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1. Introduction

Recently Feinberg et al. [7] established results on continuity
properties of minimax values and solution sets for a function of two
variables depending on a parameter, when decision sets may not be
compact. Such minimax values appear in games with perfect infor-
mation, when the second player knows the move of the first one, in
turn-based games, and in robust optimization. Some of the results
in [7] hold under the assumption that a multifunction defining
decision sets of the second player is A-lower semi-continuous. The
A-lower semi-continuity property of a multifunction was intro-
duced in [7], and it is stronger than lower semi-continuity. How-
ever, as shown in [7], these two conditions are equivalent in the
following two important cases: (i) decision sets for the second
player do not depend on the first variable, as this takes place in
games with simultaneous moves, and (ii) the multifunction defin-
ing decision sets of the first player is upper semi-continuous and
compact-valued. This note provides an example when the corre-
sponding continuity properties of minimax fail when the A-lower
semi-continuity assumption is relaxed to lower semi-continuity.

Let R := R U {00} and S be a metric space. For a nonempty
set S C S, the notationf : § € § ++ R means that for each
s € S the value f(s) € R is defined. In general, the function f
may be also defined outside of S. The notation f : § > R means
that the function f is defined on the entire space S. This notation is
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equivalent to the notation f : S C S +> R, which we do not write
explicitly. For a functionf : S C § > R we sometimes consider
its restriction f |§ :S CS+> RriothesetS  S. Throughout the

note we denote by K(S) the family of all nonempty compact subsets
of S and by S(S) the family of all nonempty subsets of S.

We recall that, for a nonempty set S C S, afunctionf : S C
S +— R is called lower semi-continuous at s < S, if for each
sequence {S;},—1,2... C S, that converges to s in S, the inequality
lim inf,,_, oof (52) = f(5) holds. A functionf : § — S > R is called
upper semi-continuous at s € S, if —f is lower semi-continuous at
s € S.Afunctionf : S ¢ S ~ R is called lowerfupper semi-
continuous if f is lower/upper semi-continuous at eachs € 5. A
functionf : S ¢ S — R is called inf-compact on S, if all the level
sets {s € S : f(s) < A}, A € R, are compact in S. A function
f : S € S — Ris called sup-compact on S, if —f is inf-compact
ons.

Let X and Y be nonempty sets. For a multifunction @ : X - 2¥,
letDom @ = {x € X : ®(x) # @}. Amultifunction ® : X > 2V is
called strict if Dom @ = X, thatis, @ : X > S(Y) or, equivalently,
@(x) # Aforeachx € X. ForZ c X define the graph of a
multifunction @ : X > 2V, restricted to Z:

Grz(@)={(x,y) €Z xY : x e Dom @, y € &(x)}.

When Z = X, we use the standard notation Gr( @) for the graph of
@ : X 1> 2Y instead of Grg(®).

2. Basic definitions and facts

LetX, A and B be metric spaces, &, : X +— S(A)and &g : Gr($,) C
X x A > 5(B) be multifunctions, and f : Gr(¢z) C X xAx B> R
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be a function. Define the worst-loss function

f(x,a):= sup f(x,a,b), (x.a)eGr(#a), (1)
be®g(x.a)
the minimax value function
vi(x):= inf sup f(x,a,b), xeX, (2)
ueq?,q(x] be‘bg(x,a)
and the solution multifunctions
81(x) = {a € &,(x) : v¥(x) =£*(x,0)}, x€X; (3)

#}(x,a) := {b € &(x, a) : £%(x,a) = £(x, a, b)},
(x, @) € Gr(%a). (4)

Formulae (1)-(4) describe the value functions and solution mul-
tifunctions for one-step zero-sum games with perfect information,
where X is the state space, A and B are the action sets of Players Iand
Il respectively. Player | knows the state x and selects an action from
the set $,(x). Player Il knows the state x and the move a chosen by
Player I and selects an action b from the set #3(x, a). Then Player
I pays Player II the amount f(x, a, b). Turn-based games can be
usually reduced to games with perfect information. These formulae
also describe a model for robust optimization. In this case the goal
is to choose an action a to minimize possible losses f(x, a, b) under
the worst possible outcome of the uncertain parameter b.

Natural continuity properties of functions (1), (2) and solution
multifunctions (3), (4) are described in [7]. The results in [ 7] gener-
alize Berge’s theorem and Berge’s maximum theorem for possibly
noncompact action sets from [6] and [5] to minimax settings. We
start with the descriptions of these theorems.

Let X and Y be metric spaces. A set-valued mappingF : X > 2Y
is upper semi-continuous at x € DomF if, for each neighborhood
G of the set F(x), there is a neighborhood of x, say U(x), such
that F(x*) c G for all x¥* € U(x) N DomF; a set-valued mapping
F : X > 2Y is lower semi-continuous at x € Dom F if, for each open
set G with F(x) N G # @, there is a neighborhood of x, say U(x),
such thatif x* € U(x) N DomF, then F(x*) N G # @ (see e.g., Berge
[2, p. 109] or Zgurovsky et al. [12, Chapter 1, p. 7]). A set-valued
mapping is called upper/lower semi-continuous, if it is upper/lower
semi-continuous at allx € DomF.

Let @ : X > 2Y be a multifunction with Dom® # @, and
u:Gr(®) c X x Y — R be a function. Define the value function

v(x) = ,,E'Efx,”["’”’ x eX,

and the solution multifunction

D*x):={y e d(x) : v(x) =u(x,y)}, xeX

First, we formulate two classic facts playing important roles in
parametric optimization Bank et al. [ 1] and in mathematical eco-
nomics, control theory, and game theory.

Theorem 2.1 (Berge's Theorem; Berge [ 2, Theorem 2, p. 116], Hu and
Papageorgiou [8, Proposition 3.3, p. 83]). If u : X x Y — Risa
lower semi-continuous function and @ : X — K(Y)is an upper semi-
continuous multifunction, then the function v : X — R is lower semi-
continuous and the solution sets @*(x) are nonempty and compact for
all x € X.

Theorem 2.2 (Berge's Maximum Theorem; Berge [2, p. 116], Hu and
Papageorgiou [8, Theorem 34, p. 84]). If u X¥xY = R
is a continuous function and @ X — K(Y) is a continuous
multifunction, then the value function v : X — R is continuous and
the solution multifunction @* : X — K(Y)isupper semi-continuous.

Second, we formulate Berge's theorem and Berge’s maximum
theorem for possibly noncompact sets @(x).

Definition 2.3 (Feinberg et al. [6, Definition 1.1], [7, Definition 1]). A
functionu : Gr{@) € XxY +» Ris called K-inf-compact on Gr(®),
if for every C € K(Dom @) this function is inf-compact on Gr¢(®).

In particular, according to [7, Lemma 3], a functionu : Gr{®) C
X x Y ++ R is K-inf-compact on Gr(® ) in the following two cases:
(i)u : Gr(®) c X x Y > R is an inf-compact function; (ii) the
assumptions of Berge's theorem (see Theorem 2.1) hold. Note that
a function f : Gr(®) c X x Y — R is called K-sup-compact on
Gr( @) if the function —f is K-inf-compact on Gr(@ ). The following
lemma provides necessary and sufficient conditions for a function
to be K-inf-compact.

Lemma 2.4 (Feinberg et al. [7, Lemma 2] and Feinberg and Kasyanov
[4, Lemma 2]). The functionu : Gr(®) € X x Y +» R is K-inf-
compact on Gr(®) if and only if the following two assumptions hold:

(i) u:Gr(®@) C X x Y +> Ris lower semi-continuous;

(ii) if a sequence {x,}y—12 .. with values in Dom @ converges
in X and its limit x belongs to Dom &, then each sequence
{Ynln=12,.. Withy, € @(x,), n = 1,2,..., satisfying the
condition that the sequence {u(x,, ¥n)ln=1,2,... is bounded above,
has a limit point y € ®(x).

Theorem 2.5 (Berge's Theorem for Possibly Noncompact Decision
Sets; Feinberg et al. [7, Theorem 1]). If a function u : Gr(®) C
X x Y + R is K-inf-compact on Gr(®), then the value function
v : Dom® c X — R is lower semi-continuous. In addition, the
following two properties hold for the solution multifunction @*: (a)
the graph Gr(®*) is a Borel subset of X x Y; (b) if v(x) = 400,
then @*(x) = @(x), and, if v(x) < +oo, then ®*(x) € K(Y);
xeDoma@.

Theorem 2.6 (Berge's Maximum Theorem for Possibly Noncompact
Decision Sets; Feinberg et al. [5, Theorems 1.2 and 3.1]). If u

Gr(®@) ¢ X x Y — R is a K-inf-compact, upper semi-continuous
function on Gr(®)and @ : X — S(Y) is a lower semi-continuous
multifunction, then the value function v : X — R is continuous and
the solution multifunction @* : X — K(Y) is upper semi-continuous.

According to [7, Lemma 3] described above, Theorem 2.5 is a
generalization of Berge's theorem (Theorem 2.1), and Theorem 2.6
is a generalization of Berge’s maximum theorem (Theorem 2.2).
In particular, Theorem 2.5 is important for inventory control and
Markov decision processes; see Feinberg [3] for details. Before
the notion of K-inf-compactness was introduced in [6], Luque-
Vasquez and Hernandez-Lerma [11] provided an example of a
continuous multifunction @¢(x) = Y for all x € X, continuous
functionu : X x Y — R, such that the functionu(x, -) : Y — Riis
inf-compact for all x € X, for which the value functionv : X — R
is not lower semi-continuous. In this example, the function u :
X x Y > R is not K-inf-compact on X x Y. This example is used
to construct Example 3.1.

Third, we describe the results on continuity properties of mini-
max values and solution multifunctions from Feinberg et al. [7]. We
start with the properties that do not use A-lower semi-continuity
of &g; see statements (A,B,C) below.

Definition 2.7. A multifunction &g : Gr(¢,) c X x A — S(B) is
called A-lower semi-continuous, if the following condition holds:

if a sequence {x; };—1 2. with values in X converges and its

limit x belongs to X, a, € &,(x,)foreachn =1,2,..., and
b € &g(x,a) for some a € &,(x), then there is a sequence
{bn}nz1.2..., with b, € &g(x,, a,) foreachn = 1,2, ..., such

that b is a limit point of the sequence {by}n_12....
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We recall that a multifunction &g : Gr{$s) C X x A — S(B) is
lower semi-continuous, iff for eachx € X and a € ,(x), for every
sequence (x,, ap,) — (x,a)withx, € X, a;, € ¥;(x;),n=1,2,...,
and for every b € &g(x, a), there exists a sequence b, € &g(x,, a,)
such thatb, — b.

As follows from the definitions, an A-lower semi-continuous
multifunction &g is lower semi-continuous, but the opposite
statement is not correct; see Feinberg et al. [7, Example 5]. The
following lemma describes two conditions under which a lower
semi-continuous multifunction &g is A-lower semi-continuous.
Case (a) takes place when the first player has compact action sets,
and case (b) takes place when decision sets for the second player
do not depend on the first variable, as this takes place in games
with simultaneous moves; see Jaskiewicz and Nowak [9,10] and
references therein for the results on stochastic games satisfying
these conditions.

Lemma 2.8. Let $5 : Gr(®,) C X x A > S5(B) be a lower semi-
continuous multifunction. Then the following statements hold:

(a) if &, : X > S(A)isupper semi-continuous and compact-valued
ateachx € X, then &g : Gr($,) C X x A > 5(B) is A-lower
semi-continuous;

(b) if ®g(x, a) does not depend on a € $,(x) for each x € X, that
is, ®p(x, a,) = &g(x, a*) for each (x, a,), (x, a*) € Gr(&,), then
&g : Gr(#,) X x A+ S(B)is A-lower semi-continuous.

To state the continuity theorems for minimax, we introduce the
multifunction #4<8 : X x B > 2* uniquely defined by its graph,

Gr(#3°®) .= {(x,b,a) e X x B x A : (x,a,b) € Gr(%z)}, (5)

that is, 84<8(x,b) = {a € &,(x) : b ¢ &g(x,a)}, (x,b) € Dom
#4<2 We also introduce the function £ : Gr(<%) C (XxB) x
A R,

48(x b, a) := f(x, a,b), (x, a,b)<c Gr(%s). (6)
According to (5), the following equalities hold:

Dom &3® = projy,sGr(&z) = {(x,b) € X x B :
(x, a, b) € Gr(%g) for some a € A},

(7)

where projy,.gGr(®g) is a projection of Gr(¢g) on X x B.

We would like to mention that certain continuity properties
of £, v*, and &} do not use A-lower semi-continuity of &;. In
particular, the following statements hold:

(A) if &g : Gr(®,) C X x A > S(B) is lower semi-continuous
multifunction and £ : Gr(#3) C X x A x B > R is lower
semi-continuous function, then £* : Gr(&,) C X x A+ Ris
lower semi-continuous; [7, Theorem 4];

(B) if £ : Gr(®¥g) C (X x A) x B > R is K-sup-compact on
Gr(®g) and &, : X > S(A) is lower semi-continuous, then
v : X+ RU{—oo}and £* : Gr(¢a) C X x A > RU {—o0}
are upper semi-continuous; [7, Theorems 6 and 9];

(C) if additionally to assumptions from (A) and (B), &g : Gr(&,) C
X x A + S(B) is lower semi-continuous and £ : Gr(®g) C
X x A x B+ R is lower semi-continuous, then &} : Gr(2,) C
X x A + K(B) is upper semi-continuous; [7, Theorems 4, 6
and 12].

The following theorem presents continuity results for the
worst-loss function, minimax function, and solution multifunction
&} that assume A-lower semi-continuity of ¢ : Gr($,) C X x A >
S(B).

Theorem 2.9. Let &; : Gr(®,) C X x A + S(B) be an A-lower
semi-continuous multifunction and the function £*~2 : Gr(#A°%)
(X x B) x A > R be K-inf-compact on Gr{&38). Then the following
statements hold:

(i) the worst-loss function £* : Gr(&,) C X x A > R is K-inf-
compact on Gr($, ); Feinberg et al. [7, Theorem 5];
(ii) the minimax function v* : X > R is lower semi-continuous;
Feinberg et al. [7, Theorem 8];
(iii) ifadditionallyv* : X > RU{—o0} is continuous (inview of (ii),
v# : X > R is lower semi-continuous, and sufficient conditions
for its upper semi-continuity are provided in statement (B)),
then the infimum in (2) can be replaced with the minimum
and the solution multifunction &5 : X > S(A) is upper semi-
continuous and compact-valued; Feinbergetal. [7, Theorem 11].

Remark 2.10. Theorems 7, 10, and 13 from Feinberg et al. [7]
contain additional results on continuity properties of f#, v%,
#3, and &§, which are combinations of Statements (A,B,C) and
Theorem 2.9 from above. These results include [7, Theorem 13]
described below before Example 3.1.

3. Example

In this section we provide an example demonstrating that the
assumption that the multifunction &5 : Gr(¢,) C X x A — 5(B)
is A-lower semi-continuous cannot be relaxed in each statement
of Theorem 2.9 to the assumption that this multifunction is lower
semi-continuous.

In the following Example 3.1, &, : X +> S(A) and &g : Gr{&,)
C XxA > S(B)are continuous mulrtifunctions, 42 : Gr($48)
(X x B) x A > Ris K-inf-compact on Gr(&48), and £ : Gr(%g) C
(X x A) x B — R is K-sup-compact on Gr($g), that is, all the
assumptions of Statements (A,B,C) and Theorem 2.9 hold, but & :
Gr($,) € X x A + 5(B)is not A-lower semi-continuous. Then none
of statements (i)-(iii) of Theorem 2.9 hold, that is, the worst-loss
function £* : Gr(¢,) € X x A > R is not K-inf-compact on Gr(#&, ),
the minimax function v* : X + R is not upper semi-continuous,
and the solution multifunction 3 : X + S(A) is not upper semi-
continuous.

We recall that all the assumptions of statements (A,B,C)
and Theorem 2.9 taken together imply that the function £*
Gr(#¢,) C X x A +> R is continuous and K-inf-compact on Gr($,),
the function v* : X > R is continuous, and the multifunctions
$; : X — K(A)and & : Gr($,) C X x A > K(B) are upper
semi-continuous; Feinberg et al. [7, Theorem 13].

Example 3.1. LetX =R, A :=B:= R, := [0, +00), &4(x) =R,
éB(xs ﬂ) = [%(xs ﬂ), +w)‘ where

0, ifeitherx <0orx > 0,
Ogaqi;
2
¢p(x,a) = [ 1 1
2(2x+1)a—-2—— f Oand — <a< —;
(2x+ 1)a i ifx > anm_a_x,
1 1
24—, ifx>0anda > —;
X X
and let
1+a—b, if eitherx <0orx > 0,
1
0<a< —,b=>ggx,a);
WL > ¢p(x, a)
1 1
(2x+1)a—b, ifx>0, —<a<-—, and
f(x,a,b) = 2x X
b > ¢g(x, a);
1
24a—b, ifx>0.a>;,and
b > ¢s(x, a);

forallx € X, a € $,(x), and b € ¥g(x, a).
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It is obvious that ¢, and &g are continuous multifunctions
because the constant function x = 0 and the function ¢g are
continuous.

The multifunction €z is not A-lower semi-continuous. Indeed,
letx := a == b := 0. Thena € &(x)and b € &;(x,a). Let
Xy = % N Xasn — +ooanda, := n € ¥,(x,) = R, forall
n=1,2,.... Then(—1,1)N &(x,,a;,) =B foreachn=1,2,....
Therefore, b = 0 is not a limit point of any sequence {b,},—1,2,..
with b, € &(x,,0a,),n = 1,2, ..., because |b, — b| = 1 for each
n=1,2,..., thatis, ¥z is not A-lower semi-continuous.

In view of Lemma 2.4, the function £4°® : Gr(#4<®) c (X x
B) x A > R is K-inf-compact on Gr(#4*8) and the function
f : Gr($) C (X x A) x B R is K-sup-compact on Gr(&p).
Therefore, these functions are continuous.

For every pair (x, a) € X x A, the optimal decision for the second
player is b = ¢g(x, a). Thus,

1+a, if eitherx < Oorx > 0,

1
0<a<—;
2x

fi(x,a) = : (8)

]

1 1
2X+1) (- —a), ifx>0and — <a<
(2x+1)X- —a), ifx>0and - <a<

| =

1
a——, ifx>(]anda>§.

X
This function is continuous, but it is not K-inf-compacton X x A
because x, := 1 \ 0, the sequence £(1,n) =0,n=1,2,...,
is bounded above, and @, := n — 400 asn — o00. Thus,
the conclusion (i) of Theorem 2.9 does not hold. The function £*
was introduced in Luque-Vasquez and Hernandez-Lerma [11]. In
particular,

1, ifx<0;
1 — ] =Y,
vi(x) = IO’ = . and
{0}, ifx<o0; (9)
&}(x) = {l} o
x 1 1

x € X. The conclusions (ii) and (iii) of Theorem 2.9 do not hold
because the function v* is not lower semi-continuous at x = 0
and the solution multifunction &} is not upper semi-continuous at
x=0.

In this example, all the assumptions of statements (A,B,C)
and Theorem 2.9 hold except one: the multifunction €z is not
A-lower semi-continuous, but it is lower semi-continuous. If the
multifunction 3 were A-lower semi-continuous, then the function
% : Gr(#,) C X x A > R would be K-inf-compact on Gr(#,), the
function v* : X i+ R would be continuous, and the multifunction
4} : X — K(A) would be upper semi-continuous; see Feinberg
et al. [7, Theorem 13], whose description is provided before the
example.
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