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Abstract

We present a new framework to analyze ac-
celerated stochastic mirror descent through
the lens of continuous-time stochastic dy-
namic systems. It enables us to design
new algorithms, and perform a unified and
simple analysis of the convergence rates of
these algorithms. More specifically, under
this framework, we provide a Lyapunov func-
tion based analysis for the continuous-time
stochastic dynamics, as well as several new
discrete-time algorithms derived from the
continuous-time dynamics. We show that
for general convex objective functions, the
derived discrete-time algorithms attain the
optimal convergence rate. Empirical exper-
iments corroborate our theory.

1 INTRODUCTION

We consider the constrained optimization problem

min f(x), (1.1)
where f : RY — R is a convex function and X is
a closed convex subset of R?. Denote by x* the
minimizer of (1.1), i.e., f(x*) = mingex f(x). Pro-
jected gradient descent (Luenberger et al., 1984) can
be used to solve (1.1) if X' is a simple constraint set.
When the computation of the gradient of f is expen-
sive, or it is not directly accessible, stochastic gradi-
ent Vf(x,€) can be used, where £ is some random
variable and one often assumes the stochastic gradi-
ent is an unbiased estimator of the full gradient, i.e.,
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E[Vf(x, &)|x] = Vf(x). The projected stochastic gra-
dient descent (SGD) takes the following update for-
mula

Xp+1 = D (xp — eV f (x5 €k)),

where 7, > 0 is the step size and Iy denotes the
Euclidean projection onto X. When the constraint
set X is endowed with a Bregman divergence (Breg-
man, 1967) that is induced by a continuously differen-
tiable and strongly convex distance generating func-
tion h : X — R, the projected SGD algorithm can
be generalized to the stochastic mirror descent (SMD)
(Nemirovskii et al., 1983):

Vi+1 = Vh(xx) — mV f(x, ),
Xpy1 = VA (Yrt1),

(1.2)

(1.3)

where h* is the conjugate function of h. It is easy to
show that SGD is a special case of SMD when choosing
h(-) = 1/2|| - ||3. Tt is well known that the expected
objective function value after k iterations of SMD (i.e.,
E[f(xx)] ) converges to the minimal value f(x*) at an
optimal rate of O(G/Vk), where G is the Lipschitz
constant of f, and k is the number of iterations.

In order to accelerate first-order stochastic optimiza-
tion algorithms such as SGD and SMD, various
momentum techniques have been proposed (Polyak,
1964; Lan, 2012; Nesterov, 2013). In particular, Lan
(2012) proposed an accelerated stochastic approxima-
tion (AC-SA) algorithm to accelerate SMD. For L-
smooth and general convex function, AC-SA achieves
the optimal convergence rate O(L/k*+o /v/k) in terms
of expected function value gap, where o2 is the vari-
ance of stochastic gradient. Compared with the non-
accelerated SMD (1.3), the acceleration part comes
from O(L/k?) and when the variance of the stochas-
tic gradient vanishes, i.e., 0 = 0, the convergence rate
of AC-SA reduces to O(L/k?), which is the optimal
convergence rate in the deterministic setting. Despite
the optimal convergence rate, the update formulas in
these algorithms are often elusive and lack of intuitive
interpretations.
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On the other hand, recent years have witnessed the
emergence of a line of research which attempts to in-
terpret the stochastic mirror descent from the perspec-
tive of continuous-time dynamics. To the best of our
knowledge, Raginsky and Bouvrie (2012) is the first
work that interprets stochastic mirror descent as the
discretization of the following It6 stochastic differen-
tial equation (SDE) (Oksendal, 2003)

{dYt = —V/f(X;)dt + cdB;,

X; = Vh'(Y), 44

where —V f(X;)dt is called the drift term, and o is
called the diffusion term, which corresponds to the
variance of the stochastic gradient. Later Mertikopou-
los and Staudigl (2016) extended the above first-order
SDE in (1.4) by replacing the constant diffusion term
o with a general matrix o(X,t) and proved almost-
sure convergence of the function value f(X;) along
the solution trajectories of SDE to the minimal func-
tion value f(x*). Very recently, Krichene and Bartlett
(2017) proposed the following second-order SDE to in-
terpret accelerated stochastic mirror descent

{dY; = —n(VF(Xp)dt + (X, t)dBy),

dXt = at(Vh*(th/St) — Xt)dt, <15)

where 7;,a; and s; are scaling functions of ¢. They
proved O(1/t'/279) convergence rate of expected func-
tion value along the solution trajectories of the SDE to
the minimal function value, under the assumption that
lo(x,t)]] <9 (¢ < 1/2). However, there is still a gap
between the continuous-time dynamics and discrete-
time algorithms for accelerated stochastic mirror de-
scent. In particular, it remains unclear whether the
continuous-time SDE can be used to design and ana-
lyze new discrete-time algorithms.

In this paper, we aim to bridge this gap by propos-
ing a new SDE-based interpretation for accelerated
stochastic mirror descent, and derive new discrete-
time algorithms from this SDE. We provide a unified
analysis based on Lyapunov function, which connects
both continuous-time dynamics and discrete-time al-
gorithms derived thereof. We also use numerical ex-
periments to backup our theory.

Our Contributions: We summarize the key contri-
butions of our work as follows.

e We propose a new stochastic differential equation-
based interpretation for accelerated stochastic mir-
ror descent, motivated by Lagrangian mechanics.
We take a Lyapunov function approach to prove that
the convergence rate of the solution trajectories of
the SDE matches the optimal rate of accelerated
stochastic mirror descent for general convex func-
tion.

e We derive several new accelerated algorithms of
SMD via discretizing the proposed SDE using var-
ious Euler discretization schemes, and provide an
analogous Lyapunov function-based analysis for the
new algorithms, which largely resembles the proof
in the continuous-time dynamics. We show that
these new algorithms also achieve the optimal con-
vergence rate of accelerated SMD for general convex
and smooth functions.

It is worth highlighting that under our framework, the
discrete-time algorithms are closely connected with the
continuous-time dynamics in the sense that they are
nearly equivalent when the discretization step is suffi-
ciently small.

The remainder of this paper is organized as follows:
in Section 2 we review related work We introduce
the preliminaries in Section 3, and present the new
continuous-time dynamics for accelerated SMD in Sec-
tion 4. We show how we can discretize the continuous-
time dynamics to invent new discrete-time algorithms
in Section 5. We provide numerical experiments in
Section 6 to validate our theory and conclude the pa-
per with Section 7.

Notation We use upper case letters X, to denote
continuous-time curve vector, where ¢ > 0 is the time
index. X; with an over-dot denotes the derivative of
X; with time ¢. Lower case letters x; denote the tra-
jectory of a discrete-time algorithm, where £k = 0,1, ...
is the index of iteration number. For all x € R?, we
fix a general norm ||x|| and its dual norm is given by

[l = SUP|\y|\g1<XaY>-
2 RELATED WORK

There is a vast literature of deterministic optimization
methods for convex optimization problems. The most
widely used first-order deterministic optimization al-
gorithms include gradient descent (Polyak, 1963), mir-
ror descent (Nemirovskii et al., 1983), Nesterov’s accel-
erated gradient method (Nesterov, 1983, 2005, 2013)
and accelerated mirror descent (Nemirovski et al.,
2009). While Nesterov’s accelerated gradient method
attains the optimal convergence rate for first-order
black box model, it falls short of an intuitive in-
terpretation. Recently, there is a series of work,
which interprets Nesterov’s accelerated gradient meth-
ods from different perspectives, including ordinary dif-
ferential equation (ODE) (Su et al., 2014), control
theory (Lessard et al., 2016; Hu and Lessard, 2017),
linear coupling (Allen-Zhu and Orecchia, 2014), geo-
metric interpretation (Bubeck et al., 2015) and game
theory (Lan and Zhou, 2015), to name a few. Along
these studies, the ODE-based interpretation (Su et al.,
2014) is perhaps the most simple and elegant ap-
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proach, which models the continuous-time limit of the
accelerated methods using ODE and analyzes the sta-
bility of the resulting ODE by constructing a Lya-
punov function (Su et al., 2014). Moreover, it has
been extended to analyze the accelerated mirror de-
scent (Krichene et al., 2015; Wibisono et al., 2016;
Wilson et al., 2016; Diakonikolas and Orecchia, 2017).
In particular, Wibisono and Wilson (2015); Wibisono
et al. (2016) derived a class of ODE-based continu-
ous dynamics for a family of accelerated optimization
methods from a novel Lagrangian functional called
Bregman Lagrangian. On the other hand, the ODE-
based continuous-time dynamics are also able to pro-
vide guidance on designing new algorithms by care-
fully discretizing the ODEs. For example, Krichene
et al. (2015); Wilson et al. (2016) rediscovered sev-
eral discrete-time algorithms and derived a few new
algorithms via different Euler discretization schemes
for the ODE. Wilson et al. (2016) also found that not
all discretization schemes lead to practical algorithms
and/or achieve accelerated rates.

Due to its success in large-scale machine learning,
stochastic first-order optimization method has also
drawn a lot of research interest. Instead of using the
gradient, stochastic first-order optimization methods
use the stochastic gradient. Representative stochas-
tic first-order optimization methods include stochastic
gradient descent (SGD) (Robbins and Monro, 1951),
stochastic mirror descent (SMD) (Nemirovski et al.,
2009), and their accelerated variants (Hu et al., 2009;
Lan, 2012; Ghadimi and Lan, 2012; Chen et al., 2012).
Analogous to the ODE-based interpretation of de-
terministic optimization, stochastic optimization has
an SDE-based interpretation. More specifically, Ra-
ginsky and Bouvrie (2012) studied the continuous-
time dynamics of stochastic mirror descent using It6’s
stochastic differential equations, where they showed
that the solutions of the stochastic dynamics do not
converge to the global minimizer due to the adverse
effects brought by Brownian motion. Mertikopoulos
and Staudigl (2016) extended the SDE in Raginsky
and Bouvrie (2012) for stochastic mirror descent and
proved almost-sure convergence of the solution tra-
jectories for SMD. However, continous-time dynam-
ics for accelerated stochastic mirror descent remain
under-studied. To the best of our knowledge, Krichene
and Bartlett (2017) is the only existing work that pro-
poses a second-order stochastic dynamics for acceler-
ated stochastic mirror descent and proves convergence
rates of the function values along solution trajecto-
ries of SDE both in terms of almost-sure convergence
and in expectation. Unlike the ODE-based interpre-
tation for deterministic optimization, based on which
quite a few discrete-time algorithms are rediscovered
or invented, it is unclear whether we can derive new

accelerated SMD algorithms from its SDE-based inter-
pretation. This motivates our work.

3 PRELIMINARIES

3.1 Bregman Divergence

Mirror descent is based on Bregman divergence (Breg-
man, 1967). In detail, if the domain X is endowed
with a convex and differentiable function A : X — R,
the Bregman divergence (Bregman, 1967) is defined as

Dy (x,x') = h(x) — h(x') = (Vh(X'),x — x), (3.1)
for all x,x’ € X. We always have Dj(x,x’) > 0
due to the convexity of h. Following the assumptions
in Ghadimi and Lan (2012), we assume that Dy (-, ")
grows quadratically, without loss of generality, with
parameter 1, i.e.,

1
Dy (x,x") < §||x — x| for all x,x' € X.  (3.2)

A plain example of Bregman divergence is the Eu-
clidean distance: let h(x) = 1/2||x||3, then D(x,x’) =
1/2||x — x'||3 for all x,x’ € X. Another example
is the Kullback-Leibler (KL) divergence: let h(x) =
Zle x; log x; be the negative entropy, then D(x,x’) =
Zle x;log(z;/x;) for all x,x’ € X, which is the
Kullback-Leibler divergence. Here X = {x € R% :
Z?:l x; = 1} is the unit simplex in R

Recall the SMD update (1.3), the iteration is mapped
back to the primal space X via the mirror mapping
Vh* after one step of gradient descent in the dual
space. The mirror mapping is the gradient of the con-
vex conjugate function h*, which is defined as

h*(y) = sup(y,x) — h(x), fory e E*

XEX
where E* is the dual space of E and X C E.
3.2 Assumptions and Propositions

To ease the presentation, we lay down assumptions and
some propositions of Bregman divergence that will be
used in our analysis.

Assumption 3.1. f is continuously differentiable and
the gradient V f is Lipschitz continuous with parame-
ter L¢, that is, for any x,y € &

V) = VIl < Lyllx =yl (33)

This is also called L j-smoothness of f.

Assumption 3.2. h is up-strongly convex with some
constant pup, > 0, that is, for any x,y € X

h(x) 2 h(y) + (Vh(y).x = y) + 5 [x — y]”.
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Assumption 3.2 is commonly made in the analysis of
mirror descent algorithms (Lan, 2012; Ghadimi and
Lan, 2012) and its continuous-time dynamics (Wilson
et al., 2016; Krichene and Bartlett, 2017)

Assumption 3.3. X is convex and compact. There
is a constant Mj, » > 0 such that

My, x = sup Dp(x,x).
x,x'eX

This is a natural assumption imposed in constrained
optimization problems (Lan, 2012).

When the distance generating function h is strongly
convex, the following two standard results on conju-
gate functions hold.

Proposition 3.4. Suppose Assumption 3.2 holds for
h. Then its conjugate function h* is 1/pup-smooth and

Vh*(y) = argmax(y,x) — h(x), fory € E",

xeX

Proposition 3.5. Suppose Assumption 3.2 holds for
h. For all x,x’ € X, we have

Vh*(Vh(x))) = x,

We refer interested readers to Banerjee et al. (2005)
for detailed discussions of these properties.

4 THE PROPOSED
CONTINUOUS-TIME DYNAMICS

In this section, we present a continuous-time dynamics
for accelerated stochastic mirror descent, and analyze
its convergence. We start with deriving the dynamics
from Bregman Lagrangian (Wibisono et al., 2016).

4.1 Continuous-time Dynamics for
Accelerated Stochastic Mirror Descent

We borrow ideas from Wibisono et al. (2016) by view-
ing the optimizing process as a physical process. For
the mechanical system associated with optimization
problem (1.1), we use X; and X, to denote the posi-
tion and velocity respectively. We define the Bregman
Lagrangian (Wibisono and Wilson, 2015) as a weighted
sum of kinetic Lyapunov Dp(X; + e‘o“Xt,Xt) and
potential Lyapunov f(X;) as follows

L(Xy, Xy, t)

) (4.1)
= e (D (X + e Xy, Xo) — P f( X)),

where oy, ¢, 1 are arbitrary scaling functions that are
continuously differentiable with respect to t. Consider
an action functional J(X) = fTﬂ(Xt,Xt,t)dt which
is defined on curves {X;};cr, . By Hamilton’s princi-
ple (or principle of least action), minimizing the action

Dy (x,x') = Dp(Vh(x"), Vi(x)).

functional J(X) requires that the curve X, satisfies
the following Euler-Lagrange equation

d {M(Xt,Xt,t)} = ﬁ(xt,xt,t). (4.2)

& aXt a)(t
To simplify the notation, we adopt the following ideal

scaling conditions suggested by Wibisono et al. (2016),
which are required for the stability of ODE (4.2):

Bt = e(!t,’

Submitting the Bregman Lagrangian £ in (4.1) into
the Euler-Lagrange equation (4.2), we obtain the fol-
lowing condition for X; that minimizes J(X)

Jie = e (4.3)

AVh(X, +1/8:X,) = —Bee® V(X )dt.  (4.4)

It is worth noting that (4.4) has been used to de-
scribe the continuous-time dynamics of many opti-
mization problems in Wibisono et al. (2016). However,
in stochastic optimization, one uses the stochastic gra-
dient rather than gradient. To account for this, we add
some random noise to the gradient of f. More specif-
ically, to adapt the dynamics (4.4) to stochastic opti-
mization, we add a Brownian motion term after the
gradient V f(X;) to form the following It6 stochastic
differential equation (SDE) (Oksendal, 2003)

AVh(X, +1/8,X;)

= —@eﬂt (Vf(Xt)dt =+ \/SO'(X,:, t)dBt), (45)

where B; € R is the standard Brownian motion,
o(Xy,t) € R4 and § > 0 is a constant. The term
Vo (X, t) is called the diffusion coefficient that ac-
counts for the variance of the stochastic gradient.

Note that (4.5) is a second-order SDE. We define a
variable Y; in the dual space E* as

Y, = Vh(X: + 1/B:X:). (4.6)

Based on (4.5) and (4.6), and using Proposition 3.5,
we obtain the following continuous-time dynamics for
accelerated stochastic mirror descent
dX; = B:(Vh*(Y2) — X,)dt, (4.7a)
dY: = — B’ (Vf(X1)dt + Voo (X¢,t)dBy).  (4.7b)
The solution trajectories of (4.7) do not converge to
the minimizer of f due to the stochastic noise. So we
modify it by introducing a shrinkage parameter s; > 0
to decrease the adverse effect of the stochastic noise.
dX; = Be(VRh* (Vi) — X)dt,
Bteﬁt
St

(4.8a)

dy; = — (VF(X:)dt + Voo (X, t)dBy), (4.8b)

where B; € R? is the standard Brownian motion,
B¢, 8¢ > 0 are scaling functions of time ¢t and § > 0 is a
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constant. The idea of introducing shrinkage parameter
st to offset the disadvantage brought by stochastic gra-
dient is similar to that in Mertikopoulos and Staudigl
(2016); Krichene and Bartlett (2017). This amount
to using time-decaying step size in the discrete-time
stochastic mirror descent algorithm to ensure its con-
vergence.

4.2 Convergence Rate of the
Continuous-time Dynamics

In this subsection, we analyze the convergence of our
proposed continuous-time dynamics (4.8) for acceler-
ated stochastic mirror descent. The following theorem
spells out its convergence rate.

Theorem 4.1. Suppose f is convex and Assumptions
3.2 and 3.3 hold. If the diffusion coefficient in (4.8)
satisfies ||o(Xy,t) T o(Xy,t)|| < 29 for some g < 1/2,
then it holds that

E[f(Xt) — f(x7)]
< &+ (St — SO)M;,”X

eﬁt (49)
E[ [ 5 o (67 V2h* (Y;) 0, ) dr]
+ : ,
2ePt

where o, = o(X,,7) and & = ™ (f(Xo) — f(x*)) +
s¢Dp- (Yy, Vh(x¥)).

Note that the convergence of the continuous-time dy-
namics (4.8) does not require the smoothness of f.
Remark 4.2. If we choose ; = plogt for some con-
stant p > 0 and s; = t* for some a € R and note
that [|o(X¢,t) To(X¢,t)| < t29, we have the following
convergence rate

) 14+t + t2p—a+2q—1
Blf(x0) - 1) = 0 FH .
If we further choose & = p+ ¢ — 1/2 and p = 2, then
we obtain

i 1 1
E[f(X:) = f(x")] =0 2T )

which matches the optimal convergence rate for ac-
celerated stochastic mirror descent algorithms (Lan,
2012), where the variance of stochastic gradient is
bounded by a constant i.e., ¢ = 0. In contrast, the
convergence rate of the continuous dynamics (1.5) pro-
posed by Krichene and Bartlett (2017) for acceler-
ated stochastic mirror descent is O(1/t*/?), which only
matches the optimal rate up to the dominating term.

Remark 4.3. When the variance of stochastic gradi-
ent vanishes, i.e., o(X,t) = 0, and if we choose the
shrinkage parameter s; = 1 for all ¢t € R, the conver-
gence rate in (4.9) becomes O(1/t?), which matches

the optimal convergence rate of deterministic accel-
erated mirror descent algorithms for general convex
functions (Nesterov, 1983).

Here we provide a proof of Theorem 4.1 via construct-
ing the following Lyapunov function for the stochastic
dynamics system (4.8)

& = e (f(Xs) = f(x*)) + 8:Dp= Yz, VA(xY)).
(4.10)

Proof of Theorem 4.1. Denote oy = o(X4,t), and ap-
plying It6’s Lemma to the Lyapunov function yields

d&, = %dt+ <§§tt,dXt> ¥ <a—Yt,dYt>

5372 02E
+ %Stz tr (Ug—ayt;ogdt.

0&,

(4.11)

By simple calculus, we have

X0 B (X0 — F)) + 8D (Y, TR,
o€ %2
aXtt :eﬁtvf(Xt)7 ani:St(Vh*(m_X*)'

Submitting the above calculations and dynamics (4.8)
into (4.11) yields
d&; = [Bte’gt (f(Xy) = f(x*)) + 5Dy~ (Y, VR(x*))]dt
+ B (VR (Y;) — Xy, VF(X,))dt
— B (VA" (V) — x*, Vf(X,)dt + 0ydBy)
163225 + 0%&
+ 3 5 tr | o, Y2 oy |dt
= Bee [f(Xy) — f(x") + (x* — Xy, V(X,))]dt
+ $chx (E, Vh(X*))dt
— e’ (Vh*(Y}) — x*, 0¢d By)
32 0204
LR {(wt e
28t

tr (ag—Vzh*(Y})m)} dt
1 .
< § My x + géﬁfewt tr (o] V2h* (Y;)o¢)dt
t
— Bie? (Vh*(Y}) — x*, 0,dBy),

where the inequality follows from the convexity of f
and Assumption 3.3 that Dj-(Y;, Vh(x*)) < M x.
Integrating from 0 to ¢, we obtain

E < &+ (st — s0)Mp x

t $42 28,
+1/ 0Bre™" (o) V20* (Y,)o,)dr

2 Jo Sy
t .
— / B’ (VR (V) — x*,0,dB,).
0
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By the definition of & and the fact that D; > 0, we
immediately get

P (f(X) — F(x7))
< & + (st — s0)Mp x

t 542026
+/ 5;76& (0, V2h* (Y;)o,)dr
0 Sr

t
— Breﬁr (VR*(Y,) — x*,0,.dB,).
0

Taking expectation of both sides and using the mar-
tingale property of It6 integral, we obtain

E[f(X:) — f(x")]
< Eo + (st — so) My x

B
t §32e2Pr T2 %
IE[ 05— tr (O’T VZh (Yr)ar)dr]
+ 2@5t ’
This completes the proof. O

5 THE PROPOSED
DISCRETE-TIME ALGORITHMS

Our primary goal in proposing the continuous-time dy-
namics for accelerated stochastic mirror descent is to
design new discrete-time algorithms. In this section,
we provide several discretizations of (4.8). We will
adapt the Lyapunov function-based analysis in pre-
vious section to the discrete-time algorithms and de-
liver very simple and intuitive proofs for the new algo-
rithms. The high-level idea of this section is inspired
by Wilson et al. (2016), which discussed various dis-
cretization schemes for the continuous-time dynamics
of deterministic optimization.

We use Euler discretization schemes (Kloeden and
Platen, 1992) of differential equations and its compo-
sition to derive several discrete algorithms of dynamic
(4.8). Specifically, note that (4.8) is a system of two
first-order differential equations, and thus we can com-
pose explicit and implicit Euler discretizations in four
different ways. Let § be the time step and

xp = X¢, Xpp1=Xiys, Ye =Yy Vi1 = Yiis.

The following approximations

(Xpt1 — X8) /0 ~ X4y (Vi1 —y)/0 =Y,

are the explicit (forward) Euler discretization for the
time derivatives of X; and Y;, and

(x — Xk-1)/0 = X4, (e —yi-1)/0 =Y,

are the implicit (backward) Euler discretization for the
time derivatives of X; and Y;. For the scaling param-
eters, we choose Ay = eﬂt, Sr = S, and the discretiza-
tions as follows

(Api1 — Ap) /6 = dePt/dt,

(A1 — Ax)/(0Ag) = By

5.1 Implicit Euler Discretization

Algorithm 1 Accelerated Stochastic Mirror Descent
(Implicit)

1: Input: Ay =1/2, x9g =yo =0.

2: for k=0 to K do

3: Ak+1 = (/4}—|—1)(k‘+2)/2, T = (Ak—i-l —Ak)/Ak,
sp=ok3/? +1

4 Vh*(Yr41) = Xpy1 + %(XkJrl — Xp).

argmingey { F(x,€11)  +
S D (u, Vh*(yk))}, and u=x+ %(x—xk).

Apg1
6: end for

5: Xk+1 =

The first discrete-time algorithm we derive is from im-
plicit Euler discretization of dynamics (4.8). The dis-
cretization process is displayed in Algorithm 1. Here
we use Borel function f(xg,&;) to denote the noisy
objective function, where {{;}r=0,1,.. is a sequence
of independent random variables. Denote A(xy) =

Vf(xk, &) — Vf(xr) and we assume that

Elf (xk, &) |xk] = f(x1), E[Vf(xk, &)xx] = VF(xk),
E[||AGe) || 2xk] < 0.

The optimality condition of Algorithm 1 is given by

* A
Vh (yk+1) = Xg41 + ﬁ(){]ﬁq — Xk), (5.18.)
k+1 — Ak
A —Ar _~
Vit — Yk = — Y F Xk, k1), (5.1b)

Sk

where V f(xk+1,&k+1) is the stochastic gradient.

Inspired by the Lyapunov function (4.10) for the
continuous-time dynamics, we construct the following
Lyapunov function to analyze the convergence of Al-
gorithm 1.

& = E[Ar(f(xk) — f(x7)) + sk Dn(x*, VA* (yi))]-
(5.2)

Based on the above Lyapunov function, we can prove
the following theorem, which states the convergence
rate of Algorithm 1.

Theorem 5.1. Suppose f is convex. Under Assump-
tions 3.2 and 3.3, if we choose Ay = k(k + 1)/2,
Ag = 1/2 and s, = ok3/? + 1, the expected function
value gap at x; output by Algorithm 1 is bounded as

. 2(&o + Mp, x)
ELf (o) = f0)) < =0
+ U(Mh))( + 3lllh> kl:— 1,

where & = Ao(f(x0) — f(x*)) + soDp(x*, VR*(y0))-
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Remark 5.2. Theorem 5.1 suggests that the con-
vergence rate of Algorithm 1 is O((1 + My x)/k* +
My, xo/v/'k), which matches the optimal rate of accel-
erated stochastic optimization for general convex and
smooth functions (Lan, 2012). Note that when vari-
ance of the stochastic gradient vanishes, we can choose
s = 1 for all k and obtain the optimal convergence
rate of accelerated gradient descent for general convex
and smooth functions O(1/k?).

Remark 5.3. The optimal convergence rate of Algo-
rithm 1 does not require the smooth assumption on f,
which is aligned with the analysis of continuous-time
dynamics (4.8). In fact, Algorithm 1 can be seen as an
accelerated proximal point algorithm whose optimal
convergence rate is also O(1/k?) (Giiler, 1992).

5.2 Hybrid Euler Discretization

Although Algorithm 1 is succinct and attains the opti-
mal convergence rate, the implicit Euler discretizations
of both stochastic processes make it hard to implement
in practice due to the requirement of an exact mini-
mization in each iteration (Step 5 in Algorithm 1).
Nevertheless, the implicit discretization sheds great
light on the connection between continuous-time dy-
namics and discrete-time algorithms. Now we derive
a more practical algorithm combining implicit and ex-
plicit Euler discretizations of dynamics (4.8). The dis-
cretization process is displayed in Algorithm 2. The

Algorithm 2 Accelerated Stochastic Mirror Descent
(ASMD)

1: Input: Ay =s9=1/2,x9 =yo=0.

2: for k=0to K do

3: Ak+1 = (k—l—l)(k‘—‘y—?)/Q, T = (AkJrl—Ak)/Ak,

swr1 = (k+1)%2,

4 Xp = 32 VR (i) + X
Yi+1 =Yk — A’“%,:A’“Vﬂxkﬂ,ﬁkﬂ)
6: end for

o

optimality condition of Algorithm 2 is given by

A
Vh’*(Yk) = Xp+1 + ﬁ(Xk—H — Xk), (53&)
k+1 — Ak

Art1 = Ak o 5

Yit1 —YE = — Vf(Xk+1, k1) (5.3b)

Sk

Based on the same Lyapunov function (5.2) of Algo-
rithm 1, we can prove the convergence rate of Algo-
rithm 2.

Theorem 5.4. Suppose f is convex. Under Assump-
tions 3.1, 3.2 and 3.3, if we choose Ay = k(k + 1)/2,
sp = k32 and Ag = sg = 1/2, the expected function
value gap at x; output by Algorithm 2 is bounded as

280 CoVk
(k+1)  pi(k+1)

Ef(xe) = FO)] <

where Co = 2((4L% + pi )M x + pno® + 2|V f(x*)[|2)
and & = Ao(f(x0) — f(x")) + soDn(x*, VA*(y0))-
Remark 5.5. Compared with Algorithm 1, Algo-
rithm 2 is a much more practical algorithm and can
be easily implemented. The convergence rate of Al-
gorithm 2 is O(My, x /k* + (L} + 0?)/Vk). Although
this matches the optimal rate of accelerated stochastic
mirror descent (Lan, 2012), yet when the variance of
the stochastic gradient vanishes, i.e., ¢ = 0, it is not
reducible to the optimal convergence rate O(1/k?) for
deterministic optimization.

5.3 Discretization with an Additional
Sequence

Algorithm 3 Accelerated Stochastic Mirror Descent
(ASMD3)
1: Input: Ay =1/2,x9 =yo =120 =0.
2: for k=0 to K do
3: Akt1 ZM}QI(]C+1)(/€+2)/(4LJ£), SkZU/LfUC—I—
132 41, My = Li(Apyr — Ak)?/ (1351 Akr1)-

A1 —Ag A
4: Zp+1 = 7Ak+1 Vh*(}’k) + Aki]xk.

Api1—A ry
5 Yi41 =Yk — =V f(2Zry1, Ept1)-

Sk

6: Xgr1 = argminxeX{<vf(zk+17£k+1)ax> +
%Dh(ZkJrl,x)}.
7: end for

As we showed in previous subsection, Algorithm 2 is
not able to obtain the optimal rate for deterministic
optimization when using the full gradient instead of
stochastic gradient. In order to address this issue, we
will modify the algorithm by adding an additional se-
quence in a similar way to linear coupling (Allen-Zhu
and Orecchia, 2014). The new algorithm with three
sequences is presented in Algorithm 3. Note that the
additionally added sequence can be seen as a step of
mirror descent. The optimality condition of Algorithm
3 is given by

Zg+1 = Artr = A Vh* (yr) + Ax Xk, (5.4a)
Ak+1 Ak+1
A —Ap _~
Vitl — Yk = ,7’“; "V f(zis1,Ers1),  (5.4b)
Xk4+1 = argmin {(Vf(zkH, Ert1),X) (5.4c)
xeX
L
+ ﬁiDh(ZkJrl,X)}.

In order to prove the convergence of Algorithm 3
with the additional sequence, we define a new Lya-
punov function as & = E[Ap(f(xx) — f(x*)) +
s Dp(x*, Vh*(yk+1))], which is slightly different from
that of previous algorithms. Then we can show the
following result.

Theorem 5.6. Suppose f is convex. Under Assump-
tions 3.1, 3.2 and 3.3, if we choose Ay = uik(k +
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1)/(4Ly), sy = o/Ly(k + 1)32 + 1 and M) =
Li(Ak+1 — Ax)?/ (13 sk Ak41), the expected function
value gap at x; output by Algorithm 3 is bounded as

E[f(xx) — f(x7)]
< 4Lf((€o + me)
ppk(k +1)

where & = Ao(f(x0) — f(x*)) + soDp(x*, VRA*(y0))-
Remark 5.7. The convergence rate of Algorithm
3 is in the order of O(Ls(1 + My x)/k* + o(1 +
Mh7X)/\/E), which matches the optimal rate of ac-
celerated stochastic mirror descent for general convex
and smooth functions (Lan, 2012). More importantly,
when the stochastic gradient reduces to the full gradi-
ent, namely, o = 0, the o(1 + My x)/Vk term dimin-
ishes and the optimal convergence rate for stochastic
optimization reduces to the optimal convergence rate
O(1/k?) for deterministic optimization of general con-
vex and smooth functions.

O’(,LL% + 12Mh7/y)\/k} +1
3uik ’

6 EXPERIMENTS

In this section, we conduct numerical experiments
to verify the convergence rate of the proposed algo-
rithms derived from the continuous-time dynamics.
We compare our Algorithm 2 (ASMD) and Algorithm
3 (ASMD3) with stochastic mirror descent (SMD),
accelerated stochastic approximation (AC-SA) (Lan,
2012) and stochastic accelerated gradient (SAGE)
(Hu et al., 2009).

We apply the above optimization algorithms to the
linear regression problem on a convex compact subset
of R%,

minkex f(x) = 251 (Apx — yi)?, (6.1)
where y = (y1,...,9yn) | € R™ and A;, denotes the
i-th row of A € R™*?¢ We set n = 100, d = 200, and
generated the design matrix A with entries following
N(0,1). The response vector was generated by y =
Au* + €, where € ~ N(0,1,,x,) and u* ~ N(0,1;xq)
were randomly generated. It is easy to verify that
the objective function f is convex and L-smooth with
L =||ATA|2. We considered two settings of distance
generating function h and the constrained set X':

e Setting (1): h(x) = 1/2|x||3 is the squared
Euclidean norm, and X = {x x|l <
2||u*||l2}. Then the mirror mapping Vh*(x) =
argmin, ¢ y [|[x — u/|3 reduces to projection onto X
and has a closed form solution.

e Setting (2): h(x) = 2?21 x; log x; is the negative

entropy and X = {x € R : Z?Zl x; =1} is a

simplex. In this case the mirror mapping also has

hig(fq(xmi {(X”E)

“Number of Iterations (k)
(a) Setting (1): h(x) = (b) Setting (2): h(x) =
1/3”"”%, and X = {x € 37 g;logz;, and X =
Rt lx([2 < 2flu”|l2} {x € R%: Zle x; =1}
Figure 1: Logarithmic averaged function value gap

over 50 repetitions for all methods under different set-
tings.

Number of Iterations (k)

a closed-form solution [VA*(x)]; = ezi/zsl:l e’
foralli=1,...,d (Banerjee et al., 2005).

Since (6.1) has a finite-sum structure, we simply
choose the stochastic gradient by uniformly sampling
¢ from {1,2,...,n} with mini batch size 1. We plotted
the function value gap f(xx) — f(x*) for each algo-
rithm in Figure 1, where k is the number of iterations
and x* is the global minimizer of (6.1) solved by CVX
program (Grant and Boyd, 2008). Figure 1(a) and Fig-
ure 1(b) show the averaged results over 50 repetitions
for Setting (1) and Setting (2) respectively. Note that
SAGE is not applicable to mirror descent. Experi-
mental results in both settings demonstrate that our
algorithms ASMD and ASMD3 achieve comparable
convergence rate as AC-SA, and converge much faster
than SMD. This is well-aligned with our theory.

7 CONCLUSIONS

In this paper, we bridge the gap between continuous-
time dynamics and discrete-time algorithms for ac-
celerated stochastic mirror descent by presenting a
variational analysis based on Bregman Lagrangian
and Lyapunov functions. We not only propose a
new continuous-time dynamics of accelerate stochas-
tic mirror descent, but also derive several new al-
gorithms from the continuous dynamics. Both the
continuous-time dynamics and the discrete-time algo-
rithms achieve the optimal convergence rate for gen-
eral convex and smooth functions in the stochastic op-
timization setting.
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