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Abstract—Consider a linear code defined as a mapping be-
tween vector spaces of dimensions k and n. Let β∗ denote the
minimal (relative) weight among all images of input vectors
of full Hamming weight k. Operationally, β∗ characterizes the
threshold for adversarial (erasure) noise beyond which decoder
is guaranteed to produce estimate of k-input with 100% symbol
error rate (SER). This paper studies the relation between β∗ and
δ, the minimum distance of the code, which gives the threshold
for 0% SER. An optimal tradeoff between β∗ and δ is obtained
(over large alphabets) and all linear codes achieving β∗

= 1

are classified: they are repetition-like. More generally, a design
criteria is proposed for codes with favorable graceful degradation
properties.

As an example, it is shown that in an overdetermined system
of n homogeneous linear equations in k variables (over a field) it
is always possible to satisfy some k − 1 equations with non-zero
assignments to every unknown, provided that any subset of k
equations is linearly independent. This statement is true if and
only if n ≥ 2k − 1.

I. INTRODUCTION

A mapping of k symbols to n symbols is said to have

the (α, β)-property if it sends any two strings of (Hamming)

distance more than αk to two strings of (Hamming) distance

more than βn. This property was first introduced in [1] and

is relevant to the Combinatorial Joint Source Channel Coding

problem [2]–[4].

Definition 1. A map f : Fk
q → F

n
q is said to be (α, β) if

|x− y| > αk =⇒ |f(x)− f(y)| > βn,

where | · | denotes the Hamming weight.

For a linear map f , we define1

β(α) := inf
x
{
|f(x)|

n
| |x| > αk} −

1

n
and

β∗ := β(1−
1

k
). (1)

Recall that the (relative) minimum distance of f is

δ := infx �=y
|f(x)−f(y)|

n
. Note that δ = β(0) + 1

n
.

The (α, β)-property is relevant to the problems of graceful

degradation and partial data recovery. One often encodes a

message x by a map f to build tolerance against external noise.

For instance, one may map x to f(x) and save the outcome
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1The term −

1

n
appears due to the strictness of inequalities in Definition 1.

on a storage device. Then noise may act by erasing some

of stored bits in an adversarial manner. One then observes

the non-erased bits and provides an estimate x̂ for x. With

the above notation, a map can fully recover the input from

β(0)n erasures. As the number of erasures exceeds β(0)n, it

is desired that x be recovered with good fidelity, that is, we

want |x − x̂| to be as small as possible. In general, β(α)n
erasures on the output can cause at most αk distortions in

the input. Indeed if we let x̂ be an arbitrary point in the pre-

image, it is guaranteed that |x− x̂| ≤ αk. In some cases, this

arbitrary point is the best estimate available for the input. For

instance, if q is large and f is linear, then one cannot find

an estimate with provably lower error2. Thus it makes sense

to think of 1 − α as the quality of estimation in recovering

x against adversarial noise with intensity β. In this sense, β∗

can be thought of as a measure for the ability of the code to

partially recover the input in the presence of strong erasure

noise.

A related concept is that of unequal protection (UEP) codes

[5]–[8]. A code with minimum distance d is said to have the

UEP if, for some fixed i, it can always recover the i-th input

bit from more than d erasures. In this sense, the UEP codes are

often said to have the graceful degradation property. A map

with the (α, β)-property does not necessarily provide this type

of biased protection. If d erasures occur there is no guarantee

that any specific bit can always be fully recovered. However,

more can be said about the joint estimates. For instance, if a

code has β(1/k) > β(0) and exactly d erasures occur, then the

symbol error rate (SER) on estimating m bits from d erasures

can be shown to be at most 1
m

. In other words, the (α, β)-
property does not provide unequal protection for any specific

bit but it can still ensure graceful degradation of overall SER

as the noise level exceeds the error correction capabilities of

the code depending on how fast β increases with α.

It is a classic problem in coding theory to find maps with

large β(0). It is thus useful to have estimates on how large

β(0) can be. The answer to this question is not yet known

unless the alphabet size is large, though various upper bounds

on β(0) exist (c.f. [9]). The recent work has extended this

problem to finding estimates on β(α) [1], [10], [11]. Again

the exact answer is known only when the alphabet size is large.

It was shown in [10] that β(α) ≤ 1− 1−α
ρ

, where ρ := n
k

and

2When q > n, the Chebyshev radius of a linear subspace of F
n

q
is equal

to its diameter.



equality can be achieved if q ≥ n. In this paper, we focus on

a different problem.

The above discussion motivates the need for a code with

large minimum distance and monotonically increasing β(α).
Such a code can fully recover the input when the number

of erasures is less than its minimum distance, and as the

number of erasures exceeds its minimum distance, it can

offer some partial recovery guarantees. It turns out, however,

that there is a tradeoff between full and partial recovery.

In the (α, β)-spectrum, we can fix one point, namely, the

minimum distance (or equivalently β(0)), and ask how large

β(α) can be at some other point? We give some results in this

direction for linear codes. In particular, we show in Section

II that there is a tradeoff between the minimum distance

δ of a linear code and its β∗ (see (1) for definition). We

characterize the optimal tradeoff between δ and β∗ (over large

alphabets). We further show that optimal codes have some

input-output limitations: they must send some input vectors

with large weight to codewords with minimal weight δ. A

priori, the (α, β)-property asks for the mapping of dissimilar

messages to be also dissimilar and as such is a relaxation of

the locality sensitive hashing (LSH) property [1]. Our results

show, however, that at least in the case of linear codes there

is a stronger connection between the two in the sense that if

a code sends dissimilar messages to dissimilar codewords, it

must also send some similar messages to similar codewords

(see Theorem 3).

The case of stochastic noise is also of interest. In our

scenario above, we may let the noise act by randomly erasing

some output coordinates. Again, it is desirable to find codes

with good estimation quality that degrades gracefully as the

noise level increases. These codes are to be contrasted with

capacity achieving codes, which offer small error below a

certain noise level and large error after that.

It is hard to design a code with a prescribed SER behavior.

However, since the (α, β)-property is more accessible at the

design stage, one can use it as a guideline to develop codes

with good SER properties. In section III, we provide some

techniques to design small binary codes with good (α, β)-
profiles using a generalization of MacWilliams identity. We

observe that such codes have lower bit error rate (BER) than

the Hadamard code of the same length and dimension when

used in transmission over BSC for a wide range of channel

parameters.

II. MAIN RESULTS

In this section we give a converse bound on β∗ (see (1) for

definition) as a function of δ for linear codes. Our bound is

alphabet independent, and can be tight (over large alphabets).

We first prove a bound for MDS codes and then prove a

general result for all linear codes. We prove some further

(α, β)-limitations of the codes that achieve the bound. In

particular, we show that if a code with positive distance

achieves the bound, then there exists some x with relatively

large weight for which |f(x)| = δn.

Throughout this section, we assume familiarity with the

concept of a geometric (α, β)-system associated to a linear

map. We refer the reader to [1] for details. We briefly mention

here that the (α, β)-property of f is determined by its image

as well as a choice of an embedding. If we write f(x) = xG,

then we can think of the columns of G as elements of the

projective space P
k−1, which we will call β-points, while

the projective images of the k standard basis vectors are

called α-points. The non-zero codewords3 (up to scaling)

are in one-to-one correspondence with hyperplanes in P
k−1.

The weight of a codeword is the number of β-points that

do not lie on the hyperplane. Likewise, the weight of the

associated message is the number of α-points that do not lie

on the hyper-plane. In this language, for example, 1 − β∗

is the largest fraction of β-points through which we can

pass a hyperplane avoiding all α-points. We denote the set

of α, β-points, respectively, by Γα,Γβ . We also define the

sets of α-only points Γα\β := Γα\Γβ , and β-only points

Γβ\α := Γβ\Γα.

We remark that the minimum distance of a map is a property

of its image and, hence, depends only upon the configuration

of its β-points. On the other hand, β∗ is a property of both

the image and the embedding and as such depends on the

arrangements of both α-points and β-points. The bounds in

this section are thus to be interpreted as follows: fixing a

property (the minimum distance) of the image, bound β∗ for

all possible embeddings, i.e., any configuration of α-points.

A. MDS codes

Here we show that, when n ≥ 2k − 1, linear MDS codes

have β∗ = 1 − 1
ρ

, where ρ := n
k

. We remark that this result

can be seen as a generalization of Theorems 8 and 9 in [10].

Theorem 1. Suppose the image of f : Fk → F
n is a linear

MDS code. If n ≥ 2k−1 then there exists x ∈ F
k with |x| = k

such that |f(x)| ≤ n− k + 1. This implies that β∗ = 1− 1
ρ

.

We omit the proof of this theorem but mention that the proof

technique is essentially the same as what appears in the proof

of Theorem 3.

Remark 1. Consider solving a system of linear equations

y = xG where G is a k × n matrix with Kruskal rank k
(i.e., any k columns of G span a k-dimensional space). It is

possible to find x with |x| = k that satisfies some k− 1 of the

constraints. In other words, there exists a full-weight vector

in the left null space of some k × (k − 1) sub-matrix of G.

For MDS codes of length n ≤ 2k − 2 we have:

Theorem 2. Suppose the image of f : Fk
q → F

n
q is a linear

MDS code with q > k. If k + 1 ≤ n < 2k − 1, there exists

x ∈ F
k
q with |x| ≥ k − sk for all 0 ≤ sk ≤ 2k − n − 1 such

that |f(x)| ≤ k − sk. In other words, β(α) ≤ 1−s
ρ

for all

α < 1− s.

Again, the proof relies on the same technique as that used in

the proof of Theorem 3 and is omitted due to space constraints.

3By a non-zero codeword we mean the image of a non-zero message.



Remark 2. The bound β(α) ≤ 1−s
ρ

is tight and is achieved

if Γα ⊂ Γβ , i.e., if the code is systematic. In fact, this result,

combined with Theorem 1, can be used to characterize which

k × (k − 1) sub-matrices of G have full-weight elements in

their left null space (as discussed in Remark 1) over large

alphabets: if G = [I|A] has full Kruskal rank, then a k×(k−1)
sub-matrix of G contains a full weight element in its left null

space if and only if it is a submatrix of A. This follows from

Theorems 1 and 2 and the fact that a shortened MDS code is

still an MDS code.

B. Linear codes

In this section we show that there is a tradeoff between β∗

and δ, the relative minimum distance of a linear code. We

recall that ρ = n
k

.

Theorem 3. Let f : F
k
q → F

n
q be a linear code of

relative minimum distance δ with q > k. Then there ex-

ists x ∈ F
k
q with |x| = k such that |f(x)| ≤ n

2 (1 +
√

1− 4δ
ρ(1− 1

n
)2

+ 4
n(1− 1

n
)2
) + 1. In other words,

β∗ ≤
1

2
+

1

2

√

1−
4δ

ρ

More generally, for α < 1 we asymptotically have

β(α) ≤ 1−
1 + 1

ρ
− α

ρ

2

(

1−

√

1−
4(1− α(1− δ))

ρ(1 + 1
ρ
− α

ρ
)2

)

Furthermore, if |f(x)| ≥ n − t for all x with |x| = k and

some t < k, then there exists x with |x| ≥ t such that

|f(x)| ≤ (n− t) t+1
k

. In other words, for all α < ρ(1−β∗) we

have β(α) ≤ ρβ∗(1 − β∗). In particular, if a code achieves

the above bound on β∗, then for all α < ρ
2 (1−

√

1− 4δ
ρ
) we

have β(α) = δ.

Proof. Consider two sets A of m arbitrary points and B of

l points inside P
r
Fq

with the property that any hyperplane

contains at most l(1− δ) fraction of the points in B. Consider

successive projections of A,B from the points in (the image

of) B that are not in (the image of) A. Note that, to project

from a point p, we draw a line from p to every point (except

for p) in A, B, and map that point to the intersection of the line

with P
r. Suppose that after s projections we can no longer

find any B-point to further project from. We say that a B-

point is lost in projection if its image is not defined (i.e.,

it lies on the point from which we project). Let λ be the

number of points in B\A that are lost in the projections after

t steps. Suppose the image of A contains m′ unique points

p1, · · · , pm′ inside P
r′ where r′ := r − t. The image of B

contains l−λ points counted with multiplicities. Let bi be the

number of points in B that get mapped to pi in the image of A.

We may assume that b1 ≥ b2 ≥ ... ≥ bm′ . On average, there

are c = l−λ
m′ ≥ l−λ

m
points of B lying on top of a point in A.

If we pick a hyperplane that passes through p1, · · · , pr′ inside

P
r′

Fq
, it must contain at least r′ l−λ

m
points in the image of B.

We can lift this hyperplane back to P
r
Fq

to get a hyperplane

containing at least λ+ (l−λ)(r−t)
m

points in B. The assumption

on B requires that

δl ≤ l −

(

(l − λ)
(r − t)

m
+ λ

)

(2)

Using λ ≥ t, we can write this as

t ≥
δlm

l − t
−m+ r (3)

This implies:

t ≥
r + l −m

2

(

1−

√

1−
4l(−m(1− δ) + r)

(r + l −m)2

)

(4)

If q > m, there exists a hyperplane inside P
r′

Fq
that contains

no point in the image A′ of A. To see this, note that

there are qr
′

−1
q−1 hyperplanes inside P

r′

Fq
. For a fixed point

p ∈ A′, there are qr
′
−1−1
q−1 hyperplanes that pass through

p. By the union bound, if qr
′

−1
q−1 > m qr

′
−1−1
q−1 , there must

exist a hyperplane that passes through no point of A′. Setting

l := n,m := k, r := k − 1, we get

β∗ ≤ 1−
t

n
≤

1

2
+

1

2

√

1−
4δ

ρ
(5)

as desired. We can remove a point p from A and apply the

above argument to A\{p}. If α < 1 − s
k

, then removing s
points from A gives

β(α) ≤ 1−
1 + 1−α

ρ

2
[1−

√

1−
4(1− α(1− δ))

ρ(1 + 1
ρ
− α

ρ
)2

] (6)

Now suppose that f(x) ≥ n − t for all x with |x| = k.

Then the above sequence of projections must stop after t steps.

Applying the same argument as above will prove the second

part.

Remark 3. This result shows that there is a tradeoff between

the “smoothness” of a code and its ability to correct errors.

The tradeoff stems from the fact that smoothness requires local

structures (c.f. [12]), and these in turn cannot spread messages

too far out.

Remark 4. This result strengthens the connection between

the (α, β)-property and the locality sensitive hashing (LSH)

property. A priori, the (α, β)-property is only a relaxation of

the LSH condition (see [1]), in the sense that a map that is

good in the (α, β)-sense sends far away messages to far away

codewords. This result suggests that such map must send some

nearby messages to nearby codewords as well.

Remark 5. For MDS codes the above result gives that

β∗ ≤ 1− 1
ρ

for ρ ≥ 2 and β∗ ≤ 1
ρ

for ρ ≤ 2, which agrees with

Theorems 1,2. The repetition code can asymptotically achieve

δ = 0 and β∗ = 1. Thus the bound is tight at the two extreme

points δ = 0, δ = 1− 1
ρ

. The bound can be achieved at other

values of δ as well.

Remark 6. It follows from the above proof that any linear

code achieving β∗ = 1 in the asymptotic regime (as k → ∞)

must be repetition-like, that is almost all columns of the

generator matrix must have weight 1. Indeed the depth of the

above projection sequence can be at most o(k) for any such



code. The authors present in [13] a family of non-linear codes

that can achieve β∗ = 1.

Remark 7. It is asked in [1] what codes can (asymptotically)

achieve α = β when ρ is not an integer. It follows from our

proof that such codes, if they exist, cannot be linear (over large

alphabets). Indeed one can check that there are no repetition-

like codes achieving α = β for non-integral ρ and any linear

code achieving β∗ = 1 is repetition-like as discussed above.

Problem 1. The bound of Theorem 3 can be tight when the

alphabet size is large. It is a (hard) open problem to improve

the bound over small alphabets.

III. DESIGNING LINEAR MAPS WITH GOOD

(α, β)-PROPERTIES

Let C be the graph of a linear map inside F
k
2 × F

n
2 . Given

u ∈ F
n+k
2 , write it as (uα, uβ), where uα contains the first k

coordinates. Define
g(u) = x|uα|y|uβ |

where | · | denotes the Hamming weight. Let

WC(x, y) =
∑

uα,uβ∈C

g(u)

be the bi-weight enumerator of the map. Then

Proposition 1 ( [9]). The following (MacWilliams) identity

holds:

WC⊥(x, y) =
1

|C|
(1 + x)k(1 + y)nWC(

1− x

1 + x
,
1− y

1 + y
)

If we define, Pl(k, x) to be the Krawchouk polynomial

Pl(k, x) =
i

∑

s=0

(−1)s
(

i

s

)(

k − x

l − s

)

(7)

and Plm(i, j) = Pl(k, i)Pm(n, j), then the above identities

give that

A′
lm =

1

2n

k,n
∑

i,j=0

Plm(i, j)Aij (8)

is non-negative. Here Aij (resp. A′
ij)) denotes the number of

codewords of bi-weight i, j in C (resp. C⊥). Then any linear

map with (α, β)-property must satisfy the following set of

constraints:
k,n
∑

i,j=0

Plm(i, j)Aij ≥ 0, ∀l ≤ n− k,m ≤ n

A00 = 1, Aij ≥ 0,
∑

j

Aij =

(

k

i

)

,
∑

j≤β( i
k
)n

Aij = 0;

(9)
To bound the size of a candidate code one can vary k and

check the feasibility of the above set of linear constraints.

We consider two notions of (α, β)-optimality. One of them

requires one to compare (α, β)-properties of codes with dif-

ferent dimension. In such settings, it becomes useful to have

an absolute version of β(α). We define
A∗

i (f) := inf{|f(x)− f(y)| : |x− y| ≥ i} (10)

Definition 2 (Weakly optimal maps). A code f : Fk
q → F

n
q

is said to be weakly (α, β)-optimal if there does not exist

f ′ : Fk+1
q → F

n
q such that

A∗
i (f

′) ≥ A∗
i (f) ∀i ≤ k

In other words, a code f is weakly optimal if no code with

larger dimension can achieve the same or better A∗
i (f)’s.

Definition 3 (Strongly optimal maps). A code f : Fk
q → F

n
q

is said to be strongly (α, β)-optimal if it is not dominated by

any other code, i.e., there does not exist an code f ′ : Fk
q → F

n
q

such that

A∗
i (f

′) ≥ A∗
i (f) ∀i ≤ k

where at least one inequality is strict.

The examples below show that weak optimality is indeed

strictly weaker than strong optimality. For the reverse direc-

tion, we have the following result:

Proposition 2. A strongly optimal map is weakly optimal.

In other words, if there exist a larger code that achieves the

same (α, β)-profile as f , then f cannot be strongly optimal.

Before we present the proof we remark that the analogous

statement for minimum distance is false. Indeed, a code maybe

optimal in the sense of minimum distance, yet, there may

exists a larger code that achieves the same minimum distance.

For instance, Tanner [14] constructed a binary [12,4,6]-code.

The linear programming (LP) bound rules out the existence of

a [12,3,7]-code. Thus any [12,3,6]-subcode of the Tanner code

is still optimal in the sense of minimum distance. In general,

one can expect such codes to exists over any field where the

singleton bound is not tight. Over such fields, the existence

of an [n, k + 1, d]-code need not imply the existence of an

[n, k, d + 1]-code. However, the above proposition states that

the existence of an [n, k + 1]-code implies the existence an

[n, k]-code with improved A∗
i ’s.

Proof (of Proposition 2). Suppose a strongly optimal

f : F
k
q → F

n
q is weakly dominated by f ′ : F

k+1
q → F

n
q .

Take the 1st coordinate and select the most common symbol

among the codewords of f ′. Take all the codewords of

f ′ that start with this common symbol and remove the

rest of the codewords. Now shorten the code by removing

the first coordinate. This gives an (n − 1, k)-subcode of

f ′ with the same A∗
i ’s as f . Now define an extension

of f ′ as follows: f ′′(x) := (f ′(x), x1) where x1 is the

first input coordinate. Clearly, all messages x, x′ with

d(x, x′) = k are sent to codewords that have distance

|f ′′(x) − f ′′(x′)| = 1 + |f(x) − f(x′)|. This violates strong

optimality of f .

A. A weakly optimal quasi-cyclic code

Here we present a code that is optimal in the weak sense.

Let Cβ ⊂ F
7
2 be the [7,4]-cyclic code generated by the

primitive polynomial x3 + x + 1. Similarly, Cβ3 denotes the

code generated by the primitive polynomial of β3 (which is

x3 + x2 + 1). Consider the code

C = {(x, y)|x ∈ Cβ , y ∈ Cβ3} (11)

The code has a minimum distance of 6. One can check

that after applying a linear transform x → x + x2,

the resulting spectrum contains the following (α, β) pairs:



A∗
1 = A∗

2 = 6, A∗
3 = 8, A∗

4 = 10 (see (10) for the definition

of A∗
i ), with the following generating matrix:

G =

⎡

⎢

⎢

⎣

0 0 0 1 0 1 1 0 0 0 1 1 0 1
0 1 1 1 0 1 0 0 1 0 1 1 1 0
0 1 0 1 1 0 0 0 1 1 0 1 0 0
1 0 1 1 0 0 0 1 1 0 1 0 0 0

⎤

⎥

⎥

⎦

(12)

Under these (α, β)-constraints, the LP in (9) becomes infeasi-

ble for k = 5. This implies that no [14, 5]-code exists with the

same (or better) (α, β)-properties. We note that relaxing any

of the (α, β)-constraints in the linear program will render the

LP feasible with k = 5. This code is optimal in the weak sense

but not in the strong sense as the construction below shows.

We extend this code by appending the column c := [0, 1, 0, 1]′

to its generating matrix so it has comparable length with the

Hadamard code. It becomes a [15, 4]-code with the following

generating matrix:

Ge =
[

G | c
]

(13)

After the extension, the code contains the following (α, β)-
pairs:A∗

1 = 6, A∗
2 = 7, A∗

3 = 9, A∗
4 = 11.

B. A strongly optimal linear code

We ask if there exists a [14, 4]-code that dominates the

quasi-cyclic code of (12). The LP in (9) is infeasible if we set

A∗
2 = 7 while keeping the rest of A∗

i ’s from above unchanged.

However, one can ask if there exists a code with the following

profile A∗
1 = 6, A∗

2 = 6, A∗
3 = 9, A∗

4 = 12. The space of

[14, 4]-linear codes is too big to search over. The LP in (9) can

help reduce the size of the search space by severely restricting

A1j’s. With the above A∗
i ’s, it turns out that the LP is infeasible

when A16 < 3. This means that such a linear code can exists

only if at least three of the rows in its generating matrix have

weight 6. We can now efficiently search over the space of

linear codes with A16 = 3 after taking out the symmetries.

Here is the generator matrix of a code that was found using

computer search over the reduced search space:

G =

⎡

⎢

⎢

⎣

1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 0 0
1 1 1 0 1 0 0 1 0 0 1 1 0 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1

⎤

⎥

⎥

⎦

(14)

The LP and some mild extra work suffice to prove that this

code is optimal in strong sense. We also extend this code by

adding a column c = [1, 0, 0, 0]′ to its generating matrix to

make it have the same length as the Hadamard code:

Ge =
[

G | c
]

(15)

The corresponding BER profile when used in communication

over BSC is shown in Fig.1. It can be seen that for a wide

range of channel parameters p the code of (15) outperforms

both the quasi-cyclic code of (13) and the Hadamard code.

We note that the [15, 4, 8] Hadamard code is also optimal in

the strong sense, as is the shortened [14, 4, 7] Hadamard code.

It has larger distance but lower β∗ than the other two codes

and thus serves as a reasonable basis for BER comparisons.

While the BER differences may seem marginal, we expect to

see more significant improvements for larger codes.
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Fig. 1: The BER profiles under bitMAP decoding for: 1) the

[15,4] Hadamard code 2) the [15,4] extended quasi-cyclic code

of (13) 3) the extended linear code of (15).
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