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Abstract— Average-cost optimality inequalities imply the ex-
istence of stationary optimal policies for Markov Decision Pro-
cesses with average costs per unit time, and these inequalities
hold under broad natural conditions. Additional conditions
are required for the validity of the average-cost optimality
equations. Recently Feinberg and Liang [10, Theorem 3.2]
showed that the equicontinuity of value functions for discounted
costs is sufficient additional condition for the validity of average-
cost optimality equations for problems with weakly continuous
transition probabilities and with possibly unbounded one-step
costs, and this condition holds for setup-cost inventory control
problems with backorders and convex holding/backlog costs.
This paper studies periodic-review setup-cost inventory control
problem with backorders and with quasiconvex cost functions
and general demands. It is shown that such problems satisfy the
equicontinuity condition. Therefore, optimality inequalities hold
in the form of equalities with a continuous average-cost relative
value function for this problem. In addition, this implies that
average-cost optimal(s, S)policies for the inventory control
problem can be derived from the average-cost optimality equa-
tion. With the additional assumption on the monotonicity of the
cost function, we establish the convergence of discounted-cost
optimal ordering thresholdsαand convergence of discounted-
cost relative value functions, when the discount factor converges
to1,to the corresponding optimal threshold and optimal
relative value function for the average-cost problem.

Keywords:Markov processes, Stochastic systems, Optimal
control.

I. INTRODUCTION

For Markov Decision Processes (MDPs) with average
costs per unit time, the existence of stationary optimal poli-
cies follows from the validity of the average-cost optimality
inequality (ACOI). Feinberg et al. [5] established broad
sufficient conditions for the validity of ACOIs for MDPs
with weakly continuous transition probabilities and possibly
noncompact action sets and unbounded one-step costs. In
particular, these and even stronger conditions hold for the
periodic-review setup-cost inventory control problem with
backorders; see Feinberg [4] or Feinberg and Lewis [8].
Previously, Scḧal [15] established sufficient conditions for
the validity of ACOIs for MDPs with compact action sets
and possibly unbounded costs. Cavazos-Cadena [2] provided
an example in which the ACOI holds but the average-
cost optimality equation (ACOE) does not. Feinberg and
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Liang [10, Theorem 3.2] provided sufficient conditions for
the validity of ACOEs for MDPs with infinite state spaces,
weakly continuous transition probabilities and possibly non-
compact action sets and unbounded one-step costs. This pa-
per shows that the setup-cost inventory control problems with
quasiconvex cost functions and general demands satisfy these
conditions and establishes the validity of the ACOEs for the
setup-cost inventory control problems with backorders.
Sufficient conditions for the validity of the ACOEs for
discrete-time MDPs with general state and action spaces with
setwise continuous transition probabilities are described in
Herńandez-Lerma and Lasserre [11, Section 5.5]. Jáskiewicz
and Nowak [13] considered MDPs with Borel state space,
compact action sets, weakly continuous transition probabili-
ties and unbounded costs. The geometric ergodicity of tran-
sition probabilities is assumed in Jáskiewicz and Nowak [13]
to ensure the validity of the ACOEs. Costa and Dufour [3]
studied the validity of ACOEs for MDPs with Borel state
and action spaces, weakly continuous transition probabili-
ties, which are positive Harris recurrent, and with possibly
noncompact action sets and unbounded costs. Neither the
geometric ergodicity nor positive Harris recurrent conditions
hold for the periodic-review inventory control problem.
For the inventory control problems with quasiconvex
cost functions, Veinott [17] proved the optimality of(s, S)
policies for finite-horizon problems. Zheng [18] provided a
simple proof of the optimality of (s, S) policies for inventory
control problems with discrete demands under discounted-
cost and average-cost criteria. Zheng [18] also established the
validity of ACOEs for discrete demand. Huh et al. [12] con-
sidered the inventory control model with quasiconvex cost
functions with bounded derivatives and with some additional
linear restriction on costs and proved the optimality of(s, S)
policy under the average-cost criterion.
Section II of this paper describes the general MDPs
framework. In particular, it states AssumptionsW* andB
from Feinberg et al. [5], which guarantee the validity of
the ACOIs. Section III provides the sufficient conditions
from Feinberg and Liang [10, Theorem 3.2] for the validity
of ACOEs for MDPs with weakly continuous transition
probabilities. Section IV discusses several assumptions on
the convexity or quasiconvexity of cost functions and their
relations. By verifying conditions provided in Sections II
and III, it is shown in Section IV, that ACOEs hold for
the setup-cost inventory control problems with quasiconvex
cost functions. The paper also establishes equicontinuity
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of discounted-cost relative value functions and continuity
of the average-cost relative value function and shows that
an optimal(s, S)policy can be derived from the ACOEs.
It also shows that at the levelsthere are at least two
optimal decisions: do not order and order up to the level
S.Section V establishes the convergence of discounted-cost
optimal ordering thresholdssα,when the discount factorα
converges to1.Section VI establishes the convergence of
discounted-cost relative value functions, when the discount
factor converges to1.

II. GENERALMDPSFRAMEWORK

Consider a discrete-time MDP with a state spaceX,an
action spaceA,one-step costsc,and transition probabilities
q.Assume thatXandAare Borel subsets of Polish (complete
separable metric) spaces.
Letc(x, a):X×A→ R=R∪{+∞} be the one-step

cost andq(B|x, a)be the transition kernel representing the
probability that the next state is inB∈B(X),given that the
actionais chosen in the statex.
We recalled that a function f:U → R∪{+∞} for
a metric spaceU,whereUis a subset of a metric space
U,is called inf-compact, if for everyλ∈Rthe level set
{u∈U:f(u)≤λ}is compact.

Definition 1.(Feinberg et al. [6, Definition 1.1], Feinberg [4,
Definition 2.1]) A functionf:X×A→Ris calledK-inf-
compact, if for every nonempty compact subsetKofXthe
functionf:K×A→Ris inf-compact.

Let the one-step cost functioncand transition probability
qsatisfy the following condition.

Assumption W*(Feinberg et al. [5], Feinberg and Lewis [8],
or Feinberg [4]).
(i)cisK-inf-compact and bounded below, and
(ii) the transition probabilityq(·|x, a)is weakly continuous
in(x, a)∈X×A,that is, for every bounded continuous func-
tionf:X→ R,the functionf̃(x, a):=

X
f(y)q(dy|x, a)

is continuous onX×A.

The decision process proceeds as follows: at each time
epocht=0,1,...,the current state of the system, x, is
observed. A decision-maker chooses an action a, the cost
c(x,a) is accrued, and the system moves to the next state
according toq(·|x, a).LetHt=(X×A)

t×Xbe the
set of histories fort=0,1,... .LetΠbe the set of all
policies. A (randomized) decision rule at periodt=0,1,...
is a regular transition probabilityπt:Ht→ A,that is,
(i)πt(·|ht)is a probability distribution onA,whereht=
(x0,a0,x1,...,at−1,xt),and (ii) for any measurable subset
B⊂A,the functionπt(B|·)is measurable onHt.A policy
πis a sequence(π0,π1,...)of decision rules. Moreover,πis
called non-randomized if each probability measureπt(·|ht)
is concentrated at one point. A non-randomized policy is
called stationary if all decisions depend only on the current
state.
The Ionescu Tulcea theorem implies that an initial state
xand a policyπdefine a unique probabilityPπx on the

set of all trajectoriesH∞ =(X×A)
∞ endowed with the

product ofσ-field defined by Borelσ-field ofXandA;see
Bertsekas and Shreve [1, pp. 140–141] or Herńandez-Lerma
and Lasserre [11, p. 178]. LetEπxbe an expectation with
respect toPπx.
For a finite-horizonN =0,1,...,let us define the
expected total discounted costs,

vπN,α:=E
π
x

N−1

t=0

αtc(xt,at),x∈X, (1)

whereα∈[0,1)is the discount factor andvπ0,a(x)=T(x)
is the terminal cost. WhenN=∞,equation (1) defines an
infinite-horizon expected total discounted cost denoted by
vπα(x).Letvα:= infπ∈Πv

π
α(x),x∈X.A policyπis called

optimal for the respective criterion with discount factorαif
vπN,α(x)=vN,α(x)orv

π
α(x)=vα(x)for allx∈X.

Theaverage cost per unit timeis defined as

wπ(x) := lim sup
N→+∞

1

N
vπN,1(x),x∈X. (2)

Define the optimal value functionw(x):=infπ∈Πw
π(x),

x∈X.A policyπis called average-cost optimal ifwπ(x)=
w(x)for allx∈X.
Let

mα:= inf
x∈X
vα(x), uα(x):=vα(x)−mα,

w:= lim inf
α↑1

(1−α)mα, w̄:= lim sup
α↑1

(1−α)mα
(3)

The functionuαis called the discounted-cost relative value
function. Assume that the following assumption holds in
addition to AssumptionW*.

Assumption B.(i)w∗:= infx∈Xw(x)<∞,and
(ii)sup

α∈[0,1)

uα(x)<∞,x∈X.

As follows from Scḧal [15, Lemma 1.2(a)], Assump-
tionB(i) implies thatmα<+∞ for allα∈[0,1).Thus,
all the quantities in (3) are defined. According to Feinberg
et al. [5, Theorem 4], if AssumptionsW* andBhold, then
w=w̄.In addition,limn→+∞(1−αn)mαn =w=w̄for
each sequence{αn}n=1,2,...such thatαn↑1asn→+∞.
Define the following function onXfor the sequence{αn↑

1}n=1,2,...:

ũ(x) := lim inf
n→+∞,y→x

uαn(y). (4)

In words,ũ(x)is the largest number such thatũ(x)≤
lim infn→∞ uαn(yn)for all sequences{yn → x}.Since
uα(x)is nonnegative by definition, theñu(x)is also non-
negative. The functionũ,defined in (4) for a sequence
{αn↑1}n=1,2,...of nonnegative discount factors, is called
an average-cost relative value function.

III. SUFFICIENTCONDITIONS FORACOES

If AssumptionsW* andBhold, then, according to Fein-
berg et al. [5, Corollary 2], there exists a stationary policy
φsatisfying

w+̃u(x)≥c(x, φ(x)) +
X

ũ(y)q(dy|x, φ(x)), (5)
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for allx∈X,whereũis defined in (4) for an arbitrary
sequence of discount factors{αn↑1}n=1,2,...,and

wφ(x)=w= lim
α↑1
(1−α)vα(x)= ̄w=w

∗, x∈X.(6)

These equalities imply that the stationary policyφis average-
cost optimal andwφ(x)does not depend onx.
Inequality (5) is known as the ACOI. We remark that a

weaker form of the ACOI withwsubstituted withw̄is also
described in Feinberg et al. [5]. If AssumptionsW* andB
hold, let us definew:=w;see (6) for other equalities for
w.
Recall the following definition of equicontinuity.

Definition 2.A familyHof real-valued functions on a metric
spaceXis called equicontinuous at the pointx∈Xif for
each >0there exists an open setGcontainingxsuch that

|h(y)−h(x)|< for ally∈Gand for allh∈H.

The familyH is called equicontinuous (onX)ifitis
equicontinuous at allx∈X.

Consider the following equicontinuity condition (EC) on
the discounted-cost relative value functions.

Assumption EC.(Feinberg and Liang [10]) There exists a
sequence{αn↑1}n=1,2,...of nonnegative discount factors
such that
(i) the family of functions{uαn}n=1,2,...is equicontinu-

ous, and
(ii) there exists a nonnegative measurable functionU(x),

x∈X,such thatU(x)≥ uαn(x),n=1,2,...,and

X
U(y)q(dy|x, a)<∞ for allx∈Xanda∈A.

The following theorem provides sufficient conditions un-
der which there exist a stationary policyφand a function
ũ(·)satisfying ACOEs for MDPs with weakly continuous
transition probabilities.

Theorem 3.Let AssumptionsW* andBhold. Consider a
sequence{αn↑1}n=1,2,...of nonnegative discount factors.
If AssumptionECis satisfied for the sequence{αn}n=1,2,...,
then the following statements hold.

(i) There exists a subsequence{αnk}k=1,2,...of sequence
{αn}n=1,2,...such that{uαnk(x)}converges pointwise
tõu(x),x∈X,whereũ(x)is defined in(4)for the
sequence{αnk}k=1,2,....In addition, the functioñu(x)
is continuous.

(ii) There exists a stationary policyφsatisfying the ACOE
with the nonnegative functionũdefined for the subse-
quence{αnk}k=1,2,...mentioned in statement(i), that
is, for allx∈X,

w+̃u(x)=c(x, φ(x)) +
X

ũ(y)q(dy|x, φ(x))

=min
a∈A
[c(x, a)+

X

ũ(y)q(dy|x, a)], (7)

and, since the left equation in(7)implies inequality
(5), every stationary policy satisfying(7)is average-
cost optimal.

IV. ACOESFORINVENTORYCONTROLPROBLEM

LetR denote the real line,Zdenote the set of all
integers,R+:= [0,+∞)andN0:={0,1,2,...}.Consider
the stochastic periodic-review setup-cost inventory control
problem with backorders. At timest=0,1,...,a decision-
maker views the current inventory of a single commodity and
makes an ordering decision. Assuming zero lead times, the
products are immediately available to meet demand. Demand
is then realized, the decision-maker views the remaining
inventory, and the process continues. The unmet demand is
backlogged. The demand and the order quantity are assumed
to be nonnegative. The state and action spaces are either
(i)X= RandA= R+,or (ii)X= ZandA= N0.
The inventory control problem is defined by the following
parameters.

1)α∈[0,1)is the discount factor;
2)K≥0is a fixed ordering cost;
3)c̄>0is the per unit ordering cost;
4){Dt,t=1,2,...}is a sequence of i.i.d. nonnegative
finite random variables representing the demand at
periods0,1,... .We assume that E[D]< ∞ and
P(D>0)>0,whereDis a random variable with
the same distribution asD1;

5)h(x)is the holding/backlog cost per period if the
inventory level isx.Assume that: (i) the function
E[h(x−D)]is finite and continuous for allx∈X;
and (ii)E[h(x−D)]→∞ as|x|→∞.

Without loss of generality, assume thathis nonnegative and
h(0) = 0.The assumptionP(D>0)>0avoids the trivial
case when there is no demand. IfP(D=0)=1,then the
optimality inequality does not hold becausew(x)depends
onx;see Feinberg and Lewis [8] for details.
The dynamic of the system is defined by the equation

xt+1=xt+at−Dt+1, t=0,1,2,...,

wherextandatdenote the current inventory level and the
ordered amount at periodt,respectively. Then, for(x, a)∈
X×Athe one-step cost is

c(x, a)=KI{a>0}+̄ca+E[h(x+a−D)], (8)

whereI{a>0}is an indicator of event{a>0}.
Recall the concept of(s, S)policies and quasiconvex

functions. Supposef(x)is a continuous function such that
f(x)>K+infx∈Xf(x)as|x|→∞.Let

S∈argmin
x∈X

{f(x)}, (9)

s=inf{x≤S:f(x)≤K+f(S)}. (10)

Definition 4.LetstandStbe real numbers such thatst≤
St,t=0,1,... .A policy is called an(st,St)policy at
steptif it orders up to the levelSt,ifxt<st,and does
not order, ifxt≥st.A Markov policy is called an(st,St)
policy if it is an(st,St)policy at all stepst=0,1,... .A
policy is called an(s, S)policy if it is stationary and it is
an(s, S)policy at all stepst=0,1,... .
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Definition 5.A functionfis quasiconvex on a convex set
Xif for allxandy∈Xand0≤λ≤1,

f(λx+(1−λ)y)≤max{f(x),f(y)}.

Consider the following assumptions which guarantee the
optimality of(s, S)policies for discounted-cost and average-
cost criteria. Define

hα(x)=h(x)+(1−α)cx+cE[D]. (11)

Assumption 1. (i) The function

E[hα(x−D)] =E[h(x−D)]+(1−α)cx+αcE[D]
(12)

is quasiconvex for allα∈[0,1];
(ii) There exists̃α∈[0,1)such that

lim
x→−∞

E[h̃α(x−D)]>K+inf
x∈X
{E[h̃α(x−D)]}.

(13)

Assumption 2.The functionh(·)is convex onX.

Note that sinceE[h(x−D)]→ ∞ asx→ ∞ and(1−
α)c≥0for allα∈[0,1],then (12) implies thatE[hα(x−
D)]→∞ asx→∞ for allα∈[0,1].
Forα∈[0,1],if

lim
x→−∞

E[hα(x−D)]>inf
x∈X
E[hα(x−D)], (14)

then define

xminα := minargmin
x∈X
{E[hα(x−D)]}, (15)

where (14), the continuity of the functionE[hα(x−D)]and
E[hα(x−D)]→∞ asx→∞ imply that|x

min
α |<∞.

In addition to Assumption 1, consider the following as-
sumption, which is used to establish the convergence of
the discounted optimal lower thresholds and relative value
functions in Sections V and VI, respectively.

Assumption 3.For a givenα∈[0,1],the functionE[hα(x−
D)]is strictly decreasing on(−∞,xminα ],wherex

min
α is

defined in(15).

Consider the functionhαdefined in (11). Let

α∗:= sup{β∈[0,1) : lim
x→−∞

E[hβ(x−D)]≤

K+inf
x∈X
E[hβ(x−D)]}, (16)

where the supremum of an empty set is−∞.If Assump-
tion 1(ii) holds, thenα∗<1.Note thatxminα ≥xminβ if
α>β>α∗.

Proposition 6.If Assumption 2 holds, then Assumption 1
holds withα∗defined as

α∗:= 1 + lim
x→−∞

h(x)

c̄x
, (17)

where the limit exists andα∗<1.

Proposition 7.If Assumption 2 holds, then Assumption 3
holds.

Lemma 8.Let Assumption 1 hold. The described inventory
control model with quasiconvex cost functions satisfies As-
sumptionsW*andB.

Since AssumptionsW* andBhold for the MDP corre-
sponding to the described inventory control problem, then the
optimality equations for the infinite-horizon total discounted
costs can be written as

vα(x)=min{min
a≥0
[K+Gα(x+a)],Gα(x)}−̄cx, (18)

where

Gα(x):=̄cx+E[h(x−D)] +αE[vα(x−D)]. (19)

In addition, the functionc:X×A→ Ris inf-compact.
This property and the validity of AssumptionW* imply that
for eachα∈[0,1)the functionvαis inf-compact (Feinberg
and Lewis [7, Proposition 3.1(iv)]) and therefore the set
Xα:={x∈X|vα(x)=mα},wheremαis defined in (3),
is nonempty and compact. The validity of AssumptionsW*
andB(i) and the inf-compactness ofcimply that there is a
compact subsetKofXsuch thatXα⊆Kfor allα∈[0,1);
Feinberg et. al. [5, Theorem 6]. Following Feinberg and
Lewis [8], let us consider a bounded interval[x∗L,x

∗
U]⊆X

such that

Xα⊆[x
∗
L,x

∗
U] for allα∈[0,1). (20)

The following theorem states the optimality of(sα,Sα)
policies for discounted-cost problems with quasiconvex cost
functions.

Theorem 9.If Assumption 1 holds, then for an infinite-
horizon problem with discount factorα ∈ (α∗,1),an
(sα,Sα)policy is optimal, where the real numbersSαandsa
are defined in(9)and(10)respectively withf(x):=Gα(x),
x∈X.

If Assumption 2 holds, then Theorem 9 is proved in
Feinberg and Liang [9, Theorem 4.4] withα∗defined in (17).
Since AssumptionsW* andBhold, then the average-cost
optimality inequality can be written as

w+̃u(x)≥min{min
a≥0
[K+H(x+a)],H(x)}−̄cx,(21)

where

H(x):=̄cx+E[h(x−D)] +E[̃u(x−D)]. (22)

The following theorem is proved in Feinberg and Lewis [8,
Theorem 6.10(iii)] under Assumption 2. By verifying the
validity of AssumptionsW* andBunder Assumption 1, the
results can be generalized to inventory control problems with
quasiconvex cost functions.

Theorem 10.Let Assumption 1 hold. For each nonnegative
α∈(α∗,1), consider an optimal(sα,Sα)policy for the
discounted-cost criterion with the discount factorα.Let
{αn↑1}n=1,2,...be a sequence of negative numbers with
α1>α

∗.Every sequence{(sαn,Sαn)}n=1,2,...is bounded,
and each its limit point(s∗,S∗)defines an average-cost
optimal(s∗,S∗)policy. Furthermore, this policy satisfies
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the optimality inequality(21), where the functioñuis de-
fined in(4)for an arbitrary subsequence{αnk}k=1,2,...of
{αn}n=1,2,...satisfying(s

∗,S∗) = limk→∞(sαnk
,Sαnk

).

The following theorem states that the conditions and con-
clusions of Theorem 3, which describes sufficient conditions
for the validity of average-cost optimality equations for
MDPs, hold for the described inventory control problem. It
also states some problem-specific results.

Theorem 11.Let Assumption 1 hold. The MDP for the
described inventory control problem satisfies the sufficient
conditions stated in Theorem 3. Therefore, the conclusions
of Theorem 3 hold for any sequence{αn ↑1}n=1,2,...
of nonnegative discount factors withα1 > α

∗,that is,
there exist a subsequence{αnk}k=1,2,...of{αn}n=1,2,...,a
stationary policyϕ,and a functionũdefined in(4)for the
subsequence{αnk}k=1,2,...such that for allx∈X

w+̃u(x)=KI{ϕ(x)>0}+H(x+ϕ(x))−c̄x

=min{min
a≥0
[K+H(x+a)],H(x)}−̄cx,(23)

where the functionH is defined in(22). In addition, the
functions̃uandH are continuous and inf-compact, and a
stationary optimal policyϕsatisfying(23)can be selected
as an(s∗,S∗)policy described in Theorem 10. It also can
be selected as an(s, S)policy with the real numbersSand
ssatisfying(9)and defined in(10)respectively forf(x)=
H(x),x∈X.

Let us formulate several auxiliary facts for the discounted-
cost relative value functions. Consider the renewal process

N(t):=sup{n=0,1,...|Sn≤t},

wheret∈R+,S0=0andSn=
n
j=1Djforn=1,2,... .

Observe that sinceP(D>0)>0,thenE[N(t)]<+∞,
t∈R+;see Resnick [14, Theorem 3.3.1].
Consider an arbitraryα∈[0,1)and a statexαsuch that

uα(xα)=mα,wheremαis defined in (3). Then, in view
of (20), the inequalitiesx∗L≤xα≤x

∗
U take place.

DefineEy(x):=E[h(x−SN(y)+1)]forx∈X,y≥0.In
view of Feinberg and Lewis [8, Lemma 6.2],Ey(x)<+∞.
LetE(x):=h(x)+Ex−x∗L(x)and

U(x):=
⎧
⎪⎨

⎪⎩

K+̄c(x∗U−x), ifx<x∗L,

K+̄c(x∗U−x
∗
L)+

(E(x)+̄cE[D])(1 +E[N(x−x∗L)]),ifx≥x
∗
L.

(24)

Lemma 12.Let Assumption 1 hold. The following inequal-
ities hold forα∈[0,1) :

(i)uα(x)≤U(x)<+∞ for allx∈X;
(ii) Ifx∗,x∈ X andx∗ ≤ x,thenC(x∗,x):=
supy∈[x∗,x]U(y)<+∞;

(iii)E[U(x−D)]<+∞ for allx∈X.

The following theorem shows that the equicontinuity
conditions stated in Theorem 3 holds for the inventory

model with holding/backlog costs satisfying quasiconvexity
assumptions.

Theorem 13.Let Assumption 1 hold. Considerα∗defined
in(16). Then for eachβ∈(α∗,1),the family of functions
{uα}α∈[β,1)is equicontinuous onX.

According to Lemma 12 and Theorem 13, Assumption
ECholds for the inventory control problem satisfying the
quasiconvexity assumption. Furthermore, the continuity of
average-cost relative value functions implies the following
corollary.

Corollary 14.Let Assumption 1 hold, the state spaceX=
R,and the action spaceA= R+.For the(s, S)policy
defined in Theorems 11, consider the stationary policyϕ
coinciding with this policy at allx∈X,exceptx=s,and
withϕ(s)=S−s.Then the stationary policyϕalso satisfies
the optimality equation(23), and therefore the policyϕis
average-cost optimal.

V. CONVERGENCE OFOPTIMALORDERING
THRESHOLDSsα

In this section, we establish for problems with quasiconvex
costs the convergence of discounted-cost optimal ordering
thresholdssα→ sasα↑1,wheresan optimal average-
cost threshold.

Theorem 15.Let Assumptions 1 and 3 hold. Then the limit

s∗:= lim
α↑1
sα (25)

exists ands∗≤xmin1 ,wherex
min
1 is defined in(15).

We also state several auxiliary facts. Consider

vα(x):=vα(x)+cx, x∈X. (26)

Then the optimality equations (18) can be written asvα(x)=
min{mina≥0[K+Gα(x+a)],Gα(x)},whereGα(x) =
E[hα(x−D)] +αE[vα(x−D)].
Forx∈X,define

mα:= min
x∈X
{vα(x)} and uα(x):=vα(x)−mα.(27)

Forα∈(α∗,1)define the set of all possible optimal
discounted lower thresholds

Gα:={x≤Sα:Gα(y)=K+Gα(Sα)

for ally∈[sα,x]}, (28)

whereSαsatisfies (9) andsαis defined in (10) withf:=
Gα.Note thatsα∈Gαandy≥sαfor ally∈Gα.

Lemma 16.Let Assumption 1 hold. Then(1−α)(mα+K)=
E[hα(y−D)]for allα∈(α

∗,1)andy∈Gα.

Lemma 17.Let Assumption 1 hold. Theny≤xminα ≤xmin1
for allα∈(α∗,1)andy∈Gα.

Lemma 18.Let Assumption 1 hold. Then,

lim
α↑1
(1−α)mα= lim

α↑1
E[hα(sα−D)] =w. (29)
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The following theorem establishes the uniqueness of pos-
sible optimal lower thresholds for the inventory model with
convex cost functions under the discounted criterion.

Theorem 19.Let Assumption 1 hold and Assumption 3 hold
for the discount factorα∈(α∗,1),whereα∗is defined in
(16). ThenGα={sα},whereGαandsαare defined in(28)
and(10)withf:=Gα,respectively.

VI. CONVERGENCE OFRELATIVEVALUEFUNCTIONS
FORINVENTORYCONTROL

This section establishes the convergence of discounted
relative value functions to the average-cost relative value
function for the setup-cost inventory model when the dis-
count factor tends to1.
Let us define

u(x) := lim inf
α↑1,y→x

uα(y). (30)

The following theorem states the convergence of dis-
counted relative value functions, when the discount factor
converges to 1, to the average-cost relative value functionu.

Theorem 20.Let Assumption 1 hold and Assumption 3 hold
forα=1.Then,

lim
α↑1
uα(x)=u(x), x∈X, (31)

and the functionuis continuous.

Theorem 20 implies that (22) can be written asH(x):=
c̄x+E[h(x−D)] +E[u(x−D)].
We also state several auxiliary facts.

Lemma 21.Let Assumption 1 hold. Then:

(i) for eachβ∈(α∗,1),whereα∗is defined in(16), the
family of functions{uα}α∈[β,1)is equicontinuous on
X;

(ii)supα∈(α∗,1)uα(x)<+∞ for allx∈X.

Lemma 22.Let Assumption 1 hold and Assumption 3 hold
forα=1.Then there exists the limitu(x) := limα↑1uα(x)
for allx∈X,where the functionuis continuous onX.

In view of (3), (26) and (27),uα(x)=uα(x)+mα−
mα−cx,for allx∈X.

Corollary 23. Let Assumption 1 hold and Assumption 3
hold forα=1.Then the conclusions in Theorem 11 hold
withũ=udefined in(31)ands∗defined in(25), that is,
the functions̃uand the thresholdss∗defined in(4)and
Theorem 10, respectively, are the same for all sequences
{αn↑1}n=1,2,....

Define the set of all possible optimal average-cost lower
thresholds

G:={x≤S:H(y)=K+H(S)for ally∈[s, x]},
(32)

whereS=min argminx{H(x)} andsis defined in (10)
withf:=H.Note thats∈Gandy≥sfor ally∈G.

The following theorem establishes the uniqueness of pos-
sible optimal lower thresholds for the inventory model with
holding/backlog costs satisfying quasiconvexity assumptions
under the average cost criterion.

Theorem 24.Let Assumption 1 hold and Assumption 3 hold
forα=1.ThenG={s∗},whereGands∗are defined in
(32)and(25), respectively.

The following corollary states that all the results of this
paper hold for inventory models with convex holding/backlog
costs.

Corollary 25. The conclusions of lemmas, theorems, and
corollaries in Sections V and VI hold under Assumption 2.
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