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Abstract

We propose a fast stochastic Hamilton Monte
Carlo (HMC) method, for sampling from a
smooth and strongly log-concave distribution.
At the core of our proposed method is a vari-
ance reduction technique inspired by the recent
advance in stochastic optimization. We show
that, to achieve e accuracy in g-Wasserstein dis-
tance, our algorithm achieves O (n + k2dY? /e +
n4/3d1/3n2/3/62/3) gradient complexity (i.e.,
number of component gradient evaluations),
which outperforms the state-of-the-art HMC and
stochastic gradient HMC methods in a wide
regime. We also extend our algorithm for sam-
pling from smooth and general log-concave dis-
tributions, and prove the corresponding gradient
complexity as well. Experiments on both syn-
thetic and real data demonstrate the superior per-
formance of our algorithm.

1. Introduction

Past decades have witnessed increasing attention of Markov
Chain Monte Carlo (MCMC) methods in modern machine
learning problems (Andrieu et al., 2003). An important
family of Markov Chain Monte Carlo algorithms, called
Langevin Monte Carlo method (Neal et al., 2011), is pro-
posed based on Langevin dynamics (Parisi, 1981). Langevin
dynamics was used for modeling of the dynamics of molec-
ular systems, and can be described by the following Itd’s
stochastic differential equation (SDE) (@ksendal, 2003),

dX, = —Vf(X,)dt + \/2BdB,, (1.1)

where X is a d-dimensional stochastic process, ¢ > 0 de-
notes the time index, 8 > 0 is the temperature parameter,
and B; is the standard d-dimensional Brownian motion.
Under certain assumptions on the drift coefficient V f, Chi-
ang et al. (1987) showed that the distribution of X; in (1.1)
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converges to its stationary distribution, a.k.a., the Gibbs
measure mg x exp(—0f(x)). Note that w3 is smooth and
log-concave (resp. strongly log-concave) if f is smooth and
convex (resp. strongly convex). A typical way to sample
from density 73 is applying Euler-Maruyama discretization
scheme (Kloeden & Platen, 1992) to (1.1), which yields

X1 = Xp — VI (Xp)n + /208 - €, (1.2)
where €, ~ N(0,I;44) is a standard Gaussian random vec-
tor, Ixq is a d X d identity matrix, and n > 0 is the step
size. (1.2) is often referred to as the Langevin Monte Carlo
(LMC) method. In total variation (TV) distance, LMC has
been proved to be able to produce approximate sampling of
density 5 o< e~7/8 under arbitrary precision requirement
in Dalalyan (2014); Durmus & Moulines (2016b), with prop-
erly chosen step size. The non-asymptotic convergence of
LMC has also been studied in Dalalyan (2017); Dalalyan &
Karagulyan (2017); Durmus et al. (2017), which shows that
the LMC algorithm can achieve e-precision in 2-Wasserstein
distance after O(x%d/e?) iterations if f is L-smooth and p-
strongly convex, where k = L/ is the condition number.

In order to accelerate the convergence of Langevin dynamics
(1.1) and improve its mixing time to the unique stationary
distribution, Hamiltonian dynamics (Duane et al., 1987;
Neal et al., 2011) was proposed, which is also known as
underdampled Langevin dynamics and is defined by the
following system of SDEs

dV, = —yVidt — uV f(X})dt + /2yud By, (13)
dX, = V,dt, '

where v > 0 is the friction parameter, v denotes the in-
verse mass, X;,V; € R? are the position and velocity
of the continuous-time dynamics respectively, and B is
the Brownian motion. Let W; = (X7, V,")T, under
mild assumptions on the drift coefficient V f(x), the dis-
tribution of W, converges to an unique invariant distribu-
tion my o e fCI=IVIE/(2v) (Neal et al., 2011), whose
marginal distribution on X}, denoted by 7, is proportional
to e~/ Similar to the numerical approximation of the
Langevin dynamics in (1.2), one can also apply the same
Euler-Maruyama discretization scheme to Hamiltonian dy-
namics in (1.3), which gives rise to Hamiltonian Monte
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Carlo (HMC) method

Vi1 = Vi — v — nuV f(xg) + /2vuneg,
Xp+1 = Xk + V.

(1.4)

(1.4) provides an alternative way to sample from the target
distribution 7 oc e~(*), While HMC has been observed to
outperform LMC in a number of empirical studies (Chen
et al., 2014; 2015), there does not exist a non-asymptotic
convergence analysis of the HMC method until very recent
work by Cheng et al. (2017). In particular, Cheng et al.
(2017) proposed a variant of HMC based on coupling tech-
niques, and showed that it achieves e sampling accuracy
in 2-Wasserstein distance within O(x2d"'/? /¢) iterations for
smooth and strongly convex function f. This improves upon
the convergence rate of LMC by a factor of O(d'/?/e).

Both LMC and HMC are gradient based Monte Carlo meth-
ods and are effective in sampling from smooth and strongly
log-concave distributions. However, they can be slow if
the evaluation of the gradient is computationally expen-
sive, especially on large datasets. This motivates using
stochastic gradient instead of full gradient in LMC and
HMC, which gives rise to Stochastic Gradient Langevin
Dynamics (SGLD) (Welling & Teh, 2011; Ahn et al., 2012;
Durmus & Moulines, 2016b; Dalalyan, 2017) and Stochastic
Gradient Hamilton Monte Carlo (SG-HMC) method (Chen
et al., 2014; Ma et al., 2015; Chen et al., 2015) respectively.
For smooth and strongly log-concave distributions, Dalalyan
& Karagulyan (2017); Dalalyan (2017) proved that the con-
vergence rate of SGLD is O(r?do?/€?), where 2 denotes
the upper bound of the variance of the stochastic gradient.
Cheng et al. (2017) proposed a variant of SG-HMC and
proved that it converges after O(k?do? /€?) iterations. It is
worth noting that although using stochastic gradient evalua-
tions reduces the per-iteration cost,it comes at a cost that the
convergence rates of SGLD and SG-HMC are slower than
LMC and HMC. Thus, a natural questions is:

Does there exist an algorithm that can leverage stochas-
tic gradients, but also achieve a faster rate of conver-
gence?

In this paper, we answer this question affirmatively, when
the function f can be written as the finite sum of n smooth
component functions f;

flx) = %Zﬁ;(x)- (1.5)

It is worth noting that the finite sum structure is prevalent
in machine learning, as the log-likelihood function of a
dataset (e.g., f) is the sum of the log-likelihood over each
data point (e.g., f;) in the dataset. We propose a stochastic
variance-reduced HMC (SVR-HMC), which incorporates
the variance reduction technique into stochastic HMC. Our

algorithm is inspired by the recent advance in stochastic
optimization (Roux et al., 2012; Johnson & Zhang, 2013;
Xiao & Zhang, 2014; Defazio et al., 2014; Allen-Zhu &
Hazan, 2016; Reddi et al., 2016; Lei & Jordan, 2016; Lei
et al., 2017), which use semi-stochastic gradients to accel-
erate the optimization of the finite-sum function, and to
improve the runtime complexity of full gradient methods.
We also notice that the variance reduction technique has
already been employed in recent work Dubey et al. (2016);
Baker et al. (2017) on SGLD. Nevertheless, it does not show
an improvement in terms of dependence on the accuracy e.

In detail, the proposed SVR-HMC uses a multi-epoch
scheme to reduce the variance of the stochastic gradient.
At the beginning of each epoch, it computes the full gradi-
ent or an estimation of the full gradient based on the entire
data. Within each epoch, it performs semi-stochastic gra-
dient descent and outputs the last iterate as the warm up
starting point for the next epoch. Thorough experiments on
both synthetic and real data demonstrate the advantage of
our proposed algorithm.

Our Contributions The major contributions of our work
are highlighted as follows.

e We propose a new algorithm, SVR-HMC, that incorpo-
rates variance-reduction technique into HMC. Our al-
gorithm does not require the variance of the stochastic
gradient is bounded. We proved that SVR-HMC has a bet-
ter gradient complexity than the state-of-the-art LMC and
HMC methods for sampling from smooth and strongly
log-concave distributions, when the error is measured by
2-Wasserstein distance. In particular, to achieve € sam-
pling error in 2-Wasserstein distance, our algorithm only
needs O (n+ k2d"/? [e+ */3d"/3n?/3 €2/3) number of
component gradient evaluations. This improves upon the
state-of-the-art result by (Cheng et al., 2017), which is
O(nk2d"/?/€) in a large regime.

e We generalize the analysis of SVR-HMC to sampling
from smooth and general log-concave distributions by
adding a diminishing regularizer term \|x||3/2. We
prove that the gradient complexity of SVR-HMC to
achieve e-accuracy in 2-Wasserstein distance is O(n +
d'/2 /€5 d'1/3n2/3 [€10/3)  To the best of our knowl-
edge, this is the first convergence result of LMC methods
in 2-Wasserstein distance.

Notation We denote the discrete update by lower case bold
symbol x; and the continuous-time dynamics by upper
case italicized bold symbol X;. For a vector x € R?, we
denote by ||x||2 the Euclidean norm. For a random vector
X; € R%orx;, € R%, we denote its probability distribution
function by P(X;) or P(xy) respectively. For a probability
measure u, we denote by E, (X)) the expectation of X
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under probability measure u. The squared 2-Wasserstein
distance between two probability measures u and v is

Wi(u,v) = inf X — Xo|13d¢ (X0, Xo)
Cer(u,v) JRd xR

where the infimum is over all joint distributions ¢ with u and
v being its marginal distributions. We use a,, = O(b,,) to
denote that a,, < Cb,NL for some constant C' > 0 independent
of n, and use a,, = O(b,,) to hide the logarithmic terms of
b,. We also make use of the notation a,, < b, (an 2 by)
if a,, is less than (larger than) b,, up to a constant. We use
a A b to denote min{a, b}

2. Related Work

In this section, we briefly review the relevant work in the
literature.

Langevin Monte Carlos (LMC) methods (a.k.a, Unadjusted
Langevin Algorithms), and its Metropolis adjusted ver-
sion, have been studied in a number of papers (Roberts
& Tweedie, 1996; Roberts & Rosenthal, 1998; Stramer
& Tweedie, 1999a;b; Jarner & Hansen, 2000; Roberts &
Stramer, 2002), which have been proved to attain asymptotic
exponential convergence. In the past few years, there has
emerged numerous studies on proving the non-asymptotic
convergence of LMC methods. Dalalyan (2014) first pro-
posed the theoretical guarantee for approximate sampling us-
ing Langevin Monte Carlo method for strongly log-concave
and smooth distributions, where he proved rate O(d/€?)
for LMC algorithm with warm start in total variation (TV)
distance. This result has later been extended to Wasser-
stein metric by Dalalyan & Karagulyan (2017); Durmus
& Moulines (2016b), where the same convergence rate in
2-Wasserstein distance holds without the warm start as-
sumption. Recently, Cheng & Bartlett (2017) also proved
an O(d/e) convergence rate of the LMC algorithm in KL-
divergence. The stochastic gradient based LMC meth-
ods, also known as stochastic gradient Langevin dynamics
(SGLD), was originally proposed for Bayesian posterior
sampling (Welling & Teh, 2011; Ahn et al., 2012). Dalalyan
(2017); Dalalyan & Karagulyan (2017) analyzed the con-
vergence rate for SGLD based on both unbiased and biased
stochastic gradients. In particular, they proved that the gra-
dient complexity for unbiased SGLD is O(k?d/€?), and
showed that it may not converge to the target distribution if
the stochastic gradient has non-negligible bias. The SGLD
algorithm has also been applied to nonconvex optimization.
Raginsky et al. (2017) analyzed the non-asymptotic con-
vergence rate of SGLD. Zhang et al. (2017) provided the
theoretical guarantee of SGLD in terms of the hitting time
to a first and second-order stationary point. Xu et al. (2017)
provided a analysis framework for the global convergence
of LMC, SGLD and its variance-reduced variant based on
the ergodicity of the discrete-time algorithm.

In order to improve convergence rates of LMC methods,
the Hamiltonian Monte Carlo (HMC) method was proposed
Duane et al. (1987); Neal et al. (2011), which introduces a
momentum term in its dynamics. To deal with large datasets,
stochastic gradient HMC has been proposed for Bayesian
learning (Chen et al., 2014; Ma et al., 2015). Chen et al.
(2015) investigated the generic stochastic gradient MCMC
algorithms with high-order integrators, and provided a com-
prehensive convergence analysis. For strongly log-concave
and smooth distribution, a non-asymptotic convergence
guarantee was proved by Cheng et al. (2017) for under-
damped Langevin MCMC, which is a variant of stochastic
gradient HMC method.

Our proposed algorithm is motivated by the stochastic vari-
ance reduced gradient (SVRG) algorithm, was first proposed
in Johnson & Zhang (2013), and later extended to differ-
ent problem setups Xiao & Zhang (2014); Defazio et al.
(2014); Reddi et al. (2016); Allen-Zhu & Hazan (2016);
Lei & Jordan (2016); Lei et al. (2017). Inspired by this
line of research, Dubey et al. (2016) applied the variance
reduction technique to stochastic gradient Langevin dynam-
ics, and proved a slightly tighter convergence bound than
SGLD. Nevertheless, the dependence of the convergence
rate on the sampling accuracy e is not improved. Thus, it
remains open whether variance reduction technique can in-
deed improve the convergence rate of MCMC methods. Our
work answers this question in the affirmative and provides
rigorously faster rates of convergence for sampling from
log-concave and smooth density functions.

For the ease of comparison, we summarize the gradient
complexity! in 2-Wasserstein distance for different gradient-
based Monte Carlo methods in Table 1. Evidently, for sam-
pling from smooth and strongly log-concave distributions,
SVR-HMC outperforms all existing algorithms.

Table 1. Gradient complexity of gradient-based Monte Carlo algo-
rithms in 2-Wasserstein distance for sampling from smooth and
strong log-concave distributions.

Methods Gradient Complexity
LMC (Dalalyan, 2017) 0 %;d

HMC (Cheng et al., 2017) O((nt)

SGLD (Dalalyan, 2017) O g

SG-HMC (Cheng et al., 2017) O

SVR-HMC (this paper) 6(n 4 or2dE “3/4‘:;2"2/3 )

!The gradient complexity is defined as number of stochastic

gradient evaluations to achieve e sampling accuracy.
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3. The Proposed Algorithm

In this section, we propose a novel HMC algorithm that
leverages variance reduced stochastic gradient to sample
from the target distribution 7 = e~ fx) /Z, where Z =
[ e=/™)dx is the partition function.

Recall that function f(x) has the finite-sum structure in
(1.5). When n is large, the full gradient 1/n Y., V fi(x)
in (1.4) can be expensive to compute. Thus, the stochastic
gradient is often used to improve the computational com-
plexity per iteration. However, due to the non-diminishing
variance of the stochastic gradient, the convergence rate
of gradient-based MC methods using stochastic gradient is
often no better than that of gradient MC using full gradient.

In order to overcome the drawback of stochastic gradi-
ent, and achieve faster rate of convergence, we propose
a Stochastic Variance-Reduced Hamiltonian Monte Carlo
algorithm (SVR-HMC), which leverages the advantages of
both HMC and variance reduction. The outline of the al-
gorithm is displayed in Algorithm 1. We can see that the
algorithm performs in a multi-epoch way. At the beginning
of each epoch, it computes the full gradient of the f at some
snapshot of the iterate X;. Then it performs the following
update for both the velocity and the position variables in
each epoch

=V — YNVE — nugk + €5,

Xk+1 = X + Vi + €7,

Vi+1 3.1)

where v,n,u > 0 are tuning parameters, gy is a semi-
stochastic gradient that is an unbiased estimator of V f(x})
and defined as follows,

gr = Vfi,(xk) = Vi, (X;) + V().

where i, is uniformly sampled from {1,...,n}, andX; is a
snapshot of x;, that is only updated every m iterations such
that ¥ = jm + [ forsome ! = 0,...,m — 1. And €}, and €},
are Gaussian random vectors with zero mean and covariance
matrices equal to

(3.2)

Elep(e) '] =u(l —e ") - Loxa,

(290 +4e™ 7 — e — 3) - Tyug,

Elep(ef) '] = ;(1 — 274 Tgpg, (3.3)

where 1,4 is a d X d identity matrix.

The idea of semi-stochastic gradient has been successfully
used in stochastic optimization in machine learning to re-
duce the variance of stochastic gradient and obtains faster
convergence rates (Johnson & Zhang, 2013; Xiao & Zhang,
2014; Reddi et al., 2016; Allen-Zhu & Hazan, 2016; Lei
& Jordan, 2016; Lei et al., 2017). Apart from the semi-
stochastic gradient, the second update formula in (3.1) also

differs from the direct Euler-Maruyama discretization (1.4)
of Hamiltonian dynamics due to the additional Gaussian
noise term €7. This additional Gaussian noise term is piv-
otal in our theoretical analysis to obtain faster convergence
rates of our algorithm than LMC methods. Similar idea has
been used in Cheng et al. (2017) to prove the faster rate of
convergence of HMC (underdamped MCMC) against LMC.
Algorithm 1 Stochastic Variance-Reduced Hamiltonian
Monte Carlo (SVR-HMC)

1: initialization: Xy = xq, Vo = Vo

2: for j=0,...,[K/m]

3 g= Vf(;(j)

4. forl=0,....,m—1

5: k=jim+1

6 Generate Gaussian random variable €7 and €], sat-

isfying (3.3)

7: Uniformly sample i), € [n]

8: 8k :Vfik(xk) _vflk<ij)+g
9: Xp+1 = X + Vi + €

10: Vi1 = Vi — YNV — nugy, + €5.
11: if l=m-—1

12: ij = Xk+1

13: end

14:  end for

15: end for

16: output: xp

4. Main Theory

In this section, we analyze the convergence of our proposed

algorithm in 2-Wasserstein distance between the distribution

of the iterate in Algorithm 1, and the target distribution
-f

Toxe .

Following the recent work Durmus & Moulines (2016a);
Dalalyan & Karagulyan (2017); Dalalyan (2017); Cheng
et al. (2017), we use the 2-Wasserstein distance to measure
the convergence rate of Algorithm 1, since it directly pro-
vides the level of approximation of the first and second order
moments (Dalalyan, 2017; Dalalyan & Karagulyan, 2017).
It is arguably more suitable to characterize the quality of
approximate sampling algorithms than the other distance
metrics such as total variation distance. In addition, while
Algorithm 1 performs update on both the position variable
x and the velocity variable v, only the convergence rate
of the position variable xy, is of central interest.

4.1. SVR-HMC for Sampling from Strongly
Log-concave Distributions

We first present the convergence rate and gradient complex-
ity of SVR-HMC when f is smooth and strongly convex,
i.e., the target distribution 7 o< e~/ is smooth and strongly
log-concave. We start with the following formal assump-
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tions on the negative log density function.

Assumption 4.1 (Smoothness). There exists a constant
L > 0, such that for any x,y € RY, the following holds for
any 4,

IVFi(x) = Vfi(y)ll2 < Llx = yll2:

Under Assumption 4.1, it can be easily verified that function
f(x) is also L-smooth.

Assumption 4.2 (Strong Convexity). There exists a con-
stant 1 > 0, such that for any x,y € RY, the following
holds for any 1,

(VIy),x—y)+ 4.1

) = f(y) = Ellx - y3.

Note that the strong convexity assumption is only made on
the finite sum function f, instead of the individual compo-
nent function f;’s.

Theorem 4.3. Under Assumptions 4.1 and 4.2. Let P(xx)
denote the distribution of the last iterate X s, and 7 o e~/ =)
denote the stationary distribution of (1.3). If setting u =
1/L and ~ = 2, the output of in Algorithm 1 satisfies,

e_K"/(2”)w() + 477/%(2\/ D1 + Dg)

4.2)

W2 (P(XK), 7T) S
K Damn?/?,

where wy = Wa(P(x¢), ), & = L/p is the condition
number, 7 is the step size, and m denotes the epoch (i.e.,
inner loop) length of Algorithm 1. D;, Dy and D3 are
defined as follows,

877 4 16d77
D, = Sl
8U 28d
Dy = 13U, + Lf + L", = U, + 4ud,

in which parameters U, and Uy are in the order of O(d/p)
and O(dk), respectively.

Remark 4.4. In existing stochastic Langevin Monte Carlo
methods (Dalalyan & Karagulyan, 2017; Zhang et al., 2017)
and stochastic Hamiltonian Monte Carlo methods (Chen
et al., 2014; 2015; Cheng et al., 2017), their convergence
analyses require bounded variance of stochastic gradient,
i.e., the inequality E;[||V fi(x) — Vf(x)||3] < o2 holds
uniformly for all x € RY. In contrast, our analysis does not
need this assumption, which implies that our algorithm is
applicable to a larger class of target density functions.

In the following corollary, by providing a specific choice
of step size 1, and epoch length m, we present the gradient
complexity of Algorithm 1 in 2-Wasserstein distance.

Corollary 4.5. Under the same assumptions as in The-
orem 4.3, let m = n and n = O(e/(k~1d"1/?) A
3 )(k 1/3d1/3 2/3)) Then the output of Algorithm 1 sat-
isfies Wg( ) € after

_ 2.71/2
O(n—&—ﬁd +
€

stochastic gradient evaluations.

4.3)

n2/3,.4/341/3
e2/3 )

Remark 4.6. Recall that the gradient complexity of HMC
is O(nk2d"/? /€) and the gradient complexity of SG-HMC
is O(k2do? /€2), both of which are recently proved in Cheng
et al. (2017). It can be seen from Corollary 4.5 that the
gradient complexity of our SVR-HMC algorithm has a better
dependence on dimension d.

Note that the gradient complexity of SVR-HMC in (4.3)
depends on the relationship between sample size n and
precision parameter €. To make a thorough comparison with
existing algorithms, we discuss our result for SVR-HMC in
the following three regimes:

e When n < kd'/*/e'/2, the gradient complexity of our
algorithm is dominated by O(x2d"/2 /¢), which is lower
than that of the HMC algorithm by a factor of O(n) and
lower than that of the SG-HMC algorithm by a factor of
O(d"/?/e).

e When wd'/*/e'/? < n < kdo®/e%, the gradi-
ent complexity of our algorithm is dominated by
O(n?/3k*/3d"/3 [€2/3). Tt improves that of HMC by a
factor of O(n/3k2/3d1/6 /¢*/3), and is lower than that
of SG-HMC by a factor of O(k/3d*/352n=2/3 /4/3).
Plugging in the upper bound of n into (4.3) yields
O(k%do?/€?) gradient complexity, which still matches
that of SG-HMC.

e When n > k*d/e?, i.e., the sample size is super large,
the gradient complexity of our algorithm is dominated by
O(n). Tt is still lower than that of HMC by a factor of
O(k2d"/2 /). Nonetheless, our algorithm has a higher
gradient complexity than SG-HMC due to the extremely
large sample size. This suggests that SG-HMC (Cheng
et al., 2017) is the most suitable algorithm in this regime.

Moreover, from Corollary 4.5 we know that the op-
timal learning rate for SVR-HMC is in the order of
O(e?/3 (k'/3d/3n?/3)), while the optimal learning rate
for SG-HMC is in the order of O(e?/(0%dk))), which is
smaller than the learning rate of SVR-HMC when n <
kdo? /€% (Dalalyan, 2017). This observation aligns with the
consequence of variance reduction in the field of optimiza-
tion.
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4.2. SVR-HMC for Sampling from General
Log-concave Distributions

In this section, we will extend the analysis of the proposed
algorithm SVR-HMC to sampling from distributions which
are only general log-concave but not strongly log-concave.

In detail, we want to sample from the distribution 7
e~ f™) where f is general convex and L-smooth. We follow
the similar idea in Dalalyan (2014) to construct a strongly
log-concave distribution by adding a quadratic regularizer
to the convex and L-smooth function f, which yields

F(x) = f(x) + Allx[13/2,

where A > 0 is a regularization parameter. Apparently, f is
A-strongly convex and (L + \)-smooth. Then we can apply
Algorithm 1 to function f, which amounts to sampling from
the modified target distribution 7 o< e~/. We will obtain
a sequence {xy } k=0,...,K» whose distribution converges to
a unique stationary distribution of Hamiltonian dynamics
(1.3), denoted by 7. According to Neal et al. (2011), 7 is
propositional to e~ /™) i.e.,

_ 3 A
7 ocenp (= 1) = exp (709 = I3 ).
Denote the distribution of x;, by P(x}).We have

WQ(P(Xk,ﬂ')) SWQ(P(Xk),ﬁ')—FWQ(ﬁ'JT). “4.4)

To bound the 2-Wasserstein distance between P(xy) and
the desired distribution 7, we only need to upper bound the
2-Wasserstein distance between two Gibbs distribution 7
and 7. Before we present our theoretical characterization on
this distance, we first lay down the following assumption.

Assumption 4.7. Regarding distribution 7 o< e/, its
four[h-orde_r moment is upper boun_ded, i.e., there exists
a constant U such that E, [||x||3] < Ud?.

The following theorem spells out the convergence rate of
SVR-HMC for sampling from a general log-concave distri-
bution.

Theorem 4.8. Under Assumptions 4.1 and 4.7, in order
to sample for a general log-concave density m oc e~ 7(9,
the output of Algorithm 1 when applied to f(x) = f(x) +
M[x(|3/2 satisties Wa (P(xy), 7) < € after

_ d1/2 q11/3,2/3
O<n+ + )

6 €10/3
gradient evaluations.

Regarding to sampling from a smooth and general log-
concave distribution, to the best of our knowledge, there

is no existing theoretical analysis on the convergence of
LMC algorithms in 2-Wasserstein distance. Yet the conver-
gence analyses of LMC methods in total variation distance
(Dalalyan, 2014; Durmus et al., 2017) and KL-divergence
(Cheng & Bartlett, 2017) have recently been established.
In detail, Dalalyan (2014) proved a convergence rate of
O(d®/€*) in total variation distance for LMC with gen-
eral log-concave distributions, which implies O(nd?/e*)
gradient complexity. Durmus et al. (2017) improved the
gradient complexity of LMC in total variation distance to
O(nd®/€?). (Cheng & Bartlett, 2017) proved the conver-
gence of LMC in KL-divergence, which attains O(nd/€®)
gradient complexity. It is worth noting that our convergence
rate in 2-Wasserstein distance is not directly comparable to
the aforementioned existing results.

5. Experiments

In this section, we compare the proposed algorithm (SVR-
HMC) with the state-of-the-art MCMC algorithms for
Bayesian learning. To compare the convergence rates for
different MCMC algorithms, we conduct the experiments
on both synthetic data and real data.

We compare our algorithm with SGLD (Welling & Teh,
2011), VR-SGLD (Reddi et al., 2016), HMC (Cheng &
Bartlett, 2017) and SG-HMC (Cheng & Bartlett, 2017).

5.1. Simulation Based on Synthetic Data

On the synthetic data, we construct each component func-
tion to be f;(x) = (x — a;) " X(x — a;)/2, where a; is a
Gaussian random vector drawn from distribution /(2,4 x
Iix4), and X is a positive definite symmetric matrix with
maximum eigenvalue L = 3/2 and minimum eigenvalue
i = 2/3. Note that each random vector a; leads to a
particular component function f;(x). Then it can be ob-
served that the target density 7 oc exp (1/n Y1, fi(x)) =
exp ((x—a) " X(x—a)/2) is a multivariate Gaussian distri-
bution with mean @ = 1/n Y .-, a; and covariance matrix
3. Moreover, the negative log density f(x) is L-smooth
and p-strongly convex.

In our simulation, we investigate different dimension d
and number of component functions n, and show the 2-
Wasserstein distance between the target distribution 7 and
that of the output from different algorithms with respect
to the number of data passes. In order to estimate the 2-
Wasserstein distance between the distribution of each iterate
and the target one, we repeat all algorithms for 20, 000 times
and obtain 20, 000 random samples for each algorithm in
each iteration. In Figure 1, we present the convergence re-
sults for three HMC based algorithms (HMC, SG-HMC and
SVR-HMC). It is evident that SVR-HMC performs the best



Stochastic Variance-Reduced Hamilton Monte Carlo Methods

---HMC

2-Wasserstein distance

2-Wasserstein distance

---HMC

\ —SVR-HMC

2-Wasserstein distance

---HMC

- --HMC

10?
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of data passes

(@) d = 10,n = 50

10°

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of data passes

(b) d = 10,n = 100

Number of data passes

(¢) d =10,n = 1000

0
0 100 200 300 400 500 600 700 800 900 1000

5 100 150 200 250 300 350 400 450 500
Number of data passes

(d) d = 10,n = 5000

. “SEMC o b “CHMC

A N SG-HMC ‘%’ O SG-HMC
= —SVR-HMC|| £ WS —SVR-HMC
= SR TRNEN

S S N

< 2 .

% 2 “~

g . 2o .

. % \\

E o - E o S,

N ey 7% S T S YU TPy SRRy P

2-Wasserstein distance

---HMC

2-Wasserstein distance

107

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of data passes

(e) d =50,n =50

102

0 100 200 00 400 500 600 700 800 900 1000
Number of data passes

(f) d =50,n = 100

0 50 100 150 200 250 300 350 400 450 500

Number of data passes

(g) d =50,n = 1000

10 20 0 40 s 60 70 8 9 100
Number of data passes

(h) d = 50,n = 5000

Figure 1. Numerical results for synthetic data, where we compare 3 different algorithms, and show their convergence performance in
2-Wasserstein distance. (a)-(h) represent for different dimensions d and sample sizes n.

among these three algorithms when n is not large enough,
and its performance becomes close to that of SG-HMC
when the number of component function is increased. This
phenomenon is well-aligned with our theoretical analysis,
since the gradient complexity of our algorithm can be worse
than SG-HMC when the sample size n is extremely large.

5.2. Bayesian Logistic Regression for Classification

Table 2. Summary of datasets for Bayesian classification

Dataset pima  a3a  gisette mushroom
n (training) 384 3185 6000 4062
n (test) 384 29376 1000 4062
d 8 122 5000 112

Now, we apply our algorithm to the Bayesian logistic re-
gression problems. In logistic regression, given n i.i.d. ex-
amples {a;,y; }i=1... n, where a; € R? and y; € {0,1}
denote the features and binary labels respectively, the prob-
ability mass function of y; given the feature a; is mod-
elled as p(y;|a;, x) = 1/(1 + e ¥ @), where x € R
is the regression parameter. Considering the prior p(x) =
N(0,\711), the posterior distribution takes the form

n

P(X|A,Y) o< p(Y|A, x)p(x) = [ [ p(uilai, B)p(x).

i=1

where A = [aj,as,...,a,]" and Y = [y1, 92, ..., Yn] -
The posterior distribution can be written as p(x|A,Y") x

e~ 2i=1fi®) where each f;(x) is in the following form
fi(x) = nlog (1 + exp(—y;x"a;)) + A/2]x|3.

We use four binary classification datasets from Libsvm
(Chang & Lin, 2011) and UCI machine learning reposi-
tory (Lichman, 2013), which are summarized in Table 3.
Note that pima and mushroom do not have test data in their
original version, and we split them into 50% for training
and 50% for test. Following Welling & Teh (2011); Chen
et al. (2014; 2015), we report the sample path average and
discard the first 50 iterations as burn-in. It is worth noting
that we observe similar convergence comparison of differ-
ent algorithms for larger burn-in period (= 10%). We run
each algorithm 20 times and report the averaged results for
comparison. Note that variance reduction based algorithms
(i.e., VR-SGLD and SVR-HMC) require the first data pass
to compute one full gradient. Therefore, in Figure 2, plots
of VR-SGLD and VRHMC start from the second data pass
while plots of SGLD and SGHMC start from the first data
pass. It can be clearly seen that our proposed algorithm
is able to converge faster than SGLD and SG-HMC on all
datasets, which validates our theoretical analysis of the con-
vergence rate. In addition, although there is no existing
non-asymptotic theoretical guarantee for VR-SGLD when
the target distribution is strongly log-concave, from Figure
2, we can observe that SVR-HMC also outperforms VR-
SGLD on these four datasets, which again demonstrates the
superior performance of our algorithm. This clearly shows
the advantage of our algorithm for Bayesian learning.
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Figure 2. Comparison of different algorithms for Bayesian logistic regression, where y axis shows the negative log-likelihood on the test
data, and y axis is the number of data passess. (a)-(d) correspond to 4 datasets.
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Figure 3. Comparison of different algorithms for Bayesian linear regression, where y axis is the mean square errors on the test data, and =

axis is the number of data passess. (a)-(d) correspond to 4 datasets.

Table 3. Test error of different algorithms for Bayesian classification after 10 entire data passes on 4 datasets

Dateset pima a3a gisette mushroom

SGLD 0.2314 £0.0044  0.1594 £ 0.0018  0.0098 £ 0.0009  (6.647 + 2.251) x 10~*
SGHMC 0.2306 £ 0.0079  0.1591 £ 0.0044  0.0096 £ 0.0006  (5.916 £ 2.734) x 10~*
VR-SGLD  0.2299 + 0.0056  0.1572 4 0.0012  0.0105 + 0.0006  (7.755 & 3.231) x 10~*
SVR-HMC  0.2289 + 0.0043  0.1570 £ 0.0019  0.0093 £ 0.0011 (6.278 £ 3.149) x 10~*

5.3. Bayesian Linear Regression

Table 4. Summary of datasets for Bayesian linear regression

Dataset geographical noise parkinson  toms
n 1059 1503 5875 45730
d 69 5 21 96

We also apply our algorithm to Bayesian linear regres-
sion, and make comparison with the baseline algorithms.
Similar to Bayesian classification, given i.i.d. examples
{a;,yi}ti=1,..n With y; € R, the likelihood of Bayessian
linear regression is p(y;|a;,x) = N(x"a;,02) and the
prior is A'(0, \"1I). We use 4 datasets, which are summa-
rized in Table 4. In our experiment, we set ag =1 and
A = 1, and conduct the normalization of the original data.
In addition, we split each dataset into training and test data
evenly. Similarly, we compute the sample path average
while treating the first 50 iterates as burn in. We report
the mean square errors on the test data on these 4 datasets

in Figure 3 for different algorithms. It is evident that our
algorithm is faster than all the other baseline algorithms on
all the datasets, which further illustrates the advantage of
our algorithm for Bayesian learning.

6. Conclusions and Future work

We propose a stochastic variance reduced Hamilton Monte
Carlo (HMC) method, for sampling from a smooth and
strongly log-concave distribution. We show that, to achieve
€ accuracy in 2-Wasserstein distance, our algorithm enjoys
a faster rate of convergence and better gradient complex-
ity than state-of-the-art HMC and stochastic gradient HMC
methods in a wide regime. We also extend our algorithm
for sampling from smooth and general log-concave distribu-
tions. Experiments on both synthetic and real data verified
the superior performance of our algorithm. In the future,
we will extend our algorithm to non-log-concave distribu-
tions and study the symplectic integration techniques such
as Leap-frog integration for Bayesian posterior sampling.
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