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Abstract—Let Z" be iid Bernoulli() and U™ be uniform on
the set of all binary vectors of weight n (Hamming sphere). As
is well known, the entropies of Z" and U™ are within O(logn).
However, if X™ is another binary random variable independent
of Z" and U™, we show that H(X" + U") and H(X" + Z")
are within O(y/n) and this estimate is tight. The bound is shown
via coupling method. Tightness follows from the observation that
the channels z" — z" + U™ and z" — z" + Z" have similar
capacities, but the former has zero dispersion. Finally, we show
that despite the /7 slack in general, the Mrs. Gerber Lemma for
H(X™+U"™) holds with only an O(logn) correction compared
to its brethren for H(X" 4+ Z").

I. INTRODUCTION

This paper studies the difference between the output entropy
of a binary symmetric channel with crossover probability 0 <
0 < 1/2, and that of a binary additive channel with noise
uniformly distributed over the sphere of vectors with Hamming
weight dn. In particular, we are interested in the scaling of this
difference with the blocklength n.

For n € N and 0 < k < n define the set
Sk £ {2 €{0,1}" ¢ |2"| =k}, (1)
where [z"| = Y7 | z; is the Hamming weight of the vector
™. For 0 < § < 1/2, let Z™ ~ Bernoulli(§)®" and U™ ~
Uniform(Sgnﬁn)1 be two n-dimensional random vectors. For

a random vector X™ in {0,1}", statistically independent of
Z™ and U", define the function?

Us(X") = H(X" +2") = H(X" +U"), 2)
where + corresponds to componentwise mod-2 addition. Our
main goal is to characterize the asymptotic behavior in n of
the quantities
s = supUs(X") = sup H(X" + 2") — H(X" +U"),
o= —i)1(1£\115(X”) = S)I(JEH(XH +U™) - H(X"+2Z"),

ns = sup [Ws(X™)| = sup [H(X" +U") — H(X" + Z")],
’ Xn Xn
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where the supremum and infimum are w.r.t. all distributions
on {0, 1}™. This problem is in line with some other work done
on comparing “closeness” of the channels 2" +— =" + Z"™ and
" ="+ U™ [1], [2].

Let h(t) = —tlog(t) — (1 —t)log(l —¢), 0 < ¢t < 1
be the binary entropy function, and let h~1(-) be its inverse
restricted to the interval [0,1/2]. Among all random vectors
V™ e {0,1}™ with E|[V"| < nd the maximum of H (V™)
is nh(d) and this is attained by V" ~ Bernoulli(§)®™. In
particular, taking X™ with a single mass point distribution,
e.g., X" = 07, where 0" is the all-zeros vector, we have
that [3, Chapter 10, Lemma 7]

Ws(0") = H(Z") — H(U™)
= nh(J) —log |Ssn.n|

E%lognJr %10g(27r5(175)),%10g(85(175)) .3

In light of this, one might be tempted to suspect that
Us(X™) > 0 for all X", and that ¥} = 6(logn). Never-
theless, we prove the following.

Theorem 1: For any 0 < 6 < 1/2 we have that

c(O)Vn+o(vn) SV, s <V2r-ci(S)vn (4

Slogn + ¢5(6) < W 5 < ea(6)Vn )
c1(0)vn+o(v/n) <) 5 < ca(d)v/n (6)
where
15\ [o0—s
cﬂ@bg(é ) o )
SN GRE;
c2(9) = 4log (5) 7< )(6 ), ®)
c3(8) = %log(%é(l — ). ©)

Proof. The upper bound in (4) follows from Proposition 2,
stated and proved in Section III, whereas the lower bound
in (4) follows from Lemma 5, stated and proved in Section IV.
The upper bound in (5) follows from Corollary 1, stated and
proved in Section III, and the lower bound trivially follows
from (3). The bounds in (6) are deduced from (4) and (5). m

Finding the correct scaling of \I/:{ s Temains an open prob-
lem. It can be shown that the channels z" — z” + Z™ and



™ +— ™ + U™ are not comparable in the less-noisy order.
We currently do not know whether the latter channel is more
capable than the former.

In Section V we prove the following variant of Mrs.
Gerber’s Lemma (MGL) [4] for additive channels with noise
uniformly distributed on a sphere.

Theorem 2 (Spherical MGL): Let U™ ~ Uniform(Ssp,n)

and let X™ be a binary n dimensional random vector, statis-
tically independent of U™. Then,

H(X™ +U™) > nh (5*h1 <H(ff”>>) 78155

log n.

Note that the bound H(X"™ + U") >
nh (601 g“fj) — ¢(8)y/n trivially follows from
Wyner and Ziv’s MGL [4] and Theorem 1. Theorem 2
tightens the O(y/n) gap to an O(logn) gap.

II. PRELIMINARIES

A. Useful Information Inequalities

The two lemmas below will be useful in the derivations
that follow. The proof of Lemma 1 is omitted, and Lemma 2
is proved in Appendix A.

Lemma 1: For all z € (0,1/2] and € € [—z,1 — z] we have

4h(x)

h(:che)Zh(a:)Jrlog(lx)e 5€
x x

Lemma 2: Let A, B, C be random variables, f(-,-) some X'-
valued function, and B a copy of B independent of (A, B, C).
Then

H(f(A,B)|C) — H(f(A B)|C) <m - VI(A,C;B) (10)
H(f(A,B)|C) — H(f(A, B)|C) <2 VI(A,C;B) (1)

where 71 = V2log | X| and o
7% log min, Pr[f(A, B) = x].

B. General Facts About Spherical Noise
Let U™ ~ Uniform(Ssy,,,). Clearly, Pr(U,, = 1) = ¢ for
any m € [n]. Let us define the random variables
Ap EPr(U,, =1lU™ Y, m=2,...,n. (12)

A, is a deterministic function of the random variable
Wy_1 = |U"}|. In particular,

Am _ 571 — Wm—l
n—(m-—1)
8~ (m = 1)) + (§(m — 1) = Wyo1)
B n—(m-—1)
Tm—l
:6_771—(77171)’ (13)
where
T & W, — 6m =W, —E(W,,). (14)

By definition, E(7},) = 0. Moreover,
E(T7%L) = Var(an)

= Y Cov(U;,Uy) (15)
1<i,j<m
=md(l —9)
+ m(m — 1) (PI‘(Ul = 1,U2 = 1) — PI‘(Ul = 1) PI‘(UQ = 1))
=md(1 —8) +m(m—1) (57;5_11 - 52>
=md(1 —68) +m(m—1) (55<”_ H-(1-9) —52>
n—1
m—1
=md(l —9) (1— n—l)
n—m
:m5(1—5)<n_1>. (16)
Note that (16) implies that
E(T3) _ m
(n—m)? o _6)(n—m)(n— 1)
SM, Ym=1,...,n—1. a7
n—m

Lemma 3: Let U™ ~ Uniform(Ss,, ). For any m =
2,...,n it holds that

I(Up; U < (18)
where

19)

Proof. We have that
I(Up; U

H(Uy,) — H(U,, U™
h(8) — Eh(A,,).

Tn—1
)
> h(5) + log (1 = 6) E (n —T(n;r;l— 1))

_4h() ( Tt >2
62 n—(m-—1)
4h(6) 0(1—9))
82 n—(m—1)
where we have used the fact that E(7,,-1) = 0, and (17) in

the last inequality. m

By (13) and Lemma 1,
Eh(A,,) = Eh (6 —

> h(9) (20)

III. UPPER BOUNDS ON ENTROPY DIFFERENCE

Before proving our O(y/n) upper bound |H(X™ + Z™) —
H(X™ 4+ U™)|, we show how to obtain an easier, though
slightly weaker, upper bound of O(y/nlogn). This bound is
based on the coupling technique proposed in [5, Section 4]. In
particular, [5, Proposition 8], specialized to the n-dimensional
binary space, gives the following.



Proposition 1 ( [5, Proposition 8]): Let A™ and B™ be
random vectors on {0,1}", and let

1
d(A",B") = ~inf E|A" + B"], Q1)

where the infimum is over all joint distributions Pynpn with
marginals P4~ and Ppn. Then

|H(A™) — H(B")| < nh (d(A", B")) . (22)

Since we are interested in |H (X" +2Z™)— H(X™"+U™)|, it

suffices to find a good coupling for U™ and Z". To this end,
we generate the random vectors U™, Z™ as follows:

e Let IT be a uniform random permutation on [n] =

{1,...,n}.
o Let W ~ Binomial(n, d).

o Set Uy = 1 fori = 1,...,0n and Uy = 0 for
i=dn+1,...,n.
o Set Zyyjy = 1 for i = 1,...,W and Zy) = 0 for

t=W+1,...,n.

Clearly U™ and Z™ have the correct marginal distributions.
Moreover, |Z" + U"| = |W — dn| = |W — E(W)|. Thus,

E|U" + 2| = E\/(W — E(W))2
< y/Var(W)
=/ndé(1—9),

where the inequality follows by the concavity of z — /x. We
have therefore obtained that

AX" + 2" X"+ U™) =d(Z",U™) <

M_ (23)
n

Now applying Proposition 1, we see that for any random vector
X™ on {0,1}" it holds that

|H(Xn + Zn)_H(X'rL + Un)| <nh ( 6(171_ 6))

< /mdA=0) - log <5(1"_5)> e

Our goal is to improve the O(y/nlogn) bound to O(y/n).
First, one-sided improvement is easy:

Proposition 2: Let U™ ~ Uniform(Sspn,n), Z7 ~
Bernoulli(§)®" and 1 < m < n. For any random vector
X™ U (Z™,U"™), supported on {0,1}™ we have that

H(Xm+Um)—H(Xm+Zm)<C1(5)ﬁ. (25)
where ¢1(d) is as defined in (7).
Proof. Following the idea of [5, (14)] we get
QX™+ Z™)
where we denoted (Q = Pxm zm. As noticed in [6, (58)] this

distribution is “smooth”, in the sense that ™ — log ﬁ is
a Lipschitz function (with respect to the Hamming distance)

H(X™ +U™) -~ HX™+ 2™) < {log

with Lipschitz constant bounded by log 17_‘5. Consequently,
QX™+2Zm) 1-6

————— | <log ——E|U™+ Z™]|.

Qxm 1 om | Sle 5 EUT+ 27

The proposition follows by using the coupling constructed

in (23), which is symmetric, and therefore satisfies

E|X™ 4+ U™| = %]E\X” +U".

log

(26)
|

To make improvement in the other direction, we will make
a crucial observation that while Pxn,yn» is not “smooth”
in the strong sense used above, it is still rather nice. For
example, the atoms of Px 4y, |xm-14pm-1—ym-1 are almost
in the interval (6,1 — 0) since Px, iy, |xm-14um-1 =
Px, . 42z, 1xm—14um—1 (as a consequence of (18)). We proceed
to the details.

Lemma 4: Let U™ ~ Uniform(Ss,,), Z" ~
Bernoulli(§)®™ and 1 < m < n. For any random vector
X™ 1 (Z™,U™), supported on {0, 1} we have that

HX™+2Z™)—HX™+U™) < é(8)am, 27

where a1 = 0, am = Yocpem \/ﬁ, and & (6) =

\/C(T‘S)IOg 5, and ¢(6) is defined in Lemma 3.

Substituting m = n above, we obtain the following bound
as an immediate corollary.

Corollary 1: Let U™ ~ Uniform(Ssnn), 2" ~
Bernoulli(§)®" and 1 < m < n. For any random vector
X™ 1 (Z™,U™), supported on {0,1}" we have that

H(X"+2Z") - H(X"+U") < c2(6)vn,
where c2(0) is as defined in (8).
Proof of Lemma 4. For m = 1 the claim trivially holds as

(28)

Z; L U, for all i € [n]. Proceed by induction and suppose
we established the case for m — 1 and arbitrary X™ !, Since
H(Xpn+Up) = H(X,, + Z,,), we have from the chain rule

HX™+Z™)-HX"™+U™)
=H(X™ '+ 72" X, + Zn)
—HX™ 4+ U™ X, + Uy (29)

Since Z,, 1L (Z™~1, U™ ') we have from the induction
hypothesis

H(X™ '+ 2" X + Zm)

—HX™ ' 4+ U™ X + Z) < E(0)am_1. (30)
Thus, subtracting and adding H(X™ ™' + U™ Y X,, + Z,,)
from the RHS of (29), and defining V™! = X~  ym—1
to lighten notation, we get
S 62(6)a'm—1 + H(Vm_1|Xm + Zm) - H(Vm_lle + Um)
Using H (X, + Zym) = H(X,, +Up,) and the chain rule once
again, we have that

HV™ X+ Zy) — HV"™ X 4+ Up)

=HXp+ Zpn|V™H — H( X, + U [V™H. (31



Note that Z,,, can be thought of as an independent copy of U,,,
and hence from Lemma 2 with f(-,-) =-+- mod 2 we can

bound the right-hand side of (31) by y/ {miXm V"0 150 1

(we used the fact that A + Z,,, for independent A 1l Z,, has

distribution with atoms in [§,1—6]). By I(Uy,; X, V1) <

I(U,,; U™ 1), together with (18) we get
HX™+Z™)-HX™+U™)

é2(0)

< é(0)am—1 + PR T—

(32)

as required. m

IV. LOWER BOUND ON ¥ " - VIA RANDOM CODING

In this section, we prove the following lemma.

Lemma 5: Let U™ ~ Uniform(Ssy, ), and Z" ~
Bernoulli(§)®" for some 0 < § < 1/2. There exists a random
vector X™ Il (Z™,U™), supported on {0,1}", such that

H(X"+U") - H(X" 4+ 2Z") > c1(6)v/n+ o(v/n), (33)
where ¢;(0) is as defined in (7).

The proof of Lemma 5 is based on the simple observation
that the dispersion of the ™ +— x™ + U™ channel is zero.

Proposition 3: Let 0 < 6 < 1/2 and let U™ ~
Uniform(Ss,,,,,). There exists a code C C {0,1}" with
rate R = log2 — h(d) — 107%, that achieves maximal error
probability P, < n~! over the n-dimensional additive noise
channel 2™ — 2™ + U™

Proof of Proposition 3. Let C C {0,1}" be a rate R code,
X™ ~ Uniform(C), and consider the maximum-likelihood de-
coder for X™ from the output of the channel Y = X" +U":
it constructs £L(Y™) = {z" € C Y™ — 2™ = én} and
outputs X™ ~ Uniform(£(Y™)) (note that £(Y™) is never
empty). Enumerate the codewords in C as =7, ... o r- The
error probability, given that X™ = z7 is

Pr(X" # 2} |X" = ) < Pr(IL(a} + U™)] > 1)
= Pr((C\ {2}}) N (& + U" + S5n) # 0)

enR

< ZPr(x? € (27 + U™+ Ssnn))-
i=2
Let us now assume C is a random codebook drawn from the
standard (n, R) binary linear code ensemble [7, Chapter 6.2],
and average (34), which gives

(34)

Ee Pr(X" £ X7|X" = X7)
enR
<Ec¢» Pr(X] e (X! +U"+ Ssnn))
i=2
nR )
= —1
(e — 1) o
<e n(log 2— R—h(5)) (35)
Taking R = log 2 — h(d) — log" , We see that the average error

probability of the ensemble 1s at most n~ -, and there must
exist a code with error probability no greater than the average.

Since the code is linear, the error probability is the same for
all codewords, and therefore the result holds for maximal error
probability. m

Proof of Lemma 5. Let C be a code satisfying the conditions
of Proposition 3, and let X™ ~ Uniform(C). In order to
establish a lower bound on H(X" +U")— H(X" + Z"), we
will lower bound the first term and upper bound the second.

We have
HX"+U")=IX"+U™"X")+ H{U")
=HX™")+H{U") - HX"X"+U")

> nR+nh(d) — %log(&S(l —d)n) —nP, —log2 (36)
> nR+nh(d) — %10g(325(1 —6)n)—n- 1
n
1
=nlog2 — glogn —5 log(32ed(1 — 4)). 37

where (36) follows from (3) and from Fano’s inequality.

Next, we turn to upper bound H (X" + Z"). Let W =
W(Z™) = |Z™|/n be the normalized Hamming weight of Z",
and denote a A b = min{a, b}. For any X™ we have

HX"+Z")=HX"+Z"[W)+IW; X"+ 2Z")
< H(X™ 4 Z"W) + logn
<Ew (H(X",Z”|W = w)/\nlogQ) +logn
~Ey (H(X") + H(Z"W = w) \ nlog 2) +logn
<Ew <H(X”)+nh /\nlog2)+logn
For X™ ~ Uniform(C), the bound (38) reads
H(X"+ Z") <n(log2 — h(6)

+Ew (h(W) A h(é))) +logn

(38)

n(10g2 — h(6)

+Ew (h(8) + 1/ (8)(W = 8) A h(5))) +logn

=nlog2 —nh'(8) - Ew [6 — W]* +logn

§n10g2—log< )\/ f+1ogn+c (39)

where [a]T = max{a, 0}, and the last inequality follows from
the central limit theorem [8] for some universal constant c.
The claim now follows from combining (37) and (39). m

V. PROOF OF SPHERICAL MGL

This section is devoted to proving Theorem 2. We define
the function fo(t) = h(a*h™'(t)), where axb = a(1 —b) +
b(1 — a). Recall that t — f,(t) is convex [4].



Proof of Theorem 2. We have

> H(X + Un| X"+ U7

HX"+U") =
m=1
> Y H(Xm + Un| X707
m=1
= > Eh (Pr(Xm = X" ") # Pr(Up = LU )

Sl

=2Eh<h—1( (X X771 = 2)) % A))

n

>ZEh

m=1

H(Xpm| X)) % A)) (40)

where the random variable A,,, was defined in (13), and in the
last inequality we have used the convexity of f,(t) and the
fact that the random variables A,, and H(X,,|X]" ' = 2)
are statistically independent.

Let 7, 2 H(X,,|X"!). Recalling that A4,, = § —
Lot and that a % (b4 ¢) = a* b+ ¢(1 — 2a), we can

n—(m—1)
now rewrite (40) as
n n N Tmfl
H(X"+U") ZEh( (5 n—(m—l)))
= —1 TnL—l —1

Applying Lemma 1 on each term in the sum, with z,, =

hL () * 6 and €, = %(1 — 2h~(n,)), we obtain
H(X"+U™) Z h( ) %) (1)
n ~ L — h*l(nm) * 0 ) E(Tm,—l)
+ mz::l (1 2h (nm)) IOg ( h_l(nm) 0 > " (m — 1)
(42)
Y Ly w2 () <6)  E(TE)
N 41 =20 (e :
n;l ( (77 )> (h_l(nm) % 5)2 (’I’L B (m B 1))2
(43)
>nh (6 s« h 1 <H(§n)>>
N o1 2 h(h™ () x0) (1 —6)
;4(1 20" (1)) ) 9 1)
(44)

where in the last inequality we have used the convexity of

fa(t) to lower bound (41), the fact that ET,, = 0 for all

m =0,...,n— 1 in order to null the term in (42), and (17)

in order to lower bound the term in (43). Noting further that
-1

(1 _ 2h71(77m))2 h(h(—mn)*i) < i7

(A= (nm) % 8)° ~ 0

we can further bound (44) as

H(X"+U") >nh (5*h1 <H(X")>)

A1 -6) ¢

1
) mz::lnf(mfl)

—nh (6*h1 (H(f")» B 4(1(;5)

> nh (5* ht (H(f"))) - 8(15_ %) log .

as desired. m

APPENDIX A
PROOF OF LEMMA 1

Consider two distributions P, () on some alphabet X, then

we have
H(P)— H(Q) < v2D(P||Q)log | X| (45)
1(Q) - H(P) < | 21D 1oy T C R

where the first inequality is from [5, (64)] and the sec-
ond one from H(Q) — H(P) < (Eg — Ep)logﬁ <
TV(P,Q)log m and Pinsker inequality.

Applying these with P = Pyy p)c=c and Q =
Pga,B)jc=c We get (after using Jensen’s inequality on

Ec[v]):
H(f(A,B)|C) ~ H(f(A,B)|C) <mVD  (47)
H(f(A,B)|C) — H(f(A,B)|C) <72VD,  (48)
where by data-processing D =

D(Py(a By cllPrea,pyclPe) < D(PapicllPacPs|Pc) =
I(A,C;B)
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