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ABSTRACT
This paper considers transient total-cost MDPs with tran-
sition rates whose values may be greater than one, and
average-cost MDPs satisfying the condition that the ex-
pected time to hit a certain state from any initial state and
under any stationary policy is bounded above by a constant.
Linear programming formulations for such MDPs are pro-
vided that are solvable in strongly polynomial time.
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1. INTRODUCTION
Markov decision processes (MDPs) provide an important

framework for the optimization of controlled stochastic sys-
tems. For examples of modern applications of MDPs in
healthcare, transportation, production systems, communi-
cations, and finance, see [2].

It is well-known that there is a close relation between
MDPs and linear programming; see e.g., [11]. This relation
was used in [19] to develop a combinatorial interior-point
algorithm for discounted MDPs and to show, for the first
time, that such MDPs can be solved in strongly polynomial
time when the discount factor is fixed. This means that
the required number of iterations can be bounded above
by a polynomial in the number of state-action pairs only.
The linear programming formulation of discounted MDPs
was again used in [20] to prove that two classic algorithms,
the policy iteration method proposed in [10] and the sim-
plex method with Dantzig’s pivoting rule, are also strongly
polynomial when the discount factor is fixed. In fact, the
complexity estimates for these two algorithms provided in
[20] are superior to the estimate for the interior-point algo-
rithm in [19]. Improvements on the complexity estimates
in [20] were subsequently provided in [8, 1, 15, 3]. In ad-
dition, the estimates for Howard’s policy iteration method
were generalized to two-player zero-sum stochastic games in
[8, 1], and the analysis in [20] was applied to general linear
programs (LPs) in [12]. We remark that, in constrast to pol-
icy iteration, any member of a broad class of modified policy
iteration algorithms, which includes the classic value itera-
tion algorithm, is not strongly polynomial for MDPs with
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a fixed discount factor [6], and policy iteration may require
exponential time when the discount factor is not fixed [9].
On the other hand, certain discounted MDPs with special
structure are solvable in strongly polynomial time regardless
of the discount factor [21, 13].

The results for discounted MDPs in [20] have also led to
complexity estimates for MDPs under other optimality crite-
ria. In [20], the analysis of discounted MDPs presented there
is used to show that for transient total-cost MDPs where the
spectral radius of every transition matrix is bounded above
by a constant strictly less than one, both the simplex and
policy iteration methods are strongly polynomial. In [3],
the analysis in [20] is improved, and complexity estimates
are provided in terms of the lifetime of the process under
any stationary policy. For average costs, in [4] the results in
[20] are used to show that the simplex and policy iteration
methods are strongly polynomial for such MDPs with a state
to which the system transitions under any action with prob-
ability at least α > 0. For two-player zero-sum mean-payoff
stochastic games, it is shown in [1] that a generalization of
Howard’s policy iteration method to this context is strongly
polynomial when, for any initial state and under any pair
of stationary strategies, the expected hitting time to a cer-
tain state is bounded above by a constant. We remark that
MDPs satisfying this hitting time assumption are unichain,
and that it is not known whether a strongly polynomial al-
gorithm exists for unichain average-cost MDPs in general.

In this paper, we provide alternative linear programming
formulations for transient total-cost MDPs, and average-
cost MDPs satisfying a hitting time assumption, that are
solvable in strongly polynomial time. In Section 2, themodel
and assumptions are presented. Section 3 deals with the
total-cost criterion, and Section 4 deals with average costs
per unit time.

2. MODEL DESCRIPTION
Consider a discrete-time MDP with finite state set X and

finite action set A. For each x ∈ X, the set of available ac-
tions A(x) is a nonempty subset of A. Letm :=

∑
x∈X

|A(x)|
and n := |X|. The one-step costs are denoted by c(x, a) for
x ∈ X and a ∈ A(x). Finally, to each x, y ∈ X and a ∈ A(x)
is associated a number q(y|x, a) ≥ 0 called the transition
rate to y given that the current state is x and action a is
performed. For the transient MDPs considered in this pa-
per, the case where

∑
y∈X

q(y|x, a) > 1 for some x ∈ X and

a ∈ A(x) is allowed. Such models are relevant to the con-
trol of branching processes; see e.g., [14]. For average-cost
MDPs, we will only consider the case where q is stochastic,
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i.e.,
∑

y∈X
q(y|x, a) = 1 for all x ∈ X and a ∈ A(x), in which

case q(y|x, a) is interpreted as the probability that the sys-
tem transitions to state y given that the current state is x
and action a is performed.

A stationary policy is a mapping φ : X → A satisfying
φ(x) ∈ A(x) for each x ∈ X; let F denote the set of all
such policies. It can be shown that it suffices to consider
stationary policies for the optimality criteria considered in
this paper. Under φ ∈ F, the decision-maker always selects
the action φ(x) when the current state is x. For φ ∈ F,
consider the matrix of one-step transition rates Qφ with el-
ements q(y|x, φ(x)), x, y ∈ X. For a matrix B with elements
B(x, y) for x, y ∈ X, let ‖B‖ := maxx∈X

∑
y∈X

|B(x, y)|.
For undiscounted total costs, which are considered in Sec-

tion 3, the following transience condition [17] is assumed to
hold.

Assumption T. The MDP is transient, that is, there is
a constant K ≥ 1 that satisfies ‖∑∞

n=0 Q
n
φ‖ ≤ K < ∞ for

all φ ∈ F.

Assumption T can be checked in strongly polynomial time
using the procedure described in [18, proof of Theorem 1].

For φ ∈ F, let cφ(x) := c(x, φ(x)) for x ∈ X. Under
Assumption T, the total cost incurred under φ ∈ F, when
the initial state is x ∈ X, is vφ(x) :=

∑∞
n=0 Q

n
φcφ(x). A

policy φ∗ is total-cost optimal if vφ∗(x) = infφ∈F v
φ(x) for

all x ∈ X. The following characterization of Assumption T
[5, Proposition 1] will be used to define the linear programs
given in Sections 3 and 4.

Proposition 1. Assumption T holds if and only if there
is a function μ : X → [1,∞) that is bounded above by K and
satisfies

μ(x) ≥ 1 +
∑
y∈X

q(y|x, a)μ(y), x ∈ X, a ∈ A(x). (1)

For average costs, which are dealt with in Section 4, As-
sumption HT on hitting times formulated below is assumed
to hold. To state it, for z ∈ X and φ ∈ F consider the matrix

zQφ with elements zQφ(x, y) := q(y|x, φ(x)) if x ∈ X and
y �= z, and zQφ(x, z) := 0 for x ∈ X.

Assumption HT. There is a state � ∈ X and a constant
K∗ satisfying ‖∑∞

n=0 �Q
n
φ‖ ≤ K∗ < ∞ for all φ ∈ F.

Assumption HT is equivalent to state � being recurrent un-
der all stationary policies, which according to [7] implies
that Assumption HT can be checked in strongly polynomial
time. We remark that any MDP satisfying Assumption HT
is unichain, and that in general the problem of checking if
an MDP is unichain is NP-hard [16].

For the initial state x ∈ X, the average cost incurred under
φ ∈ F is wφ(x) := lim supN→∞

1
N

∑N−1
n=0 Qn

φcφ(x). A policy

φ∗ is average-cost optimal if wφ∗(x) = infφ∈F w
φ(x) for all

x ∈ X.

3. UNDISCOUNTED TOTAL COSTS
Let μ be a function satisfying the conditions in Proposi-

tion 1. When the constant K in Assumption T is fixed, a
total-cost optimal policy can be computed in strongly poly-
nomial time by using the transformation in [5, Sec. 3.1] of
the original problem into a discounted MDP, with discount
factor (K − 1)/K, whose transition rates are stochastic. It

follows from [5, Prop. 2] that a total-cost optimal policy for
the original transient MDP can be computed by solving the
following LP.

minimize
∑
x∈X

∑
a∈A(x)

μ(x)−1c(x, a)zx,a

such that
∑

a∈A(x)

zx,a −
∑
y∈X

∑
a∈A(y)

q(x|y, a)μ(x)
μ(y)

zy,a = 1,

x ∈ X,

zx,a ≥ 0, x ∈ X, a ∈ A(x).

The estimates for discounted MDPs in [15] imply the follow-
ing complexity estimates for this LP.

Proposition 2. The block-pivoting simplex method that
corresponds to Howard’s policy iteration algorithm for dis-
counted MDPs needs O((m− n)K logK) iterations to solve
the above LP. In addition, the simplex method with Dant-
zig’s rule needs at most O(n(m − n)K logK) iterations to
solve the above LP.

We remark that the above estimate for Howard’s policy iter-
ation algorithm matches the one in [3] for transient MDPs,
which was obtained without reducing the original problem
to a discounted one. In fact, it follows from the definition
of the transformation in [5, Sec. 3.1] that Howard’s pol-
icy iteration for the constructed discounted MDP, which is
equivalent to a block-pivoting simplex method for the above
LP, corresponds to Howard’s policy iteration for the orig-
inal transient MDP. On the other hand, it can be shown
that applying the simplex method with Dantzig’s rule to
the above LP is different than applying this version of the
simplex method to the LP formulation for transient MDPs
considered in [3]. In addition, observe that, when K is fixed,
the above estimate for the simplex method with Dantzig’s
rule is better than the one for Dantzig’s rule in [3].

Using the estimates in [3], it can be shown that a suitable
function μ can be computed using O((m − n)K logK) it-
erations of Howard’s policy iteration algorithm. Since each
iteration of both the simplex and policy iteration methods
can be completed using O(n3 +mn) arithmetic operations,
the preceding implies the following theorem.

Theorem 3. Suppose the constant K in Assumption T
is fixed. Then both the block-pivoting simplex method cor-
responding to Howard’s policy iteration algorithm for dis-
counted MDPs, as well as the simplex method with Dantzig’s
rule, can be used to compute a total-cost optimal policy in
strongly polynomial time.

4. AVERAGE COSTS PER UNIT TIME
In this section, we assume that the transition rates q are

stochastic. According to Proposition 1, there is a function
μ∗ : X → [1,∞) that satisfies μ∗ ≤ K∗ and μ∗(x) ≥ 1 +∑

y∈X\{�} q(y|x, a)μ∗(y) for all x ∈ X and a ∈ A(x). When

the constant K∗ in Assumption HT is fixed, an average-cost
optimal policy can be computed in strongly polynomial time
by transforming the original problem into a discounted one
with discount factor (K∗ − 1)/K∗ using the transformation
in [5, Sec. 4.1]. It follows from [5, Prop. 8] that an average-
cost optimal policy for the original MDP can be computed
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by solving the following LP.

minimize
∑

x∈X

∑

a∈A(x)

μ
∗
(x)

−1
c(x, a)zx,a

such that

∑

a∈A(x)

zx,a −
∑

y∈X

∑

a∈A(y)

q(x|y, a)μ∗(x)
μ∗(y)

zy,a = 1, x �= �,

∑

a∈A(�)

z�,a−
∑

y∈X

∑

a∈A(y)

μ∗(y) − 1 − ∑
z �=� q(z|y, a)μ∗(z)

μ∗(y)
zy,a = 1,

zx,a ≥ 0, x ∈ X, a ∈ A(x).

The estimates for discounted MDPs in [15] imply the follow-
ing complexity estimates for this LP.

Proposition 4. The block-pivoting simplex method that
corresponds to Howard’s policy iteration algorithm for dis-
counted MDPs needs O((m−n)K∗ logK∗) iterations to solve
the above LP. In addition, the simplex method with Dantzig’s
rule needs at most O(n(m−n)K∗ logK∗) iterations to solve
the above LP.

The following theorem can then be proven in a way analo-
gous to the case of transient total-cost MDPs.

Theorem 5. Suppose the constant K∗ in Assumption HT
is fixed. Then both the block-pivoting simplex method cor-
responding to Howard’s policy iteration algorithm for dis-
counted MDPs, as well as the simplex method with Dantzig’s
rule, can be used to compute an average-cost optimal policy
in strongly polynomial time.

It follows from the definition of the transformation in [5,
Sec. 4.1] that applying Howard’s policy iteration algorithm
to the constructed discounted MDP, which is equivalent to
a block-pivoting simplex method for the above LP, corre-
sponds to a block-pivoting simplex method for the LP that
is typically used to solve unichain average-cost MDPs [11,
Sec. 4.6]. On the other hand, this latter LP, even when As-
sumption HT holds with a constant K∗, may not satisfy the
sufficient conditions given in [12] under which the simplex
method with Dantzig’s rule is strongly polynomial.
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