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Abstract—Two problems, namely multiple-description source
coding and joint source-channel broadcasting of a common
source, are addressed. For the multiple-description problem, we
revisit Ozarow’s technique for establishing impossibility results,
and extend it to general sources and distortion measures. For the
problem of sending a source over a broadcast channel, we revisit
the bounding technique of Reznik, Feder and Zamir, and extend
it to general sources, distortion measures and broadcast channels.
Although the obtained bounds do not improve over existing
results in the literature, they are relatively easy to evaluate, and
their derivation reveals the similarities between the two bounding
techniques.

I. INTRODUCTION

The multiple-description (MD) problem [1] is one of the

challenging settings in lossy source coding. An encoder trans-

lates a source sequence into two descriptions, but it may be that

only one of them reaches the decoder, as might happen when

the descriptions are sent separately over a packet-loss channel

(e.g., the internet). There is an inherent tradeoff: for a good

reproduction from an individual description, it must convey

the “most important” information about the source string;

however, that would mean that for the sake of reconstruction

from both descriptions, the encoder has included unnecessary

redundancy.

Translating this intuition into rigorous impossibility results

turns out to be a challenging task. Ahlswede proved a tight

converse for the “easier case” where the reproduction from

both descriptions is optimal [2]. For the quadratic Gaussian

case, Ozarow [1] proved a tight converse based upon aug-

menting the source with an auxiliary variable and using the

entropy-power inequality (EPI). In both cases, the matching

achievability result is that of El Gamal and Cover [3].

A somewhat related setting is joint source-channel coding

(JSCC) of a common source, to be conveyed to two users over

a degraded broadcast channel. Here too there is an inherent

tradeoff: a highly redundant description that might help the
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“weak” user, is redundant for the “strong” one. It is known

that source-channel separation is suboptimal, and indeed in

some cases it is possible to achieve simultaneous optimality for

both users using scalar (“analog”) coding. One of these cases

is of a Gaussian source with quadratic loss, over an additive

white Gaussian noise (AWGN) broadcast channel, where the

number of channel uses and source samples is equal. But what

happens when these numbers differ (“bandwidth mismatch”)?

Many schemes (bot hybrid digital-analog and semi-analog)

have been proposed, but the optimum tradeoff remains an open

problem. In [4], Reznic, Feder and Zamir have put forward an

outer bound that is inspired by Ozarow’s technique for the MD

problem. Most notably, their bound states that if the scheme is

optimal for the weak user, the signal-to-distortion ratio of the

strong user may only improve proportionally to the signal-to-

noise ratio, even if the bandwidth expansion ratio is large.

In this paper, we revisit the approach of [1], [4] and extend it

beyond the Gaussian-quadratic setting, to general memoryless

MD and JSCC problems. For both settings we derive outer

bounds that depend on the choice of an auxiliary variable. We

stress that our MD (resp., JSCC) bound can also be obtained as

a relaxation of a (possibly stronger) result of Song, Shao and

Chen [5] (resp., of Khezeli and Chen [6], [7]). Our bounds,

however, are easier to evaluate and agree with those prior

results in all the examples we are aware of. Pedagogically, our

derivation highlights the relation between Ozarow’s technique,

and the one used by Reznik, Feder and Zamir, by revealing

the dual role the auxiliary channel plays in the JSCC outer

bound.

II. PROBLEM DEFINITION

Let the source Sm be drawn according to an i.i.d. distribu-

tion PS (we keep alphabets abstract in order to accommodate

both discrete and continuous distributions). For a decoder

index i ∈ {0, 1, 2}, let {Ŝm
i } be the i-th reconstructed source

sequence. Consider some additive distortion measure

d(Sm, Ŝm) =
1

m

m
∑

j=1

d(Sj , Ŝj),

In the multiple descriptions problem we are given a pair

of rates R1 and R2. The encoders Mi = fi(S
m), i = 1, 2,

produce indices in sets of size at most 2mRi . The “side

decoders” produce reconstructions Ŝm
i = gi(Mi), i = 1, 2,
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Fig. 1: The Multiple Descriptions Problem.
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Fig. 2: JSCC over a Broadcast Channel.

while the “central decoder” produces Ŝm
0 = g0(M1,M2),

see Fig. 1. For given PS , R1 and R2, a distortion triplet

(D0, D1, D2) is said to be achievable if there exist two

encoders and three decoders such that E[d(Sm, Ŝm
i )] ≤ Di

for i = 0, 1, 2 in the limit of large m.

In the JSCC broadcast problem there is no rate con-

straint, but we are also given an n-letter broadcast channel

QY n
1
,Y n

2
|Xn ; the channel may be subject to a cost con-

straint in the usual manner. The source, channels and re-

constructions are connected by an encoder Xn = f(Sn)
and decoders Ŝm

i = gi(Y
m
i ), see Fig. 2. For given m, n,

PS , and QY n
1
,Y n

2
|Xn , a distortion pair (D1, D2) is said to

be achievable if there exist f(), g1() and g2() such that

E[d(Sm, Ŝm
i )] ≤ Di for i = 1, 2. It will be convenient to ex-

press results using the bandwidth expansion factor ρ = n/m.

Special attention will be given to the memoryless degraded

broadcast channel case, where QY n
1
,Y n

2
|Xn(yn1 , y

n
2 |x

n) =
∏n

i=1 QY1|X(y1i|xi)QY2|Y1
(y2i|y1i).

III. MAIN RESULTS

For our results, we need the following functions of the

source. We define an auxiliary variable via a conditional

distribution PU |S . By combining with the given PS we obtain

P = PS,U . With respect to this distribution, we define:

FP (t) , min
V : U−S−V
I(S;V )≥t

I(S;V |U), (1)

R̄P (D) , min
Ŝ : U−S−Ŝ

Ed(S,Ŝ)≤D

I(U ; Ŝ) (2)

The function FP satisfies the following key properties.

Lemma 1: The function FP (t) is monotone non-decreasing

and convex. Furthermore, it tensorizes, i.e.,

FPm(mt) = mFP (t).

Furthermore, the following gives an operational rate-

distortion meaning to R̄P (D). Notice that both from the

operational and analytical points of view, when U = S it

reduces to the rate-distortion function (RDF) of the source S.

Lemma 2: Let (Ui, Si)
iid
∼ PU,S and Ŝm be a random

vector satisfying the Markov chain Um − Sm − Ŝm and

Ed(Sm, Ŝm) ≤ D, then

I(Um; Ŝm) ≥ mR̄P (D).

The proofs of these lemmas appear in Section V. In the

sequel, R(D) will be the standard RDF for the source PS .

The lemmas above can be used for establishing a lower bound

on the sum-rate of the MD problem.

Theorem 1: Consider the MD problem. If the distortions

(D0, D1, D2) are achievable at rates (R1, R2), then for any P
defined by a choice of U ,

R1 +R2 ≥ FP (R(D0)) + R̄P (D1) + R̄P (D2). (3)

The theorem can be obtained as a corollary from [5,

Theorem 1], as follows: set Z2 = S, Z1 = U , Z0 = ∅ there,

and notice that I(U ; Ŝi) ≥ R̄P (Di), i = 1, 2 and that

I(S; Ŝ0, Ŝ1, Ŝ2|U) ≥ I(S; Ŝ0|U)

≥ FP (I(S; Ŝ0)) ≥ FP (R(D0)). (4)

Interestingly, even though this derivation shows that the bound

of Theorem 1 may be weaker than that of [5, Theorem 1],

in the two cases for which the optimization it involves was

successfully solved in [5], the two bounds coincide. We bring

the proof of the result, in order to demonstrate the usefulness

of the lemmas above, and the resemblance to the JSCC setup.

Proof of Theorem 1: The first steps of the proof fol-

low Ozarow’s [1] proof for the Gaussian case. Specifically,

from I(Sm;M1,M2|U
m) ≤ H(M1|U

m) + H(M2|U
m), we

have

m(R1 +R2) ≥

I(Sm;M1,M2|U
m) + I(Um;M1) + I(Um;M2). (5)

Now, invoking Lemma 2 and the definition of FPm , we can

further bound (5) as

R1 +R2 ≥
FPm (I(Sm;M1,M2))

m
+ R̄P (D1) + R̄P (D2)

= FP

(

I(Sm;M1,M2)

m

)

+ R̄P (D1) + R̄P (D2) (6)

≥ FP (R(D0)) + R̄P (D1) + R̄P (D2), (7)

where (6) follows from tensorization of FPm , and (7) follows

since I(Sm;M1,M2) ≥ I(Sm; Ŝm
0 ) ≥ mR(D0).

For the JSCC problem, we need to also consider the channel

law Qn = QY n
1
,Y n

2
|Xn(yn1 , y

n
2 |x

n). Although our main interest

will be in degraded memoryless broadcast channels, we will

first prove our result for a general n-letter broadcast channel,

and only then specialize to the degraded memoryless case. For

the channel Qn, we define:

GQn(t) , max
W,Xn : W−Xn−Y n

1
−Y n

2

I(Xn;Y n
1
|W )≥t

I(Y n
2 ;W ). (8)

Note the relation to the capacity region of the broadcast chan-

nel: If nR1 and nR2 bits can be communicated reliably to the

receivers Y n
1 and Y n

2 , respectively, then nR2 ≤ GQn(nR1) [8,

Chapter 5.4.1] .

We now state our result. Although it is stated for channels

without a cost constraint, such a constraint can be included



by constraining the distribution of Xn in the computation of

GQn(t), in the obvious way.

Theorem 2: Consider the problem of transmitting m re-

alizations of the i.i.d. source S, over the n-letter broadcast

channel Qn. If (D1, D2) is achievable, then for any P defined

by a choice of U ,

mR̄P (D2) ≤ GQn (mFP (R(D1))) . (9)

Proof: Let Ŝm
1 , Ŝm

2 be the estimates produced from the

outputs Y n
1 and Y n

2 , respectively. We have

mR̄P (D2) ≤ I(Um, Ŝm
2 )

≤ I(Um;Y n
2 ) (10)

≤ GQn(I(Xn;Y n
1 |Um)) (11)

≤ GQn (I(Sm;Y n
1 |Um)) (12)

≤ GQn (FPm (I(Sm;Y n
1 ))) (13)

= GQn

(

mFP

(

I(Sm;Y n
1 )

m

))

(14)

≤ GQn

(

mFP

(

I(Sm; Ŝm
1 )

m

))

(15)

≤ GQn (mFP (R(D1))) ,

where (10) follows from the data processing inequality

(DPI), (11) from definition of GQn , (12) from the DPI and

monotonicity of GQn , (13) from definition of FPm , (14) from

tensorization of FPm , and (15) from the DPI.

Note that Um plays a two-fold role here: in (11) we used the

Markov chain Um−Xn−Y n
1 −Y n

2 , whereas in (12) we used

Um − Sm − Y n
1 . Thus, the source two-descriptions problem,

and the broadcast channel problem are coupled via the same

auxiliary variable Um. This is also the main weakness of the

bound above: Even though the same Um, whose distribution

is fixed once we choose the channel PU |S , appears in both

Markov chains, in the transition from (10) to (11), we have

used the definition of GQn , which involves a maximization

with respect to Um.

We now consider the special case where the channel Qn

is degraded and memoryless. i.e., Qn
Y n
1
,Y n

2
|Xn(yn1 , y

n
2 |x

n) =
∏n

i=1 QY1|X(y1i|xi)QY2|Y1
(y2i|y1i). We have the following

(for proof see Section V).

Lemma 3: The function GQ(t) is monotone non-increasing

and concave. Furthermore, if Qn is a degraded memoryless

broadcast channel, it tensorizes, i.e.,

GQn(nt) = nGQ(t).

The following Theorem is an immediate corollary of The-

orem 2 and Lemma 3.

Theorem 3: Consider the degraded memoryless JSCC

broadcast problem. If (D1, D2) is achievable, then for any

P defined by a choice of U ,

R̄P (D2) ≤ ρ ·GQ

(

FP (R(D1))

ρ

)

. (16)

This bound can be obtained as a special case of [6, Theorem

5], by observing that the capacity region boundary of the

degraded memoryless broadcast channel Q (without common

message) is given by (C1, GQ(C1)) [8, Theorem 5.2].

It is not difficult to see that for U = ∅, our bound reads

R(D1) ≤ ρmaxX I(X;Y1), whereas for the choice U = S
it reduces to R(D2) ≤ ρmaxW I(W ;Y2). Those are the two

extreme cases, when only the distortion of the reconstruction

at one terminal is of interest.

IV. SPECIAL CASES

A. Quadratic Gaussian Case

In this case, PS is Gaussian (0, σ2) and d(Sj , Ŝj) = (Sj −
Ŝj)

2. We choose U that is the output of an AWGN channel

with input S and noise that is Gaussian (0, δ2). Using the EPI,

one can verify that

FP (t) = t−
1

2
log

(

δ2 + σ2

δ2 + σ2e−t

)

R̄P (D) =
1

2
log

(

δ2 + σ2

δ2 +D

)

,

where FP is attained by taking V that is the output of an

AWGN with input S. Substituting these quantities and the

quadratic-Gaussian RDF in Theorem 1 yields that for all δ,

R1 +R2 ≥
1

2
log

(

σ2

D0

)

+
1

2
log

(

(δ2 + σ2)(δ2 +D0)

(δ2 +D1)(δ2 +D2)

)

,

which is exactly Ozarow’s quadratic-Gaussian MD sum-rate

(tight) bound.

Now we combine the Gaussian source with an AWGN

broadcast channel, Y1 = X + Z1, Y2 = Y1 + Z2, where

Z1 ∼ N (0, N1), Z2 ∼ N (0, N2), (X,Z1, Z2) mutually

independnet, and the channel input is subject to a quadratic

cost constraint P . Using the EPI again, one can verify that

GQ(t) =
1

2
log

(

P +N1 +N2

N1e2t +N2

)

,

where the function is attained by (W,X) that are jointly

Gaussian. Combining with the source functions above and with

the quadratic-Gaussian RDF, we recover the Reznic et al. outer

bound [4, Theorem 1]: For all δ,

δ2 + σ2

δ2 +D2
≤

(

1 +
P

N1 +N2

)ρ







N1 +N2

N1

(

σ2

D1 · δ2+D1

δ2+σ2

)
1

ρ

+N2







ρ

.

B. Binary-Hamming Case

We now take S to be a Bernoulli(p) source, and d(Sj , Ŝj)
to be the Hamming distortion measure. We define the function

hb(x) = −x log x−(1−x) log(1−x) and its inverse restricted

to the interval [0, 1/2] as h−1
b (·). For 0 ≤ a, b ≤ 1 we also

define a ∗ b = a(1− b) + b(1− a). We define PU |S by taking

U = S ⊕N , where N ∼ Ber(q), independent of S.

Proposition 1: For 0 ≤ t ≤ h(p)

FP (t) ≥ t− hb(q ∗ p) + hb

(

q ∗ h−1 (hb(p)− t)
)

, (17)

with equality for p = 1/2.



Proof: By the Markov structure, we have that I(S;V ) =
I(U ;V ) + I(S;V |U). Thus,

I(S;V |U) = I(S;V )−H(U) +H(U |V )

≥ I(S;V )−H(U) + hb(q ∗ h
−1(H(S|V )))

= I(S;V )−H(U) + hb(q ∗ h
−1(H(S)− I(S;V )))

= I(S;V )− hb(q ∗ p) + hb(q ∗ h
−1(hb(p)− I(S;V ))),

where the inequality follows from Mrs. Gerber’s Lemma [9].

Note that equality holds iff H(S|V = v) = H(S|V ) for all

v ∈ V , which is the case for p = 1/2 and V = S ⊕A, where

A ∼ Ber(h−1
b (1− I(S;V ))).

Proposition 2: For 0 ≤ D ≤ p

R̄P (D) = hb(q ∗ p)− hb(q ∗D). (18)

Proof: For every PŜ|S satisfying the constraint E(S ⊕

Ŝ) ≤ D, we must have that

I(U ; Ŝ) = H(U)−H(U |Ŝ) = H(U)−H(U ⊕ Ŝ|Ŝ)

≥ H(U)−H(U ⊕ Ŝ) = H(U)−H(N ⊕ S ⊕ Ŝ)

= hb(q ∗ p)− hb(q ∗ E(S ⊕ Ŝ)) ≥ hb(q ∗ p)− hb(q ∗D).

To see that this lower bound is tight, take the reverse test

channel S = Ŝ ⊕ V where V ∼ Ber(D).
Substituting these results in Theorem 1, we recover the

bound of [5] for the binary symmetric MD problem:

R1 +R2 ≥ [hb(q ∗D0)− hb(D0)]− [h(q ∗ p)− h(p)]

+ [h(q ∗ p)− h(q ∗D1)] + [h(q ∗ p)− h(q ∗D2)] . (19)

We now combine the binary source with Hamming distor-

tion, with a degraded broadcast channel. First, consider the

case of symmetric erasures, i.e., Yi is X w.p. 1−ϵi and erased

otherwise, for i = 1, 2, one can verify that:

GQ(t) =
1− ϵ2
1− ϵ1

(log 2− ϵ1 − t).

Combining with propositions 1 and 2 and substituting in

Theorem 3, one obtains the bound (for p = 1/2):

log 2− hb(D2 ∗ q)

(1− ϵ2) log 2
+

hb(D1 ∗ q)− hb(D1)

(1− ϵ1) log 2
≤ ρ,

which recovers the bound of [10] (which was also recovered

in [7]).

Finally we turn to a binary symmetric channel, i.e., Y1 =
X ⊕ Z1, and Y2 = Y1 ⊕ Z2, where Z1 ∼ Ber(δ1), Z2 ∼
Ber(δ2), and (X,Z1, Z2) are mutually independent.

Proposition 3: For a binary symmetric degraded channel

GQ(t) = log 2− hb

(

δ2 ∗ h
−1
b (hb(δ1) + t)

)

, (20)

for 0 ≤ t ≤ log 2− hb(δ1).
Proof:

H(Y2|W ) ≥ hb

(

δ2 ∗ h
−1
b (H(Y1|W ))

)

= hb

(

δ2 ∗ h
−1
b (H(Y1|X) +H(Y1|W )−H(Y1|X,W ))

)

= hb

(

δ2 ∗ h
−1
b (H(Y1|X) + I(X;Y1|W ))

)

= hb

(

δ2 ∗ h
−1
b (hb(δ1) + I(X;Y1|W ))

)

,

where the inequality stems from Mrs. Gerber’s Lemma and

the fact that Y2 = Y1 ⊕ Z2, with equality if X ∼ Ber(1/2)

and W = X ⊕A for A ∼ Ber(η), where I(Y2;W ) = log 2−
hb(η∗δ1∗δ2). Noticing that I(Y2;W ) = H(Y2)−H(Y2|W ) ≤
log 2−H(Y2|W ), with equality for X ∼ Ber(1/2), the proof

is completed.

We can now combine this result with propositions 1 and 2

and substitute in Theorem 3, to obtain the following theorem.

Theorem 4: For the JSCC broadcast problem with a binary

symmetric source, Hamming distortion and a binary symmetric

channel, suppose that the pair (D1, D2) is achievable. Then,

for any 0 ≤ q ≤ 1/2, it holds that

hb(q ∗ p)− hb(q ∗D2) ≤ ρ
[

log 2− hb

(

δ2 ∗ h
−1
b (A1)

)]

,

where

A1 = hb(δ1) +
1

ρ
[h(q ∗D1)− h(D1)− h(q ∗ p) + h(p)] .

For p = 1/2, the bound significantly simplifies as on the

left hand side hb(q ∗ p) = 1/2, while on the right hand side

A1 = hb(δ1) +
hb(q ∗D1)− hb(D1)

ρ
. (21)

Following the treatment of the Gaussian-quadratic case

in [4], we consider the case were the distortion of the “weak”

user is optimal. That is, let D∗
2 satisfy

R(D∗
2) = ρ(log 2− hb(δ1 ∗ δ2)) (22)

For the special case of D2 = D∗
2 . We can take q → 0 in

Theorem 4, and applying some straightforward algebra, we

obtain the following.

Corollary 1: For the JSCC broadcast problem with a binary

source and a binary symmetric channel, suppose that the pair

(D1, D
∗
2) is achievable, where D∗

2 satisfies (22). Then,

g(D1) ≥ g(p) +
g(δ1)

g(δ1 ∗ δ2)
[g(D∗

2)− g(p)] , (23)

where g(t) , (1− 2t) log
(

1−t
t

)

.

Similarly, for the special case of D1 = D∗
1 , where

R(D∗
1) = ρ(log 2− hb(δ1), (24)

we can take q → 1/2 in Theorem 4, and after applying some

straightforward algebra, obtain the following.

Corollary 2: For the JSCC broadcast problem with a binary

source and a binary symmetric channel, suppose that the pair

(D∗
1 , D2) is achievable, where D∗

1 satisfies (24). Then,

(1− 2D2)
2 ≤ (1− 2 · δ2 ∗D

∗
1)

2

+ (1− 2p)2
(

1− (1− 2 · δ2)
2
)

. (25)

In particular, for p = 1/2,

D2 ≥ δ2 ∗D
∗
1 . (26)

V. PROOFS OF INFORMATION INEQUALITIES

In this section we prove lemmas 1-3, which serve as the

main technical ingredient of our results.

Proof of Lemma 1: Monotonicity and of the function

FP (t) follows by definition. Establishing convexity is straight-

forward, and the proof is omitted. We prove tensorization

by induction. For any V that satisfies the Markov chain



Um − Sm − V , we have

FP

(

I(Sm;V )

m

)

= FP

(

I(Sm−1;V ) + I(Sm;V |Sm−1)

m

)

= FP

(

I(Sm−1;V ) + I(Sm;V, Sm−1)

m

)

= FP

(

m− 1

m

I(Sm−1;V )

m− 1
+

1

m
I(Sm;V, Sm−1)

)

≤
m− 1

m
FP

(

I(Sm−1;V )

m− 1

)

+
1

m
FP

(

I(Sm;V, Sm−1)
)

,

where we have used the convexity of t 7→ FP (t) in the last

inequality. Invoking the induction hypothesis, we have

FP

(

I(Sm;V )

m

)

≤
1

m
FPm−1

(

I(Sm−1;V )
)

+
1

m
FP

(

I(Sm;V, Sm−1)
)

≤
1

m

[

I(Sm−1;V |Um−1) + I(Sm;V, Sm−1|Um)
]

(27)

where the last inequality follows by definition of FPm−1 and

FP and the fact Um−1−Sm−1−V and Um−Sm−(V, Sm−1)
are indeed Markov chains. Noting that

I(Sm−1;V |Um−1) ≤ I(Sm−1;V |Um),

and

I(Sm;V, Sm−1|Um) = I(Sm;V, Sm−1|Um)

≤ I(Sm;V |Sm−1, Um),

which both follow since Sm is memoryless, we obtain

I(Sm−1;V |Um−1) + I(Sm;V, Sm−1|Um) ≤ I(Sm;V |Um).
(28)

Substituting (28) into (27), gives

I(Sm;V |Um) ≥ mFP

(

I(Sm;V )

m

)

, (29)

as desired.

Proof of Lemma 3: Monotonicity of GQ(t) follows by

definition. Establishing concavity is straightforward, and the

proof is omitted. We prove tensorization by induction. For any

(W,Xn) satisfying the Markov chain W − Xn − Y n
1 − Y n

2

we have

I(Xn;Y n
1 |W ) = I(Y n−1

1 ;Xn−1|W ) + I(Xn;Y1,n|W,Y n−1
1 ).

Consequently,

GQ

(

I(Xn;Y n
1 |W )

n

)

= GQ

(

I(Y n−1
1 ;Xn−1|W ) + I(Xn;Y1,n|W,Y n−1

1 )

n

)

= GQ

(

n− 1

n

I(Y n−1
1 ;Xn−1|W )

n− 1
+

I(Xn;Y1,n|W,Y n−1
1 )

n

)

≥
n− 1

n
GQ

(

I(Y n−1
1 ;Xn−1|W )

n− 1

)

+
1

n
GQ

(

I(Xn;Y1,n|W,Y n−1
1 )

)

(30)

where we have used the concavity of t 7→ GQ(t) in the last

inequality. Invoking the induction hypothesis, we get

GQ

(

I(Xn;Y n
1 |W )

n

)

=
Gn−1

Q

(

I(Y n−1
1 ;Xn−1|W )

)

+GQ

(

I(Xn;Y1,n|W,Y n−1
1 )

)

n

≥
I(Y n−1

2 ,W ) + I(Y2,n;W,Y n−1
1 )

n
, (31)

where the last inequality follows from the definition of

GQn−1(t) and GQ(t) and the fact that W−Xn−Y n−1
1 −Y n−1

2

and (W,Y n−1
1 )−Xn−Y1,n−Y2,n are indeed Markov chains.

Note that we have the Markov chain Y2,n−(W,Y n−1
1 )−Y n−1

2 ,

and therefore

I(Y2,n;W,Y n−1
1 ) ≥ I(Y2,n;W,Y n−1

2 ) ≥ I(Y2,n;W |Y n−1
2 ).

(32)

Substituting into (31) gives

nGQ

(

I(Xn;Y n
1 |W )

n

)

≥ I(Y n−1
2 ,W ) + I(Y2,n;W |Y n−1

2 )

= I(Y n
2 ;W ),

as desired.

Proof of Lemma 2: Since Um is memoryless,

we have that I(Um; Ŝm) ≥
∑m

i=1 I(Ui; Ŝi). Note that
1
m

∑m
i=1 Ed(Si; Ŝi) ≤ D by separability of d(Sm; Ŝm), and

that the Markov chain Um−Sm−Ŝm implies that Ui−Si−Ŝi

is also a Markov chain. It is easy to see that the function

D 7→ R̄P (D) is convex. Thus, letting di = Ed(Si; Ŝi), we

have that

I(Um; Ŝm) ≥ m
1

m

m
∑

i=1

R̄P (di) ≥ mR̄P (D). (33)
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