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ABSTRACT

In this paper, we consider the Collaborative Ranking (CR) problem
for recommendation systems. Given a set of pairwise preferences
between items for each user, collaborative ranking can be used to
rank un-rated items for each user, and this ranking can be naturally
used for recommendation. It is observed that collaborative ranking
algorithms usually achieve better performance since they directly
minimize the ranking loss; however, they are rarely used in practice
due to the poor scalability. All the existing CR algorithms have time
complexity at least O(|Q|r) per iteration, where r is the target rank
and |Q| is number of pairs which grows quadratically with number
of ratings per user. For example, the Netflix data contains totally 20
billion rating pairs, and at this scale all the current algorithms have
to work with significant subsampling, resulting in poor prediction
on testing data.

In this paper, we propose a new collaborative ranking algorithm
called Primal-CR that reduces the time complexity to O(|Q|+d;dar),
where d; is number of users and d; is the averaged number of items
rated by a user. Note that dyd; is strictly smaller and often much
smaller than |Q].

Furthermore, by exploiting the fact that most data is in the
form of numerical ratings instead of pairwise comparisons, we pro-
pose Primal-CR++ with O(dda(r + log d2)) time complexity. Both
algorithms have better theoretical time complexity than existing
approaches and also outperform existing approaches in terms of
NDCG and pairwise error on real data sets. To the best of our
knowledge, this is the first collaborative ranking algorithm capa-
ble of working on the full Netflix dataset using all the 20 billion
rating pairs, and this leads to a model with much better recom-
mendation compared with previous models trained on subsamples.
Finally, compared with classical matrix factorization algorithm
which also requires O(ddar) time, our algorithm has almost the
same efficiency while making much better reccommendations since
we consider the ranking loss.
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1 INTRODUCTION

In online retail and online content delivery applications, it is com-
monplace to have embedded recommendation systems— algorithms
that recommend items to users based on previous user behaviors
and ratings. Online retail companies develop sophisticated recom-
mendation systems based on purchase behavior, item context, and
shifting trends. The Netflix prize [2], in which competitors utilize
user ratings to recommend movies, accelerated research in recom-
mendation systems. While the winning submissions agglomerated
several existing methods, one essential methodology, latent factor
models, emerged as a critical component. The latent factor model
means that the approximated rating for user i and item j is given by
u;'—vj where u;,vj are k-dimensional vectors. One interpretation is
that there are k latent topics and the approximated rating can be re-
constructed as a combination of factor weights. By minimizing the
square error loss of this reconstruction we arrive at the incomplete
SVD,

min 3 (Rij—ulop) + SOUIE+ VIR, ()
> iL,jeQ
where Q contains sampled indices of the rating matrix, R.

Often the performance of recommendation systems is not mea-
sured by the quality of rating prediction, but rather the ranking
of the items that the system returns for a given user. The task of
finding a ranking based on ratings or relative rankings is called
Collaborative Ranking. Recommendation systems can be trained
with ratings, that may be passively or actively collected, or by rela-
tive rankings, in which a user is asked to rank a number of items.
A simple way to unify the framework is to convert the ratings into
rankings by making pairwise comparisons of ratings. Specifically,
the algorithm takes as input the pairwise comparisons, Y; ; x for
each user i and item pairs j, k. This approach confers several advan-
tages. Users may have different standards for their ratings, some
users are more generous with their ratings than others. This is
known as the calibration drawback, and to deal with this we must
make a departure from standard matrix factorization methods. Be-
cause we focus on ranking and not predicting ratings, we can expect
improved performance when recommending the top items. Our
goal in this paper is to provide a collaborative ranking algorithm
that can scale to the size of the full Netflix dataset, a heretofore
open problem.

The existing collaborative ranking algorithms, (for a summary
see section 2), are limited by the number of observed ratings per user
in the training data and cannot scale to massive datasets, therefore,
making the recommendation results less accurate and less useful
in practice. This motivates our algorithm, which can make use of
the entire Netflix dataset without sub-sampling. Our contribution
can be summarized below:



e For input data in the form of pairwise preference compar-
isons, we propose a new algorithm Primal-CR that alterna-
tively minimizes latent factors using Newton’s method in
the primal space. By carefully designing the computation
of gradient and Hessian vector product, our algorithm re-
duces the sample complexity per iteration to O(|Q|+d;dar),
while the state-of-the-art approach [17] have O(|Q|r) com-
plexity. Here |Q| (total number of pairs), is much larger
than did; (d; is number of users and ds is averaged num-
ber of items rated by a user). For the Netflix problem,
|Q = 2 x 1010 while dydy = 108.

e For input data in the form of ratings, we can further ex-
ploit the structure to speedup the gradient and Hessian
computation. The resulting algorithm, Primal-CR++, can
further reduce the time complexity to O(d1da(r + log d2))
per iteration. In this setting, our algorithm has time com-
plexity near-linear to the input size, and have comparable
speed with classical matrix factorization model that takes
O(d1dyr) time, while we can achieve much better recom-
mendation by minimizing the ranking loss.

We show that our algorithms outperform existing algorithms on
real world datasets and can be easily parallelized.

2 RELATED WORK

Collaborative filtering methodologies are summarized in [20] (see
[6] for an early work). Among them, matrix factorization [13] has
been widely used due to the success in the Netflix Prize. Many
algorithms have been developed based on matrix factorization [5,
11, 18, 19, 22], and many scalable algorithms have been developed [8,
13]. However, they are not suitable for ranking top items for a user
due to the fact that their goal is to minimize the mean-square error
(MSE) instead of ranking loss. In fact, MSE is not a good metric
for recommendation when we want to recommend the top K items
to a user. This has been pointed out in several papers [1] which
argue normalized discounted cumulative gain (NDCG) should be
used instead of MSE, and our experimental results also confirm
this finding by showing that minimizing the ranking loss results in
better precision and NDCG compared with the traditional matrix
factorization approach that is targeting squared error.

Ranking is a well studied problem, and there has been a long line
of research focuses on learning one ranking function, which is called
Learning to Rank. For example, RankSVM [12] is a well-known
pair-wise model, and an efficient solver has been proposed in [4]
for solving rankSVM. [3] is a list-wise model implemented using
neural networks. Another class of point-wise models fit the ratings
explicitly but has the issue of calibration drawback (see [10]).

The collaborative ranking (CR) problem is essentially trying to
learn multiple rankings together, and several models and algorithms
have been proposed in literature. The Cofirank algorithm [25],
which tailors maximum margin matrix factorization [23] for collab-
orative ranking, is a point-wise model for CR, and is regarded as
the performance benchmark for this task. If the ratings are 1-bit,
a weighting scheme is proposed to improve the usual point-wise
Matrix Factorization approach [15]. List-wise models for Learning

to Rank can also be extended to many rankings setting, [21]. How-
ever it is still quite similar to a point-wise approach since they only
consider the top-1 probabilities.

For pairwise models in collaborative ranking, it is well known
that they do not encounter the calibration drawback as do point-
wise models, but they are computationally intensive and cannot
scale well to large data sets [21]. The scalability problem for pair-
wise models is mainly due to the fact that their time complexity is
at least proportional to |Q], the number of pairwise preference com-
parisons, which grows quadratically with number of rated items
for each user. Recently, [17] proposed a new Collrank algorithm,
and they showed that Collrank has better precision and NDCG
as well as being much faster compared with other CR methods
on real world datasets, including Bayesian Personalized Ranking
(BPR) [19]. Unfortunately their scalability is still constrained by
number of pairs, so they can only run on subsamples for large
datasets, such as Netflix. In this paper, our algorithm Primal-CR
and Primal-CR++ also belong to the family of pairwise models, but
due to cleverly re-arranging the computation, we are able to have
much better time complexity than existing ones, and as a result
our algorithm can scale to very large datasets.

There are many other algorithms proposed for many rankings
setting but none of these mentioned below can scale up to the
extent of using all the ratings in the full Netflix data. There are a
few using Bayesian frameworks to model the problem [19], [16],
[24], the last of which requires many specified parameters. Another
one proposed retargeted matrix factorization to get ranking by
monotonically transforming the ratings [14]. [9] proposes a similar
model without making generative assumptions on ratings besides
assuming low-rank and correctness of the ranking order.

3 PROBLEM FORMULATION

We first formally define the collaborative ranking problem using
the example of item recommender system. Assume we have d;
users and d; items, the input data is given in the form of “for user i,
item j is preferred over item k” and thus can be represented by a set
of tuples (i, j, k). We use Q to denote the set of observed tuples, and
the observed pairwise preferences are denoted as {Y;j | (i,), k) €
Q}, where Y;j = 1 denotes that item j is preferred over item k for
a particular user i and Y;;; = —1 to denote that item k is preferred
over item j for user i.

The goal of collaborative ranking is to rank all the unseen items
for each user i based on these partial observations, which can be
done by fitting a scoring matrix X € R4%% _[f the scoring matrix
has Xj; > Xy, it implies that item j is preferred over item k by the
particular user i and therefore we should give higher rank for item j
than item k. After we estimate the scoring matrix X by solving the
optimization problem described below, we can then recommend
top k items for any particular user.

The Collaborative Ranking Model referred to in this paper is the
one proposed recently in [17]. It belongs to the family of pairwise
models for collaborative ranking because it uses pairwise training
losses [1]. The model is given as

min >0 LX) = X)) + AKXl @
(i,j,k)eQ



where £(.) is the loss function, || X||. is the nuclear norm regular-
ization defined by the sum of all the singular value of the matrix X,
and A is a regularization parameter. The ranking loss defined in the
first term of (2) penalizes the pairs when Y;;; = 1 but Xj; — Xy is
positive but small, and penalizes even more when the difference
is negative. The second term in the loss function is based on the
assumption that there are only a small number of latent factors
contributing to the users’ preferences which is analogous to the
idea behind incomplete SVD for matrix factorization mentioned
in the introduction. In general we can use any loss function, but
since L2-hinge loss defined as

£L(a) = max(0, 1 — a)® 3)

gives the best performance in practice [17] and enjoys many nice
properties, such as smoothness and differentiable, we will focus on
Ls-hinge loss in this paper. In fact, our first algorithm Primal-CR
can be applied to any loss function, while Primal-CR++ can only
be applied to La-hinge loss.

Despite the advantage of the objective function in equation (2)
being convex, it is still not feasible for large-scale problems since
di and dz can be very large so that the scoring matrix X can-
not be stored in memory, not to mention how to solve it. There-
fore, in practice people usually transform (2) to a non-convex
form by replacing X = UVT, and in that case since [|X|« =
minXZUTV%(HUHfT + ||V||%) [23], problem (2) can be reformulated
as

min Y L0kl (0 - o)+ SUUIE VIR, @)
T (i), k)eQ
We use u; and v; denote columns of U and V respectively. Note
that [17] also solves the non-convex form (4) in their experiments,
and in the rest of the paper we will propose a faster algorithm for
solving (4).

4 PROPOSED ALGORITHMS

4.1 Motivation and Overview

Although collaborative ranking assumes that input data is given in
the form of pairwise comparisons, in reality almost all the datasets
(Netflix, Yahoo-Music, MovielLens, etc) contain user ratings to
items in the form of {R;; | (i,j) € Q}, where Q is the subset
of observed user-item pairs. Therefore, in practice we have to
transform the rating-based data into pair-wise comparisons by
generating all the item pairs rated by the same user:

Q={(.j.k) | j.keQi}, ®)

where Q; := {j | (i,j) € Q} is the set of items rated by user i.
Assume there are averagely dy items rated by a user (i.e., dy =
mean(|Q;)), then the collaborative ranking problem will have
O(dlcigz) pairs and thus the size of Q grows quadratically.
Unfortunately, all the existing algorithms have O(|Q|r) complex-
ity, so they cannot scale to large number of items. For example,
the AItSVM (or referred to asCollrank) Algorithm in [17] will run
out of memory when we subsample 500 rated items per user on
Netflix dataset since its implementation! stores all the pairs in
memory and therefore requires O(|Q2|) memory. So it cannot be

!Collrank code is available on https://github.com/dhpark22/collranking.

used for the full Netflix dataset which has more than 20 billion
pairs and requires 300GB memory space. To the best of our knowl-
edge, no collaborative ranking algorithms have been applied to the
full Netflix data set. But in real life, we hope to make use of as
much information as possible to make better recommendation. As
shown in our experiments later, using full training data instead of
sub-sampling (such as selecting a fixed number of rated items per
user) achieves higher prediction and recommendation accuracy for
the same test data.

To overcome this scalability issue, we propose two novel al-
gorithms for solving problem (4), and both of them significantly
reduce the time complexity over existing methods. If the input
file is in the form of |Q| pairwise comparisons, our proposed al-
gorithm, Primal-CR, can reduce the time and space complexity
from O(|Q|r) to O(|Q| + dydar), where d3 is the average number of
items compared by one user. If the input data is given as user-item
ratings (e.g., Netflix, Yahoo-Music), the complexity is reduced from
O(dvdy’r) to O(d1dor + didy?).

If the input file is given in ratings, we can further reduce the
time complexity to O(dld_zr +didy log d_z) using exactly the same
optimization algorithm but smarter ways to compute gradient and
Hessian vector product. This time complexity is much smaller
than the number of comparisons |Q| = O(dld_g), and we call this
algorithm Primal-CR++.

We will first introduce Primal-CR in Section 4.2, and then present
Primal-CR++ in Section 4.3.

4.2 Primal-CR: the proposed algorithm for pairwise
input data

Algorithm 1 Primal-CR/ Primal-CR++: General Framework
Input: Q, {V;j : (i,j,k) € Q}, A € R* > for Primal-CR
Input: M € R9%% ) ¢ R* > for Primal-CR++
Output: U € R"™*% and V e R"*%
1: Randomly initialize U, V from Gaussian Distribution
2: while not converged do
3 procedure Fix U AND UPDATE V
while not converged do
Apply truncated Newton update (Algorithm 2)
end while
end procedure
procedure Fix V AND UPDATE U
while not converged do
10: Apply truncated Newton update (Algorithm 2)
11 end while
12: end procedure
13: end while
14: return U,V

D A U

> recover score matrix X

In the first setting, we consider the case where the pairwise
comparisons {Yj;r | (i,j, k) € Q} are given as input. To solve
problem (4), we alternatively minimize U and V in the primal space
(see Algorithm 1). First, we fix U and update V, and the subproblem



Algorithm 2 Truncated Newton Update for V (same procedure
can be used for updating U)

Input: Current solution U,V

Output: V
1: Compute g = vec(Vf(V))
2 Let H = V2£(V) (do not explicitly compute H)
3: procedure LINEAR CONJUGATE GRADIENT(g, F)
4 Initialize 6 = 0
5 r0:H§o—g,po:—ro
6: fork =0,1,..., maxiter do
7 Compute the Hessian-vector product g = Hpy
8 @ = —riprlppq
9 O+1 = O + kP

10: Tk+1 =Tk + kq
1 if [[rksqll2 < [Iroll2 - 1072 then
12: break
13: end if
— T
14: Br+1 = (rkr19)/p g
15: Ph+1 = ~Thk+1 + Br+1Pk
16: end for
17: return §

18: end procedure
19: V =V — 56 (stepsize s found by line search)
20: return U or V

for V while U is fixed can be written as follows:

> Lleead @ - o0} = )

(i,j,k)eQ
(6)

In [17], this subproblem is solved by stochastic dual coordinate
descent, which requires O(|Q|r) time and O(|Q|) space complexity.
Furthermore, the objective function decreases for the dual problem
sometimes does not imply the decrease of primal objective func-
tion value, which often results in slow convergence. We therefore
propose to solve this subproblem for V using the primal truncated
Newton method (Algorithm 2).

Newton method is a classical second-order optimization algo-
rithm. For minimizing a vector-valued function f(x), Newton
method iteratively updates the solution by x « x—(V2f(x))~1V f(x).
However, the matrix inversion is usually hard to compute, so a trun-
cated Newton method computes the update direction by solving
the linear system V2 f(x)a = V f(x) up to a certain accuracy, usu-
ally using a linear conjugate gradient method. If we vectorized
the problem for updating V in eq (6), the gradient is a (rdz)-sized
vector and the Hessian is an (rdy)-by-(rd2) matrix, so explicitly
forming the Hessian is impossible. Below we discuss how to apply
the truncated Newton method to solve our problem, and discuss
efficient computations for each part.

Derivation of Gradient. When applying the truncated New-
ton method, the gradient V£ (V) is a R™% matrix and can be
computed explicitly:

d;
Vf(V) = Z Z L' (Yijpe-uf (vj - Uk))(uiejT —uie] )Yiji + AV,
i=1(j, k)eQ;
@)

A e
V = argmin { - ||V]|% +
V eR7¥d2 2

where Vf(V) € R"™*%_Q; := {(j,k) | (i,j, k) € Q} is the subset of
pairs that associates with user i, and e; is the indicator vector used
to add the u; vector to the j-th column of the output matrix. The
first derivative for Ly-hinge loss function (3) is

L’ (a) = 2min(a - 1,0) (8)

For convenience, we define g := vec(V f(V)) to be the vectorized
form of gradient. One can easily see that computing g naively by
going through all the pairwise comparisons (j, k) and adding up
arrays is time-consuming and has O(|Q|r) time complexity, which
is the same with Collrank [17].

Fast computation for gradient. Fortunately, we can reduce
the time complexity to O(|Q| + didzr) by smartly rearranging the
computations, so that the time is only linear to |Q| and r, but not
to |Q|r. The method is described below.

First, for each i, the first term of (7) can be represented by

Z L' (Yyjk - u] (0 = op)uie] - uie )ik = Z tiuie] ,
(U, k)eQ; jedy(i)

_ ©)
where da(i) := {j | Ik s.t. (i, ), k) € Q} and t; is some coefficient
computed by summing over all the pairs in Q;. If we have t;, the
overall gradient can be computed by O(da(i)r) time for each i. To
compute tj, we first compute ulij for all j € da(i) in O(d2(i)r)
time, and then go through all the (j, k) pairs while keep adding the
coefficient related to this pair to t; and tx. Since there is no vector
operations when we go through all pairs, this step only takes O(Q;)
time. After getting all t;, we can then conduct Zjeziz(i) tju,-ejT in
O(ds(i)r) time. Therefore, the overall complexity can be reduced
to O(|Q| + didar). The pseudo code is presented in Algorithm 3.

Algorithm 3 Primal-CR: efficient way to compute V f(V)
Input: Q, {V; : (i.j, k) € Q}, 1 € RT, current variables U, V

> g € R%" is the gradient for f(V)
>g c Rr)(dg

Output: g,m
1: Initialize g = 0
2 fori=1,2,...,d; do
3 for all j € dy(i) do

4 precompute ul.TUj and store in a vector m;
5 end for

6: Initialize a zero array t of size dy

7 for all (j, k) € do(i) do

8 if Y;jr(mi[j] — mi[k]) < 1then

% s = 2(Yjx(mi[j] = mi[k]) - 1)

10: t[j] += Yijks

11 t[k] == Yijks > O(1) time per for loop iteration
12: end if

13: end for

14: for all j € dy(i) do

15 gLl += tl] - i

16: end for

17: end for

18: g = vec(g + AV) > vectorize matrix g € RrXdz
19: Form a sparse matrix m = [my ... mg, | > m can be reused later
20: return g, m




Derivation of Hessian-vector product. Now we derive the
Hessian V2f(V) for f(V). We define Vif(V) := a—ijf(V) e R

and ij,kf(V) = (.)v?—;ka(V) € R™ in the following derivations.
From the gradient derivation, we have

Vifv) = Z Z L' Yiji - u] (vj = op)uiYiji + Avj.
isjedy(i) kedy(i)
k#j

Taking derivative again we can obtain
2
Vj’kf(v) =

Zi:(j,k)ed_z(i) -C”(Yijk : uiT(Uj - Uk))(—uiuiT)
Lisjedy(i) Dkedy(iy ki L Nijk - ul (vj — vl + My
and the second derivative for L, hinge loss function is given by:
2 ifa<1
L"(a) = B 10
@ {0 ifa>1. (10

Note that if we write the full Hessian H as a (dar) by (dar) matrix,
then ij. f(V)is an r xr block in H, where there are totally d;

of these blocks. In the CG update for solving H™!g, we only need
to compute H - a for some a € R%" . For convenience, we also
partition this a into dz blocks, each subvector a; has size r, so
a = [ay;--- ;aj]. Similarly we can use subscript to denote the
subarray (H - a); of the array H - a, which becomes

(H-a)j = > V2 f(V)-ap+ V5 f(V)- g
k+#j

= Aaj + Z u; Z L"Yiji - uiT(vj - vk))(uiTaj - uiTak).
isjedy (i) kedy(i)
k#j

Therefore, we have

H-a= ) E;(H-a)
7

=la + Z Z Eju; Z L"(Yijk .ul.T(vj - vk))(ulraj - uiTak)
Ljedy(i)  kedy(i)
k#j
(11)
where Ej is the projection matrix to the j-th block, indicating that
we are only adding (H - a); to the j-th block of matrix, and setting
0 elsewhere.

Fast computation for Hessian-vector product . Similar to
the case of gradient computation, using a naive way to compute
H - a requires O(|Q|r) time since we need to go through all the
(i, J, k) tuples, and each of them requires O(r) time. However, we
can apply the similar trick in gradient computation to reduce the
time complexity to O(|Q| + d1dar) by pre-computing uiTaj and
caching the coefficient using the array t. The detailed algorithm is
given in Algorithm 4.

Note that in Algorithm 4, we can reuse the m (sparse array
storing the current prediction) which has been pre-computed in the
gradient computation (Algorithm 3), and that will cost only O(d;dz)
memory. Even without storing the m matrix, we can compute m in
the loop of line 4 in Algorithm 4, which will not increase the overall
computational complexity.

ifj#k
ifj =k

Algorithm 4 Primal-CR: efficient way to compute Hessian vector
product

Input: Q, {Y;jx : (i.j.k) € Q}, 1 € R*, a € RE" m, U,V
Output: Ha > Ha € R%" is needed in Linear CG
1: Ha=0 > Ha € R%"
2 fori=1,2,...,d; do
3: for all j € dy(i) do

4 precompute ul.Taj and store it in array b
5 end for

6: Initialize a zero array t of size d

7 for all (j, k) € do(i) do

8 if Y;j1(mi[j] — mi[k]) < 1.0 then

9 sjk = 2.0 - (b[j] - b[k])

10: ti] += sjk

11 tlk] == sjk > O(1) time per for loop iteration
12: end if

13: end for

14: for all j € dz(i) do

15: Halp-1)-r+1:p-rl+=t[j] wi
16: end for

17: end for

18: return Ha

Fix V and Update U. After updating V by truncated Newton,
we need to fix V and update U. The subproblem for U can be
written as:

d
2
U= argmin {ZIUIF+ Y, >, L0k -u] (05 -0} (12)
yerr =1 (k) d (1)

Since u;, the i-th column of U, is independent from the rest
of columns, equation 12 can be decomposed into dj independent
problems for u;:

A
ui=argmin Zllullj+ Y0 LOkuT (0 -0p) = h(w) (13)
u€eR” . 7.
U.k)ed,(i)

Eq (13) is equivalent to an r-dimensional rankSVM problem. Since
r is usually small, the problems are easy to solve. In fact, we can
directly apply an efficient rankSVM algorithm proposed in [4]
to solve each r-dimensional rankSVM problem. This algorithm
requires O(|Q;| + r|d2(i)|) time for solving each subproblem with
respect to u;, so the overall complexity is O(|Q| + rdidz) time per
iteration.

Summary of time and space complexity. When updating V,
we first compute gradient by Algorithm 3, which takes O(|Q| +
didor) time, and each Hessian-vector product in 4 also takes the
same time. The updates for U takes the same time complexity with
updating V, so the overall time complexity is O(|Q| + didar) per
iteration. The whole algorithm only needs to store size d; X r and
dy X r matrices for gradient and conjugate gradient method. The
m matrix in Algorithm 3 is not needed, but in practice we find it
can speedup the code by around 25%, and it only takes did> < |Q|
memory space (less than the input size). Therefore, our algorithm
is very memory-efficient.



Before going to Primal-CR++, we discuss the time complexity
of Primal-CR when the input data is the user-item rating matrix.
Assume ds is the averaged number of rated items per user, then
there will be |Q| = O(dlcig) pairs, leading to O(dldg +didor) time
complexity for Primal-CR. This is much better than the O(dlczgr)
complexity for all the existing algorithms.

Algorithm 5 Primal-CR++: compute gradient part for f(V)

Input: M € Rledz, A e R, current U,V
> g € R%7 is the gradient for f(V)
>g € Rrxdz

Output: g
1: Initialize g = 0
2 fori=1,2,...,d; do
3 Let dy = |do(i)| and rj =Ry j forall j.
4 Compute m[j] = uiij for all j € da(i)
5 Sort dz(i) according to the ascending order of m;, so
m[r(1)] < -+ < m[x(dz)]

6 Initialize s[1],...,s[L] and ¢[1],...,c[L] with 0
7 (Store in segment tree or Fenwick tree. )

8: P < 1

9 forallj=1,...,d, do

10: while m[7(p)] < m; + 1 do

11 slr(pyl+ = mlr@)], clrppl+ =1

12: pt= 1

13: end while

14: S= ZZ’Zr”(p) 3[5]’ C= ZKZr,,(p) C[f]

15: [zl = 2(C - (m[z()] + 1) = S)

16: end for

17: Do another scan j from dj to 1 to compute t~[7(j)] for all j
18: gl:j] += ] + 1)) - i for all j

19: end for

20: g = vec(g + AV) R7%:

21: returng

> vectorize matrix g €

4.3 Primal-CR++: the proposed algorithm for rating
data

Now we discuss a more realistic scenario, where the input data
is a rating matrix {R;;j | (i,j) € Q} and Q is the observed set of
user-item ratings. We assume there are only L levels of ratings, so
Rij € {1,2,...,L}. Also, we use d2(i) := {j | (i, ) € Q} to denote
the rated items for user i.

Given this data, the goal is to solve the collaborative ranking
problem (4) with all the pairwise comparisons in the rating dataset
as defined in (5). There are totally O(dld_g) pairs, and the question
is: Can we have an algorithm with near-linear time with respect to
number of observed ratings |Q| = d1ds? We answer this question
in the affirmative by proposing Primal-CR++, a near-linear time
algorithm for solving problem (4) with L2-hinge loss.

The algorithm of Primal-CR++ is exactly the same with Primal-
CR, but we use a smarter algorithm to compute gradient and Hes-
sian vector product in near-linear time, by exploiting the structure
of the input data.

We first discuss how to speed up the gradient computation of (7),
where the main computation is to compute (9) for each i. When

the loss function is L2-hinge loss, we can explicitly write down the
coefficients ¢; in (9) by

= > 2my—m = Yl Yie(mj - m) <10, (19)
kedsy(i)

where mj := ul.ij and I[-] is an indicator function such that I[a <
b] =1ifa < b, and I[a < b] = 0 otherwise. By splitting the cases
of Yijx = 1and Y = —1, we get

ottt
tj=tf +1;
= Z 2(mj—mk+l)+ Z 2(mj —my —1).
kedy(i) ked(i)

mg<mj+1, Yijrp=-1 myg2mj—1, V=1

(15)

Assume the indexes in da(i) are sorted by the the ascending order of
m;. Then we can scan from left to right, and maintain the current
accumulated sum sy, ..., sg and the current index counts cq, ..., cp,
for each rating level. If the current pointer is p, then

selpl = )

Jimj<p,Ry=t

mj and ce[p] = [{j: mj < p,Rij = £}].

Since we scan from left to right, these numbers can be maintained
in constant time at each step. Now assume we scan over the

numbers m; + 1,my + 1, ..., then at each point we can compute
L
tf = Z 2{(mj + D)celmj + 1] = sg[m; + 11},
(=R; j+1

which can be computed in O(L) time.

Although we observe that O(L) time is already small in practice
(since L usually smaller than 10), in the following we show there is
a way to remove the dependency on L by using a simple Fenwick
tree [7], F+tree [26] or segment tree. If we store the set {s1,...,sp}
in Fenwick tree, then each query of X ¢5, s; can be done in in
O(log L) time, and since each step we only need to change one
element into the set, the updating time is also O(log L). Note that
t; can be computed in the same way by scanning from largest m;
to the smallest one.

To sum up, the algorithm first computes all m; in O(dyr) time,
then sort these numbers using O(dz log d») time, and then compute
tj for all j using two linear scans in O(d log L) time. Here log L is
dominated by log d, since L can be the number of unique rating
levels in the current set da(i). Therefore, after computing this for
all usersi = 1,...,d, the time complexity for computing gradient
is

O(d1dz log dz + didar) = O(|Q|(log da + 1)).

A similar procedure can also be used for computing the Hessian-
vector product, and the computation of updating U with fixed V
is simplier since the problem becomes decomposable to d; inde-
pendent problems, see eq (13). Due to the page limit we omit the
details here; interesting readers can check our code on github.

Compared with the classical matrix factorization, where both
ALS and SGD requires O(|Q|r) time per iteration [13], our al-
gorithm has almost the same complexity, since logds is usually
smaller than r (typically r = 100). Also, since all the temporary
memory when computing user i can be released immediately, the
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only memory cost is still the same with Primal-CR++, which is
O(dyr + dar).

4.4 Parallelization

Updating U while fixing V can be parallelized easily because each
column of U is independent and we can actually solve d; indepen-
dent subproblems at the same time. For the other side, updating V
while fixing U can also be parallelized by parallelizing “computing
g~ part and “computing Ha” part respectively. We implemented
the algorithm using parallel computing techniques in Julia by com-
puting g and Ha distributedly and summing them up in the end.

We show in section 5.2 that our parallel version of the proposed
new algorithm works better than the paralleled version of Collrank
algorithm [17].

5 EXPERIMENTS

In this section, we test the performance of our proposed algorithms
Primal-CR and Primal-CR++ on real world datasets, and compare
with existing methods. All experiments are conducted on the UC
Davis Illidan server with an Intel Xeon E5-2640 2.40GHz CPU and
64G RAM. We compare the following methods:
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e Primal-CR and Primal-CR++: our proposed methods im-
plemented in Julia. 2

e Collrank: the collaborative ranking algorithm proposed
in [17]. We use the C++ code released by the authors, and
they parallelized their algorithm using OpenMP.

e Cofirank: the classical collaborative ranking algorithm
proposed in [25]. We use the C++ code released by the
authors.

o MF: the classical matrix factorization model in (1) solved
by SGD [13].

We used three data sets (MovieLens1m, Movielens10m, Netflix
data) to compare these algorithms. The dataset statistics are sum-
marized in Table 1. The regularization parameter A used for each
datasets are chosen by a random sampled validation set. For the
pair-wise based algorithms, we covert the ratings into pair-wise
comparisons, by saying that item j is preferred over item k by user
i if user i gives a higher rating to item j over item k, and there will
be no pair between two items if they have the same rating.

We compare the algorithms in the following three different ways:

e Objective function: since Collrank, Primal-CR, Primal-
CR++ have the same objective function, we can compare
the convergence speed in terms of the objective function (4)
with squared hinge loss.

e Predicted pairwise error: the proportion of pairwise pref-
erence comparisons that we predicted correctly out of all
the pairwise comparisons in the testing data:

1
pairwise error = 7 Z 1(Xij > Xig), (16)
(i,j,k)eT
Yijre=1

where 7 represents the test data set and |77| denotes the
size of test data set.
e NDCG@*k: a standard performance measure of ranking,

defined as:
dl .
1 DCG@k(i, i)
NDCG@k = — —_— 17
@ =2 ,zzl DCG@kG )’ an
where i represents i-th user and
koMl
2Mimi(l) _ q
DCG@k(i, ;) = _— 18
@K(i. mi) ; ona <D (18)

20ur code is available on https://github.com/wuliwei9278/ml-1m.

In the DCG definition, 7;(l) represents the index of the
I-th ranked item for user i in test data based on the score
matrix X = UTV generated, M is the rating matrix and
Mij is the rating given to item j by user i. 7} is the ordering
provided by the underlying ground truth of the rating.

5.1 Compare single thread versions using the
same subsamples

Since Collrank cannot scale to the full dataset of Movielens10m
and Netflix, we sub-sample data using the same approach in their
paper [17] and compare all the methods using the smaller training
sets. More specifically, for each data set, we subsampled N ratings
for training data and used the rest of ratings as test data. For this
subsampled data, we discard users with less than N + 10 ratings,
since we need at least 10 ratings for test data to compute the
NDCG@10.

As shown in Figure 1, 2, 3, both Primal-CR and Primal-CR++
perform considerably better than the existing Collrank algorithm.
As data size increases, the performance gap becomes larger. As one
can see, for Netflix data where N = 200, the speedup is more than
10 times compared to Collrank.

For Cofirank, we observe that it is even slower than Collrank,
which confirms the experiments conducted in [17]. Furthermore,
Cofirank cannot scale to larger datasets, so we omit the results in
Figure 2 and 3.

We also include the classical matrix factorization algorithm in
the NDCG comparisons. As shown in our complexity analysis, our
proposed algorithms are competitive with MF in terms of speed,
and MF is much faster than other collaborative ranking algorithms.
Also, we observe that MF converges to a slightly worse solution
in MovieLens10m and Netflix datasets, and converges to a much
worse solution in MovieLens1m. The reason is that MF minimizes
a simple mean square error, while our algorithms are minimizing
ranking loss. Based on the experimental results, our algorithm
Primal-CR++ should be able to replace MF in many real world
recommender systems.

5.2 Compare parallel versions

Since Collrank can be implemented in a parallel fashion, we also
implemented the parallel version of our algorithm in Julia. We
want to show our algorithm scales up well and is still much faster
than Collrank in the multi-core shared memory setting. As shown
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MovielLens1m | Movielens10m | Netflix
Users 6,040 71,567 2,649,430
Items 3,952 65,134 17,771
Ratings | 1,000,209 10,000,054 99,072,112
A 5,000 7,000 10,000

Table 1: Datasets used for experiments

# cores 1 4 8
Speedup for Primal-CR | 1x | 2.46x | 3.12x
Speedup for Collrank 1x | 2.95x | 3.47x

Table 2: Scability of Primal-CR and Collrank on Movielens10m

in Figure 4, Primal-CR is still much faster than Collrank when 8
cores are used. Comparing our Primal-CR algorithm in 1 core, 4
cores and 8 cores on the same machine in Figure 4, the speedup is
desirable. The speedup of Primal-CR and Collrank is summarized
in the Table 2. One can see from the table that the speedup of our
Primal-CR algorithm is comparable to Collrank.

5.3 Performance using Full Training Data

Due to the O(|Q|k) complexity, existing algorithms cannot deal
with large number of pairs, so they always sub-sample a limited
number of pairs per user when solving MovieLens10m or Netflix
data. For example, for Collrank, the authors fixed number of ratings
per user in training as N and only reported N up to 100 for Netflix
data. When we tried to apply their code for N = 200, the algorithm
gets very slow and reports memory error for N = 500.

Using our algorithm, we have the ability to solve the full Netflix
problem, so a natural question to ask is: Does using more training
data help us predict and recommend better? The answer is yes!
We conduct the following experiments to verify this: For all the
users with more than 20 ratings, we randomly choose 10 ratings
as test data and out of the rest ratings we randomly choose up
to C ratings per user as training data. One can see in Figure 5,
for the same test data, more training data leads to better predic-
tion performance in terms of pairwise error and NDCG. Using all
available ratings (C = d3) gives lowest pairwise error and highest
NDCG@10, using up to 200 ratings per user (C = 200) gives second
lowest pairwise error and second highest NDCG@10, and using up
to 100 ratings per user (C = 100) has the highest pairwise error and
lowest NDCG@10. Similar phenomenon is observed for Netflix

data in Figure 5. Collrank code does not work for C = 200 and
C = dsy and even for C = 100, it takes more than 20, 000 secs to con-
verge while our Primal-CR++ takes less than 5,000 secs for the full
Netflix data. The speedup of our algorithm will be even more for a
larger C or larger data size d; and da. We tried to create input file
without subsampling for Collrank, we created 344GB input data
file and Collrank reported memory error message "Segmentation
Fault”. We also tried C = 200, still got the same error message. It is
possible to implement Collrank algorithm by directly working on
the rating data, but the time complexity remains the same, so it is
clear that our proposed Primal-CR and Primal-CR++ algorithms
are much faster.

To the best of our knowledge, our algorithm is the first ranking-
based algorithm that can scale to full Netflix data set using a single
core, and without sub-sampling. Our proposed algorithm makes
the Collaborative Ranking Model in (4) a clear better choice for
large-scale recommendation system over standard Matrix Factor-
ization techniques, since we have the same scalability but achieve
much better accuracy. Also, our experiments suggest that in prac-
tice, when we are given a set of training data, we should try to
use all the training data instead of doing sub-sampling as existing
algorithms do, and only Primal-CR and Primal-CR++ can scale up
to all the ratings.

6 CONCLUSIONS

We considered the collaborative ranking problem setting in which
a low-rank matrix is fitted to the data in the form of pairwise com-
parisons or numerical ratings. We proposed our new optimization
algorithms Primal-CR and Primal-CR++ where the time complexity
is much better than all the existing approaches. We showed that
our algorithms are much faster than state-of-the-art collaborative
ranking algorithms on real data sets (MovieLens1m, Movielens10m
and Netflix) using same subsampling scheme, and moreover our
algorithm is the only one that can scale to the full Movielens10m
and Netflix data. We observed that our algorithm has the same
efficiency with matrix factorization, while achieving better NDCG
since we minimize ranking loss. As a result, we expect our algorithm
to be able to replace matrix factorization in many real applications.
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