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Abstract—Consider a linear code defined as a mapping be-
tween vector spaces of dimensions & and n. Let 5 denote the
minimal (relative) weight among all images of input vectors
of full Hamming weight %. Operationally, 5* characterizes the
threshold for adversarial (erasure) noise beyond which decoder
is guaranteed to produce estimate of k-input with 100% symbol
error rate (SER). This paper studies the relation between 5* and
d, the minimum distance of the code, which gives the threshold
for 0% SER. An optimal tradeoff between 5 and ¢ is obtained
(over large alphabets) and all linear codes achieving 5* = 1
are classified: they are repetition-like. More generally, a design
criteria is proposed for codes with favorable graceful degradation
properties.

As an example, it is shown that in an overdetermined system
of n homogeneous linear equations in % variables (over a field) it
is always possible to satisfy some k£ — 1 equations with non-zero
assignments to every unknown, provided that any subset of k&
equations is linearly independent. This statement is true if and
only if n > 2k — 1.

I. INTRODUCTION

A mapping of k£ symbols to n symbols is said to have
the (a, §)-property if it sends any two strings of (Hamming)
distance more than ak to two strings of (Hamming) distance
more than Sn. This property was first introduced in [1] and
is relevant to the Combinatorial Joint Source Channel Coding
problem [2]-[4].

Definition 1. A map f : ]Ff; — Iy is said to be (o, B) if
|z =yl > ok = [f(z) = fy)| > Bn,
where | - | denotes the Hamming weight.

For a linear map f, we define'

(o) = int (L > gy - 1
and 1
B* = /3(1*%)- (D

Recall that the (relative) minimum distance of [ is
0 :=1inf,4, M Note that § = 3(0) + L.

n

The (a, B)—property is relevant to the problerﬁs of graceful
degradation and partial data recovery. One often encodes a
message x by a map f to build tolerance against external noise.
For instance, one may map x to f(x) and save the outcome
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I'The term 7% appears due to the strictness of inequalities in Definition 1.

on a storage device. Then noise may act by erasing some
of stored bits in an adversarial manner. One then observes
the non-erased bits and provides an estimate Z for z. With
the above notation, a map can fully recover the input from
B(0)n erasures. As the number of erasures exceeds 5(0)n, it
is desired that = be recovered with good fidelity, that is, we
want |z — &| to be as small as possible. In general, S(a)n
erasures on the output can cause at most ak distortions in
the input. Indeed if we let & be an arbitrary point in the pre-
image, it is guaranteed that |z — &| < ak. In some cases, this
arbitrary point is the best estimate available for the input. For
instance, if ¢ is large and f is linear, then one cannot find
an estimate with provably lower error’. Thus it makes sense
to think of 1 — « as the quality of estimation in recovering
x against adversarial noise with intensity (. In this sense, 5*
can be thought of as a measure for the ability of the code to
partially recover the input in the presence of strong erasure
noise.

A related concept is that of unequal protection (UEP) codes
[5]-[8]. A code with minimum distance d is said to have the
UEP if, for some fixed ¢, it can always recover the ¢-th input
bit from more than d erasures. In this sense, the UEP codes are
often said to have the graceful degradation property. A map
with the («, 3)-property does not necessarily provide this type
of biased protection. If d erasures occur there is no guarantee
that any specific bit can always be fully recovered. However,
more can be said about the joint estimates. For instance, if a
code has 5(1/k) > (3(0) and exactly d erasures occur, then the
symbol error rate (SER) on estimating m bits from d erasures
can be shown to be at most -. In other words, the (c, 3)-
property does not provide unequal protection for any specific
bit but it can still ensure graceful degradation of overall SER
as the noise level exceeds the error correction capabilities of
the code depending on how fast 3 increases with .

It is a classic problem in coding theory to find maps with
large 3(0). It is thus useful to have estimates on how large
£(0) can be. The answer to this question is not yet known
unless the alphabet size is large, though various upper bounds
on (0) exist (c.f. [9]). The recent work has extended this
problem to finding estimates on () [1], [10], [11]. Again
the exact answer is known only when the alphabet size is large.
It was shown in [10] that 8(a) < 1 — 1_7‘1 where p := % and

2When ¢ > n, the Chebyshev radius of a linear subspace of g is equal
to its diameter.



equality can be achieved if ¢ > n. In this paper, we focus on
a different problem.

The above discussion motivates the need for a code with
large minimum distance and monotonically increasing ().
Such a code can fully recover the input when the number
of erasures is less than its minimum distance, and as the
number of erasures exceeds its minimum distance, it can
offer some partial recovery guarantees. It turns out, however,
that there is a tradeoff between full and partial recovery.
In the (a,3)-spectrum, we can fix one point, namely, the
minimum distance (or equivalently 5(0)), and ask how large
B(a) can be at some other point? We give some results in this
direction for linear codes. In particular, we show in Section
II that there is a tradeoff between the minimum distance
6 of a linear code and its B* (see (1) for definition). We
characterize the optimal tradeoff between § and 5* (over large
alphabets). We further show that optimal codes have some
input-output limitations: they must send some input vectors
with large weight to codewords with minimal weight 6. A
priori, the (o, 3)-property asks for the mapping of dissimilar
messages to be also dissimilar and as such is a relaxation of
the locality sensitive hashing (LSH) property [1]. Our results
show, however, that at least in the case of linear codes there
is a stronger connection between the two in the sense that if
a code sends dissimilar messages to dissimilar codewords, it
must also send some similar messages to similar codewords
(see Theorem 3).

The case of stochastic noise is also of interest. In our
scenario above, we may let the noise act by randomly erasing
some output coordinates. Again, it is desirable to find codes
with good estimation quality that degrades gracefully as the
noise level increases. These codes are to be contrasted with
capacity achieving codes, which offer small error below a
certain noise level and large error after that.

It is hard to design a code with a prescribed SER behavior.
However, since the («, 3)-property is more accessible at the
design stage, one can use it as a guideline to develop codes
with good SER properties. In section III, we provide some
techniques to design small binary codes with good («, 3)-
profiles using a generalization of MacWilliams identity. We
observe that such codes have lower bit error rate (BER) than
the Hadamard code of the same length and dimension when
used in transmission over BSC for a wide range of channel
parameters.

II. MAIN RESULTS

In this section we give a converse bound on 5* (see (1) for
definition) as a function of § for linear codes. Our bound is
alphabet independent, and can be tight (over large alphabets).
We first prove a bound for MDS codes and then prove a
general result for all linear codes. We prove some further
(v, B)-limitations of the codes that achieve the bound. In
particular, we show that if a code with positive distance
achieves the bound, then there exists some x with relatively
large weight for which |f(z)| = dn.

Throughout this section, we assume familiarity with the
concept of a geometric («, 3)-system associated to a linear
map. We refer the reader to [1] for details. We briefly mention
here that the («, 8)-property of f is determined by its image
as well as a choice of an embedding. If we write f(z) = G,
then we can think of the columns of G as elements of the
projective space P*~!, which we will call S-points, while
the projective images of the k standard basis vectors are
called a-points. The non-zero codewords® (up to scaling)
are in one-to-one correspondence with hyperplanes in P#~1,
The weight of a codeword is the number of (-points that
do not lie on the hyperplane. Likewise, the weight of the
associated message is the number of a-points that do not lie
on the hyper-plane. In this language, for example, 1 — 3*
is the largest fraction of [-points through which we can
pass a hyperplane avoiding all a-points. We denote the set
of a, -points, respectively, by I'y,I's. We also define the
sets of a-only points I',\g := T'q\I'g, and S-only points
Cgva = Ip\Ta.

We remark that the minimum distance of a map is a property
of its image and, hence, depends only upon the configuration
of its SB-points. On the other hand, 5* is a property of both
the image and the embedding and as such depends on the
arrangements of both «-points and [S-points. The bounds in
this section are thus to be interpreted as follows: fixing a
property (the minimum distance) of the image, bound * for
all possible embeddings, i.e., any configuration of a-points.

A. MDS codes

Here we show that, when n > 2k — 1, linear MDS codes
have * =1 — %, where p := 7. We remark that this result
can be seen as a generalization of Theorems 8 and 9 in [10].

Theorem 1. Suppose the image of f : F¥ — F™ is a linear
MDS code. If n > 2k—1 then there exists x € F* with |z| = k

such that |f(x)| < n — k + 1. This implies that * =1 — %.

We omit the proof of this theorem but mention that the proof
technique is essentially the same as what appears in the proof
of Theorem 3.

Remark 1. Consider solving a system of linear equations
y = xG where G is a k X n matrix with Kruskal rank k
(i.e., any k columns of G span a k-dimensional space). It is
possible to find x with |x| = k that satisfies some k — 1 of the
constraints. In other words, there exists a full-weight vector
in the left null space of some k x (k — 1) sub-matrix of G.

For MDS codes of length n < 2k — 2 we have:

Theorem 2. Suppose the image of f : FZ — Fy is a linear
MDS code with q > k. If k+1 < n < 2k — 1, there exists
xEIF’; with |x| > k — sk for all 0 < sk < 2k —n — 1 such
that |f(z)| < k — sk. In other words, B(a) < 1;“” for all
a<l-—s

Again, the proof relies on the same technique as that used in
the proof of Theorem 3 and is omitted due to space constraints.

3By a non-zero codeword we mean the image of a non-zero message.



Remark 2. The bound B(«) < 1;5 is tight and is achieved
if I'a CT'g, ie., if the code is systematic. In fact, this result,
combined with Theorem 1, can be used to characterize which
k x (k — 1) sub-matrices of G have full-weight elements in
their left null space (as discussed in Remark 1) over large
alphabets: if G = [I|A] has full Kruskal rank, then a kx (k—1)
sub-matrix of G contains a full weight element in its left null
space if and only if it is a submatrix of A. This follows from
Theorems 1 and 2 and the fact that a shortened MDS code is
still an MDS code.

B. Linear codes

In this section we show that there is a tradeoff between /5*
and 0, the relative minimum distance of a linear code. We
recall that p = 7.

Theorem 3. Let f Fg — Fy be a linear code of
relative minimum distance § with q > k. Then there ex-

ists © € IF’; with |x| = k such that |f(x)] < Z(1 +
\/1 _ p(liJ%V + n(lf%)z) + 1. In other words,
1 1 40
Br<+p/1-=
2 2 P

More generally, for a < 1 we asymptotically have
1+4-9% 41-a(l-46
7(1 — /1= W)

2 I
Furthermore, if |f(z)| > n —t for all x with |x| = k and
some t < k, then there exists x with |x| > t such that
|f(z)| < (n—t)2. In other words, for all o < p(1—3*) we
have B(a) < pB*(1 — B*). In particular, if a code achieves

the above bound on (3%, then for all o < §(1 — 4/ 45) we
have 3(a) =

Proof. Consider two sets A of m arbitrary points and B of
l points inside Pp with the property that any hyperplane
contains at most l(1 — ) fraction of the points in B. Consider
successive projections of A, B from the points in (the image
of) B that are not in (the image of) A. Note that, to project
from a point p, we draw a line from p to every point (except
for p) in A, B, and map that point to the intersection of the line
with P”. Suppose that after s projections we can no longer
find any B-point to further project from. We say that a B-
point is lost in projection if its image is not defined (i.e.,
it lies on the point from which we project). Let A\ be the
number of points in B\ A that are lost in the projections after
t steps. Suppose the image of A contains m’ unique points
p1,- -+, pms inside P™ where 7/ := r — t. The image of B
contains [ — A points counted with multiplicities. Let b; be the
number of points in B that get mapped to p; in the image of A.
We may assume that by > by > ... > b,,. On average, there
are ¢ = u > A A points of B lylng on top of a point in A.
It we plck a hyperplane that passes through py,--- , p,» inside
PHE , it must contain at least 1/ =2 ’\ points in the image of B.
We' can lift this hyperplane back to Py , to get a hyperplane

fla) <1 -

containing at least A+ W

on B requires that

points in B. The assumption

5l§l—<(l—)\)(r_t)+>\) 2)
m
Using A > t, we can write this as
olm
tZ—l_t—m—i-r 3)

This implies:

r+l—m 4 (=m(1 —=9)+r)
ST =

If ¢ > m, there exists a hyperplane inside P]’F’; that contains
no point in the image A’ of A. To see this, note that

there are

4 :11 hyperplanes inside P{F‘;. For a fixed point

there are

q 7_1171 hyperplanes that pass through

1

p € A,

p. By the union bound, if q;__l > me 111_ , there must
exist a hyperplane that passes through no point of A’. Setting
l:=nm:=kr:=k—1, we get

t 1 1 46
w2\t ©
as desired. We can remove a point p from A and apply the
above argument to A\{p}. If « < 1 — 2, then removing s

points from A gives

14 =< — _
oy <1- L i A0 —e-0) %“ )
2 p(l+ 5 —2)?
Now suppose that f(z) > n —t for all  with |z| = k.
Then the above sequence of projections must stop after ¢ steps.
Applying the same argument as above will prove the second
part. |

pr<1-

I ©®

Remark 3. This result shows that there is a tradeoff between
the “smoothness” of a code and its ability to correct errors.
The tradeoff stems from the fact that smoothness requires local
structures (c.f. [12]), and these in turn cannot spread messages
too far out.

Remark 4. This result strengthens the connection between
the («, B)-property and the locality sensitive hashing (LSH)
property. A priori, the (o, 3)-property is only a relaxation of
the LSH condition (see [1]), in the sense that a map that is
good in the (a, B)-sense sends far away messages to far away
codewords. This result suggests that such map must send some
nearby messages to nearby codewords as well.

Remark 5. For MDS codes the above result gives that
g < 1—%f0rp > 2and 5* < %forp < 2, which agrees with
Theorems 1,2. The repetition code can asymptotically achieve
0 =0 and * = 1. Thus the bound is tight at the two extreme
points § = 0,5 =1 — L. The bound can be achieved at other
values of 6 as well.

Remark 6. It follows from the above proof that any linear
code achieving f* = 1 in the asymptotic regime (as k — o)
must be repetition-like, that is almost all columns of the
generator matrix must have weight 1. Indeed the depth of the
above projection sequence can be at most o(k) for any such



code. The authors present in [13] a family of non-linear codes
that can achieve 3* = 1.

Remark 7. It is asked in [1] what codes can (asymptotically)
achieve o = 3 when p is not an integer. It follows from our
proof that such codes, if they exist, cannot be linear (over large
alphabets). Indeed one can check that there are no repetition-
like codes achieving o = [3 for non-integral p and any linear
code achieving * = 1 is repetition-like as discussed above.

Problem 1. The bound of Theorem 3 can be tight when the
alphabet size is large. It is a (hard) open problem to improve
the bound over small alphabets.

IT1I. DESIGNING LINEAR MAPS WITH GOOD
(v, B)-PROPERTIES

Let C be the graph of a linear map inside F§ x F}. Given
u e F§+k, write it as (ua, ug), where u, contains the first &
coordinates. Define

) = il
where | - | denotes the Hamming weight. Let

Welz,y)= Y glu)
U ug€C
be the bi-weight enumerator of the map. Then

Proposition 1 ( [9]). The following (MacWilliams) identity
l—2 1—y

holds: 1
= (1 B4y —-
If we define, P;(k,z) to be the Krawchouk polynomial
. i\ (k—=x
P =S (-1
) (k, ) §< ) <S><173> )

and Py, (4,5) = Py(k,i)Py(n,j), then the above identities
give that

k.n
;m = 2% Z le(ivj)Aij (8)
i,j=0
is non-negative. Here A;; (resp. A;;)) denotes the number of
codewords of bi-weight 4,5 in C (resp. C*). Then any linear
map with («, 3)-property must satisfy the following set of
cogs%raints:

> Pi(iyj)Ai; 20, Vi<n—km<n

i,j=0
Z Aij =0;

k
Ao =1, A >0, ZAij = (z)’
J J<B(£)n
)

To bound the size of a candidate code one can vary %k and
check the feasibility of the above set of linear constraints.

We consider two notions of («, 3)-optimality. One of them
requires one to compare («, 3)-properties of codes with dif-
ferent dimension. In such settings, it becomes useful to have
an absolute version of 3(a). We define

Ai () ==mf{[f(z) = fW)]: le —y[ 2 i} (10)

Definition 2 (Weakly optimal maps). A code f : F f; — Fy
is said to be weakly («, [3)-optimal if there does not exist
f'FEYY — B such that

Aj(f) = Ai(f) Vi<k

In other words, a code f is weakly optimal if no code with
larger dimension can achieve the same or better A} (f)’s.

Definition 3 (Strongly optimal maps). A code f : IF’; — Fy
is said to be strongly («, B)-optimal if it is not dominated by
any other code, i.e., there does not exist an code ' : IF’; — Fy
such that

AL () = A7 ()

where at least one inequality is strict.

Vi <k

The examples below show that weak optimality is indeed
strictly weaker than strong optimality. For the reverse direc-
tion, we have the following result:

Proposition 2. A strongly optimal map is weakly optimal.

In other words, if there exist a larger code that achieves the
same (o, 3)-profile as f, then f cannot be strongly optimal.
Before we present the proof we remark that the analogous
statement for minimum distance is false. Indeed, a code maybe
optimal in the sense of minimum distance, yet, there may
exists a larger code that achieves the same minimum distance.
For instance, Tanner [14] constructed a binary [12,4,6]-code.
The linear programming (LP) bound rules out the existence of
a [12,3,7]-code. Thus any [12,3,6]-subcode of the Tanner code
is still optimal in the sense of minimum distance. In general,
one can expect such codes to exists over any field where the
singleton bound is not tight. Over such fields, the existence
of an [n,k + 1, d]-code need not imply the existence of an
[n, k, d + 1]-code. However, the above proposition states that
the existence of an [n, k + 1]-code implies the existence an
[n, k]-code with improved A’s.

Proof (of Proposition 2). Suppose a  strongly  optimal
[+ F& — F? is weakly dominated by f/ : FFt! — F7.
Take the 1st coordinate and select the most common symbol
among the codewords of f’. Take all the codewords of
f that start with this common symbol and remove the
rest of the codewords. Now shorten the code by removing
the first coordinate. This gives an (n — 1,k)-subcode of
J/ with the same Af’s as f. Now define an extension
of f' as follows: f”(x) := (f'(x),z1) where z; is the
first input coordinate. Clearly, all messages x,2’ with
d(x,2') = k are sent to codewords that have distance
[f"(z) — f"(z")] = 1+ |f(z) — f(z')]. This violates strong
optimality of f.

|

A. A weakly optimal quasi-cyclic code

Here we present a code that is optimal in the weak sense.
Let Cg C F? be the [7.4]-cyclic code generated by the
primitive polynomial z* + z + 1. Similarly, Cjss denotes the
code generated by the primitive polynomial of 33 (which is
x% 4+ 2 + 1). Consider the code

C ={(z,y)lx € Cp,y € Cps} (1
The code has a minimum distance of 6. One can check
that after applying a linear transform z — x + 22
the resulting spectrum contains the following (o, 3) pairs:



T = A5 =6,A5 =8, A; = 10 (see (10) for the definition
of A7), with the following generating matrix:

0001011000110 1
G_|01 110100101110
10 1011000110100

1 0110001101000

(12)

Under these («, 3)-constraints, the LP in (9) becomes infeasi-
ble for £ = 5. This implies that no [14, 5]-code exists with the
same (or better) (v, 3)-properties. We note that relaxing any
of the (a, §)-constraints in the linear program will render the
LP feasible with £ = 5. This code is optimal in the weak sense
but not in the strong sense as the construction below shows.
We extend this code by appending the column ¢ := [0, 1,0, 1}’
to its generating matrix so it has comparable length with the
Hadamard code. It becomes a [15, 4]-code with the following
generating matrix:
Ge=[G | ¢] (13)
After the extension, the code contains the following («, 3)-
pairs:A} = 6,45 =7,A5 =9, A} = 11.

B. A strongly optimal linear code

We ask if there exists a [14,4]-code that dominates the
quasi-cyclic code of (12). The LP in (9) is infeasible if we set
A3 = 7 while keeping the rest of A}’s from above unchanged.
However, one can ask if there exists a code with the following
profile A7 = 6,45 = 6,A5 = 9, A} = 12. The space of
[14, 4]-linear codes is too big to search over. The LP in (9) can
help reduce the size of the search space by severely restricting
Aj1;’s. With the above A} ’s, it turns out that the LP is infeasible
when A1g < 3. This means that such a linear code can exists
only if at least three of the rows in its generating matrix have
weight 6. We can now efficiently search over the space of
linear codes with Ajg = 3 after taking out the symmetries.
Here is the generator matrix of a code that was found using
computer search over the reduced search space:

111111100000 O00O0
G = 111100011 100O0O0
11101001001 T1O00O0
01 111001O0O0O0O0T11
(14)

The LP and some mild extra work suffice to prove that this
code is optimal in strong sense. We also extend this code by
adding a column ¢ = [1,0,0,0]" to its generating matrix to
make it have the same length as the Hadamard code:

Ge=[G | ¢] (15)
The corresponding BER profile when used in communication
over BSC is shown in Fig.1. It can be seen that for a wide
range of channel parameters p the code of (15) outperforms
both the quasi-cyclic code of (13) and the Hadamard code.
We note that the [15,4, 8] Hadamard code is also optimal in
the strong sense, as is the shortened [14, 4, 7] Hadamard code.
It has larger distance but lower 5* than the other two codes
and thus serves as a reasonable basis for BER comparisons.
While the BER differences may seem marginal, we expect to
see more significant improvements for larger codes.

[15,4]-codes,BSC
0.5 T T T

—8&— Hadamard
0.45 1 | — extended quasi-cyclic (13) 7]

—*— extended lienar code (15)

041

031
'
w 0.25
o

021

0.1F

0.05

0 S il L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

Fig. 1: The BER profiles under bitMAP decoding for: 1) the
[15,4] Hadamard code 2) the [15,4] extended quasi-cyclic code
of (13) 3) the extended linear code of (15).
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