
Large-scale Collaborative Ranking in Near-Linear Time

Liwei Wu
Depts. of Statistics and

Computer Science

University of California, Davis

liwu@ucdavis.edu

Cho-Jui Hsieh
Depts. of Statistics and

Computer Science

University of California, Davis

chohsieh@ucdavis.edu

James Sharpnack
Dept. of Statistics

University of California, Davis

jsharpna@ucdavis.edu

ABSTRACT

In this paper, we consider the Collaborative Ranking (CR) problem

for recommendation systems. Given a set of pairwise preferences

between items for each user, collaborative ranking can be used to

rank un-rated items for each user, and this ranking can be naturally

used for recommendation. It is observed that collaborative ranking

algorithms usually achieve be�er performance since they directly

minimize the ranking loss; however, they are rarely used in practice

due to the poor scalability. All the existing CR algorithms have time

complexity at leastO(|Ω |r) per iteration, where r is the target rank

and |Ω | is number of pairs which grows quadratically with number

of ratings per user. For example, the Net�ix data contains totally 20

billion rating pairs, and at this scale all the current algorithms have

to work with signi�cant subsampling, resulting in poor prediction

on testing data.

In this paper, we propose a new collaborative ranking algorithm

called Primal-CR that reduces the time complexity toO(|Ω |+d1d̄2r),
where d1 is number of users and d̄2 is the averaged number of items
rated by a user. Note that d1d̄2 is strictly smaller and o�en much
smaller than |Ω |.

Furthermore, by exploiting the fact that most data is in the
form of numerical ratings instead of pairwise comparisons, we pro-
pose Primal-CR++ with O(d1d̄2(r + log d̄2)) time complexity. Both
algorithms have be�er theoretical time complexity than existing
approaches and also outperform existing approaches in terms of
NDCG and pairwise error on real data sets. To the best of our
knowledge, this is the first collaborative ranking algorithm capa-
ble of working on the full Netflix dataset using all the 20 billion
rating pairs, and this leads to a model with much be�er recom-
mendation compared with previous models trained on subsamples.
Finally, compared with classical matrix factorization algorithm
which also requires O(d1d̄2r) time, our algorithm has almost the
same e�iciency while making much be�er recommendations since
we consider the ranking loss.

KEYWORDS

Collaborative Ranking, Recommendation Systems, Large-Scale.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

KDD’17, August 13–17, 2017, Halifax, NS, Canada.

© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3097983.3098071

1 INTRODUCTION

In online retail and online content delivery applications, it is com-

monplace to have embedded recommendation systems– algorithms

that recommend items to users based on previous user behaviors

and ratings. Online retail companies develop sophisticated recom-

mendation systems based on purchase behavior, item context, and

shi�ing trends. �e Net�ix prize [2], in which competitors utilize

user ratings to recommend movies, accelerated research in recom-

mendation systems. While the winning submissions agglomerated

several existing methods, one essential methodology, latent factor

models, emerged as a critical component. �e latent factor model

means that the approximated rating for user i and item j is given by

u>i vj where ui ,vj are k-dimensional vectors. One interpretation is

that there are k latent topics and the approximated rating can be re-

constructed as a combination of factor weights. By minimizing the

square error loss of this reconstruction we arrive at the incomplete

SVD,

min
U ,V

∑

i, j ∈Ω

(

Ri, j − u
>
i vj

)2
+

λ

2
(‖U ‖2F + ‖V ‖

2
F), (1)

where Ω contains sampled indices of the rating matrix, R.

O�en the performance of recommendation systems is not mea-

sured by the quality of rating prediction, but rather the ranking

of the items that the system returns for a given user. �e task of

�nding a ranking based on ratings or relative rankings is called

Collaborative Ranking. Recommendation systems can be trained

with ratings, that may be passively or actively collected, or by rela-

tive rankings, in which a user is asked to rank a number of items.

A simple way to unify the framework is to convert the ratings into

rankings by making pairwise comparisons of ratings. Speci�cally,

the algorithm takes as input the pairwise comparisons, Yi, j,k for

each user i and item pairs j,k . �is approach confers several advan-

tages. Users may have di�erent standards for their ratings, some

users are more generous with their ratings than others. �is is

known as the calibration drawback, and to deal with this we must

make a departure from standard matrix factorization methods. Be-

cause we focus on ranking and not predicting ratings, we can expect

improved performance when recommending the top items. Our

goal in this paper is to provide a collaborative ranking algorithm

that can scale to the size of the full Net�ix dataset, a heretofore

open problem.

�e existing collaborative ranking algorithms, (for a summary

see section 2), are limited by the number of observed ratings per user

in the training data and cannot scale to massive datasets, therefore,

making the recommendation results less accurate and less useful

in practice. �is motivates our algorithm, which can make use of

the entire Net�ix dataset without sub-sampling. Our contribution

can be summarized below:

• For input data in the form of pairwise preference compar-

isons, we propose a new algorithm Primal-CR that alterna-
tively minimizes latent factors using Newton’s method in
the primal space. By carefully designing the computation
of gradient and Hessian vector product, our algorithm re-
duces the sample complexity per iteration toO(|Ω |+d1d̄2r),
while the state-of-the-art approach [17] haveO(|Ω |r) com-
plexity. Here |Ω | (total number of pairs), is much larger
than d1d̄2 (d1 is number of users and d̄2 is averaged num-
ber of items rated by a user). For the Netflix problem,
|Ω | = 2 × 1010 while d1d̄2 = 108.

• For input data in the form of ratings, we can further ex-
ploit the structure to speedup the gradient and Hessian
computation. The resulting algorithm, Primal-CR++, can
further reduce the time complexity to O(d1d̄2(r + log d̄2))
per iteration. In this se�ing, our algorithm has time com-
plexity near-linear to the input size, and have comparable
speed with classical matrix factorization model that takes
O(d1d̄2r) time, while we can achieve much be�er recom-
mendation by minimizing the ranking loss.

We show that our algorithms outperform existing algorithms on

real world datasets and can be easily parallelized.

2 RELATED WORK

Collaborative �ltering methodologies are summarized in [20] (see

[6] for an early work). Among them, matrix factorization [13] has

been widely used due to the success in the Net�ix Prize. Many

algorithms have been developed based on matrix factorization [5,

11, 18, 19, 22], andmany scalable algorithms have been developed [8,

13]. However, they are not suitable for ranking top items for a user

due to the fact that their goal is to minimize the mean-square error

(MSE) instead of ranking loss. In fact, MSE is not a good metric

for recommendation when we want to recommend the top K items

to a user. �is has been pointed out in several papers [1] which

argue normalized discounted cumulative gain (NDCG) should be

used instead of MSE, and our experimental results also con�rm

this �nding by showing that minimizing the ranking loss results in

be�er precision and NDCG compared with the traditional matrix

factorization approach that is targeting squared error.

Ranking is a well studied problem, and there has been a long line

of research focuses on learning one ranking function, which is called

Learning to Rank. For example, RankSVM [12] is a well-known

pair-wise model, and an e�cient solver has been proposed in [4]

for solving rankSVM. [3] is a list-wise model implemented using

neural networks. Another class of point-wise models �t the ratings

explicitly but has the issue of calibration drawback (see [10]).

�e collaborative ranking (CR) problem is essentially trying to

learnmultiple rankings together, and several models and algorithms

have been proposed in literature. �e Co�rank algorithm [25],

which tailors maximum margin matrix factorization [23] for collab-

orative ranking, is a point-wise model for CR, and is regarded as

the performance benchmark for this task. If the ratings are 1-bit,

a weighting scheme is proposed to improve the usual point-wise

Matrix Factorization approach [15]. List-wise models for Learning

to Rank can also be extended to many rankings se�ing, [21]. How-

ever it is still quite similar to a point-wise approach since they only

consider the top-1 probabilities.

For pairwise models in collaborative ranking, it is well known

that they do not encounter the calibration drawback as do point-

wise models, but they are computationally intensive and cannot

scale well to large data sets [21]. �e scalability problem for pair-

wise models is mainly due to the fact that their time complexity is

at least proportional to |Ω |, the number of pairwise preference com-

parisons, which grows quadratically with number of rated items

for each user. Recently, [17] proposed a new Collrank algorithm,
and they showed that Collrank has be�er precision and NDCG
as well as being much faster compared with other CR methods
on real world datasets, including Bayesian Personalized Ranking
(BPR) [19]. Unfortunately their scalability is still constrained by
number of pairs, so they can only run on subsamples for large
datasets, such as Netflix. In this paper, our algorithm Primal-CR
and Primal-CR++ also belong to the family of pairwise models, but
due to cleverly re-arranging the computation, we are able to have
much be�er time complexity than existing ones, and as a result
our algorithm can scale to very large datasets.

There are many other algorithms proposed for many rankings
se�ing but none of these mentioned below can scale up to the
extent of using all the ratings in the full Netflix data. There are a
few using Bayesian frameworks to model the problem [19], [16],
[24], the last of which requires many specified parameters. Another
one proposed retargeted matrix factorization to get ranking by
monotonically transforming the ratings [14]. [9] proposes a similar
model without making generative assumptions on ratings besides
assuming low-rank and correctness of the ranking order.

3 PROBLEM FORMULATION

We first formally define the collaborative ranking problem using
the example of item recommender system. Assume we have d1
users and d2 items, the input data is given in the form of “for user i ,
item j is preferred over item k” and thus can be represented by a set
of tuples (i, j,k). We use Ω to denote the set of observed tuples, and
the observed pairwise preferences are denoted as {Yi jk | (i, j,k) ∈
Ω}, where Yi jk = 1 denotes that item j is preferred over item k for
a particular user i and Yi jk = −1 to denote that item k is preferred
over item j for user i .

The goal of collaborative ranking is to rank all the unseen items
for each user i based on these partial observations, which can be

done by fi�ing a scoring matrix X ∈ Rd1×d2 . If the scoring matrix
has Xi j > Xik , it implies that item j is preferred over item k by the
particular user i and therefore we should give higher rank for item j

than item k . A�er we estimate the scoring matrix X by solving the
optimization problem described below, we can then recommend
top k items for any particular user.

The Collaborative Ranking Model referred to in this paper is the
one proposed recently in [17]. It belongs to the family of pairwise
models for collaborative ranking because it uses pairwise training
losses [1]. The model is given as

min
X

∑

(i, j,k)∈Ω

L(Yi jk (Xi j − Xik)) + λ | |X | |∗, (2)

where L(.) is the loss function, ‖X ‖∗ is the nuclear norm regular-
ization defined by the sum of all the singular value of the matrix X ,
and λ is a regularization parameter. The ranking loss defined in the
first term of (2) penalizes the pairs when Yi jk = 1 but Xi j − Xik is
positive but small, and penalizes even more when the di�erence
is negative. The second term in the loss function is based on the
assumption that there are only a small number of latent factors
contributing to the users’ preferences which is analogous to the
idea behind incomplete SVD for matrix factorization mentioned
in the introduction. In general we can use any loss function, but
since L2-hinge loss defined as

L(a) = max(0, 1 − a)2 (3)

gives the best performance in practice [17] and enjoys many nice
properties, such as smoothness and di�erentiable, we will focus on
L2-hinge loss in this paper. In fact, our first algorithm Primal-CR
can be applied to any loss function, while Primal-CR++ can only
be applied to L2-hinge loss.

Despite the advantage of the objective function in equation (2)

being convex, it is still not feasible for large-scale problems since
d1 and d2 can be very large so that the scoring matrix X can-
not be stored in memory, not to mention how to solve it. There-
fore, in practice people usually transform (2) to a non-convex

form by replacing X = UVT , and in that case since ‖X ‖∗ =

minX=U TV
1
2 (‖U ‖

2
F
+ ‖V ‖2

F
) [23], problem (2) can be reformulated

as

min
U ,V

∑

(i, j,k)∈Ω

L(Yi jk · u
T
i (vj −vk)) +

λ

2
(‖U ‖2F + ‖V ‖

2
F), (4)

We use ui and vj denote columns of U and V respectively. Note
that [17] also solves the non-convex form (4) in their experiments,
and in the rest of the paper we will propose a faster algorithm for
solving (4).

4 PROPOSED ALGORITHMS

4.1 Motivation and Overview

Although collaborative ranking assumes that input data is given in
the form of pairwise comparisons, in reality almost all the datasets
(Netflix, Yahoo-Music, MovieLens, etc) contain user ratings to
items in the form of {Ri j | (i, j) ∈ Ω̄}, where Ω̄ is the subset
of observed user-item pairs. Therefore, in practice we have to
transform the rating-based data into pair-wise comparisons by
generating all the item pairs rated by the same user:

Ω = {(i, j,k) | j,k ∈ Ω̄i }, (5)

where Ω̄i := {j | (i, j) ∈ Ω̄} is the set of items rated by user i .
Assume there are averagely d̄2 items rated by a user (i.e., d̄2 =
mean(|Ω̄i |)), then the collaborative ranking problem will have

O(d1d̄2
2
) pairs and thus the size of Ω grows quadratically.

Unfortunately, all the existing algorithms haveO(|Ω |r) complex-
ity, so they cannot scale to large number of items. For example,
the AltSVM (or referred to asCollrank) Algorithm in [17] will run
out of memory when we subsample 500 rated items per user on
Netflix dataset since its implementation1 stores all the pairs in
memory and therefore requires O(|Ω |) memory. So it cannot be

1Collrank code is available on h�ps://github.com/dhpark22/collranking.

used for the full Netflix dataset which has more than 20 billion

pairs and requires 300GB memory space. To the best of our knowl-
edge, no collaborative ranking algorithms have been applied to the
full Netflix data set. But in real life, we hope to make use of as
much information as possible to make be�er recommendation. As
shown in our experiments later, using full training data instead of
sub-sampling (such as selecting a fixed number of rated items per
user) achieves higher prediction and recommendation accuracy for
the same test data.

To overcome this scalability issue, we propose two novel al-
gorithms for solving problem (4), and both of them significantly
reduce the time complexity over existing methods. If the input
file is in the form of |Ω | pairwise comparisons, our proposed al-
gorithm, Primal-CR, can reduce the time and space complexity
fromO(|Ω |r) toO(|Ω | +d1d̄2r), where d̄2 is the average number of
items compared by one user. If the input data is given as user-item
ratings (e.g., Netflix, Yahoo-Music), the complexity is reduced from

O(d1d̄2
2
r) to O(d1d̄2r + d1d̄2

2
).

If the input file is given in ratings, we can further reduce the
time complexity to O(d1d̄2r + d1d̄2 log d̄2) using exactly the same
optimization algorithm but smarter ways to compute gradient and
Hessian vector product. This time complexity is much smaller
than the number of comparisons |Ω | = O(d1d̄

2
2), and we call this

algorithm Primal-CR++.
Wewill first introduce Primal-CR in Section 4.2, and then present

Primal-CR++ in Section 4.3.

4.2 Primal-CR: the proposed algorithm for pairwise
input data

Algorithm 1 Primal-CR/ Primal-CR++: General Framework

Input: Ω, {Yi jk : (i, j,k) ∈ Ω}, λ ∈ R+ . for Primal-CR

Input: M ∈ Rd1×d2 , λ ∈ R+ . for Primal-CR++

Output: U ∈ Rr×d1 and V ∈ Rr×d2

1: Randomly initializeU ,V from Gaussian Distribution
2: while not converged do

3: procedure FixU and update V

4: while not converged do

5: Apply truncated Newton update (Algorithm 2)
6: end while

7: end procedure

8: procedure Fix V and updateU

9: while not converged do

10: Apply truncated Newton update (Algorithm 2)
11: end while

12: end procedure

13: end while

14: returnU ,V . recover score matrix X

In the first se�ing, we consider the case where the pairwise
comparisons {Yi jk | (i, j,k) ∈ Ω} are given as input. To solve
problem (4), we alternatively minimizeU andV in the primal space
(see Algorithm 1). First, we fix U and update V, and the subproblem

Algorithm 2 Truncated Newton Update for V (same procedure

can be used for updatingU)

Input: Current solutionU ,V
Output: V

1: Compute д = vec(∇f (V))
2: Let H = ∇2 f (V) (do not explicitly compute H)
3: procedure Linear Conjugate Gradient(g, F)
4: Initialize δ0 = 0

5: r0 = Hδ0 − д, p0 = −r0
6: for k = 0, 1, ...,maxiter do

7: Compute the Hessian-vector product q = Hpk
8: αk = −r

T
k
pk/p

T
k
q

9: δk+1 = δk + αkpk
10: rk+1 = rk + αkq

11: if | |rk+1 | |2 < | |r0 | |2 · 10
−2 then

12: break

13: end if

14: βk+1 = (rk+1q)/p
T
k
q

15: pk+1 = −rk+1 + βk+1pk
16: end for

17: return δ

18: end procedure

19: V = V − sδ (stepsize s found by line search)
20: returnU or V

for V while U is fixed can be wri�en as follows:

V = argmin
V ∈Rr×d2

{

λ

2
| |V | |2F +

∑

(i, j,k)∈Ω

L(Yi jk · u
T
i (vj −vk))

}

:= f (V)

(6)

In [17], this subproblem is solved by stochastic dual coordinate
descent, which requires O(|Ω |r) time and O(|Ω |) space complexity.
Furthermore, the objective function decreases for the dual problem
sometimes does not imply the decrease of primal objective func-
tion value, which o�en results in slow convergence. We therefore
propose to solve this subproblem for V using the primal truncated
Newton method (Algorithm 2).

Newton method is a classical second-order optimization algo-
rithm. For minimizing a vector-valued function f (x), Newton
method iteratively updates the solution byx ← x−(∇2 f (x))−1∇f (x).
However, the matrix inversion is usually hard to compute, so a trun-
cated Newton method computes the update direction by solving
the linear system ∇2 f (x)a = ∇f (x) up to a certain accuracy, usu-
ally using a linear conjugate gradient method. If we vectorized
the problem for updating V in eq (6), the gradient is a (rd2)-sized
vector and the Hessian is an (rd2)-by-(rd2) matrix, so explicitly
forming the Hessian is impossible. Below we discuss how to apply
the truncated Newton method to solve our problem, and discuss
e�icient computations for each part.

Derivation of Gradient. When applying the truncated New-

ton method, the gradient ∇f (V) is a Rr×d2 matrix and can be
computed explicitly:

∇f (V) =

d1
∑

i=1

∑

(j,k)∈Ωi

L′(Yi jk ·u
T
i (vj −vk))(uie

T
j −uie

T
k
)Yi jk +λV ,

(7)

where ∇f (V) ∈ Rr×d2 , Ωi := {(j,k) | (i, j,k) ∈ Ω} is the subset of
pairs that associates with user i , and ej is the indicator vector used
to add the ui vector to the j-th column of the output matrix. The
first derivative for L2-hinge loss function (3) is

L′(a) = 2min(a − 1, 0) (8)

For convenience, we define д := vec(∇f (V)) to be the vectorized
form of gradient. One can easily see that computing д naively by
going through all the pairwise comparisons (j,k) and adding up
arrays is time-consuming and has O(|Ω |r) time complexity, which
is the same with Collrank [17].

Fast computation for gradient. Fortunately, we can reduce
the time complexity to O(|Ω | + d1d̄2r) by smartly rearranging the
computations, so that the time is only linear to |Ω | and r , but not
to |Ω |r . The method is described below.

First, for each i , the first term of (7) can be represented by
∑

(j,k)∈Ωi

L′(Yi jk · u
T
i (vj −vk))(uie

T
j − uie

T
k
)Yi jk =

∑

j ∈d̄2(i)

tjuie
T
j ,

(9)

where d̄2(i) := {j | ∃k s.t. (i, j,k) ∈ Ω} and tj is some coe�icient
computed by summing over all the pairs in Ωi . If we have tj , the

overall gradient can be computed by O(d̄2(i)r) time for each i . To

compute tj , we first compute uTi vj for all j ∈ d̄2(i) in O(d̄2(i)r)

time, and then go through all the (j,k) pairs while keep adding the
coe�icient related to this pair to tj and tk . Since there is no vector
operations when we go through all pairs, this step only takesO(Ωi)

time. A�er ge�ing all tj , we can then conduct
∑

j ∈d̄2(i)
tjuie

T
j in

O(d̄2(i)r) time. Therefore, the overall complexity can be reduced
to O(|Ω | + d1d̄2r). The pseudo code is presented in Algorithm 3.

Algorithm 3 Primal-CR: e�icient way to compute ∇f (V)

Input: Ω, {Yi jk : (i, j,k) ∈ Ω}, λ ∈ R+, current variablesU ,V

Output: д,m . д ∈ Rd2r is the gradient for f (V)

1: Initialize д = 0 . д ∈ Rr×d2

2: for i = 1, 2, . . . ,d1 do

3: for all j ∈ d̄2(i) do

4: precompute uTi vj and store in a vectormi

5: end for

6: Initialize a zero array t of size d2
7: for all (j,k) ∈ d̄2(i) do

8: if Yi jk (mi [j] −mi [k]) < 1 then

9: s = 2(Yi jk (mi [j] −mi [k]) − 1)

10: t[j] += Yi jks

11: t[k] −= Yi jks . O(1) time per for loop iteration
12: end if

13: end for

14: for all j ∈ d̄2(i) do

15: д[:, j] += t[j] · ui
16: end for

17: end for

18: д = vec(д + λV) . vectorize matrix д ∈ Rr×d2

19: Form a sparse matrixm = [m1 . . .md1] .m can be reused later
20: return д,m

Derivation of Hessian-vector product. Now we derive the

Hessian ∇2 f (V) for f (V). We define ∇j f (V) :=
∂

∂vj
f (V) ∈ Rr

and ∇2
j,k

f (V) := ∂2

∂vj ∂vk
f (V) ∈ Rr×r in the following derivations.

From the gradient derivation, we have

∇j f (V) =
∑

i :j ∈d̄2(i)

∑

k ∈d̄2(i)
k,j

L′(Yi jk · u
T
i (vj −vk))uiYi jk + λvj .

Taking derivative again we can obtain

∇2
j,k

f (V) =
{

∑

i :(j,k)∈d̄2(i)
L′′(Yi jk · u

T
i (vj −vk))(−uiu

T
i) if j , k

∑

i :j ∈d̄2(i)

∑

k ∈d̄2(i),k,j
L′′(Yi jk · u

T
i (vj −vk))uiu

T
i + λIr×r if j = k

and the second derivative for L2 hinge loss function is given by:

L′′(a) =

{

2 if a ≤ 1

0 if a > 1.
(10)

Note that if we write the full Hessian H as a (d2r) by (d2r) matrix,
then ∇2

j,k
f (V) is an r × r block in H , where there are totally d22

of these blocks. In the CG update for solving H−1д, we only need

to compute H · a for some a ∈ Rd2r . For convenience, we also
partition this a into d2 blocks, each subvector aj has size r , so
a = [a1; · · · ;aj]. Similarly we can use subscript to denote the
subarray (H · a)j of the array H · a, which becomes

(H · a)j =
∑

k,j

∇2
j,k

f (V) · ak + ∇
2
j, j f (V) · aj

= λaj +
∑

i :j ∈d̄2(i)

ui

∑

k ∈d̄2(i)
k,j

L′′(Yi jk · u
T
i (vj −vk))(u

T
i aj − u

T
i ak).

Therefore, we have

H · a =
∑

j

Ej (H · a)j

=λa +
∑

i

∑

j ∈d̄2(i)

Ejui

∑

k ∈d̄2(i)
k,j

L′′(Yi jk · u
T
i (vj −vk))(u

T
i aj − u

T
i ak)

(11)

where Ej is the projection matrix to the j-th block, indicating that
we are only adding (H · a)j to the j-th block of matrix, and se�ing
0 elsewhere.

Fast computation for Hessian-vector product . Similar to
the case of gradient computation, using a naive way to compute
H · a requires O(|Ω |r) time since we need to go through all the
(i, j,k) tuples, and each of them requires O(r) time. However, we
can apply the similar trick in gradient computation to reduce the

time complexity to O(|Ω | + d1d̄2r) by pre-computing uTi aj and
caching the coe�icient using the array t . The detailed algorithm is
given in Algorithm 4.

Note that in Algorithm 4, we can reuse the m (sparse array
storing the current prediction) which has been pre-computed in the
gradient computation (Algorithm 3), and that will cost onlyO(d1d̄2)
memory. Even without storing them matrix, we can computem in
the loop of line 4 in Algorithm 4, which will not increase the overall
computational complexity.

Algorithm 4 Primal-CR: e�icient way to compute Hessian vector
product

Input: Ω, {Yi jk : (i, j,k) ∈ Ω}, λ ∈ R+, a ∈ Rd2r ,m,U ,V

Output: Ha . Ha ∈ Rd2r is needed in Linear CG

1: Ha = 0 . Ha ∈ Rd2r

2: for i = 1, 2, . . . ,d1 do

3: for all j ∈ d̄2(i) do

4: precompute uTi aj and store it in array b
5: end for

6: Initialize a zero array t of size d2
7: for all (j,k) ∈ d̄2(i) do

8: if Yi jk (mi [j] −mi [k]) < 1.0 then

9: sjk = 2.0 · (b[j] − b[k])

10: t[j] += sjk
11: t[k] −= sjk . O(1) time per for loop iteration
12: end if

13: end for

14: for all j ∈ d̄2(i) do

15: (Ha)[(p − 1) · r + 1 : p · r] += t[j] · ui
16: end for

17: end for

18: return Ha

Fix V and UpdateU . A�er updating V by truncated Newton,
we need to fix V and update U . The subproblem for U can be
wri�en as:

U = argmin
U ∈Rr×d2

{
λ

2
| |U | |2F +

d1
∑

i=1

∑

(j,k)∈d̄2(i)

L(Yi jk ·u
T
i (vj −vk))} (12)

Since ui , the i-th column of U , is independent from the rest
of columns, equation 12 can be decomposed into d1 independent
problems for ui :

ui = argmin
u ∈Rr

λ

2
| |u | |22 +

∑

(j,k)∈d̄2(i)

L(Yi jk ·u
T (vj −vk)) := h(u) (13)

Eq (13) is equivalent to an r -dimensional rankSVM problem. Since
r is usually small, the problems are easy to solve. In fact, we can
directly apply an e�icient rankSVM algorithm proposed in [4]
to solve each r -dimensional rankSVM problem. This algorithm
requires O(|Ωi | + r |d̄2(i)|) time for solving each subproblem with
respect to ui , so the overall complexity is O(|Ω | + rd1d̄2) time per
iteration.

Summary of time and space complexity. When updatingV ,
we first compute gradient by Algorithm 3, which takes O(|Ω | +
d1d̄2r) time, and each Hessian-vector product in 4 also takes the
same time. The updates forU takes the same time complexity with
updating V , so the overall time complexity is O(|Ω | + d1d̄2r) per
iteration. The whole algorithm only needs to store size d1 × r and
d2 × r matrices for gradient and conjugate gradient method. The
m matrix in Algorithm 3 is not needed, but in practice we find it
can speedup the code by around 25%, and it only takes d1d̄2 ≤ |Ω |
memory space (less than the input size). Therefore, our algorithm
is very memory-e�icient.

Before going to Primal-CR++, we discuss the time complexity
of Primal-CR when the input data is the user-item rating matrix.
Assume d̄2 is the averaged number of rated items per user, then
there will be |Ω | = O(d1d̄

2
2) pairs, leading to O(d1d̄

2
2 + d1d̄2r) time

complexity for Primal-CR. This is much be�er than the O(d1d̄
2
2r)

complexity for all the existing algorithms.

Algorithm 5 Primal-CR++: compute gradient part for f (V)

Input: M ∈ Rd1×d2 , λ ∈ R+, currentU ,V

Output: д . д ∈ Rd2r is the gradient for f (V)

1: Initialize д = 0 . д ∈ Rr×d2

2: for i = 1, 2, ...,d1 do

3: Let d̄2 = |d̄2(i)| and r j = Ri, j for all j.

4: Computem[j] = uTi vj for all j ∈ d̄2(i)

5: Sort d̄2(i) according to the ascending order of mi , so
m[π (1)] ≤ · · · ≤ m[π (d̄2)]

6: Initialize s[1], . . . , s[L] and c[1], . . . , c[L] with 0
7: (Store in segment tree or Fenwick tree.)
8: p ← 1

9: for all j = 1, . . . , d̄2 do

10: whilem[π (p)] ≤ mj + 1 do

11: s[rπ (p)]+ =m[π (p)], c[rπ (p)]+ = 1

12: p+ = 1

13: end while

14: S =
∑

`≥rπ (p)
s[`],C =

∑

`≥rπ (p)
c[`]

15: t+[π (j)] = 2(C · (m[π (j)] + 1) − S)

16: end for

17: Do another scan j from d̄2 to 1 to compute t−[π (j)] for all j
18: д[:, j] += (t+[j] + t−[j]) · ui for all j
19: end for

20: д = vec(д + λV) . vectorize matrix д ∈ Rr×d2

21: return д

4.3 Primal-CR++: the proposed algorithm for rating
data

Now we discuss a more realistic scenario, where the input data
is a rating matrix {Ri j | (i, j) ∈ Ω̄} and Ω̄ is the observed set of
user-item ratings. We assume there are only L levels of ratings, so
Ri j ∈ {1, 2, . . . ,L}. Also, we use d̄2(i) := {j | (i, j) ∈ Ω̄} to denote
the rated items for user i .

Given this data, the goal is to solve the collaborative ranking
problem (4) with all the pairwise comparisons in the rating dataset
as defined in (5). There are totally O(d1d̄

2
2) pairs, and the question

is: Can we have an algorithm with near-linear time with respect to
number of observed ratings |Ω̄ | = d1d̄2? We answer this question
in the a�irmative by proposing Primal-CR++, a near-linear time
algorithm for solving problem (4) with L2-hinge loss.

The algorithm of Primal-CR++ is exactly the same with Primal-
CR, but we use a smarter algorithm to compute gradient and Hes-
sian vector product in near-linear time, by exploiting the structure
of the input data.

We first discuss how to speed up the gradient computation of (7),
where the main computation is to compute (9) for each i . When

the loss function is L2-hinge loss, we can explicitly write down the
coe�icients tj in (9) by

tj =
∑

k ∈d̄2(i)

2(mj −mk − Yi jk)I [Yi jk (mj −mk) ≤ 1], (14)

wheremj := u
T
i vj and I [·] is an indicator function such that I [a ≤

b] = 1 if a ≤ b, and I [a ≤ b] = 0 otherwise. By spli�ing the cases
of Yi jk = 1 and Yi jk = −1, we get

tj = t+j + t
−
j

=

∑

k ∈d̄2(i)
mk ≤mj+1, Yi jk=−1

2(mj −mk + 1) +
∑

k ∈d̄2(i)
mk ≥mj−1, Yi jk=1

2(mj −mk − 1).

(15)

Assume the indexes in d̄2(i) are sorted by the the ascending order of
mj . Then we can scan from le� to right, and maintain the current
accumulated sum s1, ..., sL and the current index counts c1, ..., cL
for each rating level. If the current pointer is p, then

s`[p] =
∑

j :mj ≤p,Ri j=`

mj and c`[p] = |{j :mj ≤ p,Ri j = `}|.

Since we scan from le� to right, these numbers can be maintained
in constant time at each step. Now assume we scan over the
numbersm1 + 1,m2 + 1, . . . , then at each point we can compute

t+j =

L
∑

`=Ri, j+1

2{(mj + 1)c`[mj + 1] − s`[mj + 1]},

which can be computed in O(L) time.
Although we observe that O(L) time is already small in practice

(since L usually smaller than 10), in the following we show there is
a way to remove the dependency on L by using a simple Fenwick
tree [7], F+tree [26] or segment tree. If we store the set {s1, . . . , sL}
in Fenwick tree, then each query of

∑

`≥r si can be done in in
O(logL) time, and since each step we only need to change one
element into the set, the updating time is also O(logL). Note that
t−j can be computed in the same way by scanning from largestmj

to the smallest one.
To sum up, the algorithm first computes allmj in O(d̄2r) time,

then sort these numbers usingO(d̄2 log d̄2) time, and then compute
tj for all j using two linear scans in O(d̄2 logL) time. Here logL is

dominated by log d̄2 since L can be the number of unique rating
levels in the current set d̄2(i). Therefore, a�er computing this for
all users i = 1, . . . ,d1, the time complexity for computing gradient
is

O(d1d̄2 log d̄2 + d1d̄2r) = O(|Ω̄ |(log d̄2 + r)).

A similar procedure can also be used for computing the Hessian-
vector product, and the computation of updatingU with fixed V
is simplier since the problem becomes decomposable to d1 inde-
pendent problems, see eq (13). Due to the page limit we omit the
details here; interesting readers can check our code on github.

Compared with the classical matrix factorization, where both
ALS and SGD requires O(|Ω̄ |r) time per iteration [13], our al-
gorithm has almost the same complexity, since log d̄2 is usually
smaller than r (typically r = 100). Also, since all the temporary
memory when computing user i can be released immediately, the

[2] James Benne�, Stan Lanning, and Netflix Netflix. 2007. The Netflix Prize. In In
KDD Cup and Workshop in conjunction with KDD.

[3] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[4] Olivier Chapelle and S Sathiya Keerthi. 2010. E�icient algorithms for ranking
with SVMs. Information Retrieval 13, 3 (2010), 201–215.

[5] Kai-Yang Chiang, Cho-Jui Hsieh, and Inderjit S Dhillon. 2015. Matrix completion
with noisy side information. InAdvances in Neural Information Processing Systems.
3447–3455.

[6] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommenda-
tion algorithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004),
143–177.

[7] P. M. Fenwick. 1994. A new data structure for cumulative frequency tables.
So�ware: Practice and Experience (1994).

[8] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. 2011. Large-
scale matrix factorization with distributed stochastic gradient descent. In Pro-
ceedings of the 17th ACMSIGKDD international conference on Knowledge discovery
and data mining. ACM, 69–77.

[9] Suriya Gunasekar, Oluwasanmi O Koyejo, and Joydeep Ghosh. 2016. Preference
Completion from Partial Rankings. In Advances in Neural Information Processing
Systems. 1370–1378.

[10] Severin Hacker and Luis Von Ahn. 2009. Matchin: eliciting user preferences
with an online game. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 1207–1216.

[11] Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit S Dhillon. 2015. PU Learning
for Matrix Completion. In ICML.

[12] T. Joachims. 2002. Optimizing search engines using clickthrough data. In ACM
SIGKDD.

[13] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization
techniques for recommender systems. Computer 42, 8 (2009).

[14] Oluwasanmi Koyejo, Sreangsu Acharyya, and Joydeep Ghosh. 2013. Retargeted
matrix factorization for collaborative filtering. In Proceedings of the 7th ACM

conference on Recommender systems. ACM, 49–56.
[15] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. 2008. One-class collaborative filtering. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on. IEEE, 502–511.

[16] Weike Pan and Li Chen. 2013. GBPR: Group Preference Based Bayesian Personal-
ized Ranking for One-Class Collaborative Filtering.. In IJCAI, Vol. 13. 2691–2697.

[17] Dohyung Park, Joe Neeman, Jin Zhang, Sujay Sanghavi, and Inderjit S Dhillon.
2015. Preference Completion: Large-scale Collaborative Ranking from Pairwise
Comparisons. stat 1050 (2015), 16.

[18] Ste�en Rendle. 2010. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 995–1000.

[19] Ste�en Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-fi�h conference on uncertainty in artificial intelligence.
AUAI Press, 452–461.

[20] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collabora-
tive filtering recommender systems. In The adaptive web. Springer, 291–324.

[21] Yue Shi, Martha Larson, and Alan Hanjalic. 2010. List-wise learning to rank
with matrix factorization for collaborative filtering. In Proceedings of the fourth
ACM conference on Recommender systems. ACM, 269–272.

[22] Si Si, Kai-Yang Chiang, Cho-Jui Hsieh, Nikhil Rao, and Inderjit S Dhillon. 2016.
Goal-directed inductive matrix completion. In KDD.

[23] Nathan Srebro, Jason DM Rennie, and Tommi S Jaakkola. 2004. Maximum-
Margin Matrix Factorization.. In NIPS, Vol. 17. 1329–1336.

[24] Maksims Volkovs and Richard S Zemel. 2012. Collaborative ranking with 17
parameters. In Advances in Neural Information Processing Systems. 2294–2302.

[25] Markus Weimer, Alexandros Karatzoglou, �oc Viet Le, and Alex Smola. 2007.
Maximum margin matrix factorization for collaborative ranking. Advances in
neural information processing systems (2007), 1–8.

[26] Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, SVN Vishwanathan, and Inderjit S
Dhillon. 2015. A scalable asynchronous distributed algorithm for topic modeling.
In Proceedings of the 24th International Conference on World Wide Web. ACM,
1340–1350.

	Abstract
	1 Introduction
	2 related work
	3 Problem Formulation
	4 Proposed Algorithms
	4.1 Motivation and Overview
	4.2 Primal-CR: the proposed algorithm for pairwise input data
	4.3 Primal-CR++: the proposed algorithm for rating data
	4.4 Parallelization

	5 Experiments
	5.1 Compare single thread versions using the same subsamples
	5.2 Compare parallel versions
	5.3 Performance using Full Training Data

	6 Conclusions
	References

