtain the same solutions for {zo,nij }
and {zn,nij }.

Notice that the solution of the above optimization will

determine the representatives and clustering of the data at

the same time. More specifically, optimization variables

zn,nij that are equal to 1 indicate that i 2 Dn is a repre-

sentative (we already know that all points in Eo will remain

representatives). We denote the set of all representatives by

R. For j 2 Dn, we denote the representative of j by M(j).
In other words, we always have zM(j)j = 1. We also obtain

clustering of the data, where the `-th group corresponds to

items that are assigned to the `-th representative.

3.1. Greedy Unconstrained Submodular Optimiza-
tion Algorithm

In this section, we discuss an efficient algorithm based

on unconstrained submodular optimization for solving the

proposed online optimization in (6). To do so, note that we

can write (6) in the equivalent form

min
S✓Dn

f(S), (8)

where the function f(S) is defined as

f(S) ,
X

j2Dn

min {min
i2Eo

do,ni,j , min
i2S

dn,ni,j }+ �|S|. (9)

It is important to note that the online optimization in (9),

despite being non-convex and, in general, NP-hard, is sub-

modular. In other words, f(S) satisfies the diminishing re-

turn property, i.e., J(S[{`})�J(S) � J(T [{`})�J(T )

Algorithm 1 : Randomized Greedy Algorithm for Un-

constrained Submodular Optimization

Input: Submodular function f(·) which is being

maximized without constraints over the set Dn.

1: Initialize: X0 = ∅ and Y0 = Dn.

2: for ` = 1, . . . , |Dn| do

3: a`  max{f(X`�1 [D`
n)� f(X`�1), 0}

4: b`  max{f(Y`�1 \ D`
n)� f(Y`�1), 0}

5: With probability a`/(a` + b`) do:

6: X`  X`�1 [ {D`
n}, Y`  Y`�1

7: Else (with probability b`/(a` + b`)) do:

8: X`  X`�1, Y`  Y`�1\D
`
n

9: end for

Output: Set of representatives from Dn indexed by X|Dn|.

for any S ✓ T ✓ Dn\{`}. Since (9) is a an uncon-

strained submodular optimization, we use the randomized

linear-time algorithm, proposed in [36], described in Algo-

rithm 1. Here, D`
n denotes the `-th item of Dn. The above

algorithm is a randomized greedy method that scans the en-

tire dataset once and decides whether to include an item in

the representative set. In fact, the greedy approach has a 0.5
approximation guarantee, i.e., its solution is always 0.5 or

closer to the optimal cost of the original optimization in (9).

3.2. Convex Relaxation-based Algorithm

It is important to note that the proposed online optimiza-

tions in (5) and (6) are, in general, NP-hard and non-convex,

due to counting operations on the number of nonzero opti-

mization vectors as well as the binary constraints on opti-

mization variables. To address the problem efficiently, we

propose a convex relaxation, where we drop the indicator

function and relax the optimization variables to be in [0, 1]
instead of {0, 1}. More specifically, we propose to solve

min J 0
enc + �

X

i2Dn

�

�

⇥

zn,ni1 zn,ni2 · · ·
⇤
�

�

p

s. t. zo,nij , zn,nij 2 [0, 1], 8i, j,
X

i2Eo

zo,nij +
X

i2Dn

zn,nij = 1, 8 j 2 Dn.

(10)

We choose p 2 {2,1}, for both of which the above op-

timization is convex. As we will show through theoreti-

cal analysis, the choice of the `p-norm affects the structure

of representatives. While p = 1 promotes selecting the

medoid of each cluster, p = 2 allows to deviate from the

medoid in favor of achieving unbalanced cluster sizes.

4. Theoretical Analysis

In this section, we investigate conditions under which

the solution of our proposed convex optimization in (10) is



equivalent to the original non-convex optimization in (6).

We present the results for p =1, however, the analysis for

p = 2 is similar and involves an extra condition.

Before analyzing the convex algorithms, we study the

properties of the solution of the non-convex optimization

in (6), which is the solution we would like to achieve by

solving the relaxation. We show that for the solution of (6),

the following conditions must hold.

Theorem 1 The solution of the optimization program in (6)

satisfies the following conditions:

1. For every i 2 Dn, where i /2 R and M(i) 2 Dn, we

have
P

j:M(j)=M(i) d
n,n

M(i)j 
P

j:M(j)=M(i) d
n,n
ij ;

2. For every i 2 Dn, where i /2 R and M(i) 2 Eo, we

have
P

j:M(j)=M(i)(d
o,n

M(i)j � dn,nij )+  �.

Roughly speaking, the above conditions are definitions of

medoids with respect to representatives from Dn and Eo.

The first condition in the above theorem is the conventional

definition of the medoid of a group, i.e., the item in the

group that achieves the minimum encoding cost. The sec-

ond condition characterizes the medoid of a group in Dn

represented by an item in Eo. It states that each representa-

tive from Eo encodes items in Dn by a cost that is at most �

larger than the best encoding we can achieve by assigning a

representative from Dn instead of Eo. Otherwise, we can as-

sign all items in the group to the item in Dn that obtains this

minimum encoding cost, hence, decreasing the first term

in the objective function by more than �, while the addi-

tional representative increases the second term in the objec-

tive function by only �, hence, a lower overall cost. Notice

that the above result also applies to the offline setting, where

Eo is empty. In that case, we only have the first condition of

Theorem 1 being satisfied.

Next, we study conditions under which the convex re-

laxation in (10) with p = 1 recovers the solution of the

optimization program in (6).

Theorem 2 The solution of the optimization program (10)

is equivalent to (6) for a given � and for p = 1, if all the

following conditions hold:

1. For every i 2 Dn where i /2 R and for every j where

M(j) 6= M(i) and M(j) 2 Dn, we have �

NM(j)
+

dn,n
M(j)j < dn,nij ;

2. For every i 2 Dn where i /2 R, M(i) 2 Dn and

for every j where M(j) = M(i), we have �

NM(j)
+

dn,n
M(j)j � dn,nij ;

3. For every i 2 Dn where i /2 R and for every j where

M(j) 6= M(i) and M(j) 2 Eo, we have do,n
M(j)j <

dn,nij .

(a)

(b)

500 1000 1500 2000 2500 3000 3500

(c)

500 1000 1500 2000 2500 3000 3500

(d)

500 1000 1500 2000 2500 3000 3500

(e)

500 1000 1500 2000 2500 3000 3500

Figure 1: Ground truth summaries for the video “Statue of Lib-

erty” from the SumMe dataset [37] (a) frames selected for sum-

mary by each user, with black indicating a chosen frame. A few il-

lustrative frames shown above with a red line indicating their posi-

tion in the timeline. Note that ground truths vary from user to user

but there is overlap among segments across most users. (b) Com-

posite ground truth, calculated by averaging all user summaries.

For (c-g) regularization was chosen to match average user sum-

mary length. (c) Summary selected by the offline convex method

with p = ∞ and α = 0.095. (d) Online convex method summary

with p = ∞, α = 0.38, batch size of 15 superframes, about 20%

of video length. (e) Online convex method summary with p = ∞,

α = 0.77, batch size of 8, about 10% of video length.

The first condition states that the closest item from other

groups to a group represented by a new representative is suf-

ficiently far from it. The second condition states that items

in the same group are not far from each other, i.e., each item

in group j is at most �/NM(j) away from the representative

of the group. Finally, the last condition states that items

represented by new representatives must be sufficiently far

from items represented by old representatives.

Remark 1 The results presented in this section also apply

to the offline setting, where Eo is empty. In that case, only

the first condition holds in Theorem 1 and the first two con-

ditions must hold in Theorem 2.

5. Experiments

In this section, we evaluate and compare the performance

of our proposed convex relaxation and submodular algo-



Figure 2: Summary for the “Eiffel Tower” video from the SumMe dataset for online convex method with p = ∞ with regularization

parameter α = 0.445. A representative frame is shown to represent a superframe. A red border designates a superframe chosen to be in

the summary. Batch size was fixed to about 10% of the video, i.e., we process 10 superframes per batch for the video of 92 superframes.

Figure 3: Superframes chosen by the online submodular method for the same video as in Figure 2. Regularization parameter (α = 0.855)

has been set to choose the same number of superframes as the convex method with p = ∞. Batch size was fixed to about 10% of the video.

rithms for online summarization. We also compare these

online methods to the corresponding offline summarization

methods. Lastly, we investigate the effect of the choice of

the `p-norm p 2 {2,1} and the effect of the regularization

parameter � on the online summary selection. To this end,

we apply our methods to two real-world video datasets and

report the results.

5.1. Datasets and preprocessing

We evaluate the performance of our methods on two real-

world datasets, namely the SumMe [37] and the TVSum50

[38] datasets. The SumMe dataset contains 25 videos rang-

ing in length from under 1 minute to just over 6 minutes

and is comprised of videos with stationary, moving, or ego-

centric camera set-ups for varying subject categories. Each

video has at least 15 accompanying human supplied sum-

maries, where each participant selected between 5% and

15% of the frames in each video to include in their sum-

mary. These human supplied summaries serve as the ground

truth summaries for the dataset. The TVSum dataset con-

tains 50 videos from different categories and varying in

length between 2 and 10 minutes. Here, at least 20 human

evaluations are provided for each video. Rather than pro-

viding summaries of videos, participants ranked the relative

importance of each two-second segment in every video.

Following the experimental set-up in [38], we use these

segment rankings to select the top 15% of segments to serve

as the human summaries for each video. To evaluate the per-

formance of our methods against these user supplied sum-

maries, we calculate a composite, or average, ground truth

summary across all users. The composite summary con-

sists of a score for each frame in the video corresponding

to the percent of users that selected that frame for the sum-

mary. Figure 1a illustrates the ground truth summaries for

all users for one video in the SumMe dataset and Figure 1b

shows the corresponding composite ground truth summary.

For both datasets, we segment each video into super-

frames as described in [37], where each superframe is a se-

quence of frames chosen to produce natural cuts between

shots. For each superframe, we extract Convolutional 3D

(C3D) features as described in [39]. We use these features

to produce the dissimilarity matrix D where (D)ij is the Eu-

clidean distance between the feature vector of superframe i
and that of superframe j. Thus, our methods generate sum-

maries at a superframe level. That is, the automatically gen-

erated summaries are sets of superframes selected to sum-

marize each video. We transform the superframe-level sum-

mary to a frame-level summary by taking all frames con-

tained within a chosen superframe to be in the summary.

To select representatives via our proposed methods, we

set � = ↵�max, for ↵ > 0, where �max is the regularization

parameter value for which we select one representative. We

determine �max analytically similar to [5]. Figures 1c–1e

demonstrate the selected frames by offline and online con-

vex methods for the video ”Statue of Liberty” in SumMe

dataset. As the results show, the online method for dif-

ferent batch sizes selects frames of the video that coincide

well with human ground-truth summries. Figures 2 and 3

demonstrate diverse automatic summaries obtained by the

online convex and submodular methods, respectively, where

9 representative superframes are chosen. In each case, a

representative frame is shown for each selected superframe.

5.2. Evaluating error with ground truth

To evaluate the performance of our proposed methods,

we compare the automatically generated summaries with



Convex, p = ∞ Convex, p = 2 Greedy Submodular

Human Offline Baseline Online Offline Baseline Online Offline Baseline Online

SumMe
0.03220 0.00869 -0.0211 0.0230 -0.0273 -0.0282 0.0291 0.0263 -0.0071 0.0142

(0.2241) (0.1936) (0.1493) (0.2200) (0.1596) (0.1610) (0.2720) (0.1984) (0.1595) (0.1976)

TVSum
0.1696 0.0159 0.00055 0.02303 0.00524 -0.00777 -0.00357 0.005016 0.007184 0.02446

(0.4763) (0.1830) (0.1525) (0.1970) (0.1834) (0.1669) (0.2469) (0.1695) (0.1745) (0.1885)

Table 1: Average MCC across all user summaries and all videos for SumMe and TVSum datasets. The mean MCC compared to all human

summaries across all videos is listed first. We also compute for each video the MCC for the human summary with which the automatic

summary most agrees, this is shown in parentheses. The first column shows the agreement among human summaries.

the ground truth summaries in each dataset. Because we do

not explicitly restrict the size of the summaries generated by

our methods, the size of the automatic summaries may dif-

fer greatly from the approximately fixed-size ground truth

summaries. The disparity in the size of the summaries being

compared renders the traditional F-measure used in e.g.[37]

and [38] not well suited as a measure of agreement. In par-

ticular, the F-measure is a function of precision and recall

and does not incorporate the specificity of a summary. The

specificity, or true negative rate, is a measure of how well a

method can identify negative examples (in this case, a frame

not in the summary). If the size of the automatic summary

is not restricted, the F-measure will favor larger summaries.

Consider the extreme case where the automatic summary

selects all frames to be in the summary. In this case recall

is 1 since the method did identify all the “true” summary

frames and the precision is equal to the size of the ground

truth summary. The F-measure fails here because there is

no penalty for missing “negative” examples.

As an alternative to the f-measure, we use the Matthews

correlation coefficient (MCC) [40] defined as follows

MCC=
TP ⇥ TN � FP ⇥ FN

p

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
(11)

where TP is the number of true positives (the number of

frames correctly identified as belonging to the summary),

TN is the number of true negatives (the number of frames

correctly identified as not belonging to the summary), FP
is the number of false positives (the number of frames cho-

sen by the algorithm to be in the summary that were not in

the ground truth summary), and finally FN is the number

of false negatives (the number of frames in the ground truth

summary but not in the automatic summary). The MCC has

a value between 1, corresponding to a perfect agreement

with the ground truth, and -1, corresponding to a perfect

disagreement with the ground truth.

5.3. Results

To evaluate the proposed online methods, we compare

the MCC obtained for each video in the datasets for i) the

corresponding offline summarization method; ii) a baseline

2000 4000 6000 8000 10000 12000 14000

Frame number

1

3

5

7

9

11

13

15

17

19

U
s
e
r 

n
u
m

b
e
r

1000 2000 3000 4000 5000 6000

Frame number

1

3

5

7

9

11

13

15

U
s
e
r 

n
u

m
b

e
r

Figure 4: User summaries for a sample video from TVSum

(top) and SumMe (bottom) datasets. User summaries vary widely.

Some users prefer fewer, longer segments, some prefer more,

shorter segments, and some use both techniques to summarize.

online summarization where summaries are chosen for each

batch without consideration of previously chosen represen-

tatives; iii) the proposed online method. For the online and

baseline summarization methods, the batch size is fixed to

be 10% of the superframes in the video. For each method,

regularization was chosen to select a superframe summary

as close as possible to 15% of the frames in the video to

match the size of the ground truth summaries.

The average MCC results for the SumMe and TVSum

datasets are listed in Table 1. We list the mean MCC across

all users and all videos. To address the low agreement be-

tween users, we also show the average best MCC across

videos. This measure shows the average agreement with the

human summary that is most similar to the automated sum-

mary. The disparity between the mean agreement (MCC)

across all videos and all users and the mean best agreement

show the limitations of using users summaries as ground

truth to evaluate summaries. In particular, a user may sum-

marize each video in a different manner and each user may

summarize a particular video differently, as shown in Figure

4. Table 1 also lists the mean MCC between human sum-
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Figure 5: MCC for greedy submodular and convex with p ∈

{2,∞} methods in an online and offline setting. Batch size for on-

line methods is 10% (top) and 20% (bottom) of total superframes.
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Figure 6: Objective function value of the convex method with (a)

p = 2, (b) p = ∞ for summarizing the video “Car over camera”

from the SumMe dataset. The online methods achieve values sim-

ilar to the corresponding offline methods. The baseline obtains a

higher cost, corresponding to long and/or repetitive summaries.

maries and the corresponding average best MCC between

human summaries. The performance of the methods com-

pared to the user summaries vary due to the variability of the

user summaries themselves. Notice that the performance of

the proposed online methods is close to the offline setting

and better than baseline, in general. The offline method op-

timizes the objective function considering the entire video,

yet achieves lower performance than the online method for

p = 1 for both datasets, for p = 2 for SumMe, and for

submodular for TVSum. This result can be attributed to

the fact that human summaries are generated “online” in

the sense that users summarized the videos as they played,

though they were allowed to return to previous frames to

amend their summaries. However, the disparity among hu-

man summaries may be responsible for the untuitive results

and thus we also analyze the objective value achieved by

the methods, which will be discussed below. The objective

function captures the encoding cost and the penalty for too-

long summaries, therefore can be interpreted more directly

than when relying on disparate ground truth summaries.

Figure 5 demonstrates the MCC values for the online and

offline settings for two batch sizes. The results show that

there is a wide range of � for which the proposed methods

perform well. Moreover, notice that the convex method with

p = 1 and the greedy submodular method show closer

agreement than the convex method with p = 2.

Lastly, Figure 6 shows the value of the original non-

convex objective function in (6) for the baseline, online

and offline settings. As the results demonstrate, the on-

line method achieves close objective values to the offline

method, while it obtains significantly lower cost than the

baseline. Small values of � indicate a small penalty for se-

lecting a long summary, thus all methods perform similarly

by choosing most superframes for the summary. As the reg-

ularization increases, longer summaries are penalized more

strongly. The close agreement between the online and of-

fline settings serves to validate the effectiveness of our on-

line methods, where representative frames for each online

batch are selected among previously chosen representative

frames and the frames from the current batch. These re-

sults also serve as an alternative method for evaluating auto-

mated summaries, which is especially useful when a human

ground truth is not available or agreement between human

summaries is low.

6. Conclusions

We studied the problem of subset selection in the online

setting, where data arrive incrementally. We proposed an

incremental subset selection framework that, at each time

instant, uses the previously selected set of representatives

and the new batch of data in order to update the set of

representatives. We cast the problem as an integer binary

optimization minimizing the encoding cost of the data via

representatives regularized by the number of selected items.

We studied a randomized greedy approach based on uncon-

strained submodular optimization and proposed a convex

algorithm with theoretical performance guarantees. By ex-

periments on real videos, we demonstrated the effectiveness

of our methods for online video summarization.
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