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Abstract—Power-of-d-choices is a popular load balancing algo-
rithm for many-server systems such as large-scale data centers.
For each incoming job, the algorithm probes d servers, chosen
uniformly at random from a total of N servers, and routes the job
to the least loaded one. It is well known that power-of-d-choices
reduces queueing delays by orders of magnitude compared to
the policy that routes each incoming job to a randomly selected
server. The question to be addressed in this paper is how large d
needs to be so that power-of-d-choices achieves asymptotic zero
delay like the join-the-shortest-queue (JSQ) algorithm, which
is a special case of power-of-d-choices with d = N. We are
interested in the heavy-traffic regime where the load of the
system, denoted by λ, approaches to one as N increases, and
assume λ = 1 − γN−α for 0 < γ < 1 and 0 ≤ α < 1/6. This
paper establishes that when d = ω

(
1

1−λ

)
, the probability that

an incoming job is routed to a busy server is asymptotically
zero, i.e. a job experiences zero queueing delay with probability
one asymptotically; and when d = O

(
1

1−λ

)
, the probability

that a job is routed to a busy server is lower bounded by a
positive constant independent of N. Therefore, our results show
that d = ω( 1

1−λ
) is sufficient and almost necessary for achieving

zero delay with the power-of-d-choices load balancing policy.

I. INTRODUCTION

Load balancing in many-server systems (such as data cen-
ters) routes incoming jobs to servers to balance the load
across servers and to minimize response times to improve user
experience. Small-scale data centers often use centralized load-
balancing algorithms based on complete information, such as
the join-the-shortest-queue (JSQ) algorithm. JSQ continuously
monitors the states of all servers and routes each incoming
job to the least loaded server in the system. While JSQ has
been shown to be delay optimal in a number of different
settings (see [21], [20], [5] and references within); continu-
ously collecting information from all servers incurs prohibitive
messaging and computational overhead and is not feasible in
large-scale data centers.

As cloud computing and big-data analytics, both relying
on large-scale data centers, are playing increasingly important
roles in enterprise and personal computing, there has been
a renewed interest in load balancing algorithms with low
messaging overhead for large-scale many-server systems. A
popular load balancing algorithm based on incomplete infor-
mation and with low messaging overhead is the so called
power-of-d-choices (also known as JSQ(d)), proposed in [13],
[19]. When a job arrives, power-of-d-choices probes d servers

uniformly at random and dispatches the job to the server
with the shortest queue among the d servers. Compared with
randomized routing that dispatches a task to a randomly
chosen server (named RAND in this paper), power-of-d-
choices reduces the mean sojourn time from 1

1−λ to logd
1

1−λ ,
so reducing response times by orders of magnitude.

While power-of-d-choices performs much better than
RAND with low messaging overhead; for a constant d (i.e.
independent of N ), queueing delay, which is the time from
which a job enters the system to the time at which the job
starts to be processed, is lower bounded by a positive constant
for any λ and N. Low delay (i.e. short response time) is very
important in modern data centers. It has been reported [16] that
an extra delay of 500 ms led to 1.2% loss of users and revenue.
The importance of low delay has motivated the following
question: can power-of-d-choices, with carefully chosen d,
achieve zero delay? Assume λ = 1−γN−α. In a recent paper
[14], it has been shown that power-of-d-choices becomes JSQ
at the fluid level when d = ω(1), and at the diffusion level
with d = O(

√
N logN). According to [5], in the large-system

limit, JSQ achieves zero queueing delay at both the fluid and
diffusion levels. Motivated by this recent work [14], this paper
studies the fundamental requirement on d, as a function of the
load of the system (λ), to achieve asymptotic zero delay. The
main results are summarized below.

A. Main Results

Consider power-of-d-choices load balancing in a system
with N homogeneous servers. Assume Poisson arrival and
exponential service times. Let WN denote the event that an
incoming job is routed to a busy server in a system with N
servers, and pWN

denote the probability of this event at the
steady-state. Assuming 0 ≤ α < 1/6 and d = ω

(
1

1−λ

)
, we

will prove that

lim
N→∞

pWN
= 0. (1)

In other words, almost all jobs are served immediately upon
arrival at the steady-state and experience zero queueing delay.
This main result is proved using mean-field analysis (fluid-
limit analysis) based on Stein’s method [18], [22], [23], [8],
[9].



Assuming 0 ≤ α < 1/6 and d = O
(

1
1−λ

)
, we further

show that
lim
N→∞

pWN
> 0. (2)

In other words, the probability of being queued is nonzero.
In summary, our results show that to achieve asymptotic zero
delay under power-of-d-choices, d should scale super-linearly
with 1

1−λ . The main results are also summarized in Figure 1.
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Fig. 1: This figure illustrates the main results in a two-
dimensional region, where x-axis represents α = − log(1−λ)

logN ,

y-axis represents log d
logN , and p∞W = limN→∞ pWN

is the
asymptotic probability of being routed to a busy server. Our
results show that the asymptotic delay is zero in regime 1
(i.e. when d = ω

(
1

1−λ

)
) and nonzero in regime 2 (i.e. when

d = O
(

1
1−λ

)
). We also conjecture that the same results hold

for regime 3, which, however, remain to be proved.

We would like to remark that the scaling d = ω
(

1
1−λ

)
is quite intuitive. Note that at steady-state, 1 − λ fraction of
servers are expected to be idle due to the work conservation
law. Suppose exactly 1 − λ fraction of servers are idle when
a job arrives. Then the probability that at least one of the d
probed server is idle is

1− λd = 1−
(
1− γN−α

)d
.

Therefore, it is easy to see that d = ω( 1
1−λ ) = ω (Nα) probes

are necessary to find an idle server with a high probability.
However, a rigorous proof is highly nontrivial because the
fraction of servers that are idle is a stochastic process instead
of a constant. To see this, consider the M/M/N queue
(Erlang-C model) consisting of N servers and a global FIFO
queue. When a job arrives, it joins the global queue; and
when a server completes a job, it fetches a new job from
the global queue (if the queue is nonempty). The delay of
the M/M/N queue provides a universal lower bound on the
delay of the systems that maintain distributed queues (one
per server) like JSQ and power-of-d-choices. A celebrated
result by Halfin and Whitt [10] shows that the asymptotic
delay is lower bounded by a positive constant when α ≥ 0.5.
Therefore, when λ = 1 − γN−α and α ≥ 0.5, no load

balancing policy can achieve asymptotic zero delay. This result
demonstrates that while the scaling d = O( 1

1−λ ) is intuitive,
it is not sufficient. In fact, from the best of our knowledge,
This paper is the first one that shows power-of-d-choices
can achieve asymptotic zero delay at steady-state in the
heavy-traffic regime. [14] considered the Halfin-Whitt heavy-
traffic regime, but the result only proves when considering a
finite time interval, the diffusion limit of power-of-d-choices
coincides with that of JSQ when d = O

(√
N logN

)
. So it

is for the transient region, not a steady-state result. Diffusion
analysis of JSQ [5] suggests that most queues are either zero or
one. The result [14] strongly suggests that power-of-d-choices
achieves zero delay; but technically, it does not result in any
bound on the queueing delay at steady-state.

B. Related Work

Power-of-d-choices was first studied in [13], [19] assuming
Poisson arrivals, exponential service times and homogeneous
servers. The analysis has been extended to general service
distributions [1] and heterogeneous servers [15]. These results
were established in the light traffic regime (i.e. α = 0 in
λ = 1−γN−α). In the light traffic regime, it has been shown
in the recent paper [14] that the fluid limit of power-of-d-
choices coincides with that of JSQ when d = ω(1). Heavy
traffic analysis of power-of-d-choices (α > 0) started only
very recently. [6] established the process-level convergence of
power-of-d-choices in heavy traffic over a finite time interval
when d is a constant (i.e. d = O(1)), and conjectured that most
queues are of size α logdN. [23] resolved the conjecture in
[5] for power-of-2-choices (i.e. d = 2) with 0 < α < 0.2. [4]
also considered power-of-d-choices in the heavy-traffic regime
but assumed d = o

(
1

1−λ

)
, which is not sufficient to achieve

zero delay. [14] is the first paper that shows the equivalence of
power-of-d-choices and JSQ at the diffusion scale when d =
O(
√
N logN). As we mentioned earlier, the result was proved

for a finite time interval, not for steady-state distributions. This
paper was motivated by [14] and shows that d = ω

(
1

1−λ

)
is a sufficient and almost necessary condition for achieving
asymptotic zero delay for 0 ≤ α < 1/6. The proof is based
on Stein’s method for mean-field (fluid) models used in [18],
[22], [23], [8], [9]. We also refer the reader to [3], [2] for their
pioneering work on Stein’s method for steady-state diffusion
approximation.

We finally remark that a number of new load balancing
algorithms have been developed recently. For example, an-
other class of load-balancing policies that have superior delay
performance are PULL-based policy [17], [12] such as the
Join-the-Idle-Queue (JIQ) policy. In the light-traffic regime,
JIQ has similar performance with JSQ in the mean-field
limit. A comprehensive analysis of the delay, memory, and
messaging tradeoffs of PULL-based policies can be found
in [7]. The focus of this paper is not to develop new load
balancing algorithms but to study the fundamental limit of the
popular power-of-d-choices policy for achieving asymptotic
zero delay.



II. NOTATION AND ASSUMPTIONS

• |x| =
∑b
k=1 |xk| and ‖x‖ =

√∑b
k=1 x

2
k are 1-norm and

2-norm of b-dimensional vector x, respectively.
• l(N) = ω(1) and l(N) = o(logN), i.e. l(N) diverges

to ∞ as N increases, but the divergence rate can be
arbitrarily slow and is slower than logN.

• The arrival process is Poisson with rate λN with λ =
1− γN−α, where 0 < γ < 1.

• The process time of each job is exponentially distributed
with rate one.

• Finite buffer at each server with buffer size b which is
independent of N.

• 1k : a b-dimensional vector with only the kth entry is 1
and the rest are 0.

• d = l(N)
1−λ = γ−1l(N)Nα.

• n = Nα+ξ with an arbitrarily small ξ > 0.

III. THE MEAN-FIELD MODEL OF POWER-OF-d-CHOICES

We consider power-of-d-choices for many-server systems
introduced in [13], [19]. The system consists of N identical
servers, and each server has a separate queue as shown in
Figure 2, and each queue can hold at most b jobs (i.e. finite
buffer systems), including the one in service. Assume jobs
arrive at the system following a Poisson process with rate λN
and the processing time of each job is exponentially distributed
with mean µ = 1. Let Qk(t) denote the queue size of server k
at time t. For each incoming job, the load balancer randomly
samples d servers independently and dispatches the job to the
least loaded server among the d servers. The job is discarded
permanently if the buffers of the d servers are all full. In this
setting, Q(t) is a continuous-time Markov chain (CTMC) and
has a unique stationary distribution for any λ. Note that the
existence of the stationary distribution does not require λ < 1
since it is a finite-buffer system (i.e. the CTMC has a finite
state space). We assume λ = 1− γN−α in this paper so that
the fraction of jobs discarded diminishes as N increases.

server 1 server 2 server N

Load Balancer

d=2

Fig. 2: Power-of-d-Choices for Many-Server Systems.

Let Sk(t) denote the fraction of servers with queue size at
least k at time t. S is a b-dimensional vector in S, where

S =

{
s ∈ [0, 1]b : sk =

ik
N

for some integer

0 ≤ ik ≤ N, and s1 ≥ s2 ≥ · · · ≥ sb
}
.

S is a CTMC. Given s, s′ ∈ S, the transition rate of the CTMC
from state s to s′ is

Rs,s′ = (3)
N(sk − sk+1), if s′ = s− 1k

N

λN
(
sdk−1 − sdk

)
, if s′ = s+ 1k

N
N
∑∞
k=1−λ

(
sdk−1 − sdk

)
− (sk − sk+1), if s′ = s

0, otherwise.

,

where we define s0 ≡ 1 for convenience.
Now consider a sufficiently small time interval δ. According

to the transition rates above and a standard argument for
CTMC, we have

E[Sk(t+ δ)− Sk(t)|S(t) = s]

= λN
(
sdk−1 − sdk

)
δ −N(sk − sk+1)δ +O(δ2), (4)

where λN
(
sdk−1 − sdk

)
δ is the probability that during [t, t+

δ], a new job arrives and is routed to a server with k − 1
jobs already, and N(sk−sk+1)δ is the probability that during
[t, t+ δ], one of the servers with k jobs completes the job in
service. Defining

ṡk = lim
δ→0

E[Sk(t+ δ)− Sk(t)|S(t) = s]

Nδ

leads to the following mean-field model [13], [19]:

ṡk = fk(s) (5)

=

{
λ(sdk−1 − sdk)− (sk − sk+1), b− 1 ≥ k ≥ 1,
λ(sdb−1 − sdb)− (sb − s∗b+1), k = b.

where s∗b+1 = λ
db+1−1
d−1 . The mean-field model is a dynamical

system that approximates the original stochastic system by
using the expected drift (4) as the system dynamic. We expect
the mean-field approximation to be accurate when N is large
because each transition leads only a small change (1/N ) of the
stochastic system. In such a case, the equilibrium point of the
mean field model is expected to be “close” to the stationary
distribution of the stochastic system.

Note that we added the extra term s∗b+1 into the mean-
field model above so that the unique equilibrium point of this
system has a closed-form:

s∗k = λ
dk−1
d−1 . (6)

If this extra term is removed in (5), we can only have a
recursive expression of the unique equilibrium point [13],
which complicates the notation. Nevertheless, in the heavy-
traffic regime with d = ω

(
1

1−λ

)
, s∗b+1 = O

(
(e−l(N))b

)
,

which is very small. So we chose to add this extra term.
Suppose d = l(N)

1−λ , then we have s∗1 = λ and

s∗2 = λd+1 =
(
1− γN−α

)γ−1Nαl(N)+1
= O

(
e−l(N)

)
.

Therefore, suppose that the mean-field solution is an accurate
approximation of the stationary distribution of the system



under power-of-d-choices, then the solution suggests that,
approximately, 1−λ fraction of the servers are idle, λ fraction
of the servers have exactly one job, and the fraction of the
servers with more than one job is close to zero. This is similar
to JSQ as shown in [5]. We will further show that most jobs
are served upon arrival and experience zero delay.

IV. MAIN RESULTS

The discussion in the section above serves as a heuristic
argument. The following theorem shows that S(∞) is close
to s∗ (in the mean-square-sense), from which we will further
prove that the asymptotic delay is zero.

Theorem 1. Consider any 0 ≤ α < 1/6 and d = l(N)
1−λ .

The stationary distribution S(∞) under power-of-d-choices
satisfies

E
[
‖S(∞)− s∗‖2

]
= O

(
1

N

)
. (7)

The proof of this theorem is based on Stein’s method for
mean-field models used in [18], [22], [23]. In particular, it is
based on the idea in [23], which views a mean-field model
as an approximation of the N -server system instead of its
limit, which enables us to use N -dependent d and λ in the
mean-field model. The proof of the main theorem is based
on a variation of Stein’s equation for mean-field models, and
application of the lemma for gradient bounds for mean-field
models [23] which are both presented below.

Lemma 1. Let s(t, y), a b-dimensional vector, denote the
solution of the mean-field model (5) with initial condition y,
and define

g(y) = −
∫ ∞
0

‖s(t, y)− s∗‖2 dt.

Then we have

E
[
‖S(∞)− s∗‖2

]
= E

− ∂g

∂sb
(S(∞))s∗b+1 −

∑
y∈S

RS(∞),yΓ(S(∞), y)

 , (8)

where

Γ(S(∞), y) = g(y)− g(S(∞))− Og(S(∞)) · (y − S(∞)).

Proof. Please refer to Lemma 4.2 in [23].

Lemma 2. Given any x, y ∈ S and Rx,y 6= 0, we have

|g(y)− g(x)− Og(x) · (y − x)|

=O

(
log4(N)

N2−4α−2ε

)
1{x 6∈De} +O

(
1

N2

)
1{x∈De},

where De = {s | |s− s∗| ≤ γ
2N
−α} and∣∣∣∣∂g(s)

∂sb

∣∣∣∣ = O

(
1

1− λ

)
= O (Nα) .

Proof. Please refer to Appendix.

Proof of Theorem 1. According to the two lemmas above, we
have

E
[
‖S(∞)− s∗‖2

]
=E

− ∂g

∂sb
(S(∞))s∗b+1 −

∑
y∈S

RS(∞),yΓ (S(∞), y)


=O

(
Nα(1− γN−α)

db+1−1
d−1

)
+O

(
1

N

)
+

4b

γ2
E
[
‖S(∞)− s∗‖2

]
O

(
log4(N)

N1−6α−2ε

)
. (9)

In the equation above, the first term holds because
∣∣∣∂g(s)∂sb

∣∣∣ =

O (Nα) and s∗b+1 = (1 − γN−α)
db+1−1
d−1 , the second term

holds because E
[
1{S(∞)∈De}

]
≤ 1, and the third term holds

because

E
[
1{S(∞)6∈De}

]
=E

[
1|S(∞)−s∗|2≥ (1−λ)2

4

]
≤E

[
1||S(∞)−s∗||2≥ (1−λ)2

4b

]
≤ 4b

(1− λ)2
E
[
||S(∞)− s∗||2

]
.

From (9), we have(
1−O

(
log4(N)

N1−6α−2ε

))
E
[
‖S(∞)− s∗‖2

]
=O

(
Nα(1− γN−α)

db+1−1
d−1

)
+O

(
1

N

)
.

Note that by choosing ε = 1−6α
4 , we have

lim
N→∞

log4(N)

N1−6α−2ε = 0,

because 0 ≤ α < 1/6. Further

Nα
(
1− γN−α

) db+1−1
d−1 = o

(
1

N

)
because

(1− γN−α)
db+1−1
d−1 ≤(1− γN−α)d

b

=
(

(1− γN−α)γ
−1Nαl(N)

)b
=O

(
(e−l(N))b

)
,

which concludes the proof.

Now recall thatWN denotes the event that an incoming job
is routed to a busy server, and pWN

denotes the probability
of this event at steady-state. We have the following corollary
based on Theorem 1.

Corollary 1. Consider any 0 ≤ α < 1/6 and d = ω
(

1
1−λ

)
.

Under power-of-d-choices, we have

lim
N→∞

pWN
= 0. (10)



In other words, almost all jobs are served immediately upon
arrival at steady-state and experience zero waiting time.

Proof. We first assume that d = l(N)
1−λ . Note that an incoming

job is routed to an idle server if one of the d probed servers
is an idle server. From Theorem 1, the probability that the
system has at most γ

2N
−α idle servers is

Pr
(
S1(∞) ≥ 1− γ

2
N−α

)
≤ Pr

(
(S1(∞)− s∗1)2 ≥ γ2

4
N−2α

)
≤

E
[
‖S(∞)− s∗‖2

]
γ2

4 N
−2α

= O

(
1

N1−2α

)
.

Now conditioned on that the system has at least γ2N
−α idle

servers, the probability that one of d servers sampled is idle
is at least

1−
(

1− γ

2
N−α

)d
= 1−

(
1− γ

2
N−α

)l(N)Nα

= 1−O
(
e−

γ
2 l(N)

)
.

Therefore, we have

pWN

= Pr(WN |S1(∞) ≥ 1− γ

2
N−α) Pr

(
S1(∞) ≥ 1− γ

2
N−α

)
+ Pr(WN |S1(∞) < 1− γ

2
N−α) Pr

(
S1(∞) < 1− γ

2
N−α

)
≤ Pr(S1(∞) ≥ 1− γ

2
N−α) + Pr

(
WN |S1(∞) < 1− γ

2
N−α

)
= O

(
1

N1−2α

)
+O

(
e−

γ
2 l(N)

)
,

which proves the corollary for d = l(N)
1−λ . For fixed N and λ,

using stochastic coupling, it can be shown that pWN
decreases

as d increases, so the result holds for d = ω
(

1
1−λ

)
.

The following theorem shows that d = ω
(

1
1−λ

)
is almost

necessary.

Theorem 2. Consider any 0 ≤ α < 1 and d = O
(

1
1−λ

)
.

Under power-of-d-choices with b =∞, we have

lim
N→∞

pWN
> ε. (11)

for some ε > 0.

Proof. According to work conservation law, we have

E[S1(∞)] = λ,

because the incoming workload is λ. We also know that 0 ≤
S1(∞) ≤ 1. Now define β = 1 − λ = γN−α. It is easy to
show that

Pr (S1(∞) ≥ λ− β) ≥ 1

2

because otherwise,

E[S1(∞)] <
1

2
(λ− β) +

1

2
= λ,

which contradicts E[S1(∞)] = λ. Now condition on the
system has at most

N(1− λ+ β) = 2γN1−α

idle servers, the probability of having an idle server in d probes
is at most

1−
(
1− 2γN−α

)d
,

which converges to a positive constant as N →∞.

Theorem 3. Consider b = 1 and d = l(N)
1−λ . The stationary

distribution S(∞) under power-of-d-choices satisfies

E
[
‖S(∞)− s∗‖2

]
= O

(
1

N

)
.

Proof. Please refer to our technical report [11].

Based on Theorem 3, we have the following corollary.

Corollary 2. For loss system with b = 1. Consider any 0 ≤
α < 0.5 and d = ω

(
1

1−λ

)
. Under power-of-d-choices, we

have

lim
N→∞

pWN
= 0. (12)

Proof. Following the steps in the proof of Corollary 1.

V. SIMULATIONS

In this section, we use simulations to evaluate the perfor-
mance of power-of-d-choices with d = 2 log(N)/(1 − λ). In
particular, we compared its waiting probability pWN

with that
under the JSQ policy because under our modeling assumptions
(Poisson arrivals, exponential service times, homogeneous
servers and per-server queues), JSQ minimizes pWN

among
all load balancing policies.

A. Performance under different system sizes (i.e. different N )

In the first set of simulations, we fixed α = 1/6 and γ = 0.5
(so λ = 1−0.5N−

1
6 ) and varied the number of servers N from

200 to 2, 000 with a step size of 200. Figure 3a shows the mean
square error E

[
‖S(∞)− s∗‖2

]
versus N. From the figure, we

can see that the mean-square error decreases as N increases.
and the curve showed that 0.82/N best fits the mean-square
error. Figure 3b shows the waiting probability pWN versus the
number of servers N for both power-of-d-choices and JSQ. As
we showed in Corollary 1, pWN is close to zero for large N.
Figure 3b confirmed this result. We can see that the waiting
probability quickly converges to zero and the wait probability
of JSQ is smaller than that of power-of-d-choices for all N
since JSQ samples all the queues for each incoming job.
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Fig. 3: Performance of power-of-d-choices and JSQ policies
with α = 1/6 and γ = 0.5 under different N .

B. Performance in different heavy-traffic regimes (i.e. different
α)

In this set of simulations, we fixed N = 1, 000 and γ = 0.5,
and varied α from 0.1 to 0.5 with step size 0.05. Figure 4a
shows the mean-square error versus α. As we can expect, the
mean-square error increases as α increases. One explanation
is that larger α means heavier the traffic load, which leads
to higher variance at the steady state (note that the mean-
square error is closely related to the variance of S(∞)). Figure
4b illustrates the waiting probability pWN versus the load α.
Interestingly, we can see that when α ≤ 0.25, the waiting
probability of power-of-d-choices and JSQ is close to zero.
When α > 0.25, the waiting probability of both policies
increases significantly. For α = 0.5, the waiting probability
is close to 8% under both policies.
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Fig. 4: Performance of power-of-d-choices and JSQ policies
with N = 1, 000 and γ = 0.5 under different α.

Figure 5 shows the mean square error versus N with
α = {0.3, 0.4, 0.5}, which complements Figure 3a with
α = 1/6. For α = {0.3, 0.4, 0.5}, the curve c/N fits the mean-
square error well with c = {1.1, 2.8, 14.2}, respectively. These
results strongly suggest that the actual mean-square error in
fact decreases as O (1/N) for 0 ≤ α ≤ 0.5.

VI. CONCLUSIONS

In this paper, we studied power-of-d-choices, a popular
load balancing algorithm for many-server system. Motivated
by [14], we considered the fundamental requirement on d
to achieve asymptotic zero delay in the large-system limit
and in the heavy traffic regime. Assuming Poisson arrivals,

Number of Servers (N)
200 400 600 800 1000 1200 1400 1600 1800 2000

M
ea
n
S
q
u
ar
e
E
rr
or

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

14.2/N
2.8/N
1.1/N
α = 0.5
α = 0.4
α = 0.3

Fig. 5: Mean square error of power-of-d-choices policy with
α = {0.3, 0.4, 0.5}.

exponential service times and homogeneous servers, and as-
suming the load of the system is λ = 1− γN−α, we proved
that d = ω

(
1

1−λ

)
is sufficiently and almost necessary to

achieve zero queueing delay for 0 ≤ α < 1/6. Our simulation
results confirmed this result. It is known that when α ≥ 0.5,
no load balancing algorithm can achieve asymptotic zero
delay. An open question remains to be addressed is whether
d = ω

(
1

1−λ

)
is sufficient for power-of-d-choices to achieve

asymptotic zero delay when 1/6 ≤ α < 0.5.
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APPENDIX

PROOF OF LEMMA 2
The proof of this lemma is based on the gradient bound for

mean-field models (Lemma 2.2 in [23]). Recall the mean-field
model

ṡk = fk(s) (13)

=

{
λ(sdk−1 − sdk)− (sk − sk+1), 1 ≤ k ≤ b− 1,
λ(sdb−1 − sdb)− (sb − s∗b+1), k = b.

(14)

Define xk = sk − s∗k and

Ak =
sdk − (s∗k)d

sk − s∗k
=
d−1∑
j=0

(sk)d−1−j(s∗k)j .

Then we obtain the dynamics for x(t) as follows

ẋk

=

 −λA1x1 − (x1 − x2), k = 1
λAk−1xk−1 − λAkxk − (xk − xk+1), 2 ≤ k ≤ b− 1
λAb−1xb−1 − λAbxb − xb, k = b

,

where the second equality holds because s∗ is the equilibrium
point of (13).

The first-order system for this mean-field model is

ẋ
(1)
k = gk(x(1)) =

∂fk
∂s

(s) · x(1)

=λd
(
sd−1k−1x

(1)
k−1 − s

d−1
k x

(1)
k

)
− (x

(1)
k − x

(1)
k+1), (15)

where we define x(1)0 ≡ 0 and x(1)b+1 ≡ 0 for convenience.

Lemma 3. Consider the dynamic system defined in (13). Given
that the initial condition satisfies 1 = s0(0) ≥ s1(0) ≥
s2(0) ≥ · · · ≥ sn(0) ≥ 0, we have 0 ≤ sk(t) ≤ 1 for any
t ≥ 0 and 0 ≤ k ≤ b.

Proof. Please refer to Lemma C.1 in [23].

Lemma 4. Consider Lyapunov function

V (x(t)) =
b∑
i=k

wk |xk(t)| ,

where wk are defined to be

w0 = 0, w1 = 1,

w2 = 1 + (1− δ)(1− λ),

wk+1 = 2wk − wk−1 − δwk, 2 ≤ k ≤ b.

For δ = N−(α+ε) such that ε > 0, and sufficiently large N,
we have

V̇ (x(t)) ≤ −δV (x(t)).

Proof. We first have

V̇ (x(t)) ≤
b∑

k=1

− (λAkwk + wk − λAkwk+1 − wk−1) |xk(t)| .

So the lemma holds by proving

λAkwk + wk − λAkwk+1 − wk−1 ≥ δwk,

i.e. by proving

wk+1 − wk ≤
wk − wk−1 − δwk

λAk
. (16)

Note wk is an increasing sequence when N is sufficiently large
because

wk − wk−1 = Θ
(
N−α

)
and δwk = O

(
N−(α+ε)

)
.

We now prove (16) by considering the following cases.
For k = 1, we have wk−1 = 0. Therefore, we need to prove

w2 ≤ w1 +
w1 − δw1

λA1
= 1 +

1− δ
λA1

.

This holds according to the definition of w2 and

A1 =
d−1∑
j=0

(s1)d−1−j(s∗1)j ≤
d−1∑
j=0

λj ≤ 1

1− λ
,

where we use the facts 0 ≤ s1 ≤ 1 and s∗1 = λ < 1.
For k = 2, we need to prove

w3 − w2 ≤
w2 − w1 − δw2

λA2

The inequality holds because

w2 − w1 − δw2 = (1− δ)(1− λ)− δ (1 + (1− δ)(1− λ))

= (1− δ)2(1− λ)− δ

= (1− δ)2 γ

Nα
− 1

Nα+ε
> 0,

and

λA2 = λ
d−1∑
j=0

(s2)d−1−j(s∗2)j ≤ λ
d−1∑
j=0

(s∗2)j ≤ λ

1− s∗2
< 1,

when N is sufficiently large.



For k ≥ 3, (16) holds by the definition of wk+1 − wk and
the fact λAk < 1 for sufficiently large N.

Lemma 5. Define t̃ = (α+ ε)Nα+ε logN. Starting from any
initial condition, s(t) ∈ De for t ≥ t̃, which implies that
sk(t) ≤ 1− γ

2N
−α for k ≥ 1.

The proof of this lemma is based on Lemma 4. The details
can be found in [11].

Lemma 6. (Proof of C2 of Lemma 2.2 in [23]) Under the
dynamical system defined by (15),∣∣∣x(1)(t)∣∣∣ ≤ ∣∣∣x(1)(0)

∣∣∣ .
Proof. Define V (t) =

∣∣x(1)(t)∣∣ , and we have

d|x(1)k (t)|
dt

≤ λdsd−1k−1

∣∣∣x(1)k−1∣∣∣− λdsd−1k

∣∣∣x(1)k ∣∣∣− ∣∣∣x(1)k ∣∣∣+
∣∣∣x(1)k+1

∣∣∣ ,
where x(1)b+1(t) = 0 for all t. So

V̇ (t) ≤ −λdxd−1b

∣∣∣x(1)b ∣∣∣− ∣∣∣x(1)1

∣∣∣ ≤ 0,

and the lemma holds.

Lemma 7 (Proof of C3 of Lemma 2.2 in [23]). Consider
Lyapunov function

V (x(1)) =
b∑

k=1

wk

∣∣∣x(1)k ∣∣∣ ,
where wk are defined to be

w0 = 0, w1 = 1,

wk = wk−1 + 1
b , 2 ≤ k ≤ b.

For sufficiently large N and δ1 = 1
4b , we have

|x(1)| ≤ V (x(1)) ≤ 2|x(1)|,
V̇ (x(1)) ≤ −δ1V (x(1)), given s ∈ De.

Proof. The first inequality holds due to the definition of wk.
Similar with the proof in Lemma 4, we have

V̇ (x(1))

≤
b∑

k=1

−
(
λdwks

d−1
k + wk − λdwk+1s

d−1
k − wk−1

) ∣∣∣x(1)k ∣∣∣ .
So the lemma holds by proving

λdwks
d−1
k + wk − λdwk+1s

d−1
k − wk−1 ≥ δ1wk,

i.e. by proving

wk+1 − wk ≤
wk − wk−1 − δ1wk

λdsd−1k

. (17)

We prove (17) by considering the following cases.

For k = 1, we have wk−1 = 0. Therefore, we need to prove

w2 ≤ w1 +
w1 − δ1w1

λdsd−11

= 1 +
1− 1

4b

λdsd−11

. (18)

This holds according to the definition of w2 and 0 ≤ s1 ≤
1− γ

2N
−α from Lemma 5.

For k ≥ 2, we need to prove

1

b
≤

1
b −

1
4bwk

λdsd−1k

. (19)

Again this holds according to the fact 0 ≤ sk ≤ 1 − γ
2N
−α.

The error system for this mean-field model is

ėk = fk

(
s+

1

N
x(1) + e

)
− fk (s)− 1

N

∂fk
∂s

(s) · x(1),

with initial condition e(0) = 0.

Lemma 8 (Proof of C4 of Lemma 2.2 in [23]). Given
|e(t)| ≤ 1

N , we have

d|e(t)|
dt

≤ d2

N2
.

Further, for any t ≤ t̃, and α < 1/3,

|e(t)| ≤ 1

N
.

Proof. We first have

ėk
(a)
= gk(e) + fk

(
s+

1

N
x(1) + e

)
− fk (s)−

∂fk
∂s

(s) ·
(

1

N
x(1) + e

)
(b)
= gk(e) +

λd(d− 1)

2
s̃d−2k−1

(
1

N
x
(1)
k−1 + ek−1

)2

−λd(d− 1)

2
s̃d−2k

(
1

N
x
(1)
k + ek

)2

,

where (a) holds due to the definition gk(e) = ∂fk
∂s (s) · e, (b)

holds due to the Taylor expansion of fk(s + 1
N x

(1) + e) at
s, and s̃ is between s + 1

N x
(1) + e and s. Define Lyapunov

function
V (t) = |e(t)|,

and ĝk(e) = λdsd−1k−1 |ek−1| − λds
d−1
k |ek| − |ek|+ |ek+1| .

Note that

d|ek(t)|
dt

≤ĝk(e) +
λd(d− 1)

2
|s̃d−2k−1|

(
1

N
x
(1)
k−1 + ek−1

)2

+
λd(d− 1)

2
|s̃d−2k |

(
1

N
x
(1)
k + ek

)2

.

By following the proof of Lemma 6, we know
∑b
k=1 ĝk(e) ≤

0. Then we immediately obtain

d|e(t)|
dt

≤λd(d− 1)

2

b∑
k=1

|s̃d−2k−1|
(

1

N
x
(1)
k−1 + ek−1

)2



+
λd(d− 1)

2

b∑
k=1

|s̃d−2k |
(

1

N
x
(1)
k + ek

)2

,

which implies

d|e(t)|
dt

≤ λd(d− 1)

∥∥∥∥ 1

N
x(1) + e

∥∥∥∥2 .
Given Lemma 6 and |e(t)| ≤ 1

N , we conclude

d|e(t)|
dt

≤ d2

N2
.

Further, for any t ≤ t̃ and α < 1/3,

|e(t)| ≤ t̃ d
2

N2
≤ 1

N
.

Lemma 9 (Proof of C5 of Lemma 2.2 in [23]). Consider
Lyapunov function

V (e(t)) =

b∑
k=1

wk |ek(t)| ,

where wk are defined to be

w0 = 0, w1 = 1,

wk = wk−1 + 1
b , 2 ≤ k ≤ b.

For sufficiently large N, we have

V̇ (e) ≤ −δ1V (e) +
|x(1)|2

N2
, givens(t) ∈ De.

Proof. Similar to the proof of the previous lemma, we have

d|ek(t)|
dt

≤ĝk(e) +
λd(d− 1)

2
|s̃d−2k−1|

(
1

N
x
(1)
k−1 + ek−1

)2

+
λd(d− 1)

2
|s̃d−2k |

(
1

N
x
(1)
k + ek

)2

.

Assume |e(t)| ≤ 2
N and from Lemma 8, we have

|s̃k| ≤ 1− γ

2
N−α +

1

N
|x(1)k |+ |ek| ≤ 1− γ

3
N−α.

which implies |s̃d−2k | = O(e−l(N)). So we have

d|ek(t)|
dt

≤ĝk(e) +
|x(1)k |2

bN2
,

for sufficient large N. By following the proof in Lemma 7,
we have

V̇ (e(t)) ≤ −δ1V (e(t)) +
|x(1)(t)|2

N2
.

Note the assumption |e(t)| ≤ 2
N holds because

|e(t)| ≤ V (e(t)) ≤ 2

N
.

Now we are ready to prove Lemma 2. First we compute∫ ∞
0

|x(1)(t)|2 dt.

According to Lemma 6, we have for t ≤ t̃∫ t̃

0

|x(1)(t)|2 dt ≤ |x(1)(0)|2t̃ ≤ t̃.

According to Lemma 5, we have for t ≥ t̃∫ ∞
t̃

|x(1)(t)|2 dt ≤
∫ ∞
t̃

(
V (x(1)(t))

)2
dt

≤
∫ ∞
t̃

V (x(1)(t̃))2e−2δ1(t−t̃) dt

=
V (x(1)(t̃))2

2δ1
≤ 4|x(1)(t)|

2δ1
≤ 2

δ1
.

Therefore, we have∫ ∞
0

|x(1)(t)|2 dt ≤ t̃+
2

δ1
.

Then we compute ∫ ∞
0

|e(t)| dt.

According to Lemma 8, we have for t ≤ t̃∫ t̃

0

|e(t)| dt ≤
∫ t̃

0

td2

N2
dt ≤ t̃2d2

2N2
.

According to Lemma 9, we have for t ≥ t̃

V̇ (e(t)) ≤− δ1V (e(t)) +
1

N2

∣∣∣x(1)∣∣∣2
≤− δ1V (e(t)) +

1

N2
e−2δ1(t−t̃).

Based on comparison principle, we obtain for t ≥ t̃

V (e(t)) ≤ V (e(t̃))e−δ1(t−t̃) +
1

δ1N2

(
e−δ1(t−t̃) − e−2δ1(t−t̃)

)
,

which implies that∫ ∞
t̃

|e(t)| dt ≤
∫ ∞
t̃

V (e(t)) dt

≤ V (e(t̃))

δ1
+

1

2δ21N
2
≤ 2t̃d2

δ1N2
+

1

2δ21N
2
.

Finally we have

1

N2

∫ ∞
0

|x(1)(t)|2 dt =O

(
t̃

N2

)
1{s6∈De} +O

(
1

N2

)
1{s∈De}∫ ∞

0

|e(t)| dt =O

(
t̃2d2

N2

)
1{s6∈De} +O

(
1

N2

)
1{s∈De}.

which implies from Lemma 2.2 in [23]

|g(y)− g(x)− Og(x) · (y − x)|

=O

(
log4N

N2−4α−2ε

)
1{s6∈De} +O

(
1

N2

)
1{s∈De}.


