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Abstract 

Incorporating a high fidelity model that accurately describes a dynamical system in an 

optimization and control study may often lead to an intractable formulation, hence the use 

of model approximation is required.  This computational study closely examines various 

approximation techniques in the context of multiparametric optimization and control with 

the use of key error metrics including: (i) open loop comparison of the high fidelity and 

approximate model, (ii) verification of step response profiles, and (iii) comparison of key 

features of the feasible space and objective function in the optimization formulation.  Two 

systems are used as a basis for this study: a tank system utilized to highlight the main 

principles of this approach, and a Continuously Stirred Tank Reactor (CSTR) where the 

reaction mechanisms are manipulated to increase the model complexity. 
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1. Introduction 

Model based optimization for control, such as Model Predictive Control (MPC), has been 

gaining traction in the academic and industrial communities for more than 3 decades now 

(Camacho and Bordons, 2007).  In recent years, more advanced models are being 

incorporated into these model predictive control frameworks (Santos et al, 2001).  These 

direct formulations may typically result in an intractable, large scale, complex, non-

convex optimization problem.  Problems of this nature can be reduced to tractable forms 

via model approximation techniques (Diangelakis et al. 2017) that can then be solved 

offline explicitly using multiparametric programming (Bemporad et al., 2002). 

Many techniques have been used for model approximation in Multiparametric Model 

Predictive Control (mpMPC), two common techniques include (piece-wise) linearization 

and system identification.  Such model approximations are also at the heart of the 

PARameteric Optimization and Control (PAROC) framework for the derivation of these 

explicit/multiparametric controllers (Pistikopoulos et al., 2015).  A key question that 

remains open within the PAROC framework is “what constitutes a suitable approximate 

model for the derivation of explicit control strategies with multiparametric 

programming?”. 

In this work, we present a computational study towards addressing this question.  In 

particular, we study system identification (Ljung, 1998), and linearization.  These model 
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approximation techniques are widely used to develop linear discrete time state space 

models that can be incorporated into an MPC formulation.  An additional approximation 

technique based on forward Euler discretization is also studied to compare against the 

aforementioned techniques.  Key error criteria will be used to ascertain the effectiveness 

of each of the approximation techniques.  These error criteria include: (i) open loop error 

analysis comparing the approximate model against the high fidelity model, (ii) step 

response profile analysis for each of the approximate models, (iii) comparison of the 

closed loop trajectory against the optimal trajectory determined from dynamic 

optimization in the gPROMS® environment, (iv) comparison of the objective values from 

the different mpMPC formulations and the optimal value determined in gPROMS®, and 

(v) comparison of the feasible space and objective function for the mpMPC formulations.  

2. Methodology 

The three approximation techniques used in the work are linearization, system 

identification, and a technique based on forward Euler discretization.  Linearization is 

performed using first order Taylor Series approximation, where the linearization point is 

chosen to be at the defined set point of interest.  In addition, system identification was 

performed using the MATLAB routine N4SID which is a subspace based approach to 

determine the state space matrices that best represent a set of outputs based on a given set 

of inputs.   

The last approximation technique is based on Forward Euler discretization, which 

approximates the derivative information by taking a finite difference, instead of letting 

the limit approach zero, as seen in Eq.(1). 

 (1) 

The benefit of this technique is that the derivate information is preserved through 

approximate discretization.  As seen in Eq.(2), nonlinear state terms are treated as 

uncertain parameters,  and , to be used in an mpMPC formulation.  In Eq.(2), the 

term  results in left hand-side uncertainty when formulated as an mpMPC problem.  

To avoid the challenges in solving a parametric programming problem with left hand-

side uncertainty, this term can be grouped to form a new manipulated variable, as seen in 

Eq.(3).  The new manipulated variables, , will have varying bounds, which can be 

handled via multiparametric programming.  However, grouping an uncertain parameter 

with a manipulated variable can only occur once for each manipulated variable. 

 (2) 

 (3) 

The error criteria used in this work includes (i) root mean squared error deviation between 

the open loop profile for the high fidelity and approximate model, (ii) qualitative 

verification of the step response profiles of the approximate models, and (iii) comparison 

of the feasible space and objective function for the optimization formulations.  Open loop 

analysis is performed using a random input profile on the high fidelity model and the 

approximate models developed.  Step response profiles are verified based on how the real 

system is expected to perform.  To compare feasible spaces of the optimization 

formulations, the volume of each feasible space is determined using Monte Carlo 

techniques, and to compare objective functions, the L2 norm is used as seen in Eq.(4). 
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3. Tank and Continuously Stirred Tank Reactor Examples 

To demonstrate the criteria and approximation techniques used, a simplified tank system 

is examined.  The tank has a fixed inlet flow and the flow out of the tank is manipulated 

via a valve on the exit of the tank.  The control objective of the system is to maintain the 

level of the tank at a specified target.  The system maintains a nonlinearity in the form of 

a square root, as seen in Eq.(5). 

 (5) 

The manipulated variable, u, maintains bounds between 0 and 1.  The state of the system, 

h (m), must remain nonnegative.  The parameters g (m/s2), A (m2), and Aout (m2) are 

gravity, the area of the tank, and the outlet area of the tank respectively.  The MPC 

formulation can be seen in Eq.(6). 

 

   

(6) 

where Q is a cost matrix, xref is the set point of the system, x is the state of the system, and 

u is the input to the system.  The MPC formulation can be discretized and converted to a 

multiparametric MPC where it is solved explicitly offline to determine the optimal control 

action as an affine function of the uncertain parameters, namely the initial state of the 

system and the set point.   

As a second example, a single reaction, isothermal, and constant volume Continuously 

Stirred Tank Reactor (CSTR) is considered where the reaction rate complexity is 

increased.  The reaction rate is either first order, second order, or third order.  The CSTR 

has an adjustable flow rate of reactant into the reactor.  Constant volume in the reactor is 

assumed and the reactor is considered to be isothermal.  The control objective for this 

example problem is to maintain a specified reactant concentration level in the reactor 

while minimizing the use of the reactant flow.   

 (7) 

 
(8) 

The mass balance for the system can be described by Eq.(7) and Eq.(8), where the amount 

of reactant and product vary based on the inlet flow and the reaction mechanism.  The 

manipulated flow into the reactor, F (m3/s), is bounded between 0 and 1, and the states of 

the system, the reactant (CA) and product (CB) concentration (mol/m3), are also bounded 

between 0 and 1.  V (m3) is the volume of the system, k is the rate constant of the system, 

CAi is the inlet reactant concentration, and the system order is α.  The MPC formulation 

for this example problem, similar to Eq.(6), includes set point tracking on the reactant 

concentration, since there is a 1:1 correspondence between the reactant concentration and 
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the product concentration, and a penalty on the usage of the reactant material, or a penalty 

on the input to the system.   

4. Results and Discussion 

Both examples were simulated and dynamically optimized using the gPROMS® software.  

The dynamic optimization was performed using Control Vector Parameterization which 

discretizes the manipulated variable over a control interval, and over each interval the 

manipulated variable is assumed to follow a simple function.  The optimal trajectory 

determined from gPROMS® is considered as the optimal trajectory and is compared 

against the mpMPC closed loop trajectories.  The objective function used in the mpMPC 

formulation is the same in all formulations.  For the mpMPC formulations, the output and 

control horizon is 3 and 2 respectively for the tank example and 5 and 2 respectively for 

the CSTR example.   

Figure 1a shows the open loop response of the approximate models and the high fidelity 

model for the tank example, where the legend shows the root mean squared error.  The 

open loop performance of system identification performs the worst out of the 

approximation techniques, and linearization performs the best.  Figure 1b is a comparison 

of the step response profiles.  All of the step response profiles show a decrease in the 

output for an increase in the input, which is consistent with how the system would react.  

The approximate model resulting from forward Euler discretization is a straight line 

because the state space representation is critically stable.  Figure 2 shows trajectories from 

using different approximate models and control strategies, and the corresponding output 

of the system.  The optimal trajectories are determined from the mpMPC formulation, a 

dynamically optimized PI controller, and open loop dynamic optimization on the full 

process model in gPROMS®.  Table 1 shows a comparison of the objective function costs, 

volume of the feasible space, and distance between objective functions.  From Table 1, 

based on the objective function costs, linearization has the most comparable performance 

to the open loop dynamic optimization results.  This can be attributed to linearization 

performing well around the linearization point, which was chosen as the set point.  

Forward Euler has a similar cost and an objective function that more closely matches the 

‘real’ objective function.  System identification performs the worst, except it has a 

feasible space volume that is closer to the actual the feasible space volume.  
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Figure 2. Closed loop performance comparison for the various controllers and open loop 

dynamic optimization for the tank example 

Figure 1. (a) Open loop comparison of output via root mean squared error (b) Step response 

profiles of the approximate models for the tank example 

(a) (b) 
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 Linearization System Ident Forward Euler Exact 

Optimal Trajectory Cost (Tank) 1.1264 1.12738 1.12723 1.1261 

Feasible Space Volume (Tank) 98 98.3 94.9 100 

Objective Function L2 (Tank) 5.19 13.42 0.1497 0 

Optimal Trajectory Cost (CSTR),α=1 0.139 0.140 0.140 0.135 

Feasible Space Volume (CSTR), α=1 0.47 0.44 0.26 1 

Objective Function L2  (CSTR), α=1 0.54 0.42 3.1604 0 

Optimal Trajectory Cost (CSTR),α=2 0.112 0.113 0.112 0.110 

Feasible Space Volume (CSTR), α=2 0.41 0.38 0.19 1 

Objective Function L2  (CSTR), α=2 0.67 1.54 4.22 0 

Optimal Trajectory Cost (CSTR),α=3 0.174 0.181 0.174 0.173 

Feasible Space Volume (CSTR), α=3 0.36 0.43 .22 1 

Objective Function L2  (CSTR), α=3 0.84 1.25 4.22 0 

 

 

The open loop performance and step responses for the CSTR are only compared for an α 

value of 3.  As seen in Figure 3a, the open loop performance of system identification 

performs the worst out of the approximation techniques.  Figure 3b is a comparison of the 

step response profiles.  All of the step responses show an increase in the output 

concentration for an increase in the input, as expected for this system.  Forward Euler 

approximation has a straight line due because its state space model is critically stable.  

Figure 4 shows optimal trajectories from using different approximate models and 

techniques, and the corresponding output of the system.  The optimal trajectories are 

determined from the mpMPC formulation, a dynamically optimized PI controller, and 

open loop dynamic optimization on the full process model.  Comparison of the objective 

function costs, volume of the feasible space, and distance between objective functions 

can be seen in Table 1.  For all of the different values of α, linearization performs the best, 

while maintaining a feasible space and objective function most similar to the real system.  

Because the system has a set point that matches the linearization point the linearized state 

space model can accurately represent the system in this region.  Forward Euler performs 

well for all  even though it has a feasible space that is smaller than both the system 

identification and linearization feasible spaces.  Its objective function distance is also 

farther away than the objective functions for both linearization and system identification.  

The feasible space being small is not enough on its own to categorize poor performance 

Table 1. Quantitative results of different error criteria 

Figure 3. (a) Open loop comparison of output via root mean squared error (b) Step response 

profiles of the approximate models for the CSTR example 

(a) (b) 
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and the distance in objective functions is not large enough to cause performance issues 

either. 

 
 

 

5. Conclusions 

Various model approximation techniques have been utilized to develop multiparametric 

model predictive controllers.  These approximate models and resulting optimization 

formulations were assessed using various error criteria.  For the example problems 

presented, and criteria used, the linearization technique provided an optimal trajectory 

that was closest to the ‘desired’ trajectory using dynamic optimization in gPROMS®.  

Future work is to apply these concepts on a system of significantly increased complexity 

and further development on the concepts of feasible space volume and distance between 

objective functions.  
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