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Abstract—Two problems, namely multiple-description source
coding and joint source-channel broadcasting of a common
source, are addressed. For the multiple-description problem, we
revisit Ozarow’s technique for establishing impossibility results,
and extend it to general sources and distortion measures. For the
problem of sending a source over a broadcast channel, we revisit
the bounding technique of Reznik, Feder and Zamir, and extend
it to general sources, distortion measures and broadcast channels.
Although the obtained bounds do not improve over existing
results in the literature, they are relatively easy to evaluate, and
their derivation reveals the similarities between the two bounding
techniques.

I. INTRODUCTION

The multiple-description (MD) problem [1] is one of the
challenging settings in lossy source coding. An encoder trans-
lates a source sequence into two descriptions, but it may be that
only one of them reaches the decoder, as might happen when
the descriptions are sent separately over a packet-loss channel
(e.g., the internet). There is an inherent tradeoff: for a good
reproduction from an individual description, it must convey
the “most important” information about the source string;
however, that would mean that for the sake of reconstruction
from both descriptions, the encoder has included unnecessary
redundancy.

Translating this intuition into rigorous impossibility results
turns out to be a challenging task. Ahlswede proved a tight
converse for the “easier case” where the reproduction from
both descriptions is optimal [2]. For the quadratic Gaussian
case, Ozarow [1] proved a tight converse based upon aug-
menting the source with an auxiliary variable and using the
entropy-power inequality (EPI). In both cases, the matching
achievability result is that of El Gamal and Cover [3].

A somewhat related setting is joint source-channel coding
(JSCC) of a common source, to be conveyed to two users over
a degraded broadcast channel. Here too there is an inherent
tradeoff: a highly redundant description that might help the
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“weak” user, is redundant for the “strong” one. It is known
that source-channel separation is suboptimal, and indeed in
some cases it is possible to achieve simultaneous optimality for
both users using scalar (“analog”) coding. One of these cases
is of a Gaussian source with quadratic loss, over an additive
white Gaussian noise (AWGN) broadcast channel, where the
number of channel uses and source samples is equal. But what
happens when these numbers differ (“bandwidth mismatch’)?
Many schemes (bot hybrid digital-analog and semi-analog)
have been proposed, but the optimum tradeoff remains an open
problem. In [4], Reznic, Feder and Zamir have put forward an
outer bound that is inspired by Ozarow’s technique for the MD
problem. Most notably, their bound states that if the scheme is
optimal for the weak user, the signal-to-distortion ratio of the
strong user may only improve proportionally to the signal-to-
noise ratio, even if the bandwidth expansion ratio is large.

In this paper, we revisit the approach of [1], [4] and extend it
beyond the Gaussian-quadratic setting, to general memoryless
MD and JSCC problems. For both settings we derive outer
bounds that depend on the choice of an auxiliary variable. We
stress that our MD (resp., JSCC) bound can also be obtained as
a relaxation of a (possibly stronger) result of Song, Shao and
Chen [5] (resp., of Khezeli and Chen [6], [7]). Our bounds,
however, are easier to evaluate and agree with those prior
results in all the examples we are aware of. Pedagogically, our
derivation highlights the relation between Ozarow’s technique,
and the one used by Reznik, Feder and Zamir, by revealing
the dual role the auxiliary channel plays in the JSCC outer
bound.

II. PROBLEM DEFINITION

Let the source S™ be drawn according to an i.i.d. distribu-
tion Ps (we keep alphabets abstract in order to accommodate
both discrete and continuous distributions). For a decoder
index i € {0,1,2}, let {5} be the i-th reconstructed source
sequence. Consider some additive distortion measure

N 1 & .
d(s™,5™) = 3 d(S;.5)).
j=1

In the multiple descriptions problem we are given a pair
of rates Ry and Rs. The encoders M; = f;(S™), i = 1,2,
produce indices in sets of size at most 2™ The “side
decoders” produce reconstructions S;” = gi(M;), i = 1,2,
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Fig. 1: The Multiple Descriptions Problem.
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Fig. 2: JSCC over a Broadcast Channel.
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while the “central decoder” produces SI' = go(My, Ms),
see Fig. 1. For given Pg, Ry, and R, a distortion triplet
(Do, D1, D3) is said to be achievable if there exist two
encoders and three decoders such that E[d(S™, S™)] < D;
for i = 0,1,2 in the limit of large m.

In the JSCC broadcast problem there is no rate con-
straint, but we are also given an n-letter broadcast channel
len,7y2n‘ xn; the channel may be subject to a cost con-
straint in the usual manner. The source, channels and re-
constructions are connected by an encoder X" = f(S™)
and decoders g{” = g;(Y;™), see Fig. 2. For given m, n,
Ps, and Qyp yp|xn, a distortion pair (D1, D2) is said to
be achievable if there exist f(), g1() and go() such that
E[d(S™, S™)] < D; for i = 1,2. It will be convenient to ex-
press results using the bandwidth expansion factor p = n/m.
Special attention will be given to the memoryless degraded
broadcast channel case, where Qyr ypx»(y7,y5]2") =

[Tim) Qi ix (v1ilz) Qvy v, (y2:lyri)-

IIT. MAIN RESULTS

For our results, we need the following functions of the
source. We define an auxiliary variable via a conditional
distribution Ppy|s. By combining with the given Pg we obtain
P = Pg ;. With respect to this distribution, we define:

ry : )

FP(t) _V Igi%_V](SaV|U)a (1)
I(S;V)>t

Rp(D)2 min I(U;5) 2)
$:U-S-8
Ed(S,5)<D

The function Fp satisfies the following key properties.
Lemma 1: The function Fp(t) is monotone non-decreasing
and convex. Furthermore, it tensorizes, i.e.,

Fpm (mt) = me (t)

Furthermore, the following gives an operational rate-
distortion meaning to Rp(D). Notice that both from the
operational and analytical points of view, when U = S it
reduces to the rate-distortion function (RDF) of the source S.

Lemma 2: Let (U;,S;) i Py s and S™ be a random
vector satisfying the Markov chain U™ — S™ — S™ and

Ed(S™,8™) < D, then
I(U™;8™) > mRp(D).

The proofs of these lemmas appear in Section V. In the
sequel, R(D) will be the standard RDF for the source Ps.
The lemmas above can be used for establishing a lower bound
on the sum-rate of the MD problem.

Theorem 1: Consider the MD problem. If the distortions
(Dg, D1, D5) are achievable at rates (Ry, Rs), then for any P
defined by a choice of U,

Ri+ Ry > Fp (R(Dy)) + Rp(D1) + Rp(D2).  (3)

The theorem can be obtained as a corollary from [35,
Theorem 1], as follovys: Set7Z2 =8, 7Z =U, Zy = 0 there,
and notice that I(U;S;) > Rp(D;), i = 1,2 and that

1(8; S0, 51, 92|U) > I(S; So|U)
> Fp(I(S;S0)) > Fp(R(Do)). (4
Interestingly, even though this derivation shows that the bound
of Theorem 1 may be weaker than that of [5, Theorem 1],
in the two cases for which the optimization it involves was
successfully solved in [5], the two bounds coincide. We bring
the proof of the result, in order to demonstrate the usefulness
of the lemmas above, and the resemblance to the JSCC setup.
Proof of Theorem 1: The first steps of the proof fol-
low Ozarow’s [1] proof for the Gaussian case. Specifically,
from I(S™; My, Mo|U™) < H(M;|U™) + H(M3|U™), we
have
m(Rl + Rz) >
I(S™; My, Ma|U™) + I({U™; My) + I(U™; M3).  (5)
Now, invoking Lemma 2 and the definition of Fpm, we can
further bound (5) as
Fpn (I(S™; My, My)) n

Ry + Ry >

- Rp(D1) + Rp(D2)
(I(Sm;i\nfl, M2)>

_ + Rp(D1)+ Rp(D)  (6)

> Fp(R(Do)) + Rp(D1) + Rp(D2), (7
where (6) follows from tensorization of F'pm, and (7) follows
since 1(S™; My, My) > I(S™; S§") > mR(Dy). |

For the JSCC problem, we need to also consider the channel
law Q" = Qyr vy x» (Y7, y5|2"). Although our main interest
will be in degraded memoryless broadcast channels, we will
first prove our result for a general n-letter broadcast channel,
and only then specialize to the degraded memoryless case. For
the channel Q", we define:

Gon(t) £ I35 W), (8)

max
W,X" @ W=X"=Y Yy
I(X™Y" W) >t

Note the relation to the capacity region of the broadcast chan-
nel: If nR; and n R bits can be communicated reliably to the
receivers Y;" and Y3, respectively, then nRy < Ggn(nRy) [8,
Chapter 5.4.1] .

We now state our result. Although it is stated for channels
without a cost constraint, such a constraint can be included



by constraining the distribution of X" in the computation of
Ggn(t), in the obvious way.

Theorem 2: Consider the problem of transmitting m re-
alizations of the i.i.d. source S, over the n-letter broadcast
channel Q™. If (Dy, D5) is achievable, then for any P defined
by a choice of U,

mRp(Dy) < Gon (mFp (R(D1))). ©)

Proof: Let S{", 5’5” be the estimates produced from the
outputs Y7" and Y3', respectively. We have

mRp(Dy) < I(U™, 53"

< I(U™;Yy") (10)

< Gon (I(S™;Y{"|U™)) (12)

< Gon (Fpm (I(S™;:Y1"))) (13)

G (e (B2
m

< Cor <me (w;gm)) 1s)

< GQn (me (R(Dl))) )

where (10) follows from the data processing inequality
(DPI), (11) from definition of Ggn, (12) from the DPI and
monotonicity of Ggn, (13) from definition of Fpm, (14) from
tensorization of Fpm, and (15) from the DPI. [ |

Note that U™ plays a two-fold role here: in (11) we used the
Markov chain U™ — X™ — YY" —YJ", whereas in (12) we used
U™ — 8™ —Y[". Thus, the source two-descriptions problem,
and the broadcast channel problem are coupled via the same
auxiliary variable U™. This is also the main weakness of the
bound above: Even though the same U™, whose distribution
is fixed once we choose the channel Py s, appears in both
Markov chains, in the transition from (10) to (11), we have
used the definition of Gg», which involves a maximization
with respect to U™.

We now consider the special case where the channel Q"
is degraded and memoryless. i.e., Q§1"7Y2"|X" (Y7, y&|z™) =
[Tiz) Qviix (W1il2i)Qyy |y, (y2ily1:). We have the following
(for proof see Section V).

Lemma 3: The function G¢(t) is monotone non-increasing
and concave. Furthermore, if Q" is a degraded memoryless
broadcast channel, it tensorizes, i.e.,

Gon(nt) = nGo(t).

The following Theorem is an immediate corollary of The-
orem 2 and Lemma 3.

Theorem 3: Consider the degraded memoryless JSCC

broadcast problem. If (Dj, D3) is achievable, then for any
P defined by a choice of U,

RP(DQ) < p-GQ (FP(R(Dl))) . (16)

p

This bound can be obtained as a special case of [6, Theorem
5], by observing that the capacity region boundary of the

degraded memoryless broadcast channel @ (without common
message) is given by (C1,Go(C4)) [8, Theorem 5.2].

It is not difficult to see that for U = ), our bound reads
R(D;) < pmaxx I(X;Y1), whereas for the choice U = §
it reduces to R(Ds) < pmaxy I(WW;Y3). Those are the two
extreme cases, when only the distortion of the reconstruction
at one terminal is of interest.

IV. SPECIAL CASES

A. Quadratic Gaussian Case

_In this case, Ps is Gaussian (0,02) and d(S;, S;) = (S; —
S;)?. We choose U that is the output of an AWGN channel
with input S and noise that is Gaussian (0, §2). Using the EPI,
one can verify that
1 52 4 o?
Fp(t)=t——log | ————
P () 2 %8 (52+026t)

_ 1 8% + o?
where Fp is attained by taking V' that is the output of an
AWGN with input S. Substituting these quantities and the
quadratic-Gaussian RDF in Theorem 1 yields that for all 4,

1 o? 1 (62 4+ 02)(62 + Do)
ror > glor (30) + s (G s 7o)
which is exactly Ozarow’s quadratic-Gaussian MD sum-rate
(tight) bound.

Now we combine the Gaussian source with an AWGN
broadcast channel, Y7 = X + Z;, Y5 = Y, + Z5, where
Z1 ~ N(O,Nl), ZQ ~ N(O,NQ), (X,Zl,ZQ) mutually
independnet, and the channel input is subject to a quadratic
cost constraint P. Using the EPI again, one can verify that

1 <P+N1+N2)

Go(t) = =1
Q() 2 8 N1€2t+NQ

where the function is attained by (W, X) that are jointly
Gaussian. Combining with the source functions above and with
the quadratic-Gaussian RDF, we recover the Reznic et al. outer
bound [4, Theorem 1]: For all 6,

P
52 + o2 r N; + N:
52+D2§<+N1+N2> 1 2l
2 2
N (51 5Er) "+

B. Binary-Hamming Case

We now take S to be a Bernoulli(p) source, and d(S;, S;)
to be the Hamming distortion measure. We define the function
hy(z) = —xlogx— (1—2)log(1—x) and its inverse restricted
to the interval [0,1/2] as h; '(-). For 0 < a,b < 1 we also
define a b = a(1 —b) +b(1 — a). We define Py s by taking
U=S®N, where N ~ Ber(q), independent of S.

Proposition 1: For 0 <t < h(p)

Fp(t) >t — hy(g*p) + by (q % h™" (ho(p) — 1)),
with equality for p = 1/2.

a7



Proof: By the Markov structure, we have that I(S;V) =
I(U;V)+ I(S;V|U). Thus,

I(S;V|U) = I(5;V) — H(U) + H(U|V)
> 1(8;V) = H(U) + hy(q * k™' (H(S|V)))
=1(S;V) = H(U) + hy(q = h™ (H(S) — I1(S;V)))
=1(S;V) = hu(g*p) + hy(q * h™ (hy(p) = 1(S; V),

where the inequality follows from Mrs. Gerber’s Lemma [9].
Note that equality holds iff H(S|V = v) = H(S|V) for all
v € V, which is the case for p=1/2 and V = S @ A, where
A~ Ber(hy (1 - I(S;V))). ]

Proposition 2: For 0 < D <p
Rp(D) = hy(q*p) —

hy(g * D). (18)

A Proof: For every PS”I o satisfying the constraint E(S &
S) < D, we must have that

I(U;8) = H(U) - HU|S) = HU) — H{U & §|5)
>HU)-HU®S)=HU)-HN®Sa5S)
hy(q#p) — hy(q* E(S & 8)) > hy(q *p) — hy(q * D).

To see that tk}ls lower bound is tight, take the reverse test
channel S =S @&V where V ~ Ber(D). [ |

Substituting these results in Theorem 1, we recover the
bound of [5] for the binary symmetric MD problem:

Ry + Ry > [hy(q* Do) — he(Do)] — [h(g * p) — h(p)]
+[h(g*p) — k(g = D1)] + [h(q = p) — h(g * D2)]. (19)
We now combine the binary source with Hamming distor-
tion, with a degraded broadcast channel. First, consider the

case of symmetric erasures, i.e., Y; is X w.p. 1 —¢; and erased
otherwise, for ¢ = 1, 2, one can verify that:

Gq(t) =

Combining with propositions 1 and 2 and substituting in
Theorem 3, one obtains the bound (for p = 1/2):
log2 — hy(Da xq)  hp(D1 *q) — hy(D1)

(1 —€2)log?2 (1—¢€1)log2 =P
which recovers the bound of [10] (which was also recovered
in [7]).

Finally we turn to a binary symmetric channel, i.e., Y7 =
X @& Zy, and Yo = Y] ® Zy, where Z; ~ Ber(61), Zo ~
Ber(d2), and (X, Z1, Z3) are mutually independent.

Proposition 3: For a binary symmetric degraded channel

— (log2 — €1 —t).
“ e

Go(t) =log2 — hy (02 % by " (he(61) + 1)), (20)
for 0 <t <log2 — hyp(d1)-
Proof:
H(Y2|W) > hy (02 by, (H(Y1[W))
=hy (82 by N (H(Y1]|X) + HYA W) — H(Y1| X, W)))

= hy (62 % by L (H(Y1|X) + I(X; Y1 |W)))
= hy (62 % hy ! (he(61) + (X3 YA|W)))

where the inequality stems from Mrs. Gerber’s Lemma and
the fact that Yo = Y7 @ Zs, with equality if X ~ Ber(1/2)

and W = X @ A for A ~ Ber(n), where I(Y; W) =log2 —
hi(n*d1%d2). Noticing that I(Y; W) = H(Y2)—H (Y2 |W) <
log 2 — H(Y|W), with equality for X ~ Ber(1/2), the proof
is completed. [ ]

We can now combine this result with propositions 1 and 2
and substitute in Theorem 3, to obtain the following theorem.

Theorem 4: For the JSCC broadcast problem with a binary
symmetric source, Hamming distortion and a binary symmetric
channel, suppose that the pair (Dq, D) is achievable. Then,
for any 0 < ¢ < 1/2, it holds that

hb(q *p) — hb(q * Dg) < P [lOgZ - hb (52 * hb_l(Al))] s
where
Ay = hy(61) + % [h(q + Dy) — A(Dy) — h(g +p) + h(p)].

For p = 1/2, the bound significantly simplifies as on the
left hand side hy(q * p) = 1/2, while on the right hand side
hb(q * Dl) — hb(Dl)

p

Following the treatment of the Gaussian-quadratic case
in [4], we consider the case were the distortion of the “weak”
user is optimal. That is, let D3 satisfy

R(D3) = p(log 2 — hy(d1 * 02)) (22)
For the special case of Dy = D3. We can take ¢ — 0 in
Theorem 4, and applying some straightforward algebra, we
obtain the following.

Corollary 1: For the JSCC broadcast problem with a binary

source and a binary symmetric channel, suppose that the pair
(D1, D3) is achievable, where D3 satisfies (22). Then,

Ay = hy(61) +

2y

9(01) .
Dq) > + ————[9(D3) — , 23
9(D1) = g(p) 3061 % 63) l9(D3) —g(p)],  (23)
where g(t) £ (1 — 2t)log ().
Similarly, for the special case of D; = D7, where
R(DY) = p(log2 — hy(61), (24)

we can take ¢ — 1/2 in Theorem 4, and after applying some
straightforward algebra, obtain the following.

Corollary 2: For the JSCC broadcast problem with a binary
source and a binary symmetric channel, suppose that the pair
(D7, D9) is achievable, where D7 satisfies (24). Then,

(1—=2D5)* < (1 -2 % D})?
+(1-2p)°(1—(1-2-62)%). (25
In particular, for p = 1/2,
Dy > 6y % D} (26)

V. PROOFS OF INFORMATION INEQUALITIES

In this section we prove lemmas 1-3, which serve as the
main technical ingredient of our results.

Proof of Lemma 1: Monotonicity and of the function
Fp(t) follows by definition. Establishing convexity is straight-
forward, and the proof is omitted. We prove tensorization
by induction. For any V' that satisfies the Markov chain



Um™—S™ —V, we have
m. m—1. . m—1
o (I(S ,V>> . <I(S V) + 1(Ss VIS >>
m

m
(I(S’”‘l; V)+ I(Sm;VSm_1)>

m
—1I1(S™ Y 1
=Fp (m (5" V) +I(Sm;V,Sm‘1)>
m

m m—1

—1_ (I8 1
m m—1 m

where we have used the convexity of ¢ — Fp(t) in the last
inequality. Invoking the induction hypothesis, we have

N (1(5:;; V>>
< L Fpus (IS 75V)) +Fp (1S V5™ 7)

1
— [I(S™ L VU™ ) + I(Sp; V, 8™ U]
where the last inequality follows by definition of Fpm-1 and
Fp and the fact U1 —S™~1 —V and U,, — S, — (V, ™~ 1)
are indeed Markov chains. Noting that

I(sm—l; V|U’m—1) S I(S'm—l; V|UT”),

IN

27)

and
I(S; V, 8™ YU, = I(Sp; V, S™ L U™)
< I(Sm;VIS™THU™),
which both follow since S™ is memoryless, we obtain
I(S™ L vVIU™ ) + I(S,; V, S™ U, < I(S™, V|U™).

(28)
Substituting (28) into (27), gives
I m.
1(S™; VIU™) > mFp ((va)> L @)
as desired. [ |

Proof of Lemma 3: Monotonicity of Gg(t) follows by
definition. Establishing concavity is straightforward, and the
proof is omitted. We prove tensorization by induction. For any
(W, X™) satistying the Markov chain W — X™ — Y — YJ*
we have

I(X™ YR W) = (Y5 XY W) 4 (X Vi [W, Y.

Consequently,
I(X™ YW
GQ( (X" Y7 >>

n
o (I(Yln_l;X"—HW)+I(Xn;Y17n|W,Y1”_1)>
=0Q

n
¢ <n S LI TR XTI | LXK Y W, Y1”1)>

n n—1 n
n—1 (I(Yln_l;X"‘1|W)>
Gq

v

n n—1
1
+ —Ga (I(Xn; Yia| W17 ) (30)

where we have used the concavity of ¢ — Gg(t) in the last

inequality. Invoking the induction hypothesis, we get
I X’IL. Y'I’L W
G (17T
n
_ Gyt (IS XU W) 4+ Go (1(Xn; Yin W, YY)

n
LT W)+ 1Yo WY

- 9

€1y
n

where the last inequality follows from the definition of
Ggn-1(t) and Gg(t) and the fact that W— X" Y"1 —y;' !
and (W, Yln_l) — X, — Y1, —Ya, are indeed Markov chains.
Note that we have the Markov chain Yz, ,, — (W, Y1)~ Y"1,
and therefore
I(You; WY ™1) 2 1(Yau; W, Y5 71) 2 (Yo WY ).
(32)

Substituting into (31) gives

I(X™ YW
G (ML) w4 vy

= I(Y3; W),

as desired. [ ]

Proof of Lemma 2:  Since U™ is memoryless,
we have that I(U™;S™) > S I(U;;S;). Note that
LS Ed(S;;5:) < D by separability of d(S™;5™), and
that the Markov chain U™ — S™ — S™ implies that U; — S; —.5;
is also a Markov chain. It is easy to see that the function
D — Rp(D) is convex. Thus, letting d; = Ed(S;; S;), we
have that

. 1 B
U™ S™) =z m- ;Rp(di) >mRp(D).  (33)
m
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