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Abstract—We consider an uncoordinated Gaussian multiple
access channel with a relatively large number of active users
within each block. A low complexity coding scheme is proposed,
which is based on a combination of compute-and-forward and
coding for a binary adder channel. For a wide regime of
parameters of practical interest, the energy-per-bit required by
each user in the proposed scheme is significantly smaller than
that required by popular solutions such as slotted-ALOHA and
treating interference as noise.

I. INTRODUCTION

One of the key challenges in the design of next generation’s
wireless networks is to allow for a large number of bursty
users, each with a small amount of data, to transmit simulta-
neously in a grantless fashion. This need, which was already
identified by Gallager three decades ago [1], is now returned
to the research forefront due to explosion of the number of
wireless devices [2].

To model this scenario, we consider a Gaussian multiple
access channel where communication is performed in blocks
of n channel uses. There are K, possible users that can
transmit over the channel, but only K, of them are active
within each block, such that the receiver observes

Kot

Y= siX +2z, M
=1

where (s1,...,5k,) € {0,1}% is the “activity pattern”
vector whose Hamming weight is K,, x; € R" is the
codeword transmitted by user ¢ assuming it was active, and
z ~ N(0,I) is additive white Gaussian noise (AWGN).
We further assume that all users have the same message set
[M] £ {1,..., M}, such that if user i is active, its message W;
is uniformly distributed over [M], and that all users are subject
to the same power constraint ||x;]|> < nP, i = 1,..., K.
The activity pattern is assumed unknown to the decoder, and
known only locally to the transmitters, i.e., each user only
knows whether or not it is active, but does not know which
of the other users are active.

The typical regime of interest is where the total number of
devices connected to the network Ky is orders of magnitude
greater than the coding blocklength n, the number of active
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users K, within each block scales as K, = un, with some
@ < 1, and the length in bits, k £ logy M, of each active
user’s message does not scale with n. Thus, although each
user only has a small number of bits to send, the total number
of bits per channel use that needs to be decoded, p £ knﬁ
is fixed. We refer to p as the required spectral efficiency. For
example, in LP-WANs such as LoRaWAN and Weightless,
K = 107, n ~ 10%, K, ~ 100, and k£ =~ 100, such that p
typically takes a moderate value between a fraction of a bit to
a few bits per channel use.

bl

Our formulation diverges from traditional multiple access
literature [3], as well as that of [4], in our definition of
successful decoding. We only require the decoder to output
a list L(y) = (wi,...,wy) C [M] of no more than K,
messages (i.e., J < K,) that should contain most messages
that were transmitted by the active users, where the order in
which the messages appear in the list is of no significance.
Our model therefore decouples the user identification problem
(“who was active”) and the data transmission problem (“what
messages were sent”), and is more consistent with the network
theoretic studies. There, it is common to think of MAC
layers job as that of delivering packets and not identifying
who sent them. The reasoning is that part of the payload
(headers) contains identifying information. The scheme’s error
probability is therefore defined as

KIOI
P, = max — si - Pr(W; ¢ L(y)), 2)
[(8150,8K) | =Ka Ka; (Wi & L(y))
where | - | denotes Hamming weight. An advantage of this

formulation is that it allows to set K, = oo, which conse-
quently leads to leaving the parameter K, out of our model,
as we do in the sequel. See [2] for further justification of the
model. Note that the assumption of K = oo naturally leads
to schemes where all users transmit from the same codebook,
possibly with some additional randomization in the encoding
procedure.

Let € be the target error probability, measured according
to (2). For fixed n, k, K4, €, our goal is to design a scheme
with P, < e which requires the smallest possible transmission
power P. In particular,A wepmeasure performance in terms of

n

the energy per bit ff_ﬁ = 53 required for each user, where P

is the minimal power such that P, < e.

The grantless nature of the communication precludes the
use of orthogonalization methods (TDMA,FDMA, orthogonal



CDMA), and alternative efficient coding schemes are needed
for this random access channel. Two popular solutions are
“treat interference as noise” (TIN), which is implemented
in practice via un-coordinated CDMA with a matched filter
detector (i.e., no multi-user detection), and slotted-ALOHA.
Unfortunately, both schemes have severe limitations in our
regime of interest, as can be seen from Figure 1.'See [6] for
further details.

While the performance of TIN is limited by noise accumu-
lation, the large Ej, /Ny required by slotted-ALOHA is due to
the fact that the scheme only supports single-user decoding.
On the other extreme, if we had a computationally unlimited
decoder, we could let all active users transmit simultaneously
from the same (randomly constructed) codebook and perform
joint decoding. A finite blocklength achievability bound for
this setup was derived in [2, Theorem 1], and corresponds to
the “random coding” curve in Figure 1.

As a compromise between these two extremes, we propose
an approach referred to as T-fold ALOHA. This approach is
similar to standard slotted-ALOHA in the sense that the block
is split to sub-blocks and each active user only transmits in
one random sub-block. However, in T'-fold ALOHA, the code
is designed such that if at most 1" users transmitted during
the same sub-block, the decoder can decode all corresponding
messages, whereas when more than 7' users simultaneously
transmitted within the same sub-block, nothing is decoded.
Thus 1-fold ALOHA is just slotted-ALOHA, whereas K-
fold ALOHA corresponds to the scheme described in the
previous paragraph. A random coding achievability bound for
the F},/Ny required by 5-fold ALOHA, with a joint decoder
applied within each sub-block, is plotted in Figure 1. However,
to make 7T-fold ALOHA a practical solution, low complexity
schemes for the random access channel with 7' active users
are needed. In this paper, we propose such a scheme, which
works well for moderate values of 7.

A high-level description of the proposed coding scheme is
as follows. First, the n channel uses are split into V' sub-
blocks of length 7 = n/V, and each active user randomly
chooses only one of these sub-blocks, over which it transmits.
All users encode their messages using the same codebook C C
F7, which is then mapped to a BPSK constellation. The code
C is a concatenation of two codes. The first is an inner binary
linear code, whose goal is to enable the receiver to decode the
modulo-2 sum of all codewords transmitted within the same
sub-block. We refer to recovering this modulo-2 sum as the
compute-and-forward [7] (CoF) phase. The second code, is an
outer code whose goal is to enable the receiver to recover the
individual messages that participated in the modulo-2 sum. We
refer to recovering the individual messages from their modulo-
2 sum as the binary adder channel (BAC) phase.

The success probability of the CoF phase in our scheme
is independent of the actual number of users that transmit-
ted within the same sub-block. The outer code, however, is

! Another appealing alternative is coded slotted ALOHA [5]. See [2] for an
optimistic estimate of its performance in term of energy per bit.

designed such that if at most 1" active users approached the
channel during the same sub-block, it is possible to determine
the individual messages from their modulo-2 sum, essentially
with zero error probability. Thus, loosely speaking, for any
active user, the probability that its message is not in the
list L£(y) is dictated by the probability that the compute-
and-forward phase was unsuccessful in the sub-block where
it transmitted, and the probability that more than 7' users
approached the channel within this sub-block.

The design of an inner code for the CoF phase, reduces
to that of finding codes that perform well over a binary-
input memoryless output-symmetric (BMS) channel, for which
many off-the-shelf codes can be used. We construct the outer
code for the BAC phase from the columns of a T-error
correcting BCH codes, and show that this code can be decoded
efficiently [8], even though the blocklength for the underlying
BCH code is orders of magnitudes greater than the allowed
number of operations that can be performed by a practical
decoder.

Both components of our scheme are not new and there is
a large body of literature on each of them separately. The
observation that BCH-codes can be used for constructing zero-
error codes with rate 1/7 for the T-ary modulo-2 adder
channel dates back to Lindstrom [9] and have since then
appeared and was generalized in various works, see e.g., [8],
[10]. A particularly related work is [10] where the authors
used a similar concatenated code to construct a code with
good minimum Hamming distance for the 7-user modulo-2
adder channel. The use of linear codes for decoding modulo
sums of codewords from the output of a Gaussian multiple
access channel is more recent, and has its roots in the work
of Korner and Marton [11]. However, the combination of the
these two components, in conjunction with 7'-fold ALOHA,
for providing a low complexity scheme with low energy per
bit for the Gaussian random access channel is novel, and, as
can be seen in Figure 1, leads to performance that cannot
be attained by other known schemes of similar complexity, in
some regimes of practical interest. The recent works [12], [13]
propose coding schemes of similar flavor to ours, but those are
less suitable for our regime of interest, where the number of
possible users is unbounded, the message length of each user
is small, and the target is to minimize the energy per bit.

II. THE BASIC CODING SCHEME

Our scheme has two design parameters, 7' which is the
maximal number of users that can simultaneously transmit in
the same sub-block without incurring an error, and « € [0, 1],
such that the number of sub-blocks is V' = K, /(aT).

Code construction: We construct one codebook ¢ C FZ

with |C| = 2F = 27°F codewords, to be used by all active
transmitters, where 1 = % =aT 1? and R = %.

The codebook C is a concatenated code. The “inner” code
is a systematic binary linear code Cy, C F% of rate Ry, with
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Fig. 1. Comparison between the E} /N required by various schemes for the
setup k& = 100 bits, » = 30,000 channel uses, number of active users K,
varies, and € = 0.05.

generating matrix G € IF?R““Xﬁ, such that
Cin = {aG ae ngﬁRﬁn} . 3)

The “outer” code is a binary code (not necessarily linear)
Ceac C IE";R““ with rate Rpac. The concatenated binary code
C C Fy with rate R = Riin - Rac = % is defined as

C = {cBacG : cBac € Cpac}- 4)

The roles played by the inner code and outer code, as well as
the criteria according to which they should be chosen, will be
discussed in the sequel.

Encoding: Each active user i first encodes its message W;
to a codeword cgac,; € Cpac, and then uses G to generate the
codeword

c; = cpac,iG € C. ©)

Next, it maps the binary vector c; to the real vector x; =
2V - P (c; — 3), where here and throughout the rest of the
paper we interchangeably treat {0, 1} as either integers or ele-
ments of Fy, according to the context. Note that ||x;|? = nP.

User ¢ transmits the vector x; during one and only one of
the V' sub-blocks. The location of this sub-block is randomly
drawn independently across users from the uniform distribu-
tion over {1,...,V}. We denote by E;, be the event that
more than 7'—1 other active users transmitted within the same
sub-block as user i.

Decoding: Decoding is done in a sub-block by sub-block
manner. For each sub-block v € [V], the decoder outputs a
list £, of at most 7" messages. The list of messages for the
entire block is then constructed as L(y) = UY_, L,.

We describe the decoding procedure for the first sub-block.
For the other V' —1 sub-blocks decoding is done in an identical
fashion. Let y; = (y1,...,vs) and z; = (21,...,25) be the
vectors of channel outputs and channel noise, respectively,

corresponding to the first sub-block, and let 41, ...,77 be the
active users that transmitted during this sub-block. We have

L
Zq L
Yoot sy
2VV-P 2

j=1

L
y1:inj+z1:2vV-P
=1

J=

We may assume the number of active users L within the sub-
block is known to the receiver. This follows since we can first
apply the decoding algorithm for all values L = 1,..., T, and
then choose the produced list that has the “best agreement”
with y1, which should correspond to the actual value of L, or
decide that L > T if all the produced lists are not in “good
agreement” with y; [6]. If L > T, the receiver outputs £; = ().
Otherwise, it computes

L
mod 2 = Zcij—l-il mod 2,

j=1

1 L
YCoF,1 = [W}ﬁ + 5]

where the modulo 2 reduction is into the interval [0,2) and is
taken componentwise, and z; = —2— ~ N(0,0°%1), 0% =

. 2VV-P
1/4VP. Let ¢ £ [>-j=1 €i;] mod 2, and note that since cP
is the modulo-2 sum of codewords from the same linear code
Ciin, we have that c? € Cjn. Thus, we constructed an effective

memoryless channel

yeor,1 = [¢f 4+ Z1] mod 2, (6)

whose input is a codeword from the linear code Cj,. The
decoder ignores the fact that cﬁB is not distributed uniformly on
Ciin, and simply performs point-to-point decoding of Cji, from
Ycor,1 to produce the estimate é?. We denote the erroneous
decoding event by F, £ {é?9 + ciB}.

Now, assuming Fs> did not occur, the decoder proceeds to
recover the L messages transmitted by the active users from
c?. By (5) and the fact that Cy, is systematic, we have that
the first n R}, coordinates of c? correspond to

L
YBAC,1 = Z CcBac,i; mod 2. @)
j=1
'[:hus, the decoder uses ygac,1 to produce a list of L vectors
L(ysac.1) = {€pac,1;---,CBac,L} € CﬁAC that satisfy (7). We
denote the corresponding error event by

E3 & {E(YBAC,I) # {cBAC,i1s-- s CBACJ'L}} NG

where both f(yBACJ) and {cpaci,,---,CBAC,i,, } are sets and
therefore there is no significance to the order in which their
elements appear.

Finally, the decoder re-maps the codewords in ﬁ(yB AC,1) tO
a list of the corresponding messages £1 C [M].

Error probability: Assume user ¢ was one of the K, active
users, and without loss of generality, assume further that it
transmitted during the first sub-block. Since the role of all
active users in the proposed scheme is symmetric, we have




that P, = Pr(W; ¢ L(y)) < Pr(W; ¢ £1). Thus,
P, < PI‘(ELZ') + PI‘(E2|E17Z') + PI’(EglEl,i, EQ)

For the event F ;, using V = K,/aT we have that

T
Pr(E1;) =1-Pr (Binomial <Ka —1, 2—) < T) 2
)

regardless of the codes Cjp,,Cpac that are used. The error
probability Pr(Es |E17i) depends on the choice of Cy;,, whereas
Pr(E3|Ey;, E2) depends on the choice of Cpac. We will
therefore treat them in the next subsection.

A. Choice of inner and outer codes

Code for CoF phase: The code Cy, should allow decoding
of cf from the channel (6), with error probability smaller
than some target es. The channel (6) is a BMS channel, for
which the art of designing efficient coding schemes is well
advanced. Thus, any off-the-shelf low complexity code with
good performance over a BMS (e.g., LDPC, turbo, polar) can
be used for Cjj,. For the numerical analysis of Figure 1, we
refrain from committing to a particular code, and use the
fundamental coding limits of the channel (6) for evaluating
€2 = Pr(Fs|E ;). Specifically, in order to determine the
smallest P that allows correct decoding of ¢’ with error
probability below ey, we use the normal approximation [14]

Riin = C(P) — 1/ @Q_I(Q)

and solve for P. To evaluate the quantities C'(P) and V(P)
we define the random variable Z = [Z] mod 2 with pdf f5,
where Z ~ N(0,1/4V P), and set

( 52 ) -
3f5(2) + 3f5(1Z — 1] mod 2) ’

C(P)=E i(Z), V(P) = Var i(Z). (12)

(10)

i(Z) = log,

Code for BAC phase: The code Cgac for the BAC phase
should enable recovering (cpac,i;; - - -, CBaC,i,) from ypac,1
as long as L < T'. Thus the coding task is equivalent to that
of coding for the T-user modulo-2 binary adder channel where
all users’ codewords are taken from the same codebook Cgac.
An obvious upper bound on the rate of such a code, if a small
error probability is desired, is Rgac < 1/7. Remarkably, this
bound can be achieved using the columns of a binary BCH
code parity check matrix as the codewords of Cgac [9]. To
see this, first recall that if a linear code has minimum distance
2T + 1, then all modulo-2 sums of 7" or less columns of its
parity check matrix are distinct. It is well known [15] that for
any k > 3 and T < 2~! there exists a binary BCH code with
parameters (n = 2% — 1,n — k < kT, dpin > 2T + 1). Thus,
taking the columns of a BCH parity check matrix results in a
code Cpac C FET of size |Cgac| = 2F—1 with the property that
the modulo-2 sum of any set of at most 1" distinct codewords
is distinct. Thus, a codebook Cpac constructed this way has
rate Rpac = log, (2% — 1)/kT ~ 1/T. The error probability

associated with this code is

(2)

2k —1

€3 £ PI‘(EglEl,i, Eg) =Pr U{WZ = WJ} S
]

as errors can only occur if some of the L users that approached

the channel during the first sub-block had the same message.

The encoding procedure for this codebook merely con-
sists of mapping a message to a corresponding ele-
ment o in GF(2%), and then computing its odd powers
(a,a3,...,a?T~1), which requires O(7?) multiplications in
GF(2%). The decoding procedure shares many similarities
with standard Gorenstein-Peterson-Zierler (GPZ) decoding of
BCH codes [15], but is far less demanding computationally. In
particular, the standard BCH decoding algorithm has complex-
ity linear in the blocklength. Since for our underlying BCH
code the blocklength is 2¥ — 1, such a computational cost is
prohibitive even for relatively small k, say k =~ 100. Luckily,
the most demanding operations in the GPZ algorithm are not
needed for our purposes and the computational cost becomes
O(kT?) additions and multiplications in GF(2*). The exact
encoding and decoding algorithms we use, which are quite
similar to [8], are described in [6]

ITII. EXTENSION TO MULTILEVEL CODES

The CoF phase in the scheme proposed in Section II reduces
the L-user Gaussian MAC channel into an L-user binary input
modulo-2 Gaussian MAC. As such, the rate of the linear
code is limited by Rj, < 1 total bits per channel use. As
Riin = p/a, this restricts both the total spectral efficiency of
the scheme, and the regime of valid choices for a: (which is
related to €; by (9)). In order to circumvent this problem,
while keeping the many practical advantages of binary codes,
we propose to modify the basic scheme from Section II using a
multilevel code design. We only describe below a scheme that
uses two layers, and can therefore attain 0 < Ry, < 2, but the
extension to an arbitrary number of layers is straightforward.

We construct two codebooks C%,C? € F} with rates R%, R?,
respectively, each according to the same code construction
described in Section II. Thus, C* (C?) is a concatenation of
an inner code C{}, (an) and Cg,c (C]g Ac)» with rates i and
R&.c (R} and RY,.), respectively.

Let 0 < m < 7 - min{R% R’} be an integer. Each active
user 7 has a message vector w; = (w% w?) € Fpf =™\
{0} x IE";Rb_m \ {0}. Then, user ¢ draws an m-dimensional
binary vector u; with i.i.d. uniform entries, and creates the
effective message vectors w¢ = (u;, w?) € F3%" \ {0} and
w? = (a;,wh) € Fg’Rb \ {0}, where u@; is the complement of
u; such that u;+14; = 1 mod 2. Now, w{ (v~vf) is encoded to a
codeword c? (c?) in C* (C®) exactly as described in Section II,
and the transmitted vector is

T (e )Y

and as long as either C® or C® (or both) are such that for



a random codeword c® (c?) uniformly distributed over C®
(C’) we have E(c® — 3) = 0 (E(c” — 1) = 0), we have
that E||x;||> < nP. Note that here we can only guarantee
that the power constraint is maintained on average, and not
with probability 1 as in the single layer construction. Each
active user then chooses one sub-block in which it transmits

its codeword exactly as in the basic scheme from Section II.

The decoding is performed layer by layer in each sub-block.
As before, we only describe the decoding process in the first
sub-block. We first compute

1[5 3L = =
_ _ a b ~a
YCoF,1 = \\vop <Y1 + > ) = jgl ci, + 2j§1 c;, + 2y,

where z§ = \/\{1% ~ N(0,021), 02 = 25. Now, setting
Yé&or1 [Ycor,1) mod 2, and continuing exactly as in the

basic scheme from Section II, we can recover {W{, , ..., W¢ }.

This allows us to form Zle ci . and then construct

[ L
b
YcCor,1 = YCoF,1 — g ij mod 2

i=1

[ =

= E ct +2% | mod 2,
J

Jj=1

b 2 2 _ _>»
where z; ~ N(0,031), 0j = 155 We can now recover

{Wh,...,wb }, exactly as in the basic scheme from Sec-
tion II. The effective channel 4 is “cleaner” than Z{, therefore
we will choose Cf,, Cl, such that RE, < R}, where their exact
values should be optimized w.r.t. the target error probability
and to V- P. The codes C§xc; Chac for the BAC phase are both
BCH-based codes of rate R, = Riac = 1/T, as described
in Section II-A, where they only differ in their blocklengths
nRE and nRY , respectively.

The final step is to use the two lists {W{,..., W
and {W?,...,w’ } in order to construct a single list
{Wi,,...,w;, }. This is done by first constructing L pairs,
that should ideally be of the form w;, = (W7, v~vfj ), and then
removing the prefixes u;;, 4;; to get the messages w;,. The
problem in doing this is that the messages in each of the two
lists are decoded “un-indexed”. Thus, the pairing operation is
done by matching the random prefixes {u;,, ..., u;, } from the
first list to the prefixes {@;,,...,q;, } of the second list. As
long as the L prefixes {u;,,...,u;, } drawn by the users are
distinct, the pairing is successful. Thus, the error probability

associated with this step is

L—-1
a=1-JJa-e™) <7 -1) 270,
=1

13)

Once the target ¢4 is chosen, it therefore suffices to take m =
[logo(T(T — 1)/e4)] — 1, where the clear disadvantage of
increasing m is that it requires the linear codes to operate
with higher rates in order to deliver the k£ information bits.

IV. NUMERICAL EVALUATION

Fix k, n, K,, and target error probability P.. As the error
probability for the BAC phase decays exponentially with k, it
can be ignored. Thus, P, is essentially dictated by the “T-
collision” probability €;, the error probability for the CoF
phase €3, and when a multilevel code is used, also the “pairing”
error probability ey.

We fix target probabilities €1, €2, €4 such that €1 +ex+€4 = €,
and assume temporarily that 7" is also fixed. We set a to be
the solution of the equation (9) in . Assume we are using a
multilevel code with 7 > 1 layers. The “pairing” procedure
increases the effective length of each user’s message from k to
k(1+77), where v £ m/k, and m = [logy(T(T—1)/e4)] —1.
Recalling that Rgac = 1/T for the BCH-based construction,
and that R = Rgac- Rjin, We see that the rate the of linear code
must satisfy Ry, = Tk/% = p/a in the single level case, and
in the multilevel case the sum of linear codes rates must be
p(1477)/a, whereas the blocklength for this code (or codes)
is 7 = aTn/K,. The required average power P -V in order
to achieve error probability e; with this rate and blocklength,
over the channel (6) can be computed using (10), and the
resulting Ej, /Ny after optimization on 7', 7 and the choices of
€1, €2, €4 that sum up to ¢, is shown in Figure 1.

ACKNOWLEDGMENT

The authors are grateful to Uri Erez, Krishna Narayanan
and Bobak Nazer for valuable discussions.

REFERENCES

[1] R. Gallager, “A perspective on multiaccess channels,” IEEE Trans. Inf.
Theory, vol. 31, no. 2, pp. 124-142, Mar 1985.

[2] Y. Polyanskiy, “A perspective on massive random-access,” in Proc. of
ISIT, 2017.

[3]1 A. El Gamal and Y.-H. Kim, Network information theory. Cambridge
University Press, 2011.

[4] X. Chen, T. Chen, and D. Guo, “Capacity of Gaussian many-access
channels,” 2016. [Online]. Available: http://arxiv.org/abs/1607.01048

[5]1 G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted aloha,” IEEE Trans. Comm., vol. 59, no. 2, pp. 477487,
Feb. 2011.

[6] O. Ordentlich and Y. Polyanskiy, “Low complexity schemes for
the random access Gaussian channel,” preprint. [Online]. Available:
http://www.mit.edu/~ordent/publications/RandomAccessFull.pdf

[7]1 B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interfer-
ence through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6463-6486, Oct. 2011.

[8] I. Bar-David, E. Plotnik, and R. Rom, “Forward collision resolution-a
technique for random multiple-access to the adder channel,” IEEE Trans.
Inf. Theory, vol. 39, pp. 1671-1675, Sep 1993.

[9] B. Lindstrom, “Determination of two vectors from the sum,” Journal of

Combinatorial Theory, vol. 6, no. 4, pp. 402 — 407, 1969.

T. Ericson and V. I. Levenshtein, “Superimposed codes in the hamming

space,” IEEE Trans. Inf. Theory, vol. 40, pp. 1882-1893, Nov 1994.

J. Korner and K. Marton, “How to encode the modulo-two sum of binary

sources,” IEEE Trans. Inf. Theory, vol. 25, pp. 219-221, March 1979.

J. Goseling, C. Stefanovic, and P. Popovski, “Sign-compute-resolve for

random access,” in Proc. of Allerton, 2014, pp. 675-682.

N. Lee and S. N. Hong, “Coded compressive sensing: A compute-and-

recover approach,” in Proc. of ISIT, 2016, pp. 2359-2363.

Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the

finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.

2307-2359, May 2010.

S. Lin and D. J. Costello, Error control coding.

2004.

[10]
[11]
[12]
[13]

[14]

[15] Pearson Education,



