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Abstract—Let Z
n be iid Bernoulli(δ) and U

n be uniform on
the set of all binary vectors of weight δn (Hamming sphere). As
is well known, the entropies of Z

n and U
n are within O(log n).

However, if X
n is another binary random variable independent

of Z
n and U

n, we show that H(Xn + U
n) and H(Xn + Z

n)
are within O(

√
n) and this estimate is tight. The bound is shown

via coupling method. Tightness follows from the observation that
the channels x

n 7→ x
n + U

n and x
n 7→ x

n + Z
n have similar

capacities, but the former has zero dispersion. Finally, we show
that despite the

√
n slack in general, the Mrs. Gerber Lemma for

H(Xn + U
n) holds with only an O(log n) correction compared

to its brethren for H(Xn + Z
n).

I. INTRODUCTION

This paper studies the difference between the output entropy

of a binary symmetric channel with crossover probability 0 <
δ < 1/2, and that of a binary additive channel with noise

uniformly distributed over the sphere of vectors with Hamming

weight δn. In particular, we are interested in the scaling of this

difference with the blocklength n.

For n ∈ N and 0 ≤ k ≤ n define the set

Sk,n , {xn ∈ {0, 1}n : |xn| = k} , (1)

where |xn| = ∑n
i=1 xi is the Hamming weight of the vector

xn. For 0 < δ < 1/2, let Zn ∼ Bernoulli(δ)⊗n and Un ∼
Uniform(Sδn,n)

1 be two n-dimensional random vectors. For

a random vector Xn in {0, 1}n, statistically independent of

Zn and Un, define the function2

Ψδ(X
n) = H(Xn + Zn)−H(Xn + Un), (2)

where + corresponds to componentwise mod-2 addition. Our

main goal is to characterize the asymptotic behavior in n of

the quantities

Ψ+
n,δ , sup

Xn

Ψδ(X
n) = sup

Xn

H(Xn + Zn)−H(Xn + Un),

Ψ−
n,δ , − inf

Xn

Ψδ(X
n) = sup

Xn

H(Xn + Un)−H(Xn + Zn),

Ψ∗
n,δ , sup

Xn

|Ψδ(X
n)| = sup

Xn

|H(Xn + Un)−H(Xn + Zn)|,
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1We assume throughout that δn ∈ N.
2Throughout this paper H(·), I(·; ·) and D(·∥·) denote Shannon entropy,

mutual information and KL divergence, respectively. All logarithms and
exponents are natural.

where the supremum and infimum are w.r.t. all distributions

on {0, 1}n. This problem is in line with some other work done

on comparing “closeness” of the channels xn 7→ xn+Zn and

xn 7→ xn + Un [1], [2].

Let h(t) = −t log(t) − (1 − t) log(1 − t), 0 ≤ t ≤ 1
be the binary entropy function, and let h−1(·) be its inverse

restricted to the interval [0, 1/2]. Among all random vectors

V n ∈ {0, 1}n with E|V n| ≤ nδ the maximum of H(V n)
is nh(δ) and this is attained by V n ∼ Bernoulli(δ)⊗n. In

particular, taking Xn with a single mass point distribution,

e.g., Xn = 0n, where 0n is the all-zeros vector, we have

that [3, Chapter 10, Lemma 7]

Ψδ(0
n) = H(Zn)−H(Un)

= nh(δ)− log |Sδn,n|

∈ 1

2
log n+

[

1

2
log(2πδ(1− δ)),

1

2
log(8δ(1− δ))

]

. (3)

In light of this, one might be tempted to suspect that

Ψδ(X
n) > 0 for all Xn, and that Ψ∗

δ = θ(log n). Never-

theless, we prove the following.

Theorem 1: For any 0 < δ < 1/2 we have that

c1(δ)
√
n+ o(

√
n) ≤ Ψ−

n,δ ≤
√
2π · c1(δ)

√
n (4)

1

2
log n+ c3(δ) ≤ Ψ+

n,δ ≤ c2(δ)
√
n (5)

c1(δ)
√
n+ o(

√
n) ≤ Ψ∗

n,δ ≤ c2(δ)
√
n (6)

where

c1(δ) = log

(

1− δ

δ

)

√

δ(1− δ)

2π
, (7)

c2(δ) = 4 log

(

1

δ

)

√

h(δ)(1− δ)

δ
, (8)

c3(δ) =
1

2
log (2πδ(1− δ)) . (9)

Proof. The upper bound in (4) follows from Proposition 2,

stated and proved in Section III, whereas the lower bound

in (4) follows from Lemma 5, stated and proved in Section IV.

The upper bound in (5) follows from Corollary 1, stated and

proved in Section III, and the lower bound trivially follows

from (3). The bounds in (6) are deduced from (4) and (5).

Finding the correct scaling of Ψ+
n,δ remains an open prob-

lem. It can be shown that the channels xn 7→ xn + Zn and



xn 7→ xn + Un are not comparable in the less-noisy order.

We currently do not know whether the latter channel is more

capable than the former.

In Section V we prove the following variant of Mrs.

Gerber’s Lemma (MGL) [4] for additive channels with noise

uniformly distributed on a sphere.

Theorem 2 (Spherical MGL): Let Un ∼ Uniform(Sδn,n)
and let Xn be a binary n dimensional random vector, statis-

tically independent of Un. Then,

H(Xn + Un) ≥ nh

(

δ ∗ h−1

(

H(Xn)

n

))

− 8
1− δ

δ
log n.

Note that the bound H(Xn + Un) ≥
nh
(

δ ∗ h−1
(

H(Xn)
n

))

− c2(δ)
√
n trivially follows from

Wyner and Ziv’s MGL [4] and Theorem 1. Theorem 2

tightens the O(
√
n) gap to an O(log n) gap.

II. PRELIMINARIES

A. Useful Information Inequalities

The two lemmas below will be useful in the derivations

that follow. The proof of Lemma 1 is omitted, and Lemma 2

is proved in Appendix A.

Lemma 1: For all x ∈ (0, 1/2] and ϵ ∈ [−x, 1−x] we have

h(x+ ϵ) ≥ h(x) + log

(

1− x

x

)

ϵ− 4h(x)

x2
ϵ2.

Lemma 2: Let A,B,C be random variables, f(·, ·) some X -

valued function, and B̄ a copy of B independent of (A,B,C).
Then

H(f(A,B)|C)−H(f(A, B̄)|C) ≤ γ1 ·
√

I(A,C;B) (10)

H(f(A, B̄)|C)−H(f(A,B)|C) ≤ γ2 ·
√

I(A,C;B) (11)

where γ1 =
√
2 log |X | and γ2 =

− 1√
2
logminx Pr[f(A, B̄) = x].

B. General Facts About Spherical Noise

Let Un ∼ Uniform(Sδn,n). Clearly, Pr(Um = 1) = δ for

any m ∈ [n]. Let us define the random variables

Am , Pr(Um = 1|Um−1
1 ), m = 2, . . . , n. (12)

Am is a deterministic function of the random variable

Wm−1 = |Um−1
1 |. In particular,

Am =
δn−Wm−1

n− (m− 1)

=
δ(n− (m− 1)) + (δ(m− 1)−Wm−1)

n− (m− 1)

= δ − Tm−1

n− (m− 1)
, (13)

where

Tm , Wm − δm = Wm − E(Wm). (14)

By definition, E(Tm) = 0. Moreover,

E(T 2
m) = Var(Wm)

=
∑

1≤i,j≤m

Cov(Ui, Uj) (15)

= mδ(1− δ)

+m(m− 1) (Pr(U1 = 1, U2 = 1)− Pr(U1 = 1)Pr(U2 = 1))

= mδ(1− δ) +m(m− 1)

(

δ
nδ − 1

n− 1
− δ2

)

= mδ(1− δ) +m(m− 1)

(

δ
δ(n− 1)− (1− δ)

n− 1
− δ2

)

= mδ(1− δ)

(

1− m− 1

n− 1

)

= mδ(1− δ)

(

n−m

n− 1

)

. (16)

Note that (16) implies that

E(T 2
m)

(n−m)2
= δ(1− δ)

m

(n−m)(n− 1)

≤ δ(1− δ))

n−m
, ∀m = 1, . . . , n− 1. (17)

Lemma 3: Let Un ∼ Uniform(Sδn,n). For any m =
2, . . . , n it holds that

I(Um;Um−1
1 ) ≤ c(δ)

n− (m− 1)
. (18)

where

c(δ) ,
4h(δ)(1− δ)

δ
. (19)

Proof. We have that

I(Um;Um−1
1 ) = H(Um)−H(Um|Um−1

1 )

= h(δ)− Eh(Am).

By (13) and Lemma 1,

Eh(Am) = Eh

(

δ − Tm−1

n− (m− 1)

)

≥ h(δ) + log

(

1− δ

δ

)

E

(

Tm−1

n− (m− 1)

)

− 4h(δ)

δ2
E

(

Tm−1

n− (m− 1)

)2

≥ h(δ)− 4h(δ)

δ2
δ(1− δ))

n− (m− 1)
, (20)

where we have used the fact that E(Tm−1) = 0, and (17) in

the last inequality.

III. UPPER BOUNDS ON ENTROPY DIFFERENCE

Before proving our O(
√
n) upper bound |H(Xn + Zn) −

H(Xn + Un)|, we show how to obtain an easier, though

slightly weaker, upper bound of O(
√
n log n). This bound is

based on the coupling technique proposed in [5, Section 4]. In

particular, [5, Proposition 8], specialized to the n-dimensional

binary space, gives the following.



Proposition 1 ( [5, Proposition 8]): Let An and Bn be

random vectors on {0, 1}n, and let

d̄(An, Bn) =
1

n
inf E|An +Bn|, (21)

where the infimum is over all joint distributions PAnBn with

marginals PAn and PBn . Then

|H(An)−H(Bn)| ≤ nh
(

d̄(An, Bn)
)

. (22)

Since we are interested in |H(Xn+Zn)−H(Xn+Un)|, it

suffices to find a good coupling for Un and Zn. To this end,

we generate the random vectors Un, Zn as follows:

• Let Π be a uniform random permutation on [n] =
{1, . . . , n}.

• Let W ∼ Binomial(n, δ).
• Set UΠ(i) = 1 for i = 1, . . . , δn and UΠ(i) = 0 for

i = δn+ 1, . . . , n.

• Set ZΠ(i) = 1 for i = 1, . . . ,W and ZΠ(i) = 0 for

i = W + 1, . . . , n.

Clearly Un and Zn have the correct marginal distributions.

Moreover, |Zn + Un| = |W − δn| = |W − E(W )|. Thus,

E|Un + Zn| = E

√

(W − E(W ))2

≤
√

Var(W )

=
√

nδ(1− δ),

where the inequality follows by the concavity of x 7→ √
x. We

have therefore obtained that

d̄(Xn + Zn, Xn + Un) = d̄(Zn, Un) ≤
√

δ(1− δ)

n
. (23)

Now applying Proposition 1, we see that for any random vector

Xn on {0, 1}n it holds that

|H(Xn + Zn)−H(Xn + Un)| ≤ nh

(
√

δ(1− δ)

n

)

≤
√

nδ(1− δ) · log
(

n

δ(1− δ)

)

. (24)

Our goal is to improve the O(
√
n log n) bound to O(

√
n).

First, one-sided improvement is easy:

Proposition 2: Let Un ∼ Uniform(Sδn,n), Zn ∼
Bernoulli(δ)⊗n and 1 ≤ m ≤ n. For any random vector

Xm ⊥⊥ (Zn, Un), supported on {0, 1}m we have that

H(Xm + Um)−H(Xm + Zm) ≤ c1(δ)

√

m2

n
. (25)

where c1(δ) is as defined in (7).

Proof. Following the idea of [5, (14)] we get

H(Xm + Um)−H(Xm + Zm) ≤
[

log
Q(Xm + Zm)

Q(Xm + Um)

]

,

where we denoted Q = PXm+Zm . As noticed in [6, (58)] this

distribution is “smooth”, in the sense that xm 7→ log 1
Q(xm) is

a Lipschitz function (with respect to the Hamming distance)

with Lipschitz constant bounded by log 1−δ
δ

. Consequently,
[

log
Q(Xm + Zm)

Q(Xm + Um)

]

≤ log
1− δ

δ
E|Um + Zm| .

The proposition follows by using the coupling constructed

in (23), which is symmetric, and therefore satisfies

E|Xm + Um| = m

n
E|Xn + Un|. (26)

To make improvement in the other direction, we will make

a crucial observation that while PXn+Un is not “smooth”

in the strong sense used above, it is still rather nice. For

example, the atoms of PXm+Um|Xm−1+Um−1=ym−1 are almost

in the interval (δ, 1 − δ) since PXm+Um|Xm−1+Um−1 ≈
PXm+Zm|Xm−1+Um−1 (as a consequence of (18)). We proceed

to the details.

Lemma 4: Let Un ∼ Uniform(Sδn,n), Zn ∼
Bernoulli(δ)⊗n and 1 ≤ m ≤ n. For any random vector

Xm ⊥⊥ (Zn, Un), supported on {0, 1}m we have that

H(Xm + Zm)−H(Xm + Um) ≤ c̃2(δ)am , (27)

where a1 = 0, am =
∑

2≤k≤m
1√

n−(k−1)
, and c̃2(δ) =

√

c(δ)
2 log 1

δ
, and c(δ) is defined in Lemma 3.

Substituting m = n above, we obtain the following bound

as an immediate corollary.

Corollary 1: Let Un ∼ Uniform(Sδn,n), Zn ∼
Bernoulli(δ)⊗n and 1 ≤ m ≤ n. For any random vector

Xn ⊥⊥ (Zn, Un), supported on {0, 1}n we have that

H(Xn + Zn)−H(Xn + Un) ≤ c2(δ)
√
n, (28)

where c2(δ) is as defined in (8).

Proof of Lemma 4. For m = 1 the claim trivially holds as

Zi
d
= Ui for all i ∈ [n]. Proceed by induction and suppose

we established the case for m− 1 and arbitrary Xm−1. Since

H(Xm +Um) = H(Xm +Zm), we have from the chain rule

H(Xm + Zm)−H(Xm + Um)

= H(Xm−1 + Zm−1|Xm + Zm)

−H(Xm−1 + Um−1|Xm + Um) (29)

Since Zm ⊥⊥ (Zm−1, Um−1) we have from the induction

hypothesis

H(Xm−1 + Zm−1|Xm + Zm)

−H(Xm−1 + Um−1|Xm + Zm) ≤ c̃2(δ)am−1. (30)

Thus, subtracting and adding H(Xm−1 + Um−1|Xm + Zm)
from the RHS of (29), and defining V m−1 = Xm−1 +Um−1

to lighten notation, we get

H(Xm + Zm)−H(Xm + Um)

≤ c̃2(δ)am−1 +H(V m−1|Xm + Zm)−H(V m−1|Xm + Um).

Using H(Xm+Zm) = H(Xm+Um) and the chain rule once

again, we have that

H(V m−1|Xm + Zm)−H(V m−1|Xm + Um)

= H(Xm + Zm|V m−1)−H(Xm + Um|V m−1). (31)



Note that Zm can be thought of as an independent copy of Um,

and hence from Lemma 2 with f(·, ·) = ·+ · mod 2 we can

bound the right-hand side of (31) by

√

I(Um;Xm,V m−1)
2 log 1

δ

(we used the fact that A+ Zm for independent A ⊥⊥ Zm has

distribution with atoms in [δ, 1−δ]). By I(Um;Xm, V m−1) ≤
I(Um;Um−1), together with (18) we get

H(Xm + Zm)−H(Xm + Um)

≤ c̃2(δ)am−1 +
c̃2(δ)

√

n− (m− 1)
(32)

as required.

IV. LOWER BOUND ON Ψ−
n,δ VIA RANDOM CODING

In this section, we prove the following lemma.

Lemma 5: Let Un ∼ Uniform(Sδn,n), and Zn ∼
Bernoulli(δ)⊗n for some 0 < δ < 1/2. There exists a random

vector Xn ⊥⊥ (Zn, Un), supported on {0, 1}n, such that

H(Xn + Un)−H(Xn + Zn) ≥ c1(δ)
√
n+ o(

√
n), (33)

where c1(δ) is as defined in (7).

The proof of Lemma 5 is based on the simple observation

that the dispersion of the xn 7→ xn + Un channel is zero.

Proposition 3: Let 0 < δ < 1/2 and let Un ∼
Uniform(Sδn,n). There exists a code C ⊂ {0, 1}n with

rate R = log 2 − h(δ) − logn
n

, that achieves maximal error

probability Pe ≤ n−1 over the n-dimensional additive noise

channel xn 7→ xn + Un.

Proof of Proposition 3. Let C ⊂ {0, 1}n be a rate R code,

Xn ∼ Uniform(C), and consider the maximum-likelihood de-

coder for Xn from the output of the channel Y n = Xn+Un:

it constructs L(Y n) = {xn ∈ C : |Y n − xn| = δn} and

outputs X̂n ∼ Uniform(L(Y n)) (note that L(Y n) is never

empty). Enumerate the codewords in C as xn
1 , . . . , x

n
enR . The

error probability, given that Xn = xn
1 is

Pr(X̂n ̸= xn
1 |Xn = xn

1 ) ≤ Pr (|L(xn
1 + Un)| > 1)

= Pr ((C \ {xn
1}) ∩ (xn

1 + Un + Sδn,n) ̸= ∅)

≤
enR

∑

i=2

Pr(xn
i ∈ (xn

1 + Un + Sδn,n)). (34)

Let us now assume C is a random codebook drawn from the

standard (n,R) binary linear code ensemble [7, Chapter 6.2],

and average (34), which gives

EC Pr(X̂
n ̸= Xn

1 |Xn = Xn
1 )

≤ EC

enR

∑

i=2

Pr(Xn
i ∈ (Xn

1 + Un + Sδn,n))

=
(

enR − 1
) |Sδn,n|

2n

≤ e−n(log 2−R−h(δ)). (35)

Taking R = log 2−h(δ)− logn
n

, we see that the average error

probability of the ensemble is at most n−1, and there must

exist a code with error probability no greater than the average.

Since the code is linear, the error probability is the same for

all codewords, and therefore the result holds for maximal error

probability.

Proof of Lemma 5. Let C be a code satisfying the conditions

of Proposition 3, and let Xn ∼ Uniform(C). In order to

establish a lower bound on H(Xn+Un)−H(Xn+Zn), we

will lower bound the first term and upper bound the second.

We have

H(Xn + Un) = I(Xn + Un;Xn) +H(Un)

= H(Xn) +H(Un)−H(Xn|Xn + Un)

≥ nR+ nh(δ)− 1

2
log(8δ(1− δ)n)− nPe − log 2 (36)

≥ nR+ nh(δ)− 1

2
log(32δ(1− δ)n)− n · 1

n

= n log 2− 3

2
log n− 1

2
log(32eδ(1− δ)). (37)

where (36) follows from (3) and from Fano’s inequality.

Next, we turn to upper bound H(Xn + Zn). Let W =
W (Zn) = |Zn|/n be the normalized Hamming weight of Zn,

and denote a ∧ b = min{a, b}. For any Xn we have

H(Xn + Zn) = H(Xn + Zn|W ) + I(W ;Xn + Zn)

≤ H(Xn + Zn|W ) + log n

≤ EW

(

H(Xn, Zn|W = w)
∧

n log 2
)

+ log n

= EW

(

H(Xn) +H(Zn|W = w)
∧

n log 2
)

+ log n

≤ EW

(

H(Xn) + nh(W )
∧

n log 2
)

+ log n. (38)

For Xn ∼ Uniform(C), the bound (38) reads

H(Xn + Zn) ≤ n
(

log 2− h(δ)

+ EW (h(W ) ∧ h(δ))

)

+ log n

≤ n

(

log 2− h(δ)

+ EW (h(δ) + h′(δ)(W − δ) ∧ h(δ))

)

+ log n

= n log 2− nh′(δ) · EW [δ −W ]
+
+ log n

≤ n log 2− log

(

1− δ

δ

)

√

δ(1− δ)

2π

√
n+ log n+ c, (39)

where [a]+ = max{a, 0}, and the last inequality follows from

the central limit theorem [8] for some universal constant c.
The claim now follows from combining (37) and (39).

V. PROOF OF SPHERICAL MGL

This section is devoted to proving Theorem 2. We define

the function fα(t) = h(α ∗ h−1(t)), where a ∗ b = a(1− b) +
b(1− a). Recall that t 7→ fα(t) is convex [4].



Proof of Theorem 2. We have

H(Xn + Un) =

n
∑

m=1

H(Xm + Um|Xm−1
1 + Um−1

1 )

≥
n
∑

m=1

H(Xm + Um|Xm−1
1 , Um−1

1 )

=

n
∑

m=1

Eh
(

Pr(Xm = 1|Xm−1
1 ) ∗ Pr(Um = 1|Um−1

1 )
)

=

n
∑

m=1

Eh
(

h−1
(

H(Xm|Xm−1
1 = x)

)

∗Am)
)

≥
n
∑

m=1

Eh
(

h−1
(

H(Xm|Xm−1
1 )

)

∗Am)
)

, (40)

where the random variable Am was defined in (13), and in the

last inequality we have used the convexity of fα(t) and the

fact that the random variables Am and H(Xm|Xm−1
1 = x)

are statistically independent.

Let ηm , H(Xm|Xm−1
1 ). Recalling that Am = δ −

Tm−1

n−(m−1) and that a ∗ (b + c) = a ∗ b + c(1 − 2a), we can

now rewrite (40) as

H(Xn + Un) ≥
n
∑

m=1

Eh

(

h−1(ηm) ∗
(

δ − Tm−1

n− (m− 1)

))

=

n
∑

m=1

Eh

(

h−1(ηm) ∗ δ − Tm−1

n− (m− 1)

(

1− 2h−1(ηm)
)

)

.

Applying Lemma 1 on each term in the sum, with xm =
h−1(ηm) ∗ δ and ϵm = Tm−1

n−(m−1) (1− 2h−1(ηm)), we obtain

H(Xn + Un) ≥
n
∑

m=1

h
(

h−1(ηm) ∗ δ
)

(41)

+

n
∑

m=1

(

1− 2h−1(ηm)
)

log

(

1− h−1(ηm) ∗ δ
h−1(ηm) ∗ δ

)

· E(Tm−1)

n− (m− 1)

(42)

−
n
∑

m=1

4
(

1− 2h−1(ηm)
)2 h

(

h−1(ηm) ∗ δ
)

(h−1(ηm) ∗ δ)2
· E(T 2

m−1)

(n− (m− 1))
2

(43)

≥ nh

(

δ ∗ h−1

(

H(Xn)

n

))

−
n
∑

m=1

4
(

1− 2h−1(ηm)
)2 h

(

h−1(ηm) ∗ δ
)

(h−1(ηm) ∗ δ)2
· δ(1− δ)

n− (m− 1)
,

(44)

where in the last inequality we have used the convexity of

fα(t) to lower bound (41), the fact that ETm = 0 for all

m = 0, . . . , n − 1 in order to null the term in (42), and (17)

in order to lower bound the term in (43). Noting further that

(

1− 2h−1(ηm)
)2 h

(

h−1(ηm) ∗ δ
)

(h−1(ηm) ∗ δ)2
≤ 1

δ2
,

we can further bound (44) as

H(Xn + Un) ≥ nh

(

δ ∗ h−1

(

H(Xn)

n

))

− 4(1− δ)

δ

n
∑

m=1

1

n− (m− 1)

= nh

(

δ ∗ h−1

(

H(Xn)

n

))

− 4(1− δ)

δ

n
∑

m=1

1

m

≥ nh

(

δ ∗ h−1

(

H(Xn)

n

))

− 8(1− δ)

δ
log n.

as desired.

APPENDIX A

PROOF OF LEMMA 1

Consider two distributions P,Q on some alphabet X , then

we have

H(P )−H(Q) ≤
√

2D(P∥Q) log |X | (45)

H(Q)−H(P ) ≤
√

D(P∥Q)

2
log

1

minx P (x)
, (46)

where the first inequality is from [5, (64)] and the sec-

ond one from H(Q) − H(P ) ≤ (EQ − EP ) log
1

P (X) ≤
TV(P,Q) log 1

minx P (x) and Pinsker inequality.

Applying these with P = Pf(A,B)|C=c and Q =
Pf(A,B̄)|C=c we get (after using Jensen’s inequality on

EC [
√·]):

H(f(A,B)|C)−H(f(A, B̄)|C) ≤ γ1
√
D (47)

H(f(A, B̄)|C)−H(f(A,B)|C) ≤ γ2
√
D , (48)

where by data-processing D =
D(Pf(A,B)|C∥Pf(A,B̄)|C |PC) ≤ D(PA,B|C∥PA|CPB̄ |PC) =
I(A,C;B)
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