
Understanding and Modeling Lossy Compression
Schemes on HPC Scientific Data

Tao Lu1, Qing Liu1,2, Xubin He3, Huizhang Luo1, Eric Suchyta2, Jong Choi2,
Norbert Podhorszki2, Scott Klasky2, Mathew Wolf2, Tong Liu3, and Zhenbo Qiao1

1 Department of Electrical and Computer Engineering, New Jersey Institute of Technology
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory

3 Department of Computer and Information Sciences, Temple University

Abstract—Scientific simulations generate large amounts of
floating-point data, which are often not very compressible us-
ing the traditional reduction schemes, such as deduplication
or lossless compression. The emergence of lossy floating-point
compression holds promise to satisfy the data reduction demand
from HPC applications; however, lossy compression has not been
widely adopted in science production. We believe a fundamental
reason is that there is a lack of understanding of the benefits,
pitfalls, and performance of lossy compression on scientific data.
In this paper, we conduct a comprehensive study on state-of-
the-art lossy compression, including ZFP, SZ, and ISABELA,
using real and representative HPC datasets. Our evaluation
reveals the complex interplay between compressor design, data
features and compression performance. The impact of reduced
accuracy on data analytics is also examined through a case
study of fusion blob detection, offering domain scientists with the
insights of what to expect from fidelity loss. Furthermore, the trial
and error approach to understanding compression performance
involves substantial compute and storage overhead. To this end,
we propose a sampling based estimation method that extrapolates
the reduction ratio from data samples, to guide domain scientists
to make more informed data reduction decisions.

I. INTRODUCTION

Cutting-edge computational research in various domains
relies on high-performance computing (HPC) systems to ac-
celerate the time to insights. Data generated during such
simulations enable domain scientists to validate theories and
investigate new microscopic phenomena in a scale that was
not possible in the past. Because of the fidelity requirements
in both spatial and temporal dimensions, analysis output
produced by scientific simulations can easily reach terabytes or
even petabytes per run [1]–[3], capturing the time evolution of
physics phenomena in a fine spatiotemporal scale. The volume
and velocity of data movement are imposing unprecedented
pressure on storage and interconnects [4], [5], for both writ-
ing data to persistent storage and retrieving them for post-
simulation analysis. As HPC storage infrastructure is being
pushed to the scalability limits in term of both throughput
and capacity [6], the communities are striving to find new
approaches to curbing the storage cost. Data reduction1, among
others, is deemed to be a promising candidate by reducing the
amount of data moved to storage systems.

1The term of data reduction and compression are used interchangeably
throughout this paper.

Data deduplication and lossless compression have been
widely used in general-purpose systems to reduce redundancy
in data. In particular, deduplication [7] eliminates redundant
data at the file or chunk level, which can result in a high reduc-
tion ratio if there are a large number of identical chunks at the
granularity of tens of kilobytes. For scientific data, this rarely
occurs. It was reported that deduplication typically reduces
dataset size by only 20% to 30% [8], which is far from being
useful in production. On the other hand, lossless compression
in HPC was designed to reduce the storage footprint of appli-
cations, primarily for checkpoint/restart. Shannon entropy [9]
provides a theoretical upper limit on the data compressibility;
simulation data often exhibit high entropy, and as a result,
lossless compression usually achieves a modest reduction ratio
of less than two [10]. With the growing disparity between
compute and I/O, more aggressive data reduction schemes are
needed to further reduce data by an order of magnitude or
more [11], and very recently the focus has shifted towards
lossy compression.

Lossy compression, such as JPEG [12], has long been used
in computer graphics and digital images, leveraging the fact
that the visual resolution by human eyes is well below machine
precision. However, its application in the scientific domain
is less well established. Since scientific data are primarily
composed of high-dimensional floating-point values, lossy
floating-point data compressors have begun to emerge, includ-
ing ISABELA [13], ZFP [14], and SZ [15]. Although lossy
reduction offers the most potential to mitigate the growing
storage and I/O cost, there is a lack of understanding of how
to effectively use lossy compression from a user perspective,
e.g., which compressor should be used for a particular dataset,
and what level of reduction ratio should be expected. To
this end, the paper aims to perform extensive evaluations of
state-of-the-art lossy floating-point compressors, using real and
representative HPC datasets across various scientific domains.
We focus on addressing the following broad questions:

• Q1: What data features are indicative of compressibility?
(Section III-A)

• Q2: How does the error bound influence the compression
ratio? Which compressor (or technique) can benefit the most
from loosening error bound? (Section III-B)

• Q3: How does the design of compression influence compres-
sion throughput? What is the relationship between compres-
sion ratio and throughput? (Section III-C)

• Q4: What is the impact of lossy compression on data fidelity
and complex scientific data analytics? (Section III-D)

• Q5: How to extract data features and accurately predict the
compression ratios of various compressors? (Section IV)

Through answering these questions, we aim at helping HPC
end users understand what to expect from lossy compressors.
As a completely unbiased third-party evaluation without ad-
hoc performance tunings, we hope to shed light on the limita-
tions of existing compressors, and point out some of the new
R&D opportunities for compressor developers and the commu-
nities to make further optimizations, thus ensuring the broad
adoption of reduction in science production. Our experiments
for evaluating floating-point data compressors, including sci-
entific datasets and scripts we used for evaluation, are publicly
available at https://github.com/taovcu/LossyCompressStudy.

II. BACKGROUND

Data deduplication and lossless compression fully maintain
data fidelity and reduce data by identifying duplicate contents
through the hash signature and eliminating redundant data.
We utilize two lossless schemes throughout this work, GZIP
[16] and FPC [17], for performance comparisons with lossy
compression. The deflate algorithm implemented in GZIP
is based on LZ77 [18], [19]. The core of the algorithm is
comparing the symbols in the look-ahead buffer with symbols
in the search buffer to determine a match. FPC employs fcm
[20] and dfcm [21] to predict the double-precision values.
An XOR operation is conducted between the original value
and the prediction. With a high prediction accuracy, the XOR
result is expected to contain many leading zero bits, which
can be easily compressed. Ultimately, the effectiveness of
these methods depends on the repetition of symbols in data.
However, for even slightly variant floating-point values, the
binary representations contain few identical symbols. Hence,
scientific simulations use lossless compression only if neces-
sary, e.g., for checkpoint/restart [22].

The general acceptance of precision loss provides an op-
portunity to drastically improve the data compression ratio -
if two symbols are within the error tolerance, they can be
represented using the same code. This paper includes studies
using three lossy compressors: ISABELA, SZ, and ZFP, which
were shown to be superior in prior work [15]. Each compressor
is briefly described as follows.

Motivated by fixed-rate encoding and random access, ZFP
[23] follows the classic texture compression for image data.
Working in 4d (where d is the number of dimensions) sized
blocks, ZFP first aligns the floating-point data points within
a block to a common exponent, which is determined by the
largest absolute value. The original data in the block is then
converted to mantissas along with the common exponent.
Second, the exponent is encoded and stored. The mantissas
are then converted to fixed-point signed integers. Third, a
reversible orthogonal block transform (e.g., discrete cosine

transform) is applied to the signed integers. This transform is
carefully designed to mitigate the spatial correlation between
data points, with the intent of generating near-zero coefficients
that can be compressed efficiently. Finally, embedded coding
[24] is used to encode the coefficients, producing a stream
of bits that is roughly ordered by their impact significance
on error, and the stream can be truncated to satisfy any user-
specified error bound.

Motivated by the reduction potential of spline functions
[25], [26], ISABELA [13] uses B-spline based curve-fitting
to compress the traditionally incompressible scientific data.
Intuitively fitting a monotonic curve can provide a model that
is more accurate than fitting random data. Based on this,
ISABELA first sorts data to convert highly irregular data
to a monotonic curve. Similarly, SZ [15] employs multiple
curve-fitting models to encode data streams, with the goal of
accurately approximating the original data. SZ compression
involves three main steps: array linearization, adaptive curve-
fitting, and compressing the unpredictable data. To reduce
memory overhead, it uses the intrinsic memory sequence of
the original data to linearize a multi-dimensional array to a
one-dimensional sequence. The best-fit routine employs three
prediction models, based on the adjacent data values in the
sequence: constant, linear, and quadratic, which require one,
two, and three precursor data points, respectively. And the
model that yields the closest approximation is adopted. If
none satisfies the pre-defined error bound, SZ marks the data
point as unpredictable, which is then encoded by binary-
representation analysis. The curve-fitting step transforms the
fitted data into integer quantization factors, which are further
encoded using Huffman tree. Unlike ISABELA [13], SZ does
not sort the original data to avoid the indexing overhead. The
encoded data are further compressed using GZIP.

While lossy compression has been identified as a means
to potentially reduce scientific data by more than 10x, deter-
mining the compressibility of data without compressing the
full data, and the impact of information loss on data analytics
have not been fully studied. Although trial and error can
certainly answer these questions, this incurs overhead in terms
of compute and storage, and should be avoided as much as
possible. Our proposed evaluation and modeling aim to fill
these gaps in data reduction, and allow users to understand
the outcome before they perform reduction.

III. EVALUATION

We evaluate the compression latency and compression ratio
of various compressors on a SUSE Linux Enterprise Server
11 (x86 64) with a 32-core AMD Opteron(tm) 6410 Proces-
sor and 256GB DRAM. Our measurements of compression
throughput do not include the time spent on disk I/O since
the goal is to evaluate the compression algorithms, instead of
system performance as a whole. Our evaluations focus on the
following metrics: (1) Error bound: It limits the accuracy loss
during compression. An error bound can be enforced as an
absolute or a relative value or both. Assuming the value of a
data point is denoted as V , a point-wise absolute error bound

https://github.com/taovcu/LossyCompressStudy

TABLE I: Dataset description.
Dataset Description
Dpot Electric potential deviation in a plasma physics simulation.
Astro Velocity magnitude in a supernova simulation.

Fish
Velocity magnitude in a CFD calculation of cooling
air being injected into a mixing tank.

Sedov Pressure of strong shocks in a hydrodynamical simulation.
Blast2 Pressure of strong shocks in a gas-dynamical simulation.
Eddy Velocity in a 2D solution to Navier-Stokes equations.

Y F17 p Pressure in a computational fluid dynamics calculation.
Y F17 t Temperature in a computational fluid dynamics calculation.
Bump Flow density of an axisymmetric bump.

of 10−4 means that the decompressed value of the data point
is in the range of [V −10−4, V +10−4]. A point-wise relative
error bound of 10−4 means that the decompressed value is
in the range of [V · (1 − 10−4), V · (1 + 10−4)]. We adopt
the relative error bound so that the results from datasets with
different magnitude can be easily compared in this work. (2)
Compression ratio: It is defined as the ratio of the original
dataset size to the compressed data size. (3) Compression
and decompression throughput: They are the rates at which
data can be compressed and decompressed. The evaluations
are done under four relative error bound configurations: cfg1,
cfg2, cfg3, and cfg4, corresponding to a point-wise relative
error bound of 10−6, 10−5, 10−4, and 10−3, respectively.
Error bound is a crucial factor in impacting compression ratio,
and we notice some compressors act more conservatively or
aggressively than others to exploit the error tolerance. To
ensure a fair comparison, we manually tweak the input error
bound to ensure the achieved error bound is used for all results.

A. Data features and compression ratio

Previous studies [13], [15], [23] have demonstrated the
compression ratios of a broad set of compressors on various
datasets. Particularly, Di et al. [15] evaluated the compression
ratios of ZFP, ISABELA, and SZ, and discussed some of
the designs tradeoffs. However, the compression ratio is not
only compressor related, but also dataset dependent. The
complex interplay between the features of a dataset and its
compressibility has not been fully understood and exploited
for lossy compression. As a result, in reality it is challenging,
if not impossible, for users to conjecture the compressibility
of their data. Our work aims to fill this gap.

We employ nine real scientific datasets, as described in
Table I, to evaluate and understand the interplay between
compression ratio and data features, using three state-of-the-art
lossy compression schemes, ZFP, ISABELA, and SZ, which
were shown to the top 3 lossy compressors [15]. In compari-
son, this paper also evaluates the performance of two lossless
compression schemes: FPC and GZIP. Figure 1 demonstrates
the key characteristics of datasets. The CDF (Cumulative
Distribution Function) curve captures the distribution of values
within a particular dataset, illustrating both the range and the
skewness of a dataset. We further use byte entropy, which
is expressed as the number of bits per character, to gauge
the information density of dataset content, and byte entropy

Fig. 1: Data features. The curves show the CDF of data values. ent,
coreset, and corr denote the byte entropy, log2coreset, and serial
correlation coefficient, respectively.

ranges in [0, 8]. The higher the information density is, the
lower the compressibility is. Coreset size is the number of
unique symbols (bytes in our case) that compose the majority
of a dataset (e.g., 90% of all symbols). A small coreset size
means there exists considerable repeated symbols in a dataset,
and thus, can be used to estimate the effectiveness of Huffman
tree based compression (e.g., GZIP). The range of coreset size
is [1, 256], or [0, 8] in logarithm scale. Serial correlation
measures the extent to which each byte depends upon the
previous byte in a dataset. For random data, this value is
expected to be close to zero, and for highly correlated data
it approaches one. The theoretical value of serial correlation
coefficient ranges in [-1, 1]. This metric may distinguish
random data and data that bear patterns.

Byte entropy, coreset size, and serial correlation coefficient
are commonly used to estimate the compressibility of datasets
in lossless compression [27]. Therefore, we first investigate
whether these metrics continue to be good indicators for
lossy compression. Figure 2 shows that in general there is
a negative correlation between byte entropy or coreset size
and the compression ratio. And there is a positive correlation
between the serial correlation coefficient and the compression
ratio. These results confirm that data features may be good
indicators of compressibility for lossy compression. This mo-
tivated us to adopt a sampling based approach to extract data
features and estimate compression ratio, without being forced
to compress the full data which is costly. Examining data
features is particularly beneficial for screening for datasets that
are obviously compressible or incompressible.

B. Error bound and compression ratio

Lossy compression has been gaining traction recently,
with the potential to achieve an order of magnitude higher
performance than lossless compression. Typically as the error

0

2

4

6

8

0
2
4
6
8

10
12
14

Byte	entropy

Co
m
pr
es
sio

n	
ra
tio

Dataset

ZFP SZ ISB FPC GZIP Byte	entropy

(a) Byte entropy and compression ratio (cfg1).

0

2

4

6

8

0
2
4
6
8

10
12
14

Coreset	size
Co

m
pr
es
sio

n	
ra
tio

Dataset

ZFP SZ ISB FPC GZIP Coreset	Size

(b) Coreset size and compression ratio (cfg1).

0.0

0.2

0.4

0.6

0.8

1.0

0
2
4
6
8

10
12
14

Correlation

Co
m
pr
es
sio

n	
ra
tio

Dataset

ZFP SZ ISB FPC GZIP Correlation

(c) Serial correlation and compression ratio (cfg1).

Fig. 2: The relationship between data features and compression ratios for various compressors. The additional evaluation under cfg3 is
provided at Data Characteristics and Compression Ratio with cfg3. Note that in these figures we limit the y-axis to 15 to make the short
bars discernible. SZ yields a compression ratio of 396.02 with Blast2.

0

50

100

150

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

Bi
ts
	c
on
su
m
pt
io
n

Exponent Coefficients

Dpot BumpEddyAstroYF17_pYF17_tSedovFish Blast2

Fig. 3: ZFP compression bit count per block. The original block size
is 256 bits, including 4 double-precision floating-point values.

bound is increased, the compression ratio becomes larger.
However, if the error bound of the lossy compression is tight,
e.g., cfg1, contrary to the common belief, lossy compression
may perform worse than lossless compression. For the Eddy
dataset, the lossless compressor GZIP achieves a compression
ratio of 2.02, while the lossy compressors, ISABELA, ZFP,
and SZ, achieve only 1.61, 1.70, and 1.87, respectively. As
shown in Figure 2, for 4 out of 9 datasets, GZIP outperforms
SZ, and for 2 out of 9 datasets, GZIP outperforms ZFP. For
Sedov, YF17 t, YF17 p, and Astro, the compression ratio of
GZIP is slightly lower than that of ZFP.

Previous studies show that lossless compression methods
rarely achieve more than 1.5x compression ratio [23].
However, our results show that for 7 out of 9 datasets,
lossless compressor GZIP can achieve more than 2x
compression ratio, with 2 out of 9 datasets achieving more
than 4x compression. Although FPC was specifically designed
for compressing floating-point data, it is outperformed by
the general-purpose GZIP. However, as demonstrated in
Figure 6, FPC consistently outperforms GZIP in compression
throughputs. In most cases, FPC also achieves better
decompression throughputs than GZIP. This confirms the
initial design focus of FPC as a high-speed compressor.

Finding 1: When the error bound is tight, lossy compres-
sion does not always outperform lossless compression.

In general, for lossy compression, a larger error bound
yields a higher compression ratio. In what follows, we
analyze the implementation of ZFP and SZ, and discuss the
impact of error bound to the internals of compressors. The
output of ZFP consists of two components: the common

exponent and the encoding of mantissas. The value of the
common exponent of a block is uniquely determined by the
values of data points in the block. Therefore, the bits of the
common exponent are not affected by the error bound. The
mantissas are converted to signed integers and a reversible
orthogonal block transformation is performed to generate a
set of coefficients, which are further encoded by embedded
coding. The error bound determines the number of significant
bit planes to be encoded to achieve the target accuracy. A
larger error bound always translates a lower data accuracy,
resulting in less bit planes to be encoded. As demonstrated in
Figure 3, a larger error bound always requires fewer bits to
encode the coefficients, leading to a higher compression ratio
for ZFP.

SZ utilizes curve-fitting, scalar quantization, Huffman
coding to compress predictable data points, and binary-
representation analysis to compress the unpredictable. The
compression ratio of SZ on a dataset is multi-factored. First,
the curve-fitting hit ratio is a key factor since the curve-
fitted data often can be further compressed by one order
of magnitude using Huffman coding, while curve-missed
data points can only be reduced by about 3x using binary-
representation analysis based encoding. Take YF17 t as an
example, when the error bound increases from cfg1 to cfg4,
the average per curve-missed data point consumes 2.64, 2.20,
1.88, and 1.38 bytes, respectively; meanwhile, per curve-fitted
data point consumes 5.91, 2.35, 1.03, and 0.54 bytes, and
the corresponding curve-fitting hit ratio is 98.7%, 99.89%,
99.4%, and 99.67%. Therefore, if the curve-fitting hit ratio is
low on a dataset, SZ cannot achieve a high compression ratio.
Low curve-fitting hit ratio happens to the datasets in which
the neighboring values are highly variant. In Figure 1, Eddy
and Dpot datasets have high byte entropy and low correlation,
both indicating the high variance among neighboring points.
In Figure 4(b), Eddy and Dpot datasets have relatively low
curve-fitting hit ratios. As a result, as shown in Figure 4(a),
the curve-missed outlier points consume large storage space
in the compressed data. Note, since Eddy dataset is larger
than the others, in Figure 4(a) the Eddy data is limited to 800
KB to make other bars discernible. As a matter of fact, the
outlier storage accounts for 84%, 52%, 5.9%, and 0.9% of

https://www.dropbox.com/s/p70ienpbb7ut9mw/Figure2.png?dl=0

0

200

400

600

800

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

St
or
ag
e	
(K
B)

TreeSize EncodeSize OutlierSize

Dpot BumpEddyAstroYF17_pYF17_tSedovFish Blast2

(a) Byte contribution of each encoding component.

0.0

0.2

0.4

0.6

0.8

1.0

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

Cu
rv
e-
fit
tin

g	
hi
t	r
at
io

Dpot BumpEddyAstroYF17_pYF17_tSedovFish Blast2

(b) SZ curve-fitting hit ratio.

0

20

40

60

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

Q
ua
nt
iza

tio
n	
in
te
rv
al
	o
r	

N
od
e	
co
un
t	(
Th
ou
sa
nd
)

QuantIntv NodeCount

Dpot BumpEddyAstroYF17_pYF17_tSedovFish Blast2

(c) Quantization interval and number of Huffman tree leaf nodes.

0

10

20

30

40

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4

cf
g1

cf
g2

cf
g3

cf
g4GZ
IP
	c
om

pr
es
sio

n	
ra
tio

Dpot BumpEddyAstroYF17_pYF17_tSedovFish Blast2

(d) GZIP compression ratio on SZ output data.

Fig. 4: SZ compression with various error bounds. We demonstrate the global statistics to illustrate SZ performance.

0

2

4

cfg1 cfg2 cfg3 cfg4

Dpot
ZFP
SZ
ISB

0

10

20

cfg1 cfg2 cfg3 cfg4

Astro
ZFP
SZ
ISB

0

20

40

cfg1 cfg2 cfg3 cfg4

Fish
ZFP
SZ
ISB

0

100

200

cfg1 cfg2 cfg3 cfg4

Sedov
ZFP
SZ
ISB

0

2

4

cfg1 cfg2 cfg3 cfg4

Eddy
ZFP
SZ
ISB

0

200

400

cfg1 cfg2 cfg3 cfg4

Blast2
ZFP
SZ
ISB

0

5

10

cfg1 cfg2 cfg3 cfg4

YF17_p
ZFP
SZ
ISB

0

10

20

cfg1 cfg2 cfg3 cfg4

YF17_t
ZFP
SZ
ISB

0

10

20

cfg1 cfg2 cfg3 cfg4

Bump
ZFP
SZ
ISB

Fig. 5: Compression ratio vs. error bound. Note that x-axis is the
error bound, and y-axis is the compression ratio. Due to the space
constraint, the y-axis title is removed.

the total compressed Eddy data in cfg1, cfg2, cfg3, and cfg4,
respectively.

For SZ compression, a larger error bound mostly yields a
higher compression ratio. This is because a larger error bound
can narrow the range of quantization factors, resulting in
reduced quantization factor slots in the quantization interval.
This further requires a smaller number of nodes and lower
height of the Huffman tree. Hence the tree size as well as
the per quantization factor code length decrease, and fewer
bits are used to store the compressed data. Eddy and Dpot
datasets are, however, exceptions. When the error bound
increases from cfg1 to cfg4, the curve-fitting hit ratio of
Eddy and Dpot data increases dramatically. In this case,
the total number of quantization factors does not decrease
due to the increased number of curve-fitted points. As a
result, the compression ratios of these two datasets decrease
(Figure 5). We also notice the compression ratio of Blast2

decreases with the error bound, which is mainly caused by
the decreased compression ratio of GZIP on SZ compressed
data. In Figure 4(d), GZIP achieves a high compression ratio
on the SZ-compressed Blast2 data. The reason is that Blast2
data fall into a narrow range, thus, as Figure 4(c) shows, the
Huffman tree is very small in size, containing less than 20
nodes. Therefore, on average 25750 curve-fitted data points
of Blast2 share the same Huffman coding, causing GZIP to
achieve an impressive compression ratio of up to 40.

We observe that as the error bound loosens, the compression
ratio of SZ increases faster than that of ISABELA and ZFP.
In particular, when the error bound increases from cfg1 to
cfg4, the average compression ratio of ISABELA, ZFP and
SZ increases by 63%, 86.8%, and 747%, respectively. The
reason is, as illustrated in Figure 3, the compression ratio of
ZFP is largely determined by the coefficients encoding, which
can have a considerable reduction in size when the error
bound loosens. However, the size reduction of coefficients
is only less than 2x when the error bound increases from
cfg1 to cfg4. In contrast, the compression ratio of SZ is
mainly determined by the Huffman coding of quantization
factors, which can be reduced by more than an order of
magnitude when the error bound increases from cfg1 to cfg4.
For example, the Huffman tree of YF17 t contains 23166,
6262, 986, and 128 leaf nodes, respectively, and its per
curve-fitted points consumes 5.91, 2.35, 1.03, and 0.54 bytes
on average. The storage cost per curve-fitted point reduces
from 5.91 to 0.54. The reduction is more than one order of
magnitude. As shown in Figure 5, the compression ratio of
SZ on YF17 t increases from 2.27 to 17.32. In comparison,
the compression ratio of ZFP increases from 3.21 to 6.48.
When the point-wise relative error bound is loosened to cfg4,
SZ can achieve compression ratios of more than 10x for 7
out of 9 datasets, while ZFP can achieve more than 10x for

0
200
400
600

Co
m
pr
es
sio

n	
(M

B/
s)

FPC GZIP ISB ZFP SZ

0
200
400
600

De
co
m
pr
es
sio

n	
(M

B/
s)

FPC GZIP ISB ZFP SZ

Fig. 6: Compression and decompression throughput (cfg1).

the Fish datasets only.

Finding 2: SZ benefits the most from the increasing error
bound due to the design of quantization encoding, with a
few exceptions where SZ has a lower compression ratio
with a higher error bound.

C. Compression throughput

As shown in Figure 6, for lossless compression, FPC
achieves a higher compression throughput than GZIP, and
for lossy compression, ZFP outperforms SZ. ISABELA is
significantly slower than all other compressors due to the
data ordering involved.

FPC sequentially predicts each value and XORs the original
value with the prediction, resulting in leading zero bits that
are compressible. The FPC compression only needs to go
through the data stream once, i.e,, single-pass [10]. Similarly,
ZFP examines the data stream once, including encoding the
data blocks, calculating the common exponent and mantissas,
and conducting the orthogonal block transform on mantissas
followed by the embedded coding on the coefficients.

In contrast, SZ requires at least three passes necessitated
by the construction of a global Huffman tree. First, the
curve-fitting is conducted to determine the predictable and
unpredictable data points. For those predictable data points,
quantization factors are calculated. Second, quantization
factors and their occurrences are used to build a global
Huffman tree with the quantization factors as symbols.
Finally, quantization factors are encoded with Huffman
coding and the unpredictable data points are encoded by
binary-representation analysis. In addition to the curve-fitting,
ISABELA sorts data in exchange for higher smoothness
of data, and this design choice adds additional overhead to
compression.

Finding 3: Compressors that do not require global data
structures run faster than those that do. However, the
latter may bring a higher reduction ratio.

From Figure 2 and 6 jointly, we observe that compression
throughput has a positive correlation with compression ratio.
Both FPC and GZIP achieve the best compression ratio and
throughput on the Blast2 and Fish dataset, and this is also
the case for SZ and ZFP. In other words, compressibility
is also a good indicator of compression throughput. While
throughput is hardware dependent, a quantitative estimation
of compression ratio can illustrate the relative throughput

performance. This serves as one of the motivations that drive
us to model the compression ratio in Section IV.

Finding 4: Compression throughput is correlated to
compression ratio, implying that more compressible data
can be compressed faster.

In Figure 6, the decompression of GZIP, ISABELA,
and SZ is much faster than the compression, and in what
follows, we explain the rationale behind this observation. For
GZIP, the compression routine needs to scan the search buffer
to match the first symbol in the look-ahead buffer to encode
data in tokens. In contrast, the decoding iteratively parses
tokens to reconstruct the original data. Without expensive
operations such as scanning, the GZIP decompression is
much faster than the compression. Similarly, for SZ, the
decompression is considerably faster. The reason is that
the compression involves the Huffman tree construction
and the time complexity of this procedure is non-trivial.
In comparison, SZ decompression only involves Huffman
tree traversal, which is much cheaper in complexity. The
decompression of ISABELA is orders of magnitude faster
than its compression, which involves expensive data sorting.
FPC and ZFP have similar compression and decompression
performances, because they do not involve complicated
structures and processing in both encoding and decoding.

Finding 5: Decompression is commonly faster than
compression. This suggests that data compression is
especially useful in the cases where data are compressed
once and decompressed frequently, which is typical of
HPC workload.

D. Impact of lossy compression on data analytics

In this section we focus on discussing the impact of
lossy compression on data analytics. We demonstrate blob
detection on Dpot, which is used by fusion scientists to
examine the electrostatic potential in a fusion device and
study the trajectory of high energy particles. Herein, we
use the blob detection function implemented in OpenCV, an
open source computer vision library, to identify areas with
high electric potentials in a 2D plane of Dpot data. It uses
simple thresholding, grouping, and merging techniques to
locate blobs. The blob detection parameters minThreshold,
maxThreshold, minArea, minConvexity are empirically set as
10, 200, 200, and 0.5, respectively.

Figure 7 illustrates the blob detection results with varying
compression ratios using ZFP and SZ. We evaluated three
compression ratios: 10, 30, and 100. The circled areas are
identified as high energy blobs. The error bound is tuned
to achieve a target compression ratio. As the error bound
increases, the features of the blobs captured will change, in
terms of both the numbers of blobs and their positions. In
Figure 7 most blobs detected in the original data can still be
detected with 20x reduction. However, when the compression
ratio reaches 30x for ZFP and 100x for SZ, the majority of

(a) ZFP 10x. (b) ZFP 30x. (c) ZFP 100x.

(d) SZ 10x. (e) SZ 30x. (f) SZ 100x.

Fig. 7: Blob detection on the compressed Dpot. We are not able to
demonstrate the ISABELA results because it cannot achieve a10x
compression ratio. The Y-axis and X-axis are spatial coordinate R
and Z, respectively of a fusion device.

blobs are lost, which means the resulting error is too high to
be acceptable for blob detection.

Finding 6: Lossy compression may seriously distort
data, thus having disastrous impact on data analytics.
Determining a proper error bound is key to performing
meaningful lossy compression in science production.

IV. COMPRESSION RATIO ESTIMATION

HPC resources are precious and for applications running
at scale on HPC systems, it is important to make judicious
decisions to use resources efficiently. This is once again the
case for data compression. The trial and error approach to
finding the best reduction strategy may potentially waste com-
pute cycles and storage resources. Therefore, in this section
we develop sampling based analytical models to estimate the
reduction performance, with the goal of enabling users to
understand the performance without being forced to compress
the full data. As such, users can make more informed decisions
on questions such as, “will this compressor provide the desired
reduction ratio so that my data can fit into the storage?” to
avoid wasting compute resources on incompressible data. We
present schemes that can accurately estimate the compression
ratio of ZFP and SZ, two lossy compressors that achieved the
best performance in 12 out of 13 datasets in prior work [15].

A. Methodology

The key idea to estimate compression ratio is to extract
the salient properties of data through sampling, based upon
which we extrapolate the performance of full data. By and
large, prefix [28], interval [29], and random sampling [27]
are the common methods to sub-sample data. In particular,
prefix sampling selects the front part of data until a pre-
defined sampling ratio is satisfied. Interval sampling selects
data points at a regular interval, starting from a random offset
and then selecting every k-th (k is ratio of the full dataset size
to the sample size) element. Random sampling selects each

-0.1

0.4

0.9

1.4

Es
tim

at
io
n	
er
ro
r

Sampling	method

(a) ZFP.

0

0.5

1

1.5

2

Es
tim

at
io
n	
er
ro
r

Sampling	method

(b) SZ.

Fig. 8: Estimation accuracy of compression ratio. The sampling ratio
is 1%, and the relative error bound is cfg3. The x-axis represents the
sampling method, and the y-axis is the average |EstimationError|
of nine datasets. Intv and Rand denote the interval and random
sampling, and pnt, blk, and chk denote the sampling granularity of
point, block, and chunk, respectively. The error bars are the standard
deviation of estimation errors in three runs.

element with an equal probability. Interval or random sampling
may also choose various sampling granularities: point, block,
and chunk, meaning each sample is a single data point, a
few (e.g. 4), or a large number (e.g. 32) of sequential data
points, respectively. For the convenience of discussion, CR
is used to denote the compression ratio, and the estimation
error is defined as EstimationError =

CRSample−CRFull

CRFull
,

where CRSample and CRFull denote the compression ratio
of the sample and full dataset, respectively. Note that if
EstimationError < 0, it indicates that the compression ratio
is under-estimated.

B. Sampling Based Compression Ratio Estimation

In order to extrapolate the performance of the full dataset
accurately, the compressor must have bounded locality, first
proposed in prior work [27], i.e., the compression of a given
data point is either completely independent, or is influenced
only by a limited set of neighboring points. A sampling
method must preserve the locality of data points. If a data point
is sampled, those data points which have influence also need
to be sampled. As shown in Figure 8, for ZFP compression,
random block based sampling achieves an average estimation
accuracy of at least 99% with the standard deviation of
about 1%. Interval block based sampling can also achieve
an estimation accuracy of 99% with the standard deviation
of 2%. Because of the skewness of data distributions, prefix
sampling cannot achieve an accurate estimation since it is
biased towards the front part of data points, and the average
estimation error is up to 150%. We notice that ZFP compresses
data in a block of four points in one dimension, and blocks
are compressed independently of each other. Therefore, block
based sampling for ZFP preserves data locality, resulting in
a high accuracy and a low deviation. In comparison, point
based sampling breaks the bounded locality, and chunk based
sampling, despite that it preserves the locality, the coarse
granularity causes a high estimation deviation. As a result,
neither point nor chunk based sampling is as accurate as the
block based sampling.
Statement 1: For ZFP compression, the compression ratio of

TABLE II: A list of symbols for SZ compression
Symbols Description

PointCount Number of points in a dataset
QuantIntv Quantization interval
NodeCount Number of Huffman tree nodes
HitRatio Curve-fitting hit ratio
TreeSize Size of Huffman tree

EncodeSize Total size of Huffman coding
OutlierCount Number of curve-missed points
OutlierSize Total size of curve-missed points
TotalSize Size of compressed data

CR Compression ratio

sample data is an unbiased estimation of the compression ratio
of full data, using block based random sampling method.

Proof. The compression ratio of sample data is said to be an
unbiased estimation of the full dataset, when the compression
ratio of sample data is expected to equal that of the full dataset.
As mentioned, ZFP compresses floating-point data in blocks.
Assuming the full and sample dataset contain f and s blocks,
BlockSize is the original size of a block, and CRFull blocki

and CRSample blockj
indicate the compression ratio of the ith

and jth blocks in the full and sample datasets, respectively.
After reduction, the size of block i is RSFull blocki . For the
full dataset, the reciprocal of compression ratio is:

1
CRFull

=

f∑
i=1

RSFull blocki

f∗BlockSize = 1
f

f∑
i=1

1
CRFull blocki

Similarly, for the sample data,
1

CRSample
= 1

s

s∑
j=1

1
CRSample blockj

As a result of random sampling, for any blockj (1 ≤ j ≤ s)
in the sample, the probability that this block is blocki (1 ≤ i ≤
f) in the full dataset is 1

f . For any j (1 ≤ j ≤ s), the expected
reciprocal of compression ratio of blockj in the sample can
be calculated as:

E[1
CRSample blockj

] = E[1f

f∑
i=1

1
CRFull blocki

]

The overall expected reciprocal of compression ratio of the
sample can be calculated as:

E[1
CRSample

] = 1
sE[

s∑
j=1

1
CRSample blockj

]

= 1
s

s∑
j=1

E[1f

f∑
i=1

1
CRFull blocki

]

= E[1f
f∑

i=1

1
CRFull blocki

] = E[1
CRFull

]

Therefore, the expected value of CRSample equals that of
CRFull, and the compression ratio of the sample dataset, using
random block based sampling, provides an unbiased estimation
for the full dataset.

Statement 2: For SZ compression, no sampling method can
guarantee an unbiased estimation of the full dataset.

Proof. SZ adopts the Huffman tree to encode the quantization
factors of the curve-fitted points, with the goal of further re-
ducing the storage footprint. The compression ratio of sample
data point j (3 ≤ j ≤ s) is influenced by point j − 2 and
j − 1, and the associated Huffman tree constructed based on

the sample data. Similarly, the compression of full data point
i (3 ≤ i ≤ f) is influenced by point i − 2 and i − 1, and
a different Huffman tree constructed based on the full data.
For any given point j in the sample, even if the neighboring
points are accordingly sampled to maintain the bounded lo-
cality, the two Huffman trees are likely different. Therefore,
there does not exist a one-to-one or linear relation between
CRSample pointj and CRFull. By Jensen’s inequality [30],
for a non-linear function f and a mean-unbiased estimator U
of a parameter p, the composite estimator f(U) is not a mean-
unbiased estimator of f(p). That is, mean-unbiasedness is not
preserved under non-linear transformations.

As confirmed in Figure 8(b), using the compression ratio
of samples to estimate that of the full dataset is inaccurate for
SZ. The average estimation error is at least 42%. Therefore,
more advanced models are needed to accurately estimate the
SZ compression ratio.

Finding 7: For compression schemes which have bounded
locality, sampling based approach can provide an unbi-
ased estimation of the full data performance. Without
bounded locality, the compression ratio of sample data
may deviate significantly from that of the full data.

C. Advanced Models for Estimating SZ Compression Ratio

In SZ compression, a curve-fitted data point is mapped to a
quantization factor, observing a pre-defined error bound, and
a curve-missed point will be encoded by binary-representation
analysis. Quantization factors may occur with different prob-
abilities, thus, can be encoded using the Huffman tree for
storage efficiency. Therefore, the compressed data of SZ
consists of three parts: the Huffman tree, the encoding of
curve-fitted points, and the encoding of curve-missed points.
The binary-representation analysis based encoding for curve-
missed points is fairly straightforward to estimate, since our
tests show the encoding has approximately resulted in equal
size for sample and full data (Figure 9(a)), our model assumes
the encoding size is proportional to the number of data points.
However, as Figure 9 shows, the storage cost per Huffman tree
node, and the code length per curve-fitted data point varies
considerably in the sample and full data. Moreover, we notice
that the majority of datasets result in a high curve-fitting ratio
(Figure 4), and in this case Huffman tree and the encoding
will account for most of space after compression.

To predict the storage cost of the Huffman tree and the
corresponding Huffman coding, the key is to accurately esti-
mate the number of tree nodes, which determines the tree size
and height, which directly impact the average code length.
We identify the opportunity to predict the node count of
Huffman tree through observing the distribution of quan-
tization factors. Figure 10 demonstrates the distribution in
compressing the sample and full data, respectively. It is evident
that the distribution of sample and full data are highly similar,
both approximately following Gaussian distribution. Given
this important observation, this paper employs the Gaussian

0
2
4
6
8
10
12
14

Dp
ot
-S

Dp
ot
-O

As
tr
o-
S

As
tr
o-
O

Fi
sh
-S

Fi
sh
-O

Se
do
v-
S

Se
do
v-
O

Bl
as
t2
-S

Bl
as
t2
-O

Ed
dy
-S

Ed
dy
-O

YF
17
_p
-S

YF
17
_p
-O

YF
17
_t
-S

YF
17
_t
-O

Bu
m
p-
S

Bu
m
p-
O

By
te
s

(a) Per Huffman tree node cost.

0

0.5

1

1.5

2

Dp
ot
-S

Dp
ot
-O

As
tr
o-
S

As
tr
o-
O

Fi
sh
-S

Fi
sh
-O

Se
do
v-
S

Se
do
v-
O

Bl
as
t2
-S

Bl
as
t2
-O

Ed
dy
-S

Ed
dy
-O

YF
17
_p
-S

YF
17
_p
-O

YF
17
_t
-S

YF
17
_t
-O

Bu
m
p-
S

Bu
m
p-
O

By
te
s

(b) Huffman code length per curve-fitted point.

0

1

2

3

4

5

Dp
ot
-S

Dp
ot
-O

As
tr
o-
S

As
tr
o-
O

Fi
sh
-S

Fi
sh
-O

Se
do
v-
S

Se
do
v-
O

Bl
as
t2
-S

Bl
as
t2
-O

Ed
dy
-S

Ed
dy
-O

YF
17
_p
-S

YF
17
_p
-O

YF
17
_t
-S

YF
17
_t
-O

Bu
m
p-
S

Bu
m
p-
O

By
te
s

(c) Per curve-missed point storage cost.

Fig. 9: A quantitative analysis on the storage cost of SZ encoding. Suffix “-S” and “-O” denote the sample and original dataset, respectively.
The sampling ratio in this case is 1%.

Fig. 10: Distributions of quantization factors produced by the quan-
tization encoder in SZ, with SZ determined quantization intervals.

distribution to model the quantization factors. In summary,
the steps of estimating SZ compression ratio of the full data
are as follows:

1) Compress the sample data, and collect the compression
metrics, as listed in Table II.

2) Estimate the size of curve-missed data points, assuming
the sample and full dataset have similar storage cost per
curve-missed point (confirmed in Figure 9).

3) Build a Gaussian model based on the quantization factors
obtained from compressing the sample.

4) Estimate the node count of the Huffman tree of the full
dataset based on the Gaussian model.

5) Estimate the Huffman tree size and encoding size, based
on the estimated node count, assuming the height of a
Huffman tree is proportional to the logarithm of node
count.

The size of compressed data consists of the size of outliers
(curve-missed points), Huffman tree, and Huffman encoding
of the curve-fitted data points. Namely,

TotalSizeFull = OutlierSizeFull + TreeSizeFull

+EncodeSizeFull

We assume per outlier size of the sample and full data are
the same, thus
OutlierSizeFull =

OutlierSizeSample

OutlierCountSample
×OutlierCountFull

Similarly the per tree node size of sample and the full
dataset are the same, thus

0

5

10

15

20

25

Dpot Astro Fish Sedov Blast2 Eddy YF17_p YF17_t Bump

Co
m
pr
es
sio

n	
Ra

tio

Dataset

Sample Orig.	Exhaustive GaussModel

Fig. 11: Estimation of SZ compression ratio using Gaussian distribu-
tion to model the quantization factor.

TABLE III: SZ compression ratio estimation.
Sample 1 Sample 2 Orig. Estm 1 Estm 2

PointCnt 960 9696 97104 97104 97104
QuantIntv 20000 20000 20000 20000 20000
NodeCnt 430 1865 4723 2758 3951
HitRatio 0.9979 0.9983 0.9991 0.9979 0.9983
TreeSize 7732 33562 85006 49593 71101

EncodeSize 900 10133 104375 118936 111596
OutlierCnt 2 16 78 202 160
OutlierSize 6 44 233 607 441
TotalSize 7688 44407 195762 169136 183138

CR 1.00 1.75 3.97 4.59 4.24
EstmError 74.8% 56% 0 15.7% 6.9%

TreeSizeFull =
TreeSizeSample

NodeCountSample
×NodeCountFull

Since the average length of Huffman coding is proportional
to the tree height, which is the logarithm of tree node count,

EncodeSizeFull =
EncodeSizeSample

log2NodeCountSample
× log2NodeCountFull

Table III demonstrates the effectiveness of the above model
in estimating the compression ratio of the Astro dataset.
Sample 1 and Sample 2 correspond to chunk based sampling
with the sampling ratio of 1% and 10%, respectively. Estm
1 and Estm 2 show the estimated compression ratio for
Sample 1 and Sample 2, respectively, along with all detailed
compression metrics. Orig. shows the results of directly
compressing the original dataset. Overall these results show
that simply using the sampling based approach does not work
as well for SZ, resulting in high estimation errors of more
than 56%. In comparison, the proposed estimation model,
termed as GaussModel, can lower the estimation error to
6.9%. Figure 11 further demonstrates the performance of
our approach on other datasets. Orig. Exhaustive denotes
the direct compression of a full dataset. In general, the

estimation error of GaussModel is much lower than the
naive sampling based approach. Specifically, GaussModel
has an average estimation error of 29%, while the naive
sample based estimation has an average error of 73%. We
comment that using samples to extrapolate performance
inevitably introduces errors, due to the huge information loss
in sampling. However, the results show our model combining
with sampling can dramatically reduce the estimation error.

V. CONCLUSION AND FUTURE WORK

In this paper, we conduct comprehensive evaluations of
lossy compression schemes on HPC scientific datasets. We
expose how lossy compression schemes work, what data
features are indicators of compressibility, the relationship
between the compression ratio and the error bound, how
the compressibility influences the compression throughput, as
well as the impact of lossy compression on data fidelity. We
also present how to properly sample datasets for the purpose
of making data compression ratio estimation. We prove that
random block-based sampling ensures an unbiased compres-
sion ratio estimation for ZFP, and the estimation accuracy
can be up to 99%. The proposed GaussModel dramatically
increases the SZ estimation accuracy. This work can help HPC
users understand the outcome of lossy compression, which
is crucial for the broad adoption of lossy compression to
HPC production environments. The new understanding of the
relationship between data features and compressibility, as well
as accurate compression ratio estimation models are essential
to enable the online “to compress or not” decision and the
compressor selection. We plan to implement and integrate a
decision algorithm into ADIOS (Adaptable IO system) [31],
so that scientists can simply describe their requirements and
transparently use the best compression scheme.

ACKNOWLEDGMENT

The work is partially sponsored by U.S. National Sci-
ence Foundation grants CCF-1718297, CCF-1717660, CNS-
1702474, and DOE SIRIUS project.

REFERENCES

[1] T. Lu and et al., “Canopus: A paradigm shift towards elastic extreme-
scale data analytics on hpc storage,” in 2017 IEEE International Con-
ference on Cluster Computing (CLUSTER), Sept 2017, pp. 58–69.

[2] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in IEEE International Parallel and
Distributed Processing Symposium, 2017.

[3] W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor compression
for large-scale scientific data,” in IEEE International Parallel and
Distributed Processing Symposium. IEEE, 2016, pp. 912–922.

[4] D. Ghoshal and L. Ramakrishnan, “Madats: Managing data on tiered
storage for scientific workflows,” in Proceedings of the 26th Inter-
national Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2017, pp. 41–52.

[5] B. Dong, K. Wu, S. Byna, J. Liu, W. Zhao, and F. Rusu, “Arrayudf: User-
defined scientific data analysis on arrays,” in Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2017.

[6] ASCAC Subcommittee, “Top ten exascale research challenges,” 2014.
[Online]. Available: https://science.energy.gov/∼/media/ascr/ascac/pdf/
meetings/20140210/Top10reportFEB14.pdf

[7] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past, present,
and future of data deduplication,” Proceedings of the IEEE, 2016.

[8] D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn, and J. Kunkel,
“A study on data deduplication in hpc storage systems,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2012, pp. 1–11.

[9] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[10] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, 2009.

[11] I. Foster and et al., “Computing just what you need: Online data analysis
and reduction at extreme scales,” in European Conference on Parallel
Processing (Euro-Par’17), Santiago de Compostela, Spain, 2017.

[12] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[13] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. Samatova, “Compressing the incompressible with is-
abela: In-situ reduction of spatio-temporal data,” Euro-Par 2011 Parallel
Processing, pp. 366–379, 2011.

[14] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[15] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in Parallel and Distributed Processing Symposium, 2016 IEEE
International. IEEE, 2016, pp. 730–739.

[16] J.-l. Gailly, “gzip: The data compression program,” 2016. [Online].
Available: https://www.gnu.org/software/gzip/manual/gzip.pdf

[17] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE Transactions on Com-
puters, vol. 58, no. 1, pp. 18–31, Jan 2009.

[18] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Transactions on information theory, vol. 22, no. 1, pp. 75–81, 1976.

[19] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on information theory, vol. 23, no. 3,
pp. 337–343, 1977.

[20] Y. Sazeides and J. E. Smith, “The predictability of data values,” in
Proceedings of the 30th annual ACM/IEEE international symposium on
Microarchitecture. IEEE Computer Society, 1997, pp. 248–258.

[21] B. Goeman, H. Vandierendonck, and K. De Bosschere, “Differential
fcm: Increasing value prediction accuracy by improving table usage
efficiency,” in High-Performance Computer Architecture, 2001. HPCA.
The Seventh International Symposium on. IEEE, 2001, pp. 207–216.

[22] N. Sasaki and et al., “Exploration of lossy compression for application-
level checkpoint/restart,” in Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015 IEEE International. IEEE, 2015, pp. 914–922.

[23] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, Dec 2014.

[24] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Transactions on signal processing, vol. 41, no. 12,
pp. 3445–3462, 1993.

[25] S. Wold, “Spline functions in data analysis,” Technometrics, vol. 16,
no. 1, pp. 1–11, 1974.

[26] X. He and P. Shi, “Monotone b-spline smoothing,” Journal of the
American statistical Association, vol. 93, no. 442, pp. 643–650, 1998.

[27] D. Harnik, R. I. Kat, O. Margalit, D. Sotnikov, and A. Traeger, “To zip
or not to zip: effective resource usage for real-time compression.” in
FAST, 2013, pp. 229–242.

[28] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang, “Counting youtube
videos via random prefix sampling,” in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’11. New York, NY, USA: ACM, 2011, pp. 371–380.

[29] O. Rana and et al., “Paddmas: parallel and distributed data mining appli-
cation suite,” in Proceedings 14th International Parallel and Distributed
Processing Symposium. IPDPS 2000, 2000, pp. 387–392.

[30] J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre
les valeurs moyennes,” Acta mathematica, vol. 30, no. 1, pp. 175–193,
1906.

[31] Q. Liu and et al., “Hello adios: The challenges and lessons of developing
leadership class i/o frameworks,” Concurr. Comput. : Pract. Exper.,
vol. 26, no. 7, pp. 1453–1473, May 2014.

https://science.energy.gov/~/media/ascr/ascac/ pdf/meetings/20140210/Top10reportFEB14.pdf
https://science.energy.gov/~/media/ascr/ascac/ pdf/meetings/20140210/Top10reportFEB14.pdf
https://www.gnu.org/software/gzip/manual/gzip.pdf

