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ABSTRACT

Nonlinear kernel machines often yield superior predictive perfor-
mance on various tasks; however, they suffer from severe compu-
tational challenges. In this paper, we show how to overcome the
important challenge of speeding up kernel machines using multiple
computers. In particular, we develop a parallel block minimization
framework, and demonstrate its good scalability in solving nonlin-
ear kernel SVM and logistic regression. Our framework proceeds by
dividing the problem into smaller subproblems by forming a block-
diagonal approximation of the Hessian matrix. The subproblems
are then solved approximately in parallel. After that, a communica-
tion efficient line search procedure is developed to ensure sufficient
reduction of the objective function value by exploiting the problem
structure of kernel machines. We prove global linear convergence
rate of the proposed method with a wide class of subproblem solvers,
and our analysis covers strongly convex and some non-strongly
convex functions. We apply our algorithm to solve large-scale ker-
nel SVM problems on distributed systems, and show a significant
improvement over existing parallel solvers. As an example, on the
covtype dataset with half-a-million samples, our algorithm can ob-
tain an approximate solution with 96% accuracy in 20 seconds using
32 machines, while all the other parallel kernel SVM solvers require
more than 2000 seconds to achieve a solution with 95% accuracy.
Moreover, our algorithm is the first distributed kernel SVM solver
that can scale to massive data sets. On the kddb dataset (20 million
samples and 30 million features), our parallel solver can compute
the kernel SVM solution within half an hour using 32 machines
with 640 cores in total, while existing solvers can not scale to this
dataset.
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1 INTRODUCTION

Kernel methods are a class of algorithms that map samples from
input space to a high-dimensional feature space. The representative
kernel machines include kernel SVM, kernel logistic regression and
support vector regression. When a nonlinear kernel is used, all the
above algorithms are hard to scale to large-scale problems due to
the high computation cost and memory requirement of computing
and storing the kernel matrix. Efficient sequential algorithms have
been proposed for kernel machines, where the most widely-used
one is the SMO algorithm [10, 18] implemented in LIBSVM and

SVMLight. However, single-machine kernel SVM algorithms still

cannot scale to larger datasets (e.g. LIBSVM takes 3 days on the

MNIST dataset with 8 million samples), so there is a tremendous

need for developing distributed algorithms for kernel machines.
Although many distributed algorithms have been proposed for

solving linear SVM/logistic regression [9, 14, 34], they cannot be
applied to nonlinear kernel machines since they synchronize infor-
mation using primal variables. To the best of our knowledge, there
are very few existing algorithms for distributed nonlinear kernel

SVM training because of two challenges: How to deal with the huge

kernel matrix and how to solve the large quadratic optimization

problem in a distributed and communication-efficient manner. Most
existing algorithms try to approximate kernel matrix in parallel to
reduce the problem to a linear machine [3, 19], and then solve the
resulting problem by a distributed optimization solver. However,
due to the kernel approximation step, they cannot obtain the exact
kernel SVM solution and this often leads to suboptimal prediction
accuracy.

In this paper, we propose a distributed kernel SVM solver that

is able to solve the quadratic optimization problem exactly by a

Parallel Block Minimization (PBM) framework. At each iteration,

PBM divides the whole problem into smaller subproblems by first

forming a block-diagonal approximation of the kernel matrix. Each

subproblem is much smaller than the original problem and they
can be solved in parallel using existing serial solvers such as SMO

(or greedy coordinate descent) [18] implemented in LIBSVM. After

that, we develop a communication-efficient line search procedure

to ensure a reduction of the objective function value.
Our contribution can be summarized below:

1. The paper is the first to apply the parallel block minimization
(PBM) framework for training kernel machines, where each ma-
chine updates a block of dual variables. We develop an efficient
line search procedure to synchronize the updates at the end
of each iteration without any additional cost by exploiting the
problem structure of kernel machines.



2. Our algorithm works for any partition of dual variables, and we
show that the convergence speed can be significantly improved
using a better partition (obtained by kmeans) .

3. We show that our proposed algorithm significantly outperforms
existing kernel SVM and logistic regression solvers on a dis-
tributed system. In particular, our algorithm is the first dis-
tributed nonlinear SVM solver that scales to kddb dataset with
20 million samples and 30 million features. On this dataset, our
parallel solver only takes half an hour to compute the kernel
SVM solution with 32 machines containing 640 cores in total.

4. We prove a global linear convergence rate for PBM under mild
conditions: we allow a wide range of inexact subproblem solvers,
and our analysis covers many widely-used functions where some
of them may not be strongly convex (e.g., SVM dual problem
with a positive semi-definite kernel).

The rest of the paper is organized as follows. We discuss the related

work in Section 2. In Section 3, we introduce the problem setting,

and the proposed PBM framework is presented in Section 4. We
prove a global linear convergence rate in Section 5. Experimental
results are shown in Section 6, while Section 7 concludes the paper.

2 RELATED WORK

Algorithms for solving kernel machines. Several optimization
algorithms have been proposed to solve kernel machines [10, 18].
Among them, decomposition methods [10, 11] have become widely-
used in software packages such as LIBSVM [2] and SVMLight.

Parallelizing kernel SVM has also been studied in the literature.
Recently an asynchronous greedy coordinate descent algorithm has
been proposed for solving kernel SVM [30]. Although it achieves
good performance on a multicore shared memory system, the al-
gorithm cannot be used in distributed systems due to the need of
asynchronous global parameter access. Several distributed SVM
algorithms have been proposed: Cascade-SVM [4] proposed to ran-
domly divide the problem into subproblems, but they still need to
solve a global kernel SVM problem in the final stage; PSVM [3] uses
an incomplete Cholesky factorization to approximate the original
kernel SVM problem, and solves the resulting problem by an interior
point method; P-pack SVM [35] applies a distributed SGD algorithm
for training kernel SVM. Unfortunately, as shown in the experi-
ments, none of the existing distributed kernel SVM algorithms can
scale to extremely large datasets.

Two clustering based approaches for kernel SVM have been
recently developed: Divide-and-conquer SVM (DC-SVM) [5] and
Communication Avoiding SVM (CA-SVM) [29]. In DC-SVM, the
global kernel SVM problem is hierarchically divided into smaller
subproblems by kmeans or kernel kmeans, and the subproblems
can be solved independently. The solutions from subproblems can
be used directly for prediction (called DC-SVM early prediction)
or can be used to initialize the global SVM solver. Although the
subproblems can be solved in parallel, DC-SVM still needs a parallel
solver for the global SVM problem in the final stage. Our idea of
using clustering is similar to DC-SVM [5], but here we apply it to
develop a distributed SVM solver, while DC-SVM is just a single-
machine serial algorithm. The experimental comparisons between
our proposed method and DC-SVM are shown in the experiments.

Kernel approximation approaches. Another line of approach
for kernel machines aim to approximate the kernel matrix and then
solve the reduced size problem. Nystrém approximation [6, 22, 23,
27] and random Fourier features [19] can be used to form low-rank
approximation of kernel matrices, and then the problem can be re-
duced to a linear SVM or logistic regression problem. To parallelize
these algorithms, a distributed linear SVM or logistic regression
solver is needed. The comparisons are in Figure 2. Using random
Fourier features in kernel machine is also applied in [8] and [25].
Comparing with our proposed method, (1) they only consider solv-
ing linear systems, and it is nontrivial for them to solve kernel SVM
and logistic regression problems; (2) they cannot obtain the exact
solution of kernel machines, since they only use the approximate
kernel.

Distributed linear SVM and logistic regression solvers. Sev-
eral distributed algorithms have been proposed for solving the
primal linear SVM problems [14, 15, 34], but they require synchro-
nizing the primal variables at each iteration. Unfortunately, the
primal variables cannot be explicitly formed in nonlinear kernel
machines, so these methods cannot be directly applied to nonlin-
ear kernel SVM or logistic regression. Distributed dual coordinate
descent [9, 14, 28] and asynchronous dual coordinate descent [32]
is also investigated for linear SVM.

Distributed Block Coordinate Descent. The main idea of
our algorithm is similar to a class of Distributed Block Coordinate
Descent (DBCD) parallel computing methods. As discussed recently
in literature [17, 20, 21], different DBCD parallel algorithms have
different ways to solve subproblems in each machine, and synchro-
nize the results. However, no existing work has applied DBCD to
kernel machines, partly due to the challenge of line search in dis-
tributed systems. Recent distributed dual coordinate descent linear
SVM solvers [14, 34] also belongs to DBCD class.

Our Innovations. In contrast to the above algorithms, ours is
the first one that adopts a block-partition based coordinate descent
algorithm to kernel machines; previous work either focused on lin-
ear SVM [9, 14, 28] or primal ERM problems [17]. These approaches
proposed to maintain and synchronize the vector y = X Td or
w = Xd, where d is the direction and X is the data matrix. Un-
fortunately, in kernel methods this strategy does not work since
each sample may have infinite dimension after the nonlinear map-
ping. We overcome the challenges by synchronizing the Qd vector
(O € R™") and developing an efficient line search procedure.
We further show that a better partition (obtained by kmeans) can
speedup the convergence of the algorithm.

On the theoretical front: previous papers [9, 28] can only show
linear convergence when the objective function is f(x) = g(x) +
h(x) and g is strongly convex. [14] considered some non-strongly
convex functions, but they assume each subproblem is solved ex-
actly. In this paper, we prove a global linear convergence even
when g is not strongly convex and each subproblem is solved ap-
proximately. Our proof covers general DBCD algorithms for some
non-strongly convex functions, for which previous analysis can
only show sub-linear convergence.



3 PROBLEM SETUP

We focus on the following composite optimization problem:

argmin{aTQa + Z!]i(ai)} =f(a) st.ag<a<h, (1)
aeR” 7

where Q € R™ " is positive semi-definite; each g; is a univariate

convex function; a = [ay,- - ,an] and b = [by, - - - , b, ] are vectors.

Note that we can easily handle the box constraint @ < @ < b by

setting g (a;) = o if @; ¢ [a;, b;], so we will omit the constraint in

most parts of the paper.

An important application of (1) in machine learning is that it
is the dual problem of {3-regularized empirical risk minimization.
Given a set of instances {x;, y; }?=1’ we consider the following £3-
regularized empirical risk minimization problem:

.1 n
arg min EwTw + CZi:l i (wh o(xy)), @)

where ¢; is the loss function depending on the label y;, and ®(-) is
the nonlinear feature mapping. For example, £; (u) = max(0, 1—-y;u)
for SVM with hinge loss. The dual problem of (2) can be written as

.1 o7 n
argmin - & Qa+zi=15i(—ai), ®3)

where Q € R™" in this case is the kernel matrix with Q;; =
yiyfI)(xi)TCI)(xj). Our proposed approach works in the general
setting, but we will discuss in more detail its applications to kernel
SVM, where Q is the kernel matrix and o is the vector of dual
variables. Note that, similar to [5], we ignore the bias term in (2).
Indeed, in our experimental results we did not observe improvement
in test accuracy by adding the bias term.

4 PROPOSED ALGORITHM

We describe our proposed framework PBM for solving (1) on a dis-
tributed system with k worker machines. We partition the variables
« into k disjoint index sets {S, }le such that

S1USU---US, ={1,...,n} and Spnsqzqﬁ\lp;tq,

and we use 7(i) to denote the cluster indicator that i belongs to.
We associate each worker r with a subset of variables arg, = {a; |
i € S;}. Note that our framework allows any partition, and we will
discuss how to obtain a better partition in Section 4.3.

At each iteration, we form the quadratic approximation of prob-
lem (1) around the current solution:

= 1 1 -
fla+Aa) = fo (Aa) :EaTQa+aTQAa+ EAaTQAa
+ Zgi(ai + Aai), 4)
i
where the second order term of the quadratic part (%AaTQAa) is

replaced by %AaTQ_Aa, and Q is the block-diagonal approximation
of Q such that

0 otherwise.

O = {Qi,- if 7(i) = 7)) )

By solving (4), we obtain the descent direction d:

d :=arg rzlin fo(A). (6)

Since Q is block-diagonal, problem (6) can be decomposed into k
independent subproblems based on the partition {S, }lez

. (L _
ds,=argmin{>Aaf Os,.s,A0s,+ . Gi(Aai)|:=fy Bas). ()
A

as, i€eS,

where g;(Aa;) = gi(a;i + Aa;) + (Qar);Aat; . Subproblem (7) has
the same form as the original problem (1), so can be solved by
any existing kernel SVM/kernel regression solver on each machine.
After solving the subproblems (7) independently for each r, the
descent direction d is the concatenation of ds,, . . . ds, . Since f(a+
d) might even increase the objective function value f (o), we find
the step size f to ensure the following sufficient decrease condition
of the objective function value:

fla+pd) - f(a) < foh, (®)

where A = Vf(ot)Td, and o € (0, 1) is a constant. We then update
a — a + fd. Now we discuss details of each step of our algorithm.

4.1 Solving the Subproblems

Note that subproblem (7) has the same form as the original prob-
lem (1), so we can apply any existing algorithm to solve it for each
worker independently. In our implementation, we apply the fol-
lowing greedy coordinate descent method (a similar algorithm was
used in LIBSVM). Assume the current subproblem solution is Aeg,,
we choose variable with the largest projected gradient:

i*:= argmax |H(0{i +Aai—(Qs,,s, Aas, )i —g'l{(Aoc,-)) —a,——Aai|
ieS,
)

where II is the projection to the interval [a;, b;]. The selection only
requires O(|S;|) time if Qs _ 5, Acas, is maintained in local memory.
Variable A¢; is then updated by solving the following one-variable
subproblem:

1
§* = argmin EQi*,i*az +(Qs,,s,Aas,)i8 + i (Aaj= + 5) (10)
s
with a;+ < @j* + Aaj» + 6 < b=

For kernel SVM, the one-variable subproblem (10) has a closed form
solution, while for logistic regression the subproblem can be solved
by Newton’s method (see [31] for the detailed discussions). The
bottleneck of both (9) and (10) is to compute Qgs, s, Aas,, which
can be maintained after each update using O(|S,|) time.

Note that in our framework each subproblem does not need to
be solved exactly. In Section 5 we will give theoretical analysis to
the in-exact PBM method, and show that the linear convergence
is guaranteed when each subproblem runs more than 1 coordinate
update.

Communication Cost. There is no communication needed for
solving the subproblems between workers; however, after solving
the subproblems and obtaining the update direction d, each worker
needs to obtain the updated (Qd)s, vector for next iteration, where
this term in (7) is the only “global information” needed for each ma-
chine. Since each worker only has the local update d, , we compute
Q. s, (ds, ) in each worker, and use a REDUCE_SCATTER collective
communication to obtain updated (Qd)s, for each worker. The



communication cost for the collective REDUCE_SCATTER operation
for an n-dimensional vector requires

log (k) Tinitial + nTbyte (11)

communication time, where Ty, is the message startup time
and Thyte is the transmission time per byte (see Section 6.3 of [1]).
When n is large, the second term usually dominates, so we need
O(n) communication time and this does not grow with the number
of processors.

4.2 Communication-efficient Line Search

After obtaining (Qd)s, for each worker, we propose the following
efficient line search approaches.

Armijo-rule based step size selection. For general g;(-), a
commonly used line search approach is to try step sizes § € {1, %, e
until S satisfies the sufficient decrease condition (8). The only cost
is to evaluate the objective function value. For each choice of f,
f (e + fd) can be computed as

fla+pd) = f(@) + 3 (pd5, (Qa)s, + 5T, (©ds,

+ > gilai + di) - gilei)),

i€S,

so if each worker r has the vector (Qd)s, , we can compute f(a+fd)
using O(n/k) time and O(1) communication cost. In order to prove
convergence, we add another condition that f(a + fd) < f(a +
d/k), although in practice we do not find any difference without
adding this condition.

Optimal step size selection. If each g; is a linear function with
bounded constraint (such as for the kernel SVM case), the optimal
step size can be computed without communication. The optimal
step size is defined by

B = argménf(a +pd)st.a<a+pd<b. (12)

If 3; gi(ai) = pa, then f(a + pd) with respect to f is a univariate
quadratic function, and thus f; can be obtained by the following
closed form solution:

f = min(7, max(n, —(¢" Qd + pTd)/(d" Qd))),  (13)

where 77 := min]_ (b; — ;) and 5 := max"_, (a; — «;). This can also
be computed in O(n/k) time and O(1) communication time. Our
proposed algorithm is summarized in Algorithm 1.

4.3 Variable Partitioning

Our PBM algorithm converges for any choice of partition {S, }Ir‘=1.
However, it is important to select a good partition in order to achieve
faster convergence. Since our algorithm is solving an “approximate
function” at each iteration, the difference between the approximate
function f, and the true function f controls the convergence rate
of the algorithm. If 0 = Q in subproblem (4) (no approximation
error), then fo (Aat) = f(a + Aa) for any A, so our algorithm
converges in one iteration. However, there is no parallelism in this
case. On the other hand, if ||Q — Q|| is very large, the algorithm will
converge slowly. Therefore, the convergence rate can be speed up

Algorithm 1: PBM: Parallel Block Minimization for solving (1)

Input :The objective function (1), initial ar.
Output: The solution a*.
1 Obtain a disjoint index partition {S, }le.
2 Compute Qe in parallel (Qarg = 0 if &g = 0).
3 for t =0,1,...(until convergence) do

4 Obtain dg, by solving subproblems (7) in parallel.

5 Compute Q. 5, ds, in parallel.

6 Use REDUCE_SCATTER to obtain (Qd)s, in each worker.

7 Obtain the step size f using line search (see Section 4.2 for
details)

s | @s, « as, +fds, and (Qa)s, — (Qa)s, + (Qd)s, in
parallel.

by finding a partition {S, }’;:1 to minimize error

0-oi2=> @->" 3 @
F= Luj=<ij r=1 £di,jes, <)’

and the minimizer can be obtained by maximizing the second term.
However, we also want to have a balanced partition in order to
achieve better parallelization speedup.

The same problem has been encountered in [5, 24] for forming a
good kernel approximation. They have shown that kernel kmeans
can achieve a good partition for general kernel matrix, and if the
kernels are shift-invariant (e.g., Gaussian, Laplacian, ...), we can
use kmeans clustering on the data points to find a balanced parti-
tion with small kernel approximation error. Since we do not need
the “optimal” partition, in practice we only run kmeans or kernel
kmeans on a subset of 20000 training samples, so the overhead is
very small compared with the whole training procedure.

We observe PBM with kmeans partition converges much faster
compared to random partition. By random partition, we will assign
each variable into a random partition. Due to randomness, each
partition will roughly have the same number of variables. In Fig-
ure 1, we test the PBM algorithm on the kernel SVM problem with
Gaussian kernel, and show that the convergence is much faster
when the partition is obtained by kmeans clustering.

Local Prediction. We further propose a local prediction strat-
egy for PBM when data is partitioned by kmeans clustering. Let o,
be the solution before the t-th iteration of Algorithm 1, and d; be
the solution of the quadratic subproblem (4). The traditional way is
to use ;41 = o + Prd; for predicting new data.

However, we find the following procedure gives better predic-
tion accuracy compared to using a+1: we first identify the cluster
indicator of the test point x by choosing the nearest kmeans center.
If x belongs to the r-th cluster, we then compute the prediction by
the local model &; +(d¢)<s, >, where (d;)<s, > is an n dimensional
vector that sets all the elements outside S, to be 0. Experimental
results in Figure 1 show that this local prediction strategy is gener-
ally better than predicting by a;+1. The main reason is that during
the optimization procedure each local machine fits the local data by
a; + (dt)<s, >, so the prediction accuracy is better than the global
model (a; + d;) which may not fit each local model that well.

Summary: Computational and Memory Cost: In Section 4.1,
we showed that the greedy coordinate descent solver only requires
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Figure 1: Comparison of different variances of PBM. We observe PBM with kmeans partitioning converges faster than random partition, and
the accuracy can further be improved by using our local prediction heuristic.

O(|Sr]) time complexity per inner iteration. Before communica-
tion, we need to compute Q. 5, ds, in each machine, which requires
O(tn) time complexity, where ¢ is number of inner iterations. The
line search requires only O(n/k) time. Therefore, the overall time
complexity is O(tn) for totally O(tk) coordinate updates from all
workers, so the average time per update is O(n/k), which is k times
faster than the original greedy coordinate descent (or SMO) algo-
rithm for kernel SVM, where k is number of machines.

The time for running kmeans is O(fid) using k computers, where
fi is number subsamples (we set it to 20,000). This is a one time
cost and is very small comparing to the cost of solving kernel
machines. For example, on Covtype dataset the kmeans step only
took 13 seconds, while the overall training time is 772 seconds. Note
that we include the clustering time in all the experimental
results.

Memory Cost: In kernel SVM, the main memory bottleneck is
the memory needed for storing the kernel matrix. Without any trick
(such as shrinking) to reduce the kernel storage, the space complex-
ity is O(n?) for kernel SVM (otherwise we have to recompute kernel
values when needed). Using our approach, (1) the subproblem solver
only requires O(n?/k?) space for the sub-matrix of kernel Os,.s,
(2) Before synchronization, computing Q. s, ds, requires on?/k)
kernel entries. Therefore, the memory requirement will be reduced
from n? to n?/k using our algorithm. However, for large datasets
the memory is still not enough. Therefore, similar to the LIBSVM
software, we maintain a kernel cache to store columns of Q, and
maintain the cache using the Least Recent Used (LRU) policy. In
short, if memory is not enough, we use the kernel caching tech-
nique (implemented in LIBSVM) that computes the kernel values
on-the-fly when it is not in the kernel cache and maintains recently
used values in memory.

If each machine contains all the training samples, then Q. 5 ds,
can be computed in parallel without any communication, and we
only need one REDUCE_SCATTER mpi operation to gather the
results. However, if each machine only contains a subset of samples,
they have to broadcast {x; | i € Sy,d; # 0} to other machines so
that each machine q can compute (Qd) S,-In this case, we do not
need to store the whole training data in each machine, and the
communication time will be proportional to number of support
vectors, which is usually much smaller than n.

5 CONVERGENCE ANALYSIS

In this section we show that PBM has a global linear convergence
rate under certain mild conditions. Note that our result is stronger
than some recent theoretical analysis of distributed coordinate
descent. Compared to [9], we show linear convergence even when
the objective function (1) is not strictly positive definite (e.g., for
SVM with hinge loss), while [9] only has sub-linear convergence
rate for those cases. In comparing to [14], they assume that the
subproblems in each worker are solved exactly, while we allow an
approximate subproblem solver (e.g., coordinate descent with > 1
steps).

First we assume the objective function satisfies the following
global error bound property. This is a weaker notion of strong
convexity, in the sense that all the strongly convex functions satisfy
this assumption (in those cases, k is the condition number), but
many other machine learning problems also satisfy this assumption
even if they are not strongly convex [7, 26].

Definition 5.1 (Global error bound). Problem (1) admits a “global
error bound” if there is a constant x such that

llr = Ps(a)ll < xlIT(x) — l, (14)

where Pg(-) is the Euclidean projection to the set S of optimal
solutions, and T : R” — R”" is the operator defined by

(15)

Ti(a) = argmin f(a + (u — a;)e;), Vi=1,...,n.
u

where e; is the standard i-th unit vector and u is the variable to
minimize. We say that the algorithm satisfies a global error bound
from the beginning if (14) holds for the level set {a | f(e) < f(0)}.

Next, we discuss some problems that admit a global error bound:

COROLLARY 5.2. Problem (1) satisfies a global error bound from
the beginning if one of the following conditions is true.

o Q is positive definite (kernel is positive definite).

e Foralli=1,...,n,g;(-) is strongly convex for all the iterates
(e.g., dual {3-regularized logistic regression with positive semi-
definite kernel).

o Q is positive semi-definite and g; (-) is linear for all i with a box
constraint (e.g., dual hinge loss SVM with positive semi-definite
kernel).



Corollary 5.2 implies that many widely used machine learning
problems, including dual formulation of SVM and {3-regularized
logistic regression, admit a global error bound from the beginning
even when the kernel has a zero eigenvalue. These have been proved
in Theorem 1 of [7] and in [26].

We do not require the inner solver to obtain the exact solution
of (7). Instead, we define the following condition for the inexact
inner solver.

Definition 5.3. An inexact solver for solving the subproblem (7)
achieves a “local linear improvement” if the inexact solution d,
satisfies

f0ds) - fas) < n(fO0) - 19ds,)). (6

is the subproblem defined in (7), d s, =

arg minp fg)(A) is the optimal solution of the subproblem, and
n € (0,1) is a constant.

for all iterates, where f(g,r)

In the following we list some widely-used subproblem solvers
that satisfy Definition 5.3.

COROLLARY 5.4. The following subproblem solvers satisfy Defini-
tion 5.3 if the objective function admits a global error bound from the
beginning: (1) Greedy Coordinate Descent with at least one step. (2)
Cyclic coordinate descent with at least one epoch.

The condition of (16) will be satisfied if an algorithm has a global
linear convergence rate. The global linear convergence rate of cyclic
coordinate descent has been proved in Section 3 of [26], and the
linear convergence rate for greedy coordinate descent can be shown
easily using the same analysis (see http://arxiv.org/abs/1608.02010).

We now show our proposed method PBM in Algorithm 1 has a
global linear convergence rate in the following theorem.

THEOREM 5.5. Assume (1) the objective function admits a global
error bound from the beginning (Definition 5.1), (2) the inner solver
achieves a local linear improvement (Definition 5.3), (3) Rmin =
min; Q;; # 0, and (4) the objective function is L-Lipschitz continuous
for the level set. Then the following global linear convergence rate
holds:

flar) - f(a®) <

Rmin *
(1= =) (flan - fla)),

where a* is an optimal solution, and B = maX _1 IS¢ is the maxi-

mum block size.

Proor. We first define some notations that we will use in the
proof. Let s be the current solution of iteration ¢, d; is the approx-
imate solution of (7) satisfying Definition 5.3. For convenience we
will omit the subscript t here (so d := d;). We use d, to denote the
size |Sy| subvector, and d <, > to denote the n dimensional vector

with
d.
d<S,> = {Ol

By the definition of our line search procedure described in Sec-

ifi €S,

otherwise

tion 4.2, we have

flar+pd) < flar+ Zd<s,>>

k
Z (l[+d<5r

r=1

k
1
<% Z (ar +d<s,>),

?r‘l>—‘

where the last inequality is from the convexity of f(-). We define d
to be the optimal solution of (4) (so each d, is the optimal solution
of the r-th subproblem (7)). Then we have

k
flan) - flai+d0) > f@) -3 ) fl@r +dzs,2)
r=1

k
> = flan - fla+das ), (17)

where the last inequality is from the local linear improvement of
the in-exact subproblem solver (Definition 5.3). We then define a
vector d where each element is the optimal solution of the one
variable subproblem:

di =Ti(a:) = (@r)i Vi=1,....n,
where Tj(a;) was defined in (15). First, by the definition of Q in (5),
there is no approximation if the update vector is within one block,

so we have fo (d<s,>) = f(e +d<s,>) for any block r. Since asr
is the optimal solution of each subproblem, we have

flar+d<s,s) < flar +d<s, > /IS ), Vr=1,...,k.
Combining with (17) we get

k
fler) = fley +ds) > TH Z (@) - fla; +¢_1<5,>/|5r|))
r=1
k
z % Z ( () - E ZS: flar + ‘_1<i>)) (by convexity)

I (e

\%

= flo + ‘_i<i>)),

where the last inequality is by the definition of B. Now consider the
one variable probler{l f(a;+ue;). Since Ry ip, is the lower bound of
f"(a; + ue;) and d; is the optimal for this single variate function,
we have f(a;) > f(ar +d<i>) + %Rmindiz. As aresult,

n

Z (f(at) ~ fla: +‘_1<i>)) > ZRmindi,g = Rmin||¢_i||2~

i=1 i=1
Therefore,
flar) = flar+d) 2 Wnnrm —aell?
> B0 b ) e by (14)
LRmin(1-1) *
Tﬂf(“t) - fla)ll.



Table 1: Dataset statistics

Dataset | # training samples | # testing samples | # features | C Y
cifar 50,000 10,000 3072 | 23 | 2722
webspam 280,000 70,000 254 | 23| 25
covtype 464,810 116,202 54 | 25| 20
mnist8m 8,000,000 100,000 784 | 20 | 2721
kddb 19,264,097 748,401 | 29,890,095 | 2! | 27!

Therefore, we have
flarn) - fl@*) = f(ar) = (f(ar) - fl@r)) - f(a®)

(1 F2e ) - s(@).

<
kBLxk?
o

Note that we do not make any assumption on the partition used
in PBM, so our analysis works for a wide class of optimization
solvers, including distributed linear SVM solver in [14] where they
only consider that case when the subproblems are solved exactly.

To sum up, Theorem 5.5 shows that the proposed PBM frame-
work converges linearly as long as the subproblem solver satisfies
Definition 5.3, which means that the subproblem solver linearly
reduces the approximate function fg . Since coordinate descent has
linear convergence rate (Corollary 5.4), the PBM algorithm con-
verges linearly if we run > 1 greedy or random coordinate descent
update in the inner iteration for solving the subproblem.

6 EXPERIMENTAL RESULTS

We conduct experiments on five public large-scale datasets listed
in Table 1. We follow the procedure in [5, 33] to transform ci-
far and mnist8m into binary classification problems, and Gauss-
ian kernel K(x;,xj) = eV IXi=x;1” is used in all the compar-
isons. Our code can be downloaded from https://github.com/cjhsieh/
Distributed-KSVM.

We follow the parameter settings in [5], where C and y are
selected by 5-fold cross validation on a grid of parameters. The
experiments are conducted on Texas Advanced Computing Center
Maverick cluster, where each machine has a 20-core CPU with
256GB memory. In this paper, we mainly focus on kernel SVM and
kernel logistic regression.

We compare our PBM method with the following distributed
kernel SVM solvers, where all of them are implemented in C++ and
the inter-machine communication is using MPI:

1. P-pack SVM [35]: a parallel Stochastic Gradient Descent (SGD)
algorithm for kernel SVM training. We set the pack size r = 100
according to the original paper.

2. Random Fourier features with distributed LIBLINEAR ( RFF-
LIBLINEAR): RFF-LIBLINEAR generates random Fourier features
and solves the resulting problem by LIBLINEAR. In a distributed
system, we can compute random features [19] for each sample
in parallel (this is a one-time preprocessing step), and then solve
the resulting linear SVM problem by distributed dual coordi-
nate descent [14] implemented in MPI LIBLINEAR. Note that
although Fastfood [13] can generate random features in a faster
way, the bottleneck for RFF-LIBLINEAR is solving the resulting

linear SVM problem after generating random features, so the
performance is similar.

3. Nystréom approximation with distributed LIBLINEAR ( NYS-
LIBLINEAR): We implemented the ensemble Nystrém approxi-
mation [12] with kmeans sampling in a distributed system and
solved the resulting linear SVM problem by MPI LIBLINEAR.
The approach is similar to [16].

4. PSVM [3]: a parallel kernel SVM solver by in-complete Cholesky
factorization and a parallel interior point method. We test the
performance of PSVM with the rank suggested by the original
paper (n%-> or n%-® where n is number of samples).

We also compare with the state-of-the-art single-thread nonlinear

kernel SVM solver DC-SVM [5] and multi-core kernel SVM solver

Asyn-GCD [30] in our experiments. Unfortunately, they cannot run

on distributed systems (see our discussions in Section 2, so we just

use them to serve as baselines for single-thread and single-machine
multi-thread kernel SVM solvers respectively. For these two solvers
we directly run the code released by the authors.

Comparison with other distributed kernel SVM solvers.
We use 32 machines (each with 1 thread) and the best C, y for all the
solvers. Our parameter settings are exactly the same with [5] chosen
by cross-validation in [273°, 219]. For cifar and mnist8m the samples
are not normalized, so the averaged norm mean(||x;||) is large (it is
876 on cifar). Since Gaussian kernel is e~ X =%; I, a good y will
be very small. We can normalize the data as well, and then a good
y will become larger. We mainly compare the prediction accuracy
in the paper because most of the parallel kernel SVM solvers are
“approximate solvers”—they solve an approximated problem, so it
is not fair to evaluate them using the original objective function.
In Figure 2 (a)-(d) we compare our proposed algorithm with other
kernel SVM solvers. Note that in these figures, we vary the number
random features for RFF-LIBLINEAR and the number of landmark
points for NYS-LIBLINEAR. The results in Figure 2 (a)-(d) indicate
that our proposed algorithm is much faster than other approaches.
We further test the algorithms with varied number of workers and
parameters in Table 2. Note that PSVM usually gets much lower
test accuracy since it approximates the kernel matrix by incomplete
Cholesky factorization, so we only show its results in Table 2.

MPI+OpenMP Hybrid Implementation. In the previous ex-
periment, each machine only runs with one MPI worker. To exploit
the power of each machine, we further implement an MPI+OpenMP
hybrid version of our algorithm. In this setting, each machine can
use multiple cores with OpenMP, and the between-machine commu-
nication is still done by MPL Since cores in the same machine can
access the shared memory space, the parallelism is often simpler
because there is almost no communication cost.
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Figure 2: (a)-(d): Comparison with other distributed kernel SVM solvers using 32 workers. Markers for RFF-LIBLINEAR and
NYS-LIBLINEAR are obtained by varying the number random features and landmark points respectively. (e)-(f): The objective
function of PBM as a function of computation time (time in seconds x the number of workers), when the number of workers
is varied. Results show that PBM has very good scalability on large datasets.

Table 2: Comparison on real datasets for kernel SVM. Here we use 32 machines (each machine with 1 thread) for all the distributed solvers
(PBM, P-packSGD, PSVM), and 1 machine for the serial solver (DC-SVM). For kddb, we use 32 machines and 20 cores in each machine to test
MPI+OpenMP Hybrid Implementation of PBM. The first column of PBM shows that PBM achieves good test accuracy after 1 iteration, and

the second column of PBM shows PBM can achieve an accurate solution (with £

()—f(a”)

< 107%) quickly and obtain even better accuracy.

Note that “-” indicates the training time is more than 10 hours. e
PBM (first step) | PBM (10~3 error) P-packSGD PSVM p = n®> | PSVM p = n® | DC-SVM (103 error)
time(s) acc(%) | time(s) acc(%) | time(s) acc(%) | time(s) acc(%) | time(s) acc(%) | time(s) acc(%)
webspam 16 99.07 360 99.26 1478 98.99 773 75.79 2304 88.68 8742 99.26
covtype 14 96.05 772 96.13 1349 92.67 286 76.00 7071 81.53 10457 96.13
cifar 15 85.91 540 89.72 1233 88.31 41 79.89 1474 69.73 13006 89.72
mnist8m 321 98.94 8112 99.45 2414 98.60 - - - - - -
kddb 1832 88.59 32740 88.76 - - - - - - - -

In our implementation, within each machine, we use OpenMP
to compute the elements of kernel matrix in parallel. There are two
places requiring kernel value computations: (1) When using the
greedy coordinate descent algorithm to solve the subproblem (Step
4 in Algorithm 1), we need to access the i-th column of kernel ma-
trix Q when updating the variable ;, and (2) Step 5 in Algorithm 1
for computing Q. 5, d, . Note that we use the kernel cache strategy
developed in LIBSVM for maintaining several columns of kernel
matrix in memory, and remove the Least Recent Used (LRU) col-
umn when running out of memory space. Therefore, the OpenMP
parallelism is used when the required kernel matrix column is not
found in kernel cache (cache miss) and needed to be computed from

scratch. Surprisingly, this simple hybrid implementation achieves
superb speedup, especially in very large datasets when the memory
can only cache a small portion of kernel matrix. For example, on
covtype dataset, PBM with 32 machines and using 20 cores per ma-
chine is 8.9 times faster than its pure MPI implementation that only
uses 1 core per machine; on kddb dataset, with the same setting,
hybrid PBM is 15.2 times faster than its MPI version with 1 core
per machine.

Scalability of PBM. For the second experiment we varied the
number of machines from 1 to 32, and plot the scaling behavior of
PBM. In Figure 2 (e)-(f), we set y-axis to be the relative error defined
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Figure 3: Comparison with Asyn-GCD, the state-of-the-art multi-core single machine kernel SVM solver. Results show that our algortihm is

uch faster than Asyn-GCD by using multiple computers.

by (f(a:) — f(a*))/f(a*) where a* is the optimal solution, and
x-axis to be the total CPU time expended which is given by the
number of seconds elapsed multiplied by the number of workers.
We plot the convergence curves by changing number of machines
(and using all the 20 cores in each machine). The perfect linear
speedup is achieved if the curves overlap. This is indeed the case
for both covtype and kddb.

Interestingly, in the kddb dataset, we observe a super-linear
speedup when using 8 and 32 machines compared with the single-
machine version. This is mainly due to the increasing amount
of memory available for caching kernel values—for example, a
single machine can only afford 100GB memory for storing the
computed kernel values, while using 32 machines there will be a
total amount of 3200GB memory for storing those values. Therefore,
the “kernel cache miss rate” (portion of kernel values that needs to
be recomputed) is much better as number of machine increases. As
a result, the speedup of is almost linear and sometimes even super
linear.

Comparison with single-machine solvers. We also com-
pare PBM with state-of-the-art single machine solver for kernel
SVM: Asyn-GCD [30] which uses multiple cores in a single ma-
chine, and DC-SVM [5] which can only run with a single thread.
The results are in Table 2 and Figure 3. DC-SVM first computes the
solutions in each partition, and then use the concatenation of local
(dual) solutions to initialize a global kernel SVM solver (e.g., LIB-
SVM). However, the top level of DC-SVM is the bottleneck (taking
2/3 of the run time), so the speed is still slow in Table 2. Asyn-GCD
is an asynchronous parallel coordinate descent algorithm for kernel
SVM, and it performs much better than other single-machine SVM
solvers including LIBSVM (see [30]). In Figure 3, we show that our
distributed algorithm is much faster using multiple machines which
might not be the case for some other distributed solvers. This con-
firms that our algorithm is much faster than the best single-machine
kernel SVM solver.

Kernel logistic regression. We implement the PBM algo-
rithm to solve the kernel logistic regression problem. Note that
PSVM cannot be directly applied to kernel logistic regression. We
use greedy coordinate descent proposed in [11] to solve each sub-
problem (7). The results are presented in Table 3, showing that our
algorithm is faster than P-packSGD.

Table 3: Comparison on real datasets for kernel logistic re-
gression. Here we use 32 machines (each machine with 1
thread).

PBM (first step) | PBM (10> error) P-packSGD
time(s) acc(%) | time(s)  acc(%) | time(s) acc(%)
webspam 1679  92.01 2131 99.07 4417 98.96
cifar 471  83.37 758 88.14 2115 87.07

7 CONCLUSION

We have proposed a parallel block minimization (PBM) framework
for solving kernel machines on distributed systems. We show that
PBM significantly outperforms other approaches on large-scale
datasets, and prove a global linear convergence of PBM under mild
conditions. By using 32 machines with totally 640 cores, our algo-
rithm can solve the kddb dataset with 20 millions samples and 30
millions features in half hour.
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