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On the Average-Cost Optimality Equations and Convergence of
Discounted-Cost Relative Value Functions for Inventory Control
Problems with Quasiconvex Cost Functions

Eugene A. Feinberg and Yan Liang

Abstract— Average-cost optimality inequalities imply the ex-
istence of stationary optimal policies for Markov Decision Pro-
cesses with average costs per unit time, and these inequalities
hold under broad natural conditions. Additional conditions
are required for the validity of the average-cost optimality
equations. Recently Feinberg and Liang [10, Theorem 3.2]
showed that the equicontinuity of value functions for discounted
costs is sufficient additional condition for the validity of average-
cost optimality equations for problems with weakly continuous
transition probabilities and with possibly unbounded one-step
costs, and this condition holds for setup-cost inventory control
problems with backorders and convex holding/backlog costs.
This paper studies periodic-review setup-cost inventory control
problem with backorders and with quasiconvex cost functions
and general demands. It is shown that such problems satisfy the
equicontinuity condition. Therefore, optimality inequalities hold
in the form of equalities with a continuous average-cost relative
value function for this problem. In addition, this implies that
average-cost optimal (s,S) policies for the inventory control
problem can be derived from the average-cost optimality equa-
tion. With the additional assumption on the monotonicity of the
cost function, we establish the convergence of discounted-cost
optimal ordering threshold s, and convergence of discounted-
cost relative value functions, when the discount factor converges
to 1, to the corresponding optimal threshold and optimal
relative value function for the average-cost problem.

Keywords: Markov processes, Stochastic systems, Optimal
control.

I. INTRODUCTION

For Markov Decision Processes (MDPs) with average
costs per unit time, the existence of stationary optimal poli-
cies follows from the validity of the average-cost optimality
inequality (ACOI). Feinberg et al. [5] established broad
sufficient conditions for the validity of ACOIs for MDPs
with weakly continuous transition probabilities and possibly
noncompact action sets and unbounded one-step costs. In
particular, these and even stronger conditions hold for the
periodic-review setup-cost inventory control problem with
backorders; see Feinberg [4] or Feinberg and Lewis [8].
Previously, Schil [15] established sufficient conditions for
the validity of ACOIs for MDPs with compact action sets
and possibly unbounded costs. Cavazos-Cadena [2] provided
an example in which the ACOI holds but the average-
cost optimality equation (ACOE) does not. Feinberg and
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Liang [10, Theorem 3.2] provided sufficient conditions for
the validity of ACOEs for MDPs with infinite state spaces,
weakly continuous transition probabilities and possibly non-
compact action sets and unbounded one-step costs. This pa-
per shows that the setup-cost inventory control problems with
quasiconvex cost functions and general demands satisfy these
conditions and establishes the validity of the ACOEs for the
setup-cost inventory control problems with backorders.

Sufficient conditions for the validity of the ACOEs for
discrete-time MDPs with general state and action spaces with
setwise continuous transition probabilities are described in
Herndndez-Lerma and Lasserre [11, Section 5.5]. Jaskiewicz
and Nowak [13] considered MDPs with Borel state space,
compact action sets, weakly continuous transition probabili-
ties and unbounded costs. The geometric ergodicity of tran-
sition probabilities is assumed in Jaskiewicz and Nowak [13]
to ensure the validity of the ACOEs. Costa and Dufour [3]
studied the validity of ACOEs for MDPs with Borel state
and action spaces, weakly continuous transition probabili-
ties, which are positive Harris recurrent, and with possibly
noncompact action sets and unbounded costs. Neither the
geometric ergodicity nor positive Harris recurrent conditions
hold for the periodic-review inventory control problem.

For the inventory control problems with quasiconvex
cost functions, Veinott [17] proved the optimality of (s, S)
policies for finite-horizon problems. Zheng [18] provided a
simple proof of the optimality of (s, S) policies for inventory
control problems with discrete demands under discounted-
cost and average-cost criteria. Zheng [18] also established the
validity of ACOE:s for discrete demand. Huh et al. [12] con-
sidered the inventory control model with quasiconvex cost
functions with bounded derivatives and with some additional
linear restriction on costs and proved the optimality of (s, S)
policy under the average-cost criterion.

Section II of this paper describes the general MDPs
framework. In particular, it states Assumptions W* and B
from Feinberg et al. [5], which guarantee the validity of
the ACOIs. Section III provides the sufficient conditions
from Feinberg and Liang [10, Theorem 3.2] for the validity
of ACOEs for MDPs with weakly continuous transition
probabilities. Section IV discusses several assumptions on
the convexity or quasiconvexity of cost functions and their
relations. By verifying conditions provided in Sections II
and III, it is shown in Section IV, that ACOEs hold for
the setup-cost inventory control problems with quasiconvex
cost functions. The paper also establishes equicontinuity



of discounted-cost relative value functions and continuity
of the average-cost relative value function and shows that
an optimal (s,S) policy can be derived from the ACOEs.
It also shows that at the level s there are at least two
optimal decisions: do not order and order up to the level
S. Section V establishes the convergence of discounted-cost
optimal ordering thresholds s,, when the discount factor o
converges to 1. Section VI establishes the convergence of
discounted-cost relative value functions, when the discount
factor converges to 1.

II. GENERAL MDPS FRAMEWORK

Consider a discrete-time MDP with a state space X, an
action space A, one-step costs ¢, and transition probabilities
g. Assume that X and A are Borel subsets of Polish (complete
separable metric) spaces.

Let ¢(z,a) : X x A - R = RU {+occ} be the one-step
cost and g(B|z,a) be the transition kernel representing the
probability that the next state is in B € B(X), given that the
action a is chosen in the state .

We recalled that a function f : U — R U {+oc} for
a metric space U, where U is a subset of a metric space
U, is called inf-compact, if for every A € R the level set
{u €U : f(u) < A} is compact.

Definition 1. (Feinberg et al. [6, Definition 1.1], Feinberg [4.
Definition 2.1]) A function f : X x A — R is called K-inf-
compact, if for every nonempty compact subset K of X the
function f: K x A — R is inf-compact.

Let the one-step cost function ¢ and transition probability
g satisfy the following condition.

Assumption W¥* (Feinberg et al. [5], Feinberg and Lewis [8],
or Feinberg [4]).

(i) ¢ is K-inf-compact and bounded below, and

(ii) the transition probability g(-|x, a) is weakly continuous
in (z,a) € Xx A, that is, for every bounded continuous func-
tion f : X — R, the function f(z,a) = fx f(v)q(dy|z,a)
is continuous on X x A.

The decision process proceeds as follows: at each time
epoch ¢ = 0,1,..., the current state of the system, x, is
observed. A decision-maker chooses an action a, the cost
c(x.,a) is accrued, and the system moves to the next state
according to q(-|z,a). Let H; = (X x A)! x X be the
set of histories for ¢ = 0,1,... . Let II be the set of all
policies. A (randomized) decision rule at period t =0, 1, ...
is a regular transition probability m : H; — A, that is,
(i) m¢(:|he) is a probability distribution on A, where h; =
(xo0,a0,1,...,at—1,¢), and (ii) for any measurable subset
B C A, the function 7;(B]|-) is measurable on Hy. A policy
w is a sequence (mp, 71, . . . ) of decision rules. Moreover, 7 is
called non-randomized if each probability measure m¢(-|h¢)
is concentrated at one point. A non-randomized policy is
called stationary if all decisions depend only on the current
state.

The Ionescu Tulcea theorem implies that an initial state
z and a policy m define a unique probability PI on the

642

set of all trajectories H,, = (X x A)> endowed with the
product of o-field defined by Borel o-field of X and A; see
Bertsekas and Shreve [1, pp. 140-141] or Herndndez-Lerma
and Lasserre [11, p. 178]. Let ET be an expectation with
respect to Pr.
For a finite-horizon N =
expected total discounted costs,
N-1

=K Z a'e(zi, a:), = e€X, (1)

t=0

0,1,..., let us define the

T
Un. L0

where o € [0,1) is the discount factor and vj ,(z) = T'(x)
is the terminal cost. When N = oo, equation (1) defines an
infinite-horizon expected total discounted cost denoted by
vy (z). Let vy = infren vl (z), z € X. A policy 7 is called
optimal for the respective criterion with discount factor a if
Uy o(T) = vna(x) or v} (z) = vu(x) for all z € X.

The average cost per unit time is defined as

w" (z) := limsup lv}{r i(z), zeX (2)
N—+oo N :
Define the optimal value function w(z) := inf e w™ (),
z € X. A policy 7 is called average-cost optimal if w™(z) =
w(zx) for all z € X.
Let

T i= I]Jg{va(z:), Ua(T) = va(T) — Ma,

w = liminf(1 — a)mg, @ :=limsup(l — a)mq, 3
afl atl

The function u, is called the discounted-cost relative value

function. Assume that the following assumption holds in

addition to Assumption W¥,

Assumption B. (i) w* := infcx w(z) < oo, and

(ii) sup uq(x) < 0o, T € X.

acl0,1)

As follows from Schil [15, Lemma 1.2(a)], Assump-
tion B(i) implies that m, < +oo for all a € [0,1). Thus,
all the quantities in (3) are defined. According to Feinberg
et al. [5, Theorem 4], if Assumptions W* and B hold, then
w = w. In addition, limp,_; o (1 — @y ) Mg, = w = @ for
each sequence {ay, }n—12,.. such that a, 11 as n — +oo0.

Define the following function on X for the sequence {ay, T

1}n=12,.:

a(x) =

lminf wu, (y). 4)

n—+4oo,y—xT

In words, #(z) is the largest number such that a(z) <
liminf, o ua, (yn) for all sequences {y, — z}. Since
u,(x) is nonnegative by definition, then #(zx) is also non-
negative. The function @, defined in (4) for a sequence
{an T 1}n—12,.. of nonnegative discount factors, is called
an average-cost relative value function.

III. SUFFICIENT CONDITIONS FOR ACOES

If Assumptions W#* and B hold, then, according to Fein-
berg et al. [5, Corollary 2], there exists a stationary policy
¢ satisfying

w+iz) > (z, $(z)) + /X i(y)q(dylz, 8(z)), ()



for all z € X, where @ is defined in (4) for an arbitrary
sequence of discount factors {a, T 1}n—1,.., and

w"(z):y:ﬁﬁ(l—a)vﬂ(z):E:w*, reX. (6)

These equalities imply that the stationary policy ¢ is average-
cost optimal and w?(z) does not depend on z.

Inequality (5) is known as the ACOI. We remark that a
weaker form of the ACOI with w substituted with w is also
described in Feinberg et al. [5]. If Assumptions W* and B
hold, let us define w := w; see (6) for other equalities for
w.

Recall the following definition of equicontinuity.

Definition 2. A family H of real-valued functions on a metric
space X is called equicontinuous at the point x € X if for
each € > 0 there exists an open set G containing x such that

|h(y) — h(z)| < € forally € G and for all h € H.

The family ‘H is called equicontinuous (on X) if it is
equicontinuous at all = € X.

Consider the following equicontinuity condition (EC) on
the discounted-cost relative value functions.

Assumption EC. (Feinberg and Liang [10]) There exists a
sequence {a, T 1}n=1,2‘___ of nonnegative discount factors
such that

(i) the family of functions {ua, }n—12, .. is equicontinu-
ous, and

(ii) there exists a nonnegative measurable function U(x),
z € X, such that U(z) > wuqs,(z), n = 1,2,..., and
Jx U(y)g(dy|z,a) < oo for all z € X and a € A.

The following theorem provides sufficient conditions un-
der which there exist a stationary policy ¢ and a function
a(-) satisfying ACOEs for MDPs with weakly continuous
transition probabilities.

Theorem 3. Let Assumptions W* and B hold. Consider a
sequence {ay, 1 1},1:1,2'___ of nonnegative discount factors.
If Assumption EC is satisfied for the sequence {cu, }n—12..._,
then the following statements hold.

(i) There exists a subsequence {cn, tr—12._.. of sequence
{an}n=1,2,.. such that {ua, (z)} converges pointwise
to u(x), z € X, where u(z) is defined in (4) for the
sequence {an, }r—12,... In addition, the function u(x)
is continuous.

(ii) There exists a stationary policy ¢ satisfying the ACOE
with the nonnegative function u defined for the subse-
quence {an, }r—1,2,.. mentioned in statement (i), that
is, for all = € X,

wei(e) = cfa,é(e) + | lu)aldlr, 6(2)
—minfe(z,0) + [ aadylz.all, ()
ach X
and, since the left equation in (7) implies inequality

(5), every stationary policy satisfying (7) is average-
cost optimal.

IV. ACOES FOR INVENTORY CONTROL PROBLEM

Let R denote the real line, Z denote the set of all
integers, R, := [0,+c0) and Ny := {0,1,2,...}. Consider
the stochastic periodic-review setup-cost inventory control
problem with backorders. At times £ =0,1,..., a decision-
maker views the current inventory of a single commodity and
makes an ordering decision. Assuming zero lead times, the
products are immediately available to meet demand. Demand
is then realized, the decision-maker views the remaining
inventory, and the process continues. The unmet demand is
backlogged. The demand and the order quantity are assumed
to be nonnegative. The state and action spaces are either
(i) X =Rand A =Ry, or (ii) X = Z and A = No.
The inventory control problem is defined by the following
parameters.

1) @ € [0,1) is the discount factor;

2) K > 0 is a fixed ordering cost;

3) € > 0 is the per unit ordering cost;

4) {D:,t = 1,2,...} is a sequence of iid. nonnegative
finite random variables representing the demand at
periods 0,1,... . We assume that E[D] < oo and
P(D > 0) > 0, where D is a random variable with
the same distribution as D;;

5) h(z) is the holding/backlog cost per period if the
inventory level is x. Assume that: (i) the function
E[h(z — D)] is finite and continuous for all z € X;
and (ii) E[h(x — D)] — oc as |z| — oc.

Without loss of generality, assume that k is nonnegative and
h(0) = 0. The assumption P(D > 0) > 0 avoids the trivial
case when there is no demand. If P(D = 0) = 1, then the
optimality inequality does not hold because w(x) depends
on x; see Feinberg and Lewis [8] for details.

The dynamic of the system is defined by the equation

Tep1 =T +as— Dy, t=0,1,2,...,

where z; and a; denote the current inventory level and the
ordered amount at period ¢, respectively. Then, for (z,a) €
X x A the one-step cost is

c(z,a) = Klgsoy+ca + E[h(z + a — D)], (8)

where ;-0 is an indicator of event {a > 0}.

Recall the concept of (s,S) policies and quasiconvex
functions. Suppose f(z) is a continuous function such that
£(z) > K +infyex f(c) as |z| — oo. Let

Se arzgé;in{f(r)}, )
s=inf{z < S: f(z) < K+ f(5)}

Definition 4. Let s; and S; be real numbers such that s; <
S, t = 0,1,... . A policy is called an (s, S;) policy at
step t if it orders up to the level Sy, if T+ < s, and does
not order, if ; > s;. A Markov policy is called an (s¢, St)
policy if it is an (s, St) policy at all steps t =0,1,... . A
policy is called an (s, S) policy if it is stationary and it is
an (s, S) policy at all steps t =0,1,... .

(10)



Definition 5. A function f is quasiconvex on a convex set
Xifforall zand y € X and 0 < X <1,

FQz+ (1—N)y) < max{f(z), f(y)}.

Consider the following assumptions which guarantee the
optimality of (s, S) policies for discounted-cost and average-
cost criteria. Define

ha(z) = h(z) + (1 — a)ex +<E[D]. (11)
Assumption 1. (i) The function

Elha(z — D)] = E[h(z — D)] + (1 — a)ex + ocE[D]

(12)

is quasiconvex for all o € [0, 1];
(ii) There exists & € [0,1) such that

lim E[hg(z—D)] > K + in%{]E[h&(z: — D)]}.
T——00 TE
(13)
Assumption 2. The function h(-) is convex on X.

Note that since E[h(z — D)] — oo as  — oo and (1 —
a)e > 0 for all « € [0,1], then (12) implies that E[h, (z —
D)] — co as £ — oo for all a € [0, 1].

For o € [0,1], if

Jim_Efha(z —D)] > inf Eha(z— D)),  (14)

then define
ga =wind smin{Bh (o — D)0,

where (14), the continuity of the function E[h,(z — D)] and
E[ha(x — D)] — oo as £ — oo imply that |z™7| < co.

In addition to Assumption 1, consider the following as-
sumption, which is used to establish the convergence of
the discounted optimal lower thresholds and relative value
functions in Sections V and VI, respectively.

(15)

Assumption 3. For a given o € [0, 1], the function E[hq(z—
D)) is strictly decreasing on (—oco, ™|, where o™ is

defined in (15).
Consider the function h, defined in (11). Let
o =sup{Be0,1): lim Elhs(z —D)] <
K+ irég{]E[hﬁ(z: — D)}, (16)

where the supremum of an empty set is —oo. If Assump-
tion 1(ii) holds, then a* < 1. Note that 3™ > :.cglm if
a>f>a.

Proposition 6. If Assumption 2 holds, then Assumption 1
holds with o* defined as

a*:=14+ lim —h(I) :

T——00 T

(a7

where the limit exists and a* < 1.

Proposition 7. If Assumption 2 holds, then Assumption 3
holds.

Lemma 8. Let Assumption 1 hold. The described inventory
control model with quasiconvex cost functions satisfies As-
sumptions W* and B.

Since Assumptions W#* and B hold for the MDP corre-
sponding to the described inventory control problem, then the
optimality equations for the infinite-horizon total discounted
costs can be written as

Ue(z) = min{g]gjg[K + Go(z+a)],Ga(x)} —ex, (18)

where

Ga(z) := ez + E[h(z — D)] + aE[va(z — D)].  (19)

In addition, the function ¢ : X x A — R is inf-compact.
This property and the validity of Assumption W# imply that
for each a € [0,1) the function v, is inf-compact (Feinberg
and Lewis [7, Proposition 3.1(iv)]) and therefore the set
Xa = {z € X|va(z) = mqa}, where m, is defined in (3),
is nonempty and compact. The validity of Assumptions W#*
and B(i) and the inf-compactness of ¢ imply that there is a
compact subset K of X such that X, C K for all a € [0,1);
Feinberg et. al. [5, Theorem 6]. Following Feinberg and
Lewis [8], let us consider a bounded interval [z}, z};] C X
such that

Xs € #5500 for all @ € [0,1). (20)

The following theorem states the optimality of (sq, Sa)
policies for discounted-cost problems with quasiconvex cost
functions.

Theorem 9. If Assumption 1 holds, then for an infinite-
horizon problem with discount factor o € (a*,1), an
(8a, Sa) policy is optimal, where the real numbers S, and sq
are defined in (9) and (10) respectively with f(z) := Ga(x),
reX.

If Assumption 2 holds, then Theorem 9 is proved in
Feinberg and Liang [9, Theorem 4.4] with o* defined in (17).

Since Assumptions W# and B hold, then the average-cost
optimality inequality can be written as

w+u(z) > min{ﬁlgl(}[K +H(zx+a)],H(x)} — ez, (21)

where

H(z) := éx + E[h(z — D)] + E[ia(z — D)]. (22)

The following theorem is proved in Feinberg and Lewis [8,
Theorem 6.10(iii)] under Assumption 2. By verifying the
validity of Assumptions W# and B under Assumption 1, the
results can be generalized to inventory control problems with
quasiconvex cost functions.

Theorem 10. Let Assumption I hold. For each nonnegative
a € (a*, 1), consider an optimal (s.,S.) policy for the
discounted-cost criterion with the discount factor o. Let
{an T 1}n=12,.. be a sequence of negative numbers with
ay > a*. Every sequence {(sl, ,S/ )}n=12,.. is bounded,
and each its limit point (s*,S*) defines an average-cost
optimal (s*,S*) policy. Furthermore, this policy satisfies



the optimality inequality (21), where the function u is de-
fined in (4) for an arbitrary subsequence {cn, }x—1.2,.. of
{an}n=1,.. satisfying (s*,5*) = img_,o0 (s}, ,S%. ).

Eny * T Cny
The following theorem states that the conditions and con-
clusions of Theorem 3, which describes sufficient conditions
for the validity of average-cost optimality equations for
MDPs, hold for the described inventory control problem. It
also states some problem-specific results.

Theorem 11. Let Assumption 1 hold. The MDP for the
described inventory control problem satisfies the sufficient
conditions stated in Theorem 3. Therefore, the conclusions
of Theorem 3 hold for any sequence {c, T 1},—12. .
of nonnegative discount factors with oy > «*, that is,
there exist a subsequence {a,, }x—12, .. Of {an}tn=12. ., @
stationary policy ¢, and a function u defined in (4) for the
subsequence {cau, }x—1,2,... such that for all r € X

w+i(z) = Kljg@)soy + H(z +¢(z)) — ez
= IﬂJIl{Ing[K + H(x+a)],H(x)} —ezx, (23)

where the function H is defined in (22). In addition, the
functions w and H are continuous and inf-compact, and a
stationary optimal policy ¢ satisfying (23) can be selected
as an (s*,5*) policy described in Theorem 10. It also can
be selected as an (s, S) policy with the real numbers S and
s satisfying (9) and defined in (10) respectively for f(z) =
H(z), z e X.

Let us formulate several auxiliary facts for the discounted-
cost relative value functions. Consider the renewal process

N(t) :=sup{rn=0,1,...|S, < t},

wheret € Ry, 8o =0andS, =37 D;forn=1,2,....
Observe that since P(D > 0) > 0, then E[N(¢)] < +oo,
t € R, ; see Resnick [14, Theorem 3.3.1].

Consider an arbitrary a € [0,1) and a state =, such that
Ua(Ta) = Mg, Where my is defined in (3). Then, in view
of (20), the inequalities r} < x, < zj; take place.

Define Ey(z) := E[h(z — Sn(y)41)] for z € X, y > 0. In
view of Feinberg and Lewis [8, Lemma 6.2], E,(x) < +o0.
Let E(z) := h(z) + E;_z; (z) and

U(z) =
K +é(zf; — x), if z < z7,
K +olaj, —7)+
(E(z) +eE[D])(1 +E[N(z — z})]), ifz>z}.
(24)

Lemma 12. Let Assumption 1 hold. The following inequal-
ities hold for o € [0,1) :

(i) ua(z) <U(z) < 4oo for all z € X

(ii) If o,z € X and z. < =z, then C(z.,z) =

SUPy e[, 2] U(y) < +o0;

(iii) E[U(z — D)] < +oo for all z € X.

The following theorem shows that the equicontinuity
conditions stated in Theorem 3 holds for the inventory

model with holding/backlog costs satisfying quasiconvexity
assumptions.

Theorem 13. Let Assumption 1 hold. Consider o™ defined
in (16). Then for each B € (a*,1), the family of functions
{#a }aels,1) is equicontinuous on X.

According to Lemma 12 and Theorem 13, Assumption
EC holds for the inventory control problem satisfying the
quasiconvexity assumption. Furthermore, the continuity of
average-cost relative value functions implies the following
corollary.

Corollary 14. Let Assumption 1 hold, the state space X =
R, and the action space A = R.. For the (s,S) policy
defined in Theorems 11, consider the stationary policy ¢
coinciding with this policy at all = € X, except = = s, and
with o(s) = S—s. Then the stationary policy o also satisfies
the optimality equation (23), and therefore the policy  is
average-cost optimal.

V. CONVERGENCE OF OPTIMAL ORDERING
THRESHOLDS s,

In this section, we establish for problems with quasiconvex
costs the convergence of discounted-cost optimal ordering
thresholds s, —+ s as @ T 1, where s an optimal average-
cost threshold.

Theorem 15. Let Assumptions I and 3 hold. Then the limit

s* = Eﬁsa (25)
exists and s* < TP, where =" is defined in (15).
We also state several auxiliary facts. Consider
Uu(x) = v(z) +CEr, zeX (26)

Then the optimality equations (18) can be written as U, (z) =
min{ming>o[K + Ga(z + a)],Ga(z)}, where Go(z) =
El[ha(z — D)] + aE[va(z — D)].

For z € X, define

My = mé%{ﬁo(z)} and ¥, (z) :=T4(z) — M. (27)

For @ € (a* 1) define the set of all possible optimal
discounted lower thresholds

Ga = {r <5, : Ga(y) = K + G4 (Sa)
for all y € [sq.z]}, (28)

where S, satisfies (9) and s, is defined in (10) with f :=
G.. Note that s, € G, and y > s, for all y € G,,.

Lemma 16. Let Assumption I hold. Then (1—a)(m.+K) =
Elha(y — D)] for all a € (a*,1) and y € G,.

Lemma 17. Let Assumption 1 hold. Then y < ™" < o
for all « € (a*,1) and y € G,.

Lemma 18. Let Assumption 1 hold. Then,

]&1%(1 —a)m, = EﬁE[hQ(sa —D)l=w. (29)
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The following theorem establishes the uniqueness of pos-
sible optimal lower thresholds for the inventory model with
convex cost functions under the discounted criterion.

Theorem 19. Let Assumption 1 hold and Assumption 3 hold
for the discount factor o € (a*,1), where a* is defined in
(16). Then G, = {sa}, where G, and s, are defined in (28)
and (10) with [ := G, respectively.

VI. CONVERGENCE OF RELATIVE VALUE FUNCTIONS
FOR INVENTORY CONTROL

This section establishes the convergence of discounted
relative value functions to the average-cost relative value
function for the setup-cost inventory model when the dis-
count factor tends to 1.

Let us define

u(x) ;= liminf uqs(y). (30)
a4 —T

Ty
The following theorem states the convergence of dis-
counted relative value functions, when the discount factor
converges to 1, to the average-cost relative value function w.

Theorem 20. Let Assumption 1 hold and Assumption 3 hold
for cc = 1. Then,

zeX, (31)

lim ua() = u(z),

and the function u is continuous.

Theorem 20 implies that (22) can be written as H(z) :=
¢x + E[h(z — D)] + E[u(z — D)].
We also state several auxiliary facts.

Lemma 21. Let Assumption I hold. Then:
(i) for each f € (a*,1), where o* is defined in (16), the
family of functions {Ga}ac(s,1) IS equicontinuous on

¥

(ii) supPc(a+,1) Ual(T) < +oo for all z € X.

Lemma 22. Let Assumption 1 hold and Assumption 3 hold
for o = 1. Then there exists the limit u(x) := limat1 Ua(x)
for all = € X, where the function @ is continuous on X.

In view of (3), (26) and (27), ua(z) = Talx) + e —
me — ¢z, for all z € X.

Corollary 23. Let Assumption 1 hold and Assumption 3
hold for o = 1. Then the conclusions in Theorem 11 hold
with @ = u defined in (31) and s* defined in (25), that is,
the functions u and the thresholds s* defined in (4) and
Theorem 10, respectively, are the same for all sequences

{an T 1}n=1,2?,..-

Define the set of all possible optimal average-cost lower
thresholds

G:={x<S8:H(y)=K+H(S) for all y € [s,x]},
(32)

where § = min { argmin,{H ()} } and s is defined in (10)
with f := H. Note that s € G and y > s for all y € G.

The following theorem establishes the uniqueness of pos-
sible optimal lower thresholds for the inventory model with
holding/backlog costs satisfying quasiconvexity assumptions
under the average cost criterion.

Theorem 24. Let Assumption 1 hold and Assumption 3 hold
for & = 1. Then G = {s*}, where G and s* are defined in
(32) and (25), respectively.

The following corollary states that all the results of this
paper hold for inventory models with convex holding/backlog
costs.

Corollary 25. The conclusions of lemmas, theorems, and
corollaries in Sections V and VI hold under Assumption 2.
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