
Gradient Boosted Decision Trees for High Dimensional Sparse Output

Si Si 1 Huan Zhang 2 S. Sathiya Keerthi 3 Dhruv Mahajan 4 Inderjit S. Dhillon 5 Cho-Jui Hsieh 2

Abstract

In this paper, we study the gradient boosted

decision trees (GBDT) when the output space

is high dimensional and sparse. For example,

in multilabel classification, the output space is

a L-dimensional 0/1 vector, where L is num-

ber of labels that can grow to millions and be-

yond in many modern applications. We show

that vanilla GBDT can easily run out of mem-

ory or encounter near-forever running time in

this regime, and propose a new GBDT variant,

GBDT-SPARSE, to resolve this problem by em-

ploying L0 regularization. We then discuss in de-

tail how to utilize this sparsity to conduct GBDT

training, including splitting the nodes, comput-

ing the sparse residual, and predicting in sub-

linear time. Finally, we apply our algorithm to

extreme multilabel classification problems, and

show that the proposed GBDT-SPARSE achieves

an order of magnitude improvements in model

size and prediction time over existing methods,

while yielding similar performance.

1. Introduction

Gradient boosted decision tree (GBDT) is a powerful

machine-learning technique that has a wide range of com-

mercial and academic applications and produces state-of-

the-art results for many challenging data mining problems.

The algorithm builds one decision tree at a time to fit the

residual of the trees that precede it. GBDT has been widely

used recently mainly due to its high accuracy, fast training

and prediction time, and small memory footprint.

In this paper, we study the GBDT algorithm for problems

with high-dimension and sparse output space. Extreme

1Google Research, Mountain View, USA 2University of
California at Davis, Davis, USA 3Microsoft, Mountain View,
USA 4Facebook, Menlo Park, USA 5University of Texas at
Austin, Austin, USA. Correspondence to: Cho-Jui Hsieh
<chohsieh@ucdavis.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

multi-label learning and multi-class classification belong

to this problem, where the goal is to automatically assign

one or a subset of relevant labels from a very large label

set. Dealing with problems with high dimensional output

leads to multiple computational challenges. In this paper

we mainly focus on two important issues that limit the ap-

plication of the existing methods to real world applications:

prediction time and model size. As the output space size

increases, these dimensions become the bottleneck, both

during training and testing. As an example, if a one-versus-

all model is used on a classification problem with 1 million

labels, then we need to evaluate 1 million models for any

testing sample. If these models cannot be kept in memory,

reading them from disks will further increase the predic-

tion time substantially. The linear dependency on number

of labels makes most of the existing approaches very slow

during testing, especially when we do not want to access

the cloud for every test point.

The computation of GBDT is also prohibitively expensive

for applications with high dimensional sparse output. At

each iteration, GBDT builds a regression tree that fits the

residuals from the previous trees. The density of the resid-

ual grows dramatically even after just one single iteration,

and it will soon become an L by N dense matrix where N
is number of samples and L is the number of labels (size

of output space). As a consequence, at least O(NL) time

and memory are required to build GBDT trees. This makes

GBDT infeasible for large scale applications where N and

L can be both large, e.g., several millions.

Our goal is to develop a new approach for problems with

high-dimensional and sparse output spaces that achieves

faster prediction time and smaller model size than exist-

ing algorithms, but has similar prediction accuracy and

training time. To this end, we develop the first Gradient

Boosted Decision Tree (GBDT) algorithm for high dimen-

sional and sparse output, with applications in extreme mul-

tilabel learning problems. We make the crucial observation

that each data point has very few labels; based on that we

solve a L0 regularized optimization problem to enforce the

prediction of each leaf node in each tree to have only a

small number (k) of nonzero elements or labels. Hence, af-

ter T trees have been added during GBDT iterations, there

will be at most Tk nonzero gradients for any data point.

Another important challenge discussed in this paper is pre-

Gradient Boosted Decision Trees for High Dimensional Sparse Output

diction time. Given the sparsified output, we discuss effi-

cient algorithms to conduct prediction for both top-K rec-

ommendation or the whole sparse output vector. Finally,

we discuss how to handle sparse data, where each feature

is active only on a small fraction of training examples. To

handle this, we use several unsupervised and supervised

dimensional reduction algorithms as pre-processing steps.

This also has the positive effect of reducing the search

space of each node.

For extreme multi-label applications, our algorithm has

competitive accuracy compared with existing state-of-the-

art algorithms, while achieving substantial reductions in

prediction time and model size. For example, on the

Wiki10-31K dataset with 30938 labels, our method takes

only 1.3 secs. for prediction and achieves 84.34% accuracy

with a model size of 85.8MB, while the state-of-the-art fast

multi-label method FASTXML takes more than 10 secs. to

achieve 82.71% accuracy and uses 853.5MB memory to

store the model. Our method can be efficiently parallelized

and achieve almost linear speed up in multi-core settings.

The rest of the paper is outlined as follows. We present

related work in Section 2. Traditional GBDT is explained

in Section 3. Our main algorithm GBDT-SPARSE is pro-

posed and analyzed in Section 4. Experimental results are

given in Section 5. We present conclusions in Section 6.

2. Related Work

Ensemble methods have shown excellent performance in

various machine learning applications and analytics com-

petitions, e.g., Kaggle challenges. Common ensemble

methods include random forests (Liaw & Wiener, 2002),

bagging (Breiman, 1996), and boosting (Schapire, 1999;

Friedman, 2001; 2002). Out of these, boosting is very ef-

fective in reducing model size and prediction time since it

uses the output of previous models to train the next one.

Many classical boosting methods have shown their effi-

ciency in practice. Among them, gradient boosted decision

trees (GBDT) (Friedman, 2001; 2002) has received much

attention because of its high accuracy, small model size

and fast training and prediction. It been widely used for

binary classification, regression, and ranking. In GBDT,

each new tree is trained on the per-point residual defined as

the negative of gradient of loss function wrt. output of pre-

vious trees. GBDT is well studied in the literature: some

research has been done to speed up the computation of

GBDT under different parallel settings (multi-core or dis-

tributed), e.g., XGBoost (Chen & Guestrin, 2016), Light-

GBM,1 PLANET (Panda et al., 2009), PV-Tree (Meng

et al., 2016), and YGGDRASIL(Abuzaid et al., 2016) or

exploit its benefit for different machine learning applica-

tions, e.g., using GBDT for CRFs (Chen et al., 2015). How-

1https://github.com/Microsoft/LightGBM

ever, to the best of our knowledge none of them can be effi-

ciently applied to problems with high dimensional output.

Recently, machine learning problems with high dimen-

sional output have drawn considerable attention. Two

popular and representative problems are extreme multi-

class classification and extreme multi-label learning prob-

lem (Prabhu & Varma, 2014; Bhatia et al., 2015; Yu et al.,

2014; Agrawal et al., 2013; Jasinska et al., 2016; Si et al.,

2016) and both deal with very large number of labels.

LOMtree proposed in (Choromanska & Langford, 2015)

constructs trees for extreme multi-class problem, and ob-

tains training and test time complexity logarithmic in the

number of classes, but its extension to multi-label case is

not straightforward. Many algorithms have been devel-

oped to solve extreme multi-label learning problem. For in-

stances, embedding based methods LEML (Yu et al., 2014)

and SLEEC (Bhatia et al., 2015) project the labels and

features to some low-dimensional space while preserving

distances either with the neighboring label vectors or the

full training set; PLT(Jasinska et al., 2016) considers using

sparse probability estimates restricted to the most probable

labels to speed up the F-measure maximization for extreme

multi-label learning; PD-Sparse (Yen et al., 2016) formu-

lates multilabel learning problem as a primal-dual sparse

problem given by margin-maximizing loss with L1 and L2

penalties. Tree based methods (Prabhu & Varma, 2014;

Agrawal et al., 2013) generalize the impurity measures de-

fined for binary classification and ranking tasks to multi-

label scenario for splitting the nodes, but require hundreds

of trees to achieve good accuracy. FASTXML (Prabhu &

Varma, 2014) uses NDCG based ranking loss function and

solves a non-convex optimization problem to find a sparse

linear separator for splitting each node. All the approaches

discussed above either do not give good accuracy (Yu et al.,

2014), or, require large sized models with high prediction

times to do so (Prabhu & Varma, 2014).

In contrast, to solve extreme multi-label learning problem,

our method is based on GBDT and hence requires only

a few trees to build a good model. During training, we

also enforce sparsity in the label vector at each leaf node

to reduce the model size and prediction time. Our ap-

proach is different from FASTXML in three aspects:(1) we

do not need to solve a non-convex optimization at each

node, but, rather do a much simpler and faster feature se-

lection; (2) we follow the idea of GBDT to build trees,

while FASTXML is a random forest based method; (3) we

can achieve similar accuracy as FASTXML, but with much

faster prediction time and smaller model size.

3. Background

We first discuss the original GBDT algorithm, and present

the difficulty when applying GBDT to solve problems with

Gradient Boosted Decision Trees for High Dimensional Sparse Output

high dimensional output space.

GBDT for binary classification Let us explain the main

idea behind GBDT using binary classification, in which

a scalar score function is formed to distinguish the two

classes. Given training data X = {xi}
N
i=1 with xi ∈ RD

and their labels Y = {yi}
N
i=1 with yi ∈ {0, 1}, the goal

is to choose a classification function F (x) to minimize the

aggregation of some specified loss function L(yi, F (xi)):

F ∗ = argmin
F

N
∑

i=1

L(yi, F (xi)). (1)

Gradient boosting considers the function estimation F in

an additive form:

F (x) =

T
∑

m=1

fm(x), (2)

where T is the number of iterations. The {fm(x)} are de-

signed in an incremental fashion; at the m-th stage, the

newly added function, fm is chosen to optimize the aggre-

gated loss while keeping {fj}
m−1
j=1 fixed.

Each function fm belongs to a set of parametrized ‘base-

learners’; let θ denote the vector of parameters of the the

base-learner. GBDT uses decision trees to be the base

learners. For this choice, θ consists of parameters that rep-

resent the tree structure, such as the feature to split in each

internal node, the threshold for splitting each node, etc.

At stage m, we form an approximate function of the loss:

L(yi, Fm−1(xi) + fm(xi)) ≈

L(yi, Fm−1(xi)) + gifm(xi) +
1

2
fm(xi)

2, (3)

where Fm−1(xi) =
∑m−1

j=1 fj(xi) and

gi =
∂L(yi, F (xi))

∂F (xi)
|F (xi)=Fm−1(xi) .

Note that throughout the paper we will only take differen-

tiation with the second parameter of L(·, ·), so we define

L′(yi, Fm−1(xi)) to be the above differentiation.

We want to choose fm to minimize the right hand side

of (3), which can be written as the following minimization

problem:

argmin
fm

N
∑

i=1

1

2
(fm(xi)− gi)

2. (4)

Since only the direction is fitted, a suitable step size

(shrinkage parameter) is usually applied to fm before it is

added to Fm−1. The advantage of this gradient boosting

approach is that only the expression of the gradient varies

for different loss functions, while the rest of the procedure,

and in particular the decision tree induction step, remains

the same for different loss functions.

4. Proposed Algorithm (GBDT-SPARSE)

Now we discuss the problem with sparse high dimensional

output. For input data X = {xi}
N
i=1 with xi ∈ RD, we as-

sume the corresponding output Y = {yi}
N
i=1 with yi ∈ R

L

are high-dimensional and sparse—L is very large but each

yi only contains a few nonzero elements. We denote the

average number of nonzero elements S =
∑

i ‖yi‖0/N ,

and S � L. Multilabel learning is an example, where each

xi is the input features for a training sample, yi ∈ {0, 1}
L

where L is the number of labels, and (yi)q = 1 if sample i
has label q.

Now we discuss the proposed GBDT-SPARSE algorithm.

For a general loss function with high dimensional output

yi, we consider

F ∗ = argmin
F

n
∑

i=1

L(yi, F (xi)) +R(F), (5)

where R(F) is the regularization term. For simplicity we

assume an L2 regularization, so

R(F) = λ

T
∑

m=1

Mm
∑

j=1

‖wm
j ‖

2, (6)

where fm(x) = wm
J(x) with J(x) : RD → Mm represent-

ing the tree structure which maps a data point x into one

of the Mm leaves of the m-th tree, and wm
j ∈ R

L is the

prediction vector of the j-th leaf node in the m-th tree.

We assume L is differentiable and satisfies the following

properties:

1. L(y, z) is decomposable:

L(y, z) =
L
∑

q=1

`(yq, zq). (7)

2. Each `(·, ·) satisfies that

`′(yq, zq) = 0 if yq = zq. (8)

Examples include but not limited to the square loss:

`(yq, zq) = (yq − zq)
2 and the square hinge loss (note that

this is the square-hinge loss with center shifted to 0.5 and

width scaled to 0.5):

`(yq, zq) =

{

max(1− zq, 0)
2 if yq = 1

max(zq, 0)
2 if yq = 0

(9)

Using the same Taylor expansion, at each iteration we want

to construct fm by solving

L(yi, Fm−1(xi) + fm(xi)) ≈

L(yi, Fm−1(xi)) + 〈gi, fm(xi)〉+
1

2
‖fm(xi)‖

2, (10)

Gradient Boosted Decision Trees for High Dimensional Sparse Output

where gi is the L-dimensional gradient for the i-th sample

with (gi)q = `′((yi)q, (Fm−1(xi))q). Following the same

steps as the previous section, for each tree we want to find

the cut value to minimize the following objective function:

min
fm

1

N

N
∑

i=1

‖gi − fm(xi)‖
2
2 + λ

Mm
∑

j=1

‖wm
j ‖

2
2. (11)

Vanilla extension of GBDT to high-dimensional out-

put space. As in most decision tree induction methods,

we follow a greedy approach, that is, starting from a sin-

gle node and iteratively adding branches to the tree un-

til some stopping conditions are met. At a general step,

we want to split an existing leaf node e in the m-th tree.

Let Ve = {i|J(xi) = e} denote the set of examples

that pass through the leaf e. Suppose we fix a split, t =
[feature id, threshold], consisting of the variable to split

and at what threshold it has to be split. This partitions Ve

into two disjoint sets: a set Vr associated with the right

node and a set Vl associated with the left node. Then we

can compute the prediction vectors (hr and hl) associated

with the right and left nodes based on the loss function re-

stricted to the corresponding sets of examples:

hr = argmin
hr

1

N

∑

i∈Vr

‖gi − hr‖
2
2 + λ‖hr‖

2
2

hl = argmin
hl

1

N

∑

i∈Vl

‖gi − hl‖
2
2 + λ‖hl‖

2
2. (12)

Since the objectives follow a simple quadratic form, these

problems can be solved in closed form as

hr =
1

λN + |Vr|

∑

i∈Vr

gi, hl =
1

λN + |Vl|

∑

i∈Vl

gi (13)

Now we can use hr and hl to form prediction: the predic-

tion for example i is he,i = hr if i ∈ Vr and is hl if i ∈ Vl.

This leads to the objective, obj(t) for the split t:

obj(t) =
1

N

∑

i∈Ve

‖gi − he,i‖
2 + λ(‖hr‖

2 + ‖hl‖
2) (14)

The best split is chosen to optimize obj(t):

t∗ = min
t

obj(t) (15)

This completes a general step of the vanilla extension of

GBDT for high dimensional sparse output.

Why vanilla GBDT fails on high dimensional sparse

output? The vanilla GBDT extension described above

faces several difficulties when it is applied on high dimen-

sional sparse output:

1. The first issue is the size of gradient gi in (11). Each

gi is an L-dimensional vector. Although in the first step

gi is sparse, after one step, hl (hr) in (12) will be the

average of |Vr|(|Vl|) sparse vectors, which will be dense.

A dense prediction Fm will then lead to dense gradients in

all the trees after the first step, and this NL space and time

complexity is prohibitive in large scale applications where

N and L can be both several millions.

2. The second issue is the model size. The prediction

vector in each leaf of each tree is a dense vector of length

L. This will result in a total model size of O(TML),
where T is the number of trees and M is the average

number of leaves in each tree. Given that L is large in

extreme multi-label learning, the model size will also

become very large.

3. The third issue is also related to the dense prediction

vector in the tree leaves, and concerns the prediction time.

The prediction time for a test point is O(T l̄+ TL),2 where

l̄ is the average depth of the trees. Thus, when L is large,

the prediction is very expensive.

4. The fourth issue relates to the sparsity and large

dimension of the input vector x. For many real-world

problems, the input x is sparse. Induction on such data

leads to very unbalanced decision trees with a large

number of leaves; this in turn increases the model size and

prediction time. It is worth noting that decision trees are

generally found to be unsuitable for data with such sparsity.

4.1. Our proposed algorithm: GBDT-SPARSE

We now propose a sparsified approach for resolving the

above mentioned issues, which leads to the first effec-

tive GBDT algorithm for high dimensional sparse output.

These modifications lead to models with high accuracy,

small model size and fast prediction time.

We first discuss the case when the input features are dense.

To handle the first three issues (dense residual vectors,

model size, and prediction time), we use the fact that the

labels yi are high dimensional but very sparse. For the

loss function satisfies our assumptions (Assumption (7)

and (8)), and if both yi and zi are sparse, then the gra-

dient vector gi in (11) will also be a sparse vector, and the

sparsity is at most ‖yi‖0 + ‖zi‖0.

Thus, we enforce a sparsity constraint on the prediction

vector in each leaf of each tree and maintain non-zero pre-

diction values only for a small number (k � L) of labels.

Typically, after each tree induction, each leaf contains a

coherent set of examples related to a small set of labels

and thus the above sparsity constraint makes a lot of sense.

Additionally, the constraint offers a nice form of regular-

ization. Note that by definition of gi, it can have at most

2The first term is the cost of tree traversal while second is the
cost of getting predictions from the leaf nodes.

Gradient Boosted Decision Trees for High Dimensional Sparse Output

Tk+‖yi‖0 non-zeros after T iterations (the label vector yi

is also sparse). This strategy makes the computation very

efficient and also reduces memory footprint substantially.

To enforce the sparsity, we add L0 constraint into the ob-

jective function (11), and we have

min
fm,wm

j

N
∑

i=1

‖gi − fm(xi)‖
2
2 + λ

Mm
∑

j=1

‖wm
j ‖

2
2

s.t. ‖wm
j ‖0 ≤ k, ∀j. (16)

For each cut t, the objective of the left partition becomes:

min
‖hl‖0=k

{

∑

i∈Vl

‖gi − hl‖
2
2 + λ‖hl‖

2
2

}

:= fl(hl), (17)

where, like before, Vl denotes the set of examples that fall

in leaf l. Interestingly, (17) has a closed form solution,

and there is no additional time cost by enforcing the sparse

constraints. Let plq =
∑

i∈Vl
(gi)q be sorted by the absolute

values with the order to be π, such that

|plπ(1)| ≥ |p
l
π(2)| ≥ . . . ≥ |plπ(|Vl|)

|, (18)

then the optimal solution of (17) is

(hl)
∗
q =

{

plq/(|Vl|+ λ) if π(q) ≤ k

0 otherwise ,
(19)

and the objective function is

fl(h
∗
l) = fl(0)−

∑

q:π(q)≤k

(plq)
2

|Vl|+ λ
. (20)

Similarly we can get the same h∗
r and fr(h

∗
r) for the right

child, and compute the objective function gain.

Using this closed form solution of the objective function,

we want to find the best split t = [feature id, threshold]
for the current node by minimizing the objective function

fl(h
∗
l) + fr(h

∗
r). For simplicity, we assume all the data

are in the current node (e.g. the root) in order to simplify

the notation, while the same algorithm can be applied to a

node with partial samples. Also, we assume a sorted list

σj(·) according to each feature j’s value is given, where

(xσj(1))j ≤ (xσj(2))j ≤ · · · ≤ (xσj(N))j .

This can be typically done as a pre-processing step before

building GBDT because the ordering will not be changed.

We then test the decrease of objective function for each

threashold according to this order, and select the best one.

See Algorithm 1 for detail.

For each feature, although selecting the best threshold from

all potential values can optimize objective function, we

Algorithm 1: GBDT-SPARSE tree node splitting algo-

rithm

Input: {xi,yi}
N
i=1, sorted list according to each feature

{σj}
D
j=1, λ (the regularization parameter), k

(sparsity constraint)

Output: Best split t = [feature id, threshold]
1 Initial: f best = 0 ;

2 for j = 1, · · · , D do

3 (pl)s = 0, ∀s = 1, · · · , L ;

4 (pr)s =
∑

i(gi)s, ∀s = 1, · · · , L ;

5 for i = 1, . . . , N do

6 for s with (gσj(i))s 6= 0 do

7 (pl)s ← (pl)s + (gσj(i))s ;

8 (pr)s ← (pr)s − (gσj(i))s ;

9 Compute the f = −
∑

s∈Ql
(pl

s)
2

i+λ
−

∑
s∈Qr

(pr
s)

2

N−i+λ
,

where Ql and Qr are the index set of top-k |pls|
and |prs| values respectively;

10 If f < f best, set f best = f , tbest = [j, (xσj(i))j] ;

found this also leads to over-fitting. Therefore, in our im-

plementation we consider the “inexact” version where we

only test the threshold for every S̄ values in the sorted list:

{(xσj(i))j}i=1,1+S̄,1+2S̄,...,n.

Algorithm 1 can be implemented in O(D‖G‖0 log(k))

time, where ‖G‖0 =
∑N

i=1 ‖gi‖0 is the number of nonzero

elements in the current gradient. The main trick is to use

two priority queues to maintain two lists of k features with

top-k ps values (correspond to sum of gradient) for left

tree and right tree. When scanning through one sample in

the inner step, only one term of ps will change, which has

O(log k) complexity using a priority queue. However, in

practice we set S̄ to be very large (5% of samples), so a

sorting algorithm for finding the top-k list is fast enough,

since it only needs to be executed 20 times.

4.2. GBDT-SPARSE: Dealing with Sparse Features

Decision trees usually have difficulty handling sparse fea-

tures. When feature vectors are sparse, e.g., only 100 out of

10,000 training samples have nonzero values on a feature,

the tree will be always imbalanced and extremely deep.

To handle sparse input features, we consider several projec-

tion methods that transform sparse features to dense ones.

The most simple yet useful one is to use random projection,

that is, projecting the data point to x̄i = Ḡxi using a fixed

random Gaussian matrix Ḡ ∈ R
d×D as projection matrix.

To reduce reconstruction error, another approach is to use

Principal Component Analysis (PCA) (Halko et al., 2011)

via SVD (Si et al., 2014).

Both random projection and PCA are un-supervised learn-

Gradient Boosted Decision Trees for High Dimensional Sparse Output

Table 1: Comparison between traditional GBDT, our proposed GBDT-SPARSE, and FASTXML in terms of training time,

prediction time, model size and accuracy. Prediction time includes feature projection time. All time in seconds.
Metrics FASTXML vanilla GBDT (LEML) GBDT-SPARSE (Random Projection) GBDT-SPARSE (PCA) GBDT-SPARSE (LEML)

Dimension reduction time N/A 100.74 4.97 99.86 100.74

Training Time 1275.9 41078.76 931.57 1025.03 1054.12

Prediction Time 9.1175 52.139 1.0766 1.0796 1.087

Accuracy P@1(%) 82.71 84.11 80.79 83.51 84.36

Accuracy P@3(%) 67.87 68.94 50.68 67.04 69.49

Model size 813MB 809.39M 79.01MB 79.23MB 79.26MB

Table 2: Data set statistics for multi-label learning problems.
Dataset # Training samples # Testing samples # Features # Labels Avg. points per label Avg. labels per point

Mediamill 30,993 12,914 120 101 1338.8 4.36

Delicious 12,920 3,185 500 983 250.06 19.02

NUS-WIDE 161,789 107,859 1,134 1,000 935.22 5.78

Wiki10-31K 14,146 6,616 101,938 30,938 8.52 18.64

Delicious-200K 196,606 100,095 782,585 205,312 72.34 75.54

ing approaches—in the sense that they do not use any la-

bel information; however, in our problem setting there is

rich information in the high dimensional output space Y .

Therefore, we can use a supervised algorithm LEML (Yu

et al., 2014) to construct dense features, which solves the

following optimization problem:

min
W∈RD×d̄,H∈RL×d̄

‖Y −XWHT ‖2F + γ(‖W‖2F + ‖H‖2F)

where γ is a regularization term to control the over-fitting

and d̄ is the projected dimension. This has been discussed

in (Yu et al., 2014) for solving the multi-label classification

problems, and the resulting algorithm uses an alternating

minimization algorithm to compute the solutions W and

H . After we get W from LEML, we use the new features

X̄ as X̄ = XW to construct the decision trees. Using this

projection has two benefits:(1) the projection incorporates

the label information; and, (2) the new data after projection,

X̄ is dense, and thus results in shallow and balanced trees.

We compare GBDT-SPARSE with different projection

methods as well as vanilla GBDT for extreme multilabel

learning problem in Table 1. We used the Wiki10-31K

dataset with training parameters the same as the ones in

section 5, except we terminate all methods (except vanilla

GBDT) in about 1000 seconds. Three dimension reduc-

tion techniques, LEML, PCA and random projections are

used to reduce the feature size to 100. We also include

FASTXML as a comparison for training time. From Ta-

ble 1 we can see that using LEML is more accurate than

using PCA and random projections, but takes longer time

to train the model. Different from vanilla GDBT, GBDT-

SPARSE enforces the sparsity in the leaf nodes, which

brings significant speedup (about 40x) for training. This

table shows the benefits of using feature projection and

enforcing sparsity in leaf nodes when applying GDBT on

problems with high-dimensional sparse output.

4.3. GBDT-SPARSE: Fast Prediction

When performing prediction, the data points will go

through each tree and then the prediction is f(xi) =
∑T

m=1 hm(xi). In vanilla GBDT, this requires O(LT)
time since we have to sum over the prediction for T trees,

each one is an L-dimensional dense vector. Note that the

tree traversal time can be omitted because each node only

takes 1 comparison to look at whether a feature is larger or

smaller than the threshold.

In GBDT-SPARSE, when making prediction for a new data

point, we can utilize the sparsity structure of each predic-

tion vector to achieve fast prediction time: adding up T of

the k-sparse vectors together. The naive approach is to cre-

ate an array of size Tk, copy all the index-value pairs to

the array, and sort them by index. This has O(Tk log(Tk))
time complexity. A more efficient approach is to use a min-

heap data structure to merge these k lists which can reduce

time complexity: first, sort each list according to the index

orders, and then create a min heap of size k and insert the

first element in all lists to the heap. Then repeatedly con-

duct the following process: (1) get the minimum element

from heap, store to the output array, and (2) update the heap

root value by the next index from the list that the element is

fetched. The overall algorithm will take O(Tk log k) time.

In some real world applications, only top-B labels are

needed with very small B (typically 1,3,5). In those cases,

we can further reduce the prediction time to O(Tk logB)
(see details in appendix B). Since we test on small k for all

our experiments, we do not use this technique in practice.

4.4. Summary of GBDT-SPARSE

In summary, the training time of GBDT-SPARSE is

O(D‖G‖0 log(k)) for each node, where ‖G‖0 is total num-

ber of nonzeros of the samples belonging to the node. So

each level of the tree requires O(D‖X‖0 log(k)) time. If

we build T trees and each with h levels, the total training

time is O(DTh‖X‖0 log(k)).

Gradient Boosted Decision Trees for High Dimensional Sparse Output

As discussed in the previous section, the prediction time is

O(Tk log k) for prediction. k (sparsity constraint) is usu-

ally set to be less than 50; T (number of tress) is usually

less than 100. Therefore GBDT-SPARSE has a sub-linear

(constant) prediction time.

Now we discuss model size. Each intermediate node only

stores the [feature id, threshold] pair, which is one inte-

ger and one floating point. Each leaf node only stores the k
index-value pairs. Therefore, the model size is O(kT2h).
As long as tree depth h is not too large (usually less than

12), the model size is very small.

5. Experiments

We compare GBDT-SPARSE against other key methods

for extreme multi-label classification problems and demon-

strate its value with respect to model size, prediction time

and performance.

Data: We conducted experiments on 5 standard and pub-

licly available multi-label learning datasets.3 Table 2 shows

the associated details. Note the diversity in the number

of training samples, label size and feature dimensionality.

Delicious-200K has more than 200, 000 labels.

Baselines: We compare our method to four state-of-the-art

extreme multi-label learning baselines.

1. LEML (Yu et al., 2014) is an embedding technique

based on low-rank empirical risk minimization.

2. FASTXML (Prabhu & Varma, 2014) is a random forest

based approach where each tree is constructed by jointly

optimizing both nDCG ranking loss and tree structure. A

sparse linear separator is used as the splitting criteria at

each node.

3. SLEEC (Bhatia et al., 2015) learns an ensemble of lo-

cal distance preserving embeddings. Pairwise distances are

preserved between only the nearest label vectors.

4. PD-SPARSE (Yen et al., 2016) proposes to solve L1

regularized multi-class loss using Frank-Wolfe based algo-

rithm. However, it needs to store weight vectors in size

O(DL), which is hard to scale to large datasets.

For the baselines, we use their highly optimized C++ im-

plementation published along with the original papers. We

also compare with DisMEC (Babbar & Schölkopf, 2017)

in the Appendix.

Parameter Setting: For FASTXML and LEML, we use

the default parameter settings in the code. SLEEC’s code

also has optimal parameter settings for all the datasets ex-

cept NUS-WIDE. It has 7 parameters and their settings

vary widely for different datasets. For PD-SPARSE, we use

3NUS-WIDE is available at http://lms.comp.nus.edu.sg/
research/NUS-WIDE.htm. All other datasets are available at
http://manikvarma.org/downloads/XC/XMLRepository.html.

a grid search to find the best regularization parameter λ and

cost C. For our method, we kept most of the parameters

fixed for all the datasets: hmax = 10, nleaf = 100, and,

λ = 5, where hmax and nleaf are the maximum level of

the tree and the minimal number of data points in each leaf.

Leaf node sparsity k was set to 100 for Delicious-200K and

20 for all others. This parameter can be very intuitively

set as an increasing function of label set size. We hand

tuned the projection dimensionality d and set it to 100 for

Delicious and Wiki10-31K, and 50 for others.

Results: Table 3 shows the performance of different

methods along the dimensions of prediction time, model

size and prediction accuracy (Precision@1 (P@1) and

Precision@3(P@3)). Note that the strength of our method

is to achieve similar accuracy with smaller memory foot-

print and prediction time. Also note that LEML has infe-

rior performance to all other methods. However, its pre-

diction times are similar to our method on many datasets.

FASTXML, SLEEC and GBDT-SPARSE achieve simi-

lar accuracy on almost all the datasets. For PD-SPARSE,

we observe that its accuracy can fluctuate badly across it-

erations in dataset Delicious and Delicious-200K despite

of trying different set of parameters, even though the re-

ported dual objective is monotonically decreasing. Also,

due to its linear nature, its model size is small, but ac-

curacy is also limited by the capacity of the learner. In

terms of accuracy P@1 and P@3, there is no clear trend of

GBDT-SPARSE being better or worse than others. How-

ever, GBDT-SPARSE gives an order of magnitude speed-

up in prediction times for almost all the datasets. For exam-

ple, for Delicious-200K, our method is 10.58x and 14.72x

faster than FASTXML and SLEEC respectively. Similar

gains can be observed for the model size. It is worth noting

that we do not fine-tune most hyper parameters for deci-

sion tree building process, and the set of parameters can

get good accuracy on all of our datasets.

Figure 1(a)-(c) shows the P@1 as a function of time for

three datasets. For GBDT-SPARSE and FASTXML, we

vary the number of trees to get different prediction times.

For LEML and SLEEC, experiments are ran for differ-

ent embedding sizes to generate the curve. The more the

curve is towards top left, better is the performance. For

GBDT-SPARSE, the curves sharply rise in performance;

though not shown, they become stable at the highest perfor-

mance values shown. Though GBDT-SPARSE does not al-

ways beat all methods on performance, we can observe that

for any fixed prediction time our approach impressively

outperforms all others. Figure 1(d)-(f) shows the corre-

sponding curves as a function of model size. Again similar

observations can be made, except for Wiki10-31K where

SLEEC has a similar model size. In summary, we can

see from Figure 1 that to achieve similar accuracy, GBDT-

SPARSE takes much less prediction time and the model size

Gradient Boosted Decision Trees for High Dimensional Sparse Output

Table 3: Comparison on five large-scale multi-label datasets. Time refers to prediction times in seconds. Size is the model

size in megabytes. All experiments are conducted on a machine with an Intel Xeon X5440 2.83GHz CPU and 32GB RAM.

For PD-Sparse we use a similar machine with 192GB memory due to its large memory footprint. Please zoom.

LEML FASTXML SLEEC PD-SPARSE GBDT-SPARSE (proposed)

Time Size P@1 P@3 Time Size P@1 P@3 Time Size P@1 P@3 Time Size P@1 P@3 Time Size P@1 P@3

Mediamill 0.28 0.17 82.83 66.29 3.44 7.25 83.13 66.39 65.16 92.04 85.02 68.40 0.034 0.005 82.99 62.32 0.60 3.54 84.23 67.85

Delicious 0.16 1.18 63.23 58.51 0.24 39.66 70.14 64.51 1.52 4.19 66.78 60.32 0.036 0.25 52.02 45.91 0.13 4.76 69.29 63.62

NUS-WIDE 22.77 1.70 20.26 15.58 211.88 1.57G 20.93 16.24 384.11 212.2 15.32 12.36 program crashed 8.86 14.46 21.65 16.73

Wiki10-31K 11.67 13.28 80.26 65.73 10.21 853.5 82.71 67.87 30.19 570.2 85.99 73.65 1.04 0.60 82.03 67.44 1.30 85.81 84.34 70.82

Delicious-200K 12.85 790.4 40.47 37.69 146.55 11.3G 42.99 38.50 203.86 7.98G 45.63 40.77 67.51 3.80 35.47 32.07 13.85 338.0 42.11 39.06

(a) Delicious (b) Wiki10-31K (c) NUS-WIDE

(d) Delicious (e) Wiki10-31K (f) NUS-WIDE

Figure 1: Top: P@1 as a function of time. Bottom: P@1 as a function of model size.

is much smaller than other methods.

Multicore Implementation: Unlike random-forest based

methods, paralllelizing GBDT is not straightforward. In

our problem, because L is large, existing frameworks like

XGBoost (Chen & Guestrin, 2016) do not scale well as it

needs O(L) storage per leaf, and histogram based methods

need O(L) space per bin to accumulate gradients. We im-

plement our algorithm by finding best splits for different

features on a single leaf in parallel. Although this requires

extra time to sort feature values on each leaf, we find that

for datasets with a big L the sorting time is insignificant.

We run our algorithm with Delicious-200K on a 28-core

dual socket E5-2683v3 machine to build a GBDT with 5

trees, and record the average time for building one tree in

Table 4. The good scaling shows that our algorithm is ca-

pable for handling big data. Also, the huge speedup from

parallelization is a big advantage to use our algorithm in

practice, comparing to algorithms that cannot be easily par-

allelized, like PD-SPARSE.

6. Conclusion

We apply GBDT to solve problems with high dimensional

sparse output. Applying GBDT to this setting has sev-

Table 4: Average time (in seconds) for building one tree

using GBDT-SPARSE on dataset Delicious-200K.

Threads 1 4 8 10 14 28 (2 sockets)

Time (s) 1092.60 353.07 191.22 153.53 117.49 85.36

Speedup baseline 3.09x 5.71x 7.12x 9.30x 12.80x

eral challenges: large dense gradient/residual matrix, im-

balanced trees due to data sparsity, and large memory foot-

print for leaf nodes. We made non-trivial modifications to

GBDT (use embeddings to make features dense, introduce

label vector sparsity at leaf nodes) to make it suitable for

handling high dimensional output. These improvements

can significantly reduce the prediction time and model size.

As an application, we use our proposed method to solve ex-

treme multi-label learning problem. Compared to the state-

of-the-art baselines, our method shows an order of magni-

tude speed-up (reduction) in prediction time (model size)

on datasets with label set size 1000− 200000.

Acknowledgments This research was supported by NSF

grants CCF-1320746, IIS-1546452 and CCF-1564000.

Cho-Jui Hsieh also acknowledges support from XSEDE.

Gradient Boosted Decision Trees for High Dimensional Sparse Output

References

Abuzaid, Firas, Bradley, Joseph K., Liang, Feynman T.,

Feng, Andrew, Yang, Lee, Zaharia, Matei, and Tal-

walkar, Ameet S. Yggdrasil: An optimized system for

training deep decision trees at scale. In NIPS, 2016.

Agrawal, Rahul, Gupta, Archit, Prabhu, Yashoteja, and

Varma, Manik. Multi-label learning with millions of

labels: Recommending advertiser bid phrases for web

pages. In WWW, 2013.

Babbar, Rohit and Schölkopf, Bernhard. Dismec: Dis-

tributed sparse machines for extreme multi-label classi-

fication. In WSDM, pp. 721–729, 2017.

Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Varma,

Manik, and Jain, Prateek. Sparse local embeddings for

extreme multi-label classification. In NIPS, 2015.

Breiman, Leo. Bagging predictors. Machine Learning, 24

(2):123–140, 1996.

Chen, Tianqi and Guestrin, Carlos. Xgboost: A scalable

tree boosting system. In KDD, 2016.

Chen, Tianqi, Singh, Sameer, Taskar, Ben, and Guestrin,

Carlos. Efficient second-order gradient boosting for con-

ditional random fields. In AISTATS, 2015.

Choromanska, Anna and Langford, John. Logarithmic time

online multiclass prediction. In NIPS, pp. 55–63, 2015.

Friedman, Jerome H. Greedy function approximation: A

gradient boosting machine. The Annals of Statistics, 29

(5):1189–1232, 2001.

Friedman, Jerome H. Stochastic gradient boosting. Com-

putational Statistics and Data Analysis, 38(4):367–378,

2002.

Halko, Nathan, Martinsson, Per-Gunnar, and Tropp,

Joel A. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decom-

positions. SIAM review, 53(2):217–288, 2011.

Jasinska, Kalina, Dembczynski, Krzysztof, Busa-Fekete,

Róbert, Pfannschmidt, Karlson, Klerx, Timo, and

Hüllermeier, Eyke. Extreme f-measure maximization

using sparse probability estimates. In ICML, pp. 1435–

1444, 2016.

Liaw, Andy and Wiener, Matthew. Classification and re-

gression by random forest. R News, 2(3):18–22, 2002.

Meng, Qi, Ke, Guolin, Wang, Taifeng, Chen, Wei,

Ye, Qiwei, Ma, Zhi-Ming, and Liu, Tie-Yan. A

communication-efficient parallel algorithm for decision

tree. In NIPS, 2016.

Panda, Biswanath, Herbach, Joshua S., Basu, Sugato, and

Bayardo, Roberto J. PLANET: massively parallel learn-

ing of tree ensembles with mapreduce. Proceedings of

VLDB, 2(2):1426–1437, 2009.

Prabhu, Yashoteja and Varma, Manik. Fastxml: A fast,

accurate and stable tree-classifier for extreme multi-label

learning. In KDD, 2014.

Schapire, Robert E. A brief introduction to boosting. In

IJCAI, 1999.

Si, Si, Shin, Donghyuk, Dhillon, Inderjit S., and Parlett,

Beresford N. Multi-scale spectral decomposition of mas-

sive graphs. In NIPS, pp. 2798–2806, 2014.

Si, Si, Chiang, Kai-Yang, Hsieh, Cho-Jui, Rao, Nikhil, and

Dhillon, Inderjit S. Goal-directed inductive matrix com-

pletion. In ACM SIGKDD, 2016.

Yen, Ian En-Hsu, Huang, Xiangru, Ravikumar, Pradeep,

Zhong, Kai, and Dhillon, Inderjit S. Pd-sparse : A pri-

mal and dual sparse approach to extreme multiclass and

multilabel classification. In ICML, pp. 3069–3077, 2016.

Yu, Hsiang-Fu, Jain, Prateek, Kar, Purushottam, and

Dhillon, Inderjit S. Large-scale multi-label learning with

missing labels. In ICML, 2014.

Gradient Boosted Decision Trees for High Dimensional Sparse Output

A. Additional Experiments on DisMEC

DisMEC (Babbar & Schölkopf, 2017) is a distributed ex-

treme multi-label learning framework based on one-versus-

rest linear classifiers with explicit model size controlled

by pruning small weights. Unlike other methods we have

compared in Section 5, DisMEC mainly focuses on paral-

lelizing an extremely large number of one-versus-all clas-

sifiers in large-scale distributed settings with double layers

of parallelization (multi-core and multi-machine).

DisMEC’s primarily advantage is that it does not make any

low-rank or sparsity assumption for the data and thus pre-

diction performance is better, and its model size is reason-

ably small due to weight pruning. However, it has the same

time complexity as the naive one-versus-all method and

requires much more computation than all other methods

we have compared in Section 5. For example, on dataset

Wiki10-31K, our algorithm needs less than 20 minutes on 1

core (refer to Table 1), while DisMEC requires 10 minutes

on 300 cores as reported in (Babbar & Schölkopf, 2017)

and we record about 450 minutes training time using 4

cores.

Table 5: Experiments on DISMEC. Time refers to predic-

tion times in seconds. Size is the modelsize in megabytes.

DISMEC GBDT-SPARSE (proposed)

Time Size P@1 P@3 Time Size P@1 P@3

Mediamill 0.59 0.087 87.77 70.25 0.60 3.54 84.23 67.85

Delicious 0.24 3.4 66.80 61.79 0.13 4.76 69.29 63.62

Wiki10-31K 771.8 880 84.12 74.71 1.30 85.81 84.34 70.82

We use the DisMEC implementation from its authors 4. We

found that in their experiment implementation, a TF-IDF

(term frequency inverse document frequency) feature con-

version is used. Using TF-IDF features can improve pre-

diction accuracy for text based datasets, and we found that

it is necessary to use TF-IDF to get a good accuracy for

Wiki10-31K. Therefore, we pre-process Wiki10-31K us-

ing TF-IDF for DisMEC in this section (we do not use TF-

IDF pre-processing in all other experiments). Due to our

limited computing resources, we only include Mediamill,

Wiki10-31K and Delicious in this experiment. The re-

sult is shown in Table 5. DisMEC achieves similar per-

formance with our method, but note that DisMEC requires

much more computation resources than our method. Larger

Datasets like Delicious-200K is practically unfeasible on a

single machine (with only a few cores) using DisMEC.

B. Prediction time for GBDT-Sparse

In many real world applications, only top-B labels are

needed with very small B (typically 1,3,5). In those cases,

we can further reduce the prediction time to O(Tk logB).
To do that, we need a hash (with O(Tk) size) and a min-

4https://sites.google.com/site/rohitbabbar/code/dismec

heap Q. The algorithm scans through all the elements in

the prediction vectors (each contains k (idx, value) pairs)

for each tree h1(xi), · · · , hm(xi). For each (idx, value)
pair, we first use hash to add the value to the corresponding

index pidx. If the index is already in the heap, then up-

date the corresponding value. If Q.size() is smaller than

B, then add the (idx, pidx) pair to Q. Otherwise compare

pidx with Q.min(), and replace the minimum number in Q
by pidx if pidx is larger than Q.min(). Since the size of Q
is always ≤ B, the complexity is O(Tk logB).

	Introduction
	Related Work
	Background
	Proposed Algorithm (GBDT-Sparse)
	Our proposed algorithm: GBDT-Sparse
	GBDT-Sparse: Dealing with Sparse Features
	GBDT-Sparse: Fast Prediction
	Summary of GBDT-Sparse

	Experiments
	Conclusion
	Additional Experiments on DisMEC
	Prediction time for GBDT-Sparse

