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1. Introduction

Undiscounted Markov decision processes (MDPs) are typically
much more difficult to study than discounted MDPs, This is true
both for models with expected total costs and for models with
average costs per unit time, This paper describes conditions under
which undiscounted MDPs with infinite state spaces and weakly
continuous transition kernels can be transformed into discounted
MDPs.

For undiscounted total costs, a classic assumption is that the
expected number of visits to each state in a certain set X’ is
finite under every policy and initial state, Such an assumption is
typically referred to as transience [3, Chapter 7], [18]. When the
expected amount of time spent in X' (i.e., the “lifetime” of the
system) is finite for every policy and initial state, the MDP is called
absorbing [3, Chapter 7]. It is well-known that every discounted
MDP can be viewed as an absorbing MDP with the lifetime of the
system being geometrically distributed [3, p. 137]. We remark that
every absorbing MDP is transient, and that the two conditions are
equivalent when the set X is finite,

For average costs per unit time, a classic approach has been
to make use of results about discounted MDPs. The most general
results have been obtained in [10] using the so-called vanish-
ing discount factor approach, where the validity of optimality
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inequalities and existence of stationary optimal policies are ob-
tained by considering optimality equations for discounted MDPs
and letting the discount factor tend to one. Another approach,
which was used early in the development of the theory of average-
cost MDPs, is to transform the average-cost problem into a dis-
counted one, and argue that optimal policies for the latter are
also optimal for the former [6, Chapter 7 §10], [16,17]. One ad-
vantage of this approach is that it can be used to apply methods
and algorithms developed for discounted MDPs to undiscounted
MDPs. [1,8,9].

In [9], conditions were given under which undiscounted MDPs
with general state and action spaces can be reduced to discounted
ones. These conditions include the assumption that the transition
probabilities are setwise continuous. However, for many models
of interest, such as those arising in inventory control [7], the
transition probabilities are only weakly continuous. In this paper,
we provide conditions under which the reductions in [9] lead to
optimality results for undiscounted MDPs with weakly continu-
ous transition kernels. In particular, under these conditions the
discounted MDPs to which the undiscounted MDPs are reduced
have weakly continuous transition probabilities. Moreover, while
sufficient conditions are provided in [5,12,15] for the validity of
the optimality equations for average-cost MDPs, Assumption HT
in Section 4 ensures that a solution to this optimality equation can
be obtained via the optimality equation for a discounted MDP, This
in turn implies that such average-cost MDPs can be solved using
methods developed for discounted MDPs.

The rest of the paper is organized as follows. In Section 2,
the MDP model and objective functions are described. Next, in
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Section 3 the results for undiscounted total-cost MDPs are pre-
sented. Section 4 contains the results for average-cost MDPs. Fi-
nally, in Section 5 we apply the preceding results to a capacitated
inventory control problem with fixed ordering costs and lost sales.

2. Model description

The state space X and action space A are Borel subsets of com-
plete separable metric spaces endowed with their respective Borel
o-algebras B(X) and B(A). When the current state is x € X,
the decision-maker must select an action from the set of available
actions A(x), which is a nonempty Borel subset of A. The space of
all feasible state-action pairs

Gr(A) .= {(x,a)|x € X, a € A(x)}

is assumed to be a Borel subset of X x A, and to contain the graph
of a Borel-measurable function from X to A (these assumptions
follow from Assumption WC(i)). For each (x, a) € Gr(A) there is
an associated one-step cost c(x, a) € [0, oc) and a finite measure
q(-lx, a)on (X, B(X)). We assume that the functions (x, a) + c(x, a)
and (x, a) — q(B|x, a), for each B € B(X), are Borel-measurable.
Moreover, q is assumed to satisfy

sup {q(X|x, a) : (x, a) € Gr(A)} < oo.

For possible interpretations of the values q(B|x, a) for B € B(X),
which may be greater than one, see [9, Section 2.1]; in light of these
interpretations, we will refer to q as the transition kernel.

2.1. Objective functions

LetHp = X, andforn = 1,2,...let H;, := X x A x Hy_q
denote the space of all histories of the process up to decision epoch
n, endowed with the product ¢ -algebra. A decision rule for epoch
n = 0,1,...1is a mapping 7, : B(A) x H, — [0, 1] such that
for every h, = Xpap - - - X, the set function 7, (-|hy, ) is a probability
measure on (A, B(A)) satisfying m,(A(x,)|h,) = 1, and for every
B € B(A) the function m,(B|-) on Hj, is Borel-measurable,

A policy is a sequence m = {m,}>2, of decision rules; let /T
denote the set of all policies. Under a policy =, at each decision
epochn = 0, 1, ... the decision-maker observes the history h, =
Xolo---X; € M, of the process up to epoch n and selects an
action a € A(x,) according to the probability distribution 7t (-] hy ).
A stationary policy is identified with a Borel-measurable function
¢ : X — A satisfying ¢(x) € A(x) for all x € X; under such a policy,
the decision-maker selects the action ¢(x) if the current state is x.
The set of all stationary policies is denoted by F.

To define the objective functions under consideration, for B €
B(X) and (x, a) € Gr(A) let

p(BIx, a) := q(Blx, a)/q(X|x, a),
and let
a(x, a) .= q(X|x, a).

Observe that p(-|x, a) is a probability measure on (X, B(X)) for
every (x,a) € Gr(A), and that p(B|-) is a Borel function on Gr(A)
for every B € B(X). Therefore, for every policy m € IT and initial
state x € X the Ionescu Tulcea theorem [4, pp. 140-141] uniquely
defines a probability measure P on ((X x A)*, B[(X x A)*])and
its associated expectation operator E7.

When the initial state is x € X, under m € IT the total cost
incurred is

v (x) =E7 E a(Xy, O )C(Xn, Oy,

n=0

and the average cost incurred is

N-1

; 1_.
w”(x) = limsup E; gatxn, O )C(%n, O ).
A policy 7, € IT is total-cost optimal if
v™(x) = inf v"(x) = v(x) VxeX,

well
and is average-cost optimal if
w™(x) = in‘g wh(x) = w(x) VxeX

me

If there exists a constant 8 such that e(x,a) = g for all (x,a) €
Gr(A), a total-cost optimal policy is called g-optimal.

3. Total costs

To state Assumption T for the total-cost criterion, given ¢ € F
and a Borel functionu : X — Rlet

Quu(x) = fx uy)gdylx, $x),  xEX,

let Q£u{x) ‘= u(x)forx € X,andforn = 1,2,...let Q‘:u{x) =
Qs(Q; 'u)(x)forx € X.

Assumption T. There exist a continuous functionV : X — [1, 00)
and a constant K satisfying

oo

D QV(x) <KV(x) <0, Vp €F, x €X. (1)
n=0

The statement of Assumption WC requires several definitions.
Let S and T be metric spaces endowed with their respective Borel
o-algebras B(S) and B(T). A set-valued mapping s — @(s) € T on
S is compact-valued if @(s) is compact forall s € S, and is continuous
on S if for every open set V C T the sets {s € S|®@(s) € V} and
[s € S|®(s)NV # @} are open in S.

Next, a transition kemnel from S to T is a mapping x : B(T)xS —
[0, oc) such that «(-|s) is a finite measure on (T, B(T)) for every
s € §, and «(T|-) is a Borel function on S for every T € B(T).
A transition kernel x is weakly continuous if for every bounded
continuous functionf : T — R the mapping

St f F(E(de]s)
T

is continuous on S. If x is a transition kernel such that «(-|s) is
a probability measure for every s € §, it is called a transition
probability kernel.

Finally, a functionf : S — R is lower semicontinuous at s € S if
liminfy_ f (s") > f(s), and is lower semicontinuous on S C Sifitis
lower semicontinuous at every s € S.

Assumption WC.

(i) The set-valued mapping x + A(x) is compact-valued and
continuous on X,
(ii) The transition kernel q is weakly continuous.
(iii) The function (x,a) — c(x, a) is lower semicontinuous on
Gr(A).

Proposition 1. Suppose Assumptions T and W((i, ii) hold. Then there

exists a continuous function p : X — [1, oo) satisfying V(x) <
w(x) < KV(x)forallx € X and

wlx) > Vx) + fx H)a(dylx, a) @

forall (x, a) € Gr(A).
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Proof. Consider the operator# defined for Borel functionsu : X —
R by

Uu(x) = sup [V{x)+ [ waayix. au]
aeA(x) X

forx € X. letup = 0,and forn = 1,2,... letu, = Uuy_1.
According to the Berge maximum theorem (see e.g., [ 2, p. 570]), for
n = 0,1, ... the function u, is continuous. Since U, ; > u, =V
pointwise forn = 1, 2, ..., the sequence of continuous functions
{u,}22, converges to a Borel function p = limy_ U, > V.
The clanm that 4 < KV can be verified using the arguments in
|9, Proof of Proposition 1] and the Berge maximum theorem, More-
over, Lebesgue’s monotone convergence theorem implies that © =
U, which means (2) holds for all (x, a) € Gr(A).

It remains to be shown that the function i : X — R defined
above is continuous. First, observe that for any Borel functionsf, g
on X,

£ < 80+ ) (sup M) WKEX,
xeX .U(X)
which implies thatfor all x € X,
If(x) — g(X)I)
w(x)
K—1 If(x) — gx)I
cutr o (55) (g ).

By reversing the roles of f and g, it follows that
) —ugta)l _ (K - 1) sup ) = £
1(x) K Jxx (k)

Since V < u < KV, it follows that for the sequence {u,}>’ ; defined
above,

[un+1(x) — un(x)] K—-1)" _
ilelylg) V@ 5( X ),n_{),l,...,

which implies that for all nonnegative integers m, n satisfying m >
n,

Uf(x) < ug(x) + (u(x) — V(x)) (i‘é;’

, Vxe X

[tm(x) — up(x)|

xcX KV[X)
m—n—1
N o [Un+x+1(X) — Unk(X)]
xeX KV(X)

| A

M
P
=

=| |
—
\.._../=
+
Fol

(K—; ‘) 3)

Define the V-norm for functions f X - Rby|flv =
sup,xIf (x)I/V(x), and let Cy(X) denote the space of continuous
functions on X with finite V-norm. Then (3) implies that {u,}2,
is a Cauchy sequence in Cy(X). Since Cy(X) is a Banach space with
respect to || - ||y, it follows that the sequence {u,}3° , converges to
a function in Cy. Since limy,_, oclUp = W, it follows that u € CGy; in
particular, p is continuous. O

3.1. Hoffman-Veinott (HV) transformation

In this section, we present the HV transformation [9], which is
based on ideas due to Alan Hoffman and A. F. Veinott [ 18], A point
s is isolated from a metric space S, if there exists an € > 0 such

that the distance between s and any element of § is larger than e.
The state space of the new MDP is X := X U {%}, where ¥ ¢ X
is a cost-free absorbing state that is isolated from X. The action
spaceis A == A U {a} where @ is the only action available when
the current state is X. The setA(x) of available actions is unchanged
if the current state x is not %, i.e.,

A(x), ifx e X,

A)=1a  ifx=%

The one-step cost function ¢ is defined by

[ w(x)'c(x,a), if (x,a) € Gr(A),
0, if (x, a) = (X, a).

Finally, select a discount factor
B €K —1)/K., 1),

and define the transition probabilities p as follows. For (x,a)
Gr(A), let

C(x,a) =

_ 1
BB ) = o j; w)(dyix, a), B € B(X),
o 1 1

A =1 fx y)a(dylx, a),

and let

P{X}X, @) == 1.

Since only one action is available in state X, and the action sets
coincide otherwise, there is a one-to-one correspondence between
policies for the new MDP and the original MDP.

Forx € X and 7 € II, let v"(x), be the expected total
discounted cost for the new model, and let ¥(x) := inf, 707 (x).
Itis well-known (see e.g., [9]) that 77 (x) = p(x)~'v™(x) and B(x) =
wu(x) u(x) forallx € X.

Theorem 2. Suppose Assumptions T and W((i,ii) hold. If the function
x> [Voudira @)
X

is continuous on Gr(A), then p is a weakly continuous transition
probability kernel. In addition, if Assumption W((iii) holds, then there
exists a stationary B-optimal policy for the MDP obtained from the HV
transformation, and for this MDP a stationary policy ¢ is B-optimal if
and only if forallx € X,

5(x) = 6(x, $(x)) + P f 5)B(dyIx, H(0))
(5)
= min [f{x, a)+ B fx Sy, au] .

Proof. According to Proposition 1, the function w used in the
HV transformation can be taken to be continuous. Moreover,
Assumption Timplies that the function V is integrable with respect
to q(-|x, a), for all (x, a) € Gr(A). Since . < KV, the weak continuity
of p then follows from Lemma 11 in the Appendix.

Next, recalling that X is isolated from X, the continuity of u
by Proposition 1 implies that the nonnegative function  is lower
semicontinuous on Gr{A) Since the action sets A(x) are compact for
allx € X, it follows from [ 10, Theorem 2] that the value function o
for the discounted MDP defined by the HV transformation satisfies

(x) = min [E(x, a)+ B f ﬁ(y}ﬁ{dylx,a)]
X

aeA(x)

for all x € X, and there exists a stationary optimal policy for this
discounted problem. Moreover, since #(X) = 0, a stationary policy
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¢ is optimal for the discounted problem if and only if (5) holds for
all x € X, The need to only consider x € X, for which A(x) = A(x),
follows from the fact that there is only one available action at
stateX. O

Corollary 3. Suppose Assumptions T and WC hold and that the
mapping (4) on Gr(A) is continuous. Then

(i) the value function v satisfies the optimality equation

v(x) = mm [c(x a)+ fx v{y)q{dylx,a)]

forallx e X;
(ii) there exists a stationary policy that is total-cost optimal;
(iii) a stationary policy ¢ is total-cost optimal if and only if
v(X) = Cp(x) + Qpu(x) VxeX,

which holds if and only if ¢ is B-optimal for the MDP defined by
the HV transformation.

Proof. This follows from Theorem 2, the definition of the HV
transformation, and the fact that v(x) = p(x)v(x)forallx e X, O

4. Average costs per unit time

To state Assumption HT, given ¢ € T, a Borel functionu : X —
R,and astatez € X, let

z%mn>1[ uy)aldyix, a),
H\{z}
definequ?u{x) =u(x)forx e X,andforx e Xandn=1,2,...let
2Qu(x) := ;Q4(;Q~ 'u)(x). Also, let e(x) := 1forx € X.

xeX,

Assumption HT. There exist a state £ € X and a constant K;
satisfying

> (Qje(x) <K, <00, V$ €F, x€X. (6)
n=0

Proposition 4. Suppose Assumption HT holds with a state £ € X that
is isolated from X, and Assumptions WC(i,ii) hold. Then there exists a
continuous function pu, : X — [1, 00) satisfying ps(x) < K; for all
x € Xand

w021+ [ p)ayi.a) 7)
X\
for all (x, a) € Gr(A).

Proof. Consider the transition kernel q; from Gr,(A) := {(x,a) €
Gr(A)x £ £} o X; := X\ {£} where

qe(Blx, a) :== q(B\ {£}|x, a)

for B € B(X;) and (x,a) € Grg(A). Then it follows from
Proposition 1 and Assumption HT that there exists a continuous

function w, : X; — [1, oo) that is bounded above by
K, == su e(x
t xeX\I{)f} Zf% ( ]

and satisfies (7 ]for all (x, a) € Gr¢(A). Letting

uM%=wPP f uﬁM@mﬂ
aeA(£) X\[€

and recalling that £ is isolated from X, it follows that this extension
of u, to X is continuous and bounded above by K; according to
Assumption HT, and satisfies (7) for all (x, a) € Gr(A). O

Remark 5. The function u, that is constructed in the proof of
Proposition 4 gives, for each x € X, the supremum g4(x) (over all
policies) of the expected number of epochs before the system hits
state £ after epoch 1. If the state £ is not isolated, then this function
¢ may be discontinuous at £ despite the weak continuity of q.

To verify this, let £ := (+/5 — 1)/2 and consider the following
MDP with only one available action a, for each state and a constant
one-step cost function. The state space is the closed interval X :=
[0, £], and the transition probabilities g(-|x, ap) are defined forx e
X as follows, Let q({£}]0,ap) = 1, q({£}]€,a0) = 1 — £, and
q({0}|£, ap) = ¢£. In addition, for x € (0, £) let g({x}|x, a0) =
X2, q({€}|x,ap) = 1 — x — x?, and q({0}|x, ap) := x. Observe
that Assumption HT holds because u1,(0) = 1, ue(£) = (/5 +
1)/2, and pe(x) = 1/(1 —x) < (V5 + 3)/2forx € (0,¥£).
Moreover, it is straightforward to verify that this MDP satisfies
Assumptions WC(i,ii). On the other hand, since lim,_ ,u;(x) =
1/(1 — £) = (v/5 4 3)/2 > (+/5 + 1)/2 = (&), the function
[y is discontinuous at £.

4.1. HV-AG transformation

Suppose Assumption HT holds. We now describe the HV-
AG transformation [9], which is based on the work of Akian &
Gaubert [1]. As was the case with the HV transformation, the
HV-AG transformation results in a discounted MDP, whose set of
policies corresponds to the set of policies for the original MDP.,

The components of the discounted MDP defined by the HV-
AG transformation will be indicated by a horizontal bar. The state
space is X := X U {X}, where X ¢ Xisa cost-free absorbing state
that is isolated from X. The action space is A := A U {a}, where @ is
the only action available when the system is in state X. The set A(x)
of available actions is unchanged if the current state x is notx, i.e.,

A(x), ifx e X,

AN =@, ifx=x,

The one-step cost function c is defined by

- ) (x)'c(x,a),  if (x,a) € Gr{A),
cx, a) := |g,£ i (x. 0) = (%, 3),

Finally, select a discount factor
B € [(Ke — 1)/Ke, 1),

and define the transition probabilities p as follows. For (x,a) €
Gr(A)and B € B(X \ {£}), let

P(Blx, a) := ﬁ _’;ﬂf(}’)q[dﬂx, a),

and let

p({€}x, a) :== pe(¥) — 1 — fX\[f] 1e(v)q(dy|x, a)
o Bre(x) ’

A, a) = 1 — ) 1

p({x}|x,a) =1 R

Finally, let
p({x}Ix, @) = 1.

Since only the action a is available at the state X and the action sets
coincide otherwise, there is a one-to-one correspondence between
policies for the new MDP and the original MDP,

Forx € Xand wr € I, let v"(x), be the expected total
discounted cost for the new model, and let v(x) := inf,; c7 0™ (x).
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Theorem 6. Suppose Assumption HT holds with a state £ € X
that is isolated from X, and Assumptions WC(i,ii) hold. Then p is
a weakly continuous transition probability kernel. In addition, if
Assumption WC(iii) holds, then there exists a stationary B-optimal
policy for the MDP defined by the HV-AG transformation, and for this
MDP a stationary policy ¢ is g-optimal if and only if for all x € X,

5(x) = E(x, $()) + B fx SW)P(dyIx, $(x))
(8)
= min [E(x, 0)+B fx S)B(dyix, a)] .

Proof. Proposition 4 implies that the function wu, used in the
HV-AG transformation can be taken to be continuous. Since p; <
K; < o0, the weak continuity of p follows from Lemma 11 in the
Appendix. B

Next, observe that ¢ is lower semicontinuous on Gr(A), and
the action sets A(x) are compact for all x € X. According to
[10, Theorem 2], it follows that

5(x) = min [E(x, a)+ B f SRy, a)]
acA(x) X

for all x e X, there exists a stationary optimal policy for the
discounted problem, and a stationary policy ¢ is optimal for this
problem if and only if (8) holds forallx e X, O

Corollary 7. Suppose Assumption HT holds with a state £ € X that is
isolated from X and Assumption WC holds. Then

(i) the constant w := v(£) and the function h(x) = p(x)[v(x) —
v(€)], x € X, satisfy

w + h(x) = ane}qi[r,}] [c[x, a)+ fx h(y)q(dy|x, a)]

forallx € X, and

(ii) if the one-step cost function c is bounded, and q is a transition
probability kernel, then there exists a stationary average-cost
optimal policy, and any stationary policy ¢ satisfying

w + h(x) = cg(x) + Quh(x) Vx e X,

where w are h are defined in (i), is average-cost optimal;

(iii) there exists a B-optimal stationary policy for the MDP defined
by the HV-AG transformation, and under the hypotheses of (ii)
every such policy is average-cost optimal for the original MDP.

Proof. Statement (i) follows from Theorem 6 and the definition
of the HV-AG transformation. Moreover, statement (ii) follows
from statement (i) and [ 14, Proposition 5.5.5]. Finally, statement
(iii) follows from Theorem 6, statement (ii), the definition of the
HV-AG transformation. O

5. Capacitated inventory control with fixed ordering costs and
lost sales

Consider the following single-item capacitated periodic-review
inventory control problem with fixed ordering costs and lost sales.
At each period n = 0,1, ..., the decision-maker observes the
current inventory level x, and places an order a, = 0. After the
order is received in the same period, the demand D,,; = O is
realized. Any remaining inventory is held to the next period, and
all unmet demand is lost. The demands Dq, D,, ... are assumed
to be independent and identically distributed with distribution
Gp(-), where Gp(0) < 1. Moreover, we assume that the system is
capacitated, where the inventory level can be at most C < oo and
the maximum order size is M < o0.

Whenever a positive amount is ordered, a fixed costK = 0 is
incurred in addition to a per-unit cost of ¢ > 0. The cost to hold x
units of inventory for one period is h(x), where h : [0, C] — [0, 00)
is assumed to be continuous.

The inventory control problem described above can be formu-
lated as an MDP as follows. The state space is X = [0,C] U
{0}, where 0; is isolated from [0, C]. The special state 0;, which
indicates the occurrence of a lost sale, will be used to apply the
results in Section 4. For every x € X, the set of available actions is
A(x) = A == [0, M].

Letting O; +y =y fory € R, the state process can be described
by the stochastic equation
Xnp1 = F{X", an, Dn+1)

. Jmin{x, + an — Dyy1,C},  Xp+an > Dy,
- |0L., Xn+an < Dn+1 -

This equation defines the transition probability kernel g for the
corresponding MDP, where

q(B|x, a) == fBI{F(x, a, s) € B} dGp(s)

for B € B(X) and (x, a) € X x A, where 1{-} denotes the indicator
function. Since 0; is isolated from X and F is continuous on X x A x
[0, o), it follows that q is weakly continuous; see e.g., [13, p. 92].

Recall that K = 0 is the fixed ordering cost, € = 0 is the per-
unit ordering cost, and h : X — [0, oo) is the per-period holding
cost function. Letting h(0;) := h(0), it follows that the associated
one-step cost function ¢ : X x A — [0, o0) is given by c(x, a) :=
K1{a > 0} +ca + f0°° h[F(x, a, 5)] dGp(s). Since h is continuous on
[0, C], c is bounded on X x A. Moreover, for every A € R, the set
{(x,a) € X x Alc(x,a) < A} is a compact subset of X x A; this
implies that c is lower semicontinuous on X x A. Recalling that
the action sets A(x) = A = [0, M] for all x € X, it follows that
Assumption WC holds.

Assumption D. With positive probability, the per-period demand
D is greater than the maximum order size M, that is, Gp(M) < 1.

Proposition 8. Assumption D implies that Assumption HT holds with
£ =0

Proof. Lety :== 1 — Gp(M) > 0,and let ; := inf{n = 1|x, = 0y}
denote the first epoch n when the demand D, generated a lost
sale. Since the amount of on-hand inventory is at most C, and at
most M units can be ordered in a single period, it follows that
P {xrcme1 = O} > yMI+1 5 oforallg € Fandx € X.
Hence

> 0Qex)=Efty =) Piz > n)
n=0

n=0

=1+ PIx#0, k=1,...,n}

n=1
0o

<14 3 (1 — plemn e
n=1

_ IC/M1+1
= yloMIH

forallp e Fandxe X. O

Theorem 9. Suppose Assumption D holds. Then there exists a
B-optimal policy for the MDP defined by the HV-AG transformation,
and every such policy is average-cost optimal for the original inven-
tory control problem.
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Proof. This follows from statements (ii) and (iii) of Corollary 7. O

Remark 10. Using the HV transformation and Corollary 3, it can be
shown that, when Assumption D holds, the problem of minimizing
the total cost incurred before the first lost sale can also be reduced
to a discounted MDP.
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Appendix

Let S be a metric space endowed with its Borel o -algebra B(S).
A sequence {v, }7° , of finite measures on (S, 5(S)) converges weakly
to a measure v if, for every bounded continuous functionf : § —
R,

lim [ 16wt = [ 760 (e

Lemma 11 (Dominated Convergence). Let g : S — [0,00) be a
continuous function, and let {v,}7° , be a sequence of finite measures
on (S, B(S)) that converges weakly to a measure v. Suppose there
exists a continuous function h on S such that g < h and

li h(x) vy(dx)= [ h dx .

Jtim [ b ) = [ ) i) < o0 ©)

Then

li n(dx) = dx).

lim [ g6 w(ae) = [ 500wt (10)

Proof. According to [11, Theorem 1.1],iff : § — [0,00) is

continuous, then

ff(x) v(dx) < liminfff(x) vn(dx). (11)
g n—00 g

The equality (10) then follows by applying (9) and (11) to the
nonnegative continuous functionsh —gandh+g. O
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