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ABSTRACT

Nonlinear kernel machines often yield superior predictive perfor-

mance on various tasks; however, they suffer from severe compu-

tational challenges. In this paper, we show how to overcome the

important challenge of speeding up kernel machines using multiple

computers. In particular, we develop a parallel block minimization

framework, and demonstrate its good scalability in solving nonlin-

ear kernel SVM and logistic regression. Our framework proceeds by

dividing the problem into smaller subproblems by forming a block-

diagonal approximation of the Hessian matrix. The subproblems

are then solved approximately in parallel. After that, a communica-

tion efficient line search procedure is developed to ensure sufficient

reduction of the objective function value by exploiting the problem

structure of kernel machines. We prove global linear convergence

rate of the proposedmethodwith awide class of subproblem solvers,

and our analysis covers strongly convex and some non-strongly

convex functions. We apply our algorithm to solve large-scale ker-

nel SVM problems on distributed systems, and show a significant

improvement over existing parallel solvers. As an example, on the

covtype dataset with half-a-million samples, our algorithm can ob-

tain an approximate solution with 96% accuracy in 20 seconds using

32 machines, while all the other parallel kernel SVM solvers require

more than 2000 seconds to achieve a solution with 95% accuracy.

Moreover, our algorithm is the first distributed kernel SVM solver

that can scale to massive data sets. On the kddb dataset (20 million

samples and 30 million features), our parallel solver can compute

the kernel SVM solution within half an hour using 32 machines

with 640 cores in total, while existing solvers can not scale to this

dataset.
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1 INTRODUCTION

Kernel methods are a class of algorithms that map samples from

input space to a high-dimensional feature space. The representative

kernel machines include kernel SVM, kernel logistic regression and

support vector regression. When a nonlinear kernel is used, all the

above algorithms are hard to scale to large-scale problems due to

the high computation cost and memory requirement of computing

and storing the kernel matrix. Efficient sequential algorithms have

been proposed for kernel machines, where the most widely-used

one is the SMO algorithm [10, 18] implemented in LIBSVM and

SVMLight. However, single-machine kernel SVM algorithms still

cannot scale to larger datasets (e.g. LIBSVM takes 3 days on the

MNIST dataset with 8 million samples), so there is a tremendous

need for developing distributed algorithms for kernel machines.

Although many distributed algorithms have been proposed for

solving linear SVM/logistic regression [9, 14, 34], they cannot be

applied to nonlinear kernel machines since they synchronize infor-

mation using primal variables. To the best of our knowledge, there

are very few existing algorithms for distributed nonlinear kernel

SVM training because of two challenges: How to deal with the huge

kernel matrix and how to solve the large quadratic optimization

problem in a distributed and communication-efficient manner. Most

existing algorithms try to approximate kernel matrix in parallel to

reduce the problem to a linear machine [3, 19], and then solve the

resulting problem by a distributed optimization solver. However,

due to the kernel approximation step, they cannot obtain the exact

kernel SVM solution and this often leads to suboptimal prediction

accuracy.

In this paper, we propose a distributed kernel SVM solver that

is able to solve the quadratic optimization problem exactly by a

Parallel Block Minimization (PBM) framework. At each iteration,

PBM divides the whole problem into smaller subproblems by first

forming a block-diagonal approximation of the kernel matrix. Each

subproblem is much smaller than the original problem and they

can be solved in parallel using existing serial solvers such as SMO

(or greedy coordinate descent) [18] implemented in LIBSVM. After

that, we develop a communication-efficient line search procedure

to ensure a reduction of the objective function value.

Our contribution can be summarized below:

1. The paper is the first to apply the parallel block minimization

(PBM) framework for training kernel machines, where each ma-

chine updates a block of dual variables. We develop an efficient

line search procedure to synchronize the updates at the end

of each iteration without any additional cost by exploiting the

problem structure of kernel machines.



2. Our algorithm works for any partition of dual variables, and we

show that the convergence speed can be significantly improved

using a better partition (obtained by kmeans) .

3. We show that our proposed algorithm significantly outperforms

existing kernel SVM and logistic regression solvers on a dis-

tributed system. In particular, our algorithm is the first dis-

tributed nonlinear SVM solver that scales to kddb dataset with

20 million samples and 30 million features. On this dataset, our

parallel solver only takes half an hour to compute the kernel

SVM solution with 32 machines containing 640 cores in total.

4. We prove a global linear convergence rate for PBM under mild

conditions: we allow a wide range of inexact subproblem solvers,

and our analysis covers many widely-used functions where some

of them may not be strongly convex (e.g., SVM dual problem

with a positive semi-definite kernel).

The rest of the paper is organized as follows. We discuss the related

work in Section 2. In Section 3, we introduce the problem setting,

and the proposed PBM framework is presented in Section 4. We

prove a global linear convergence rate in Section 5. Experimental

results are shown in Section 6, while Section 7 concludes the paper.

2 RELATED WORK

Algorithms for solving kernel machines. Several optimization

algorithms have been proposed to solve kernel machines [10, 18].

Among them, decomposition methods [10, 11] have become widely-

used in software packages such as LIBSVM [2] and SVMLight.

Parallelizing kernel SVM has also been studied in the literature.

Recently an asynchronous greedy coordinate descent algorithm has

been proposed for solving kernel SVM [30]. Although it achieves

good performance on a multicore shared memory system, the al-

gorithm cannot be used in distributed systems due to the need of

asynchronous global parameter access. Several distributed SVM

algorithms have been proposed: Cascade-SVM [4] proposed to ran-

domly divide the problem into subproblems, but they still need to

solve a global kernel SVM problem in the final stage; PSVM [3] uses

an incomplete Cholesky factorization to approximate the original

kernel SVMproblem, and solves the resulting problem by an interior

point method; P-pack SVM [35] applies a distributed SGD algorithm

for training kernel SVM. Unfortunately, as shown in the experi-

ments, none of the existing distributed kernel SVM algorithms can

scale to extremely large datasets.

Two clustering based approaches for kernel SVM have been

recently developed: Divide-and-conquer SVM (DC-SVM) [5] and

Communication Avoiding SVM (CA-SVM) [29]. In DC-SVM, the

global kernel SVM problem is hierarchically divided into smaller

subproblems by kmeans or kernel kmeans, and the subproblems

can be solved independently. The solutions from subproblems can

be used directly for prediction (called DC-SVM early prediction)

or can be used to initialize the global SVM solver. Although the

subproblems can be solved in parallel, DC-SVM still needs a parallel

solver for the global SVM problem in the final stage. Our idea of

using clustering is similar to DC-SVM [5], but here we apply it to

develop a distributed SVM solver, while DC-SVM is just a single-

machine serial algorithm. The experimental comparisons between

our proposed method and DC-SVM are shown in the experiments.

Kernel approximation approaches. Another line of approach

for kernel machines aim to approximate the kernel matrix and then

solve the reduced size problem. Nyström approximation [6, 22, 23,

27] and random Fourier features [19] can be used to form low-rank

approximation of kernel matrices, and then the problem can be re-

duced to a linear SVM or logistic regression problem. To parallelize

these algorithms, a distributed linear SVM or logistic regression

solver is needed. The comparisons are in Figure 2. Using random

Fourier features in kernel machine is also applied in [8] and [25].

Comparing with our proposed method, (1) they only consider solv-

ing linear systems, and it is nontrivial for them to solve kernel SVM

and logistic regression problems; (2) they cannot obtain the exact

solution of kernel machines, since they only use the approximate

kernel.

Distributed linear SVMand logistic regression solvers. Sev-

eral distributed algorithms have been proposed for solving the

primal linear SVM problems [14, 15, 34], but they require synchro-

nizing the primal variables at each iteration. Unfortunately, the

primal variables cannot be explicitly formed in nonlinear kernel

machines, so these methods cannot be directly applied to nonlin-

ear kernel SVM or logistic regression. Distributed dual coordinate

descent [9, 14, 28] and asynchronous dual coordinate descent [32]

is also investigated for linear SVM.

Distributed Block Coordinate Descent. The main idea of

our algorithm is similar to a class of Distributed Block Coordinate

Descent (DBCD) parallel computing methods. As discussed recently

in literature [17, 20, 21], different DBCD parallel algorithms have

different ways to solve subproblems in each machine, and synchro-

nize the results. However, no existing work has applied DBCD to

kernel machines, partly due to the challenge of line search in dis-

tributed systems. Recent distributed dual coordinate descent linear

SVM solvers [14, 34] also belongs to DBCD class.

Our Innovations. In contrast to the above algorithms, ours is

the first one that adopts a block-partition based coordinate descent

algorithm to kernel machines; previous work either focused on lin-

ear SVM [9, 14, 28] or primal ERM problems [17]. These approaches

proposed to maintain and synchronize the vector y = XTd or

w = Xd , where d is the direction and X is the data matrix. Un-

fortunately, in kernel methods this strategy does not work since

each sample may have infinite dimension after the nonlinear map-

ping. We overcome the challenges by synchronizing the Qd vector

(Q ∈ Rn×n ) and developing an efficient line search procedure.

We further show that a better partition (obtained by kmeans) can

speedup the convergence of the algorithm.

On the theoretical front: previous papers [9, 28] can only show

linear convergence when the objective function is f (x ) = д(x ) +

h(x ) and д is strongly convex. [14] considered some non-strongly

convex functions, but they assume each subproblem is solved ex-

actly. In this paper, we prove a global linear convergence even

when д is not strongly convex and each subproblem is solved ap-

proximately. Our proof covers general DBCD algorithms for some

non-strongly convex functions, for which previous analysis can

only show sub-linear convergence.



3 PROBLEM SETUP

We focus on the following composite optimization problem:

argmin
α ∈Rn

{
αTQα +

∑

i

дi (αi )
}
:= f (α ) s.t. a≤α ≤b, (1)

where Q ∈ Rn×n is positive semi-definite; each дi is a univariate

convex function; a = [a1, · · · ,an] and b = [b1, · · · ,bn] are vectors.

Note that we can easily handle the box constraint a ≤ α ≤ b by

setting дi (αi ) = ∞ if αi < [ai ,bi ], so we will omit the constraint in

most parts of the paper.

An important application of (1) in machine learning is that it

is the dual problem of ℓ2-regularized empirical risk minimization.

Given a set of instances {x i ,yi }
n
i=1, we consider the following ℓ2-

regularized empirical risk minimization problem:

argmin
w

1

2
wTw +C

∑n

i=1
ℓi (w

TΦ(x i )), (2)

where ℓi is the loss function depending on the label yi , and Φ(·) is

the nonlinear feature mapping. For example, ℓi (u) = max(0, 1−yiu)

for SVM with hinge loss. The dual problem of (2) can be written as

argmin
α

1

2
αTQα +

∑n

i=1
ℓi (−αi ), (3)

where Q ∈ Rn×n in this case is the kernel matrix with Qi j =

yiyjΦ(x i )
TΦ(x j ). Our proposed approach works in the general

setting, but we will discuss in more detail its applications to kernel

SVM, where Q is the kernel matrix and α is the vector of dual

variables. Note that, similar to [5], we ignore the bias term in (2).

Indeed, in our experimental results we did not observe improvement

in test accuracy by adding the bias term.

4 PROPOSED ALGORITHM

We describe our proposed framework PBM for solving (1) on a dis-

tributed system with k worker machines. We partition the variables

α into k disjoint index sets {Sr }
k
r=1 such that

S1 ∪ S2 ∪ · · · ∪ Sk = {1, . . . ,n} and Sp ∩ Sq = ϕ ∀p , q,

and we use π (i ) to denote the cluster indicator that i belongs to.

We associate each worker r with a subset of variables αSr := {αi |

i ∈ Sr }. Note that our framework allows any partition, and we will

discuss how to obtain a better partition in Section 4.3.

At each iteration, we form the quadratic approximation of prob-

lem (1) around the current solution:

f (α + ∆α )≈ f̄α (∆α )=
1

2
αTQα+αTQ∆α+

1

2
∆αT Q̄∆α

+

∑

i

дi (αi + ∆αi ), (4)

where the second order term of the quadratic part ( 12∆α
TQ∆α ) is

replaced by 1
2∆α

T Q̄∆α , and Q̄ is the block-diagonal approximation

of Q such that

Q̄i j =


Qi j if π (i ) = π (j )

0 otherwise.
(5)

By solving (4), we obtain the descent direction d :

d := argmin
∆α

f̄α (∆α ). (6)

Since Q̄ is block-diagonal, problem (6) can be decomposed into k

independent subproblems based on the partition {Sr }
k
r=1:

dSr=argmin
∆α Sr

{1
2
∆αT

Sr
QSr ,Sr∆αSr +

∑

i ∈Sr

д̄i (∆αi )
}
:= f

(r )
α (∆αSr), (7)

where д̄i (∆αi ) = дi (αi + ∆αi ) + (Qα )i∆αi . Subproblem (7) has

the same form as the original problem (1), so can be solved by

any existing kernel SVM/kernel regression solver on each machine.

After solving the subproblems (7) independently for each r , the

descent directiond is the concatenation ofdS1 , . . .dSr . Since f (α +

d ) might even increase the objective function value f (α ), we find

the step size β to ensure the following sufficient decrease condition

of the objective function value:

f (α + βd ) − f (α ) ≤ βσ∆, (8)

where ∆ = ∇f (α )Td , and σ ∈ (0, 1) is a constant. We then update

α ← α + βd . Now we discuss details of each step of our algorithm.

4.1 Solving the Subproblems

Note that subproblem (7) has the same form as the original prob-

lem (1), so we can apply any existing algorithm to solve it for each

worker independently. In our implementation, we apply the fol-

lowing greedy coordinate descent method (a similar algorithm was

used in LIBSVM). Assume the current subproblem solution is ∆αSr ,

we choose variable with the largest projected gradient:

i∗ := argmax
i ∈Sr

���Π
(

αi+∆αi− (QSr ,Sr ∆αSr )i−д̄
′
i (∆αi )

)

−αi−∆αi
���
(9)

where Π is the projection to the interval [ai ,bi ]. The selection only

requiresO ( |Sr |) time ifQSr ,Sr ∆αSr is maintained in local memory.

Variable ∆αi is then updated by solving the following one-variable

subproblem:

δ∗ = argmin
δ

1

2
Qi∗,i∗δ

2
+ (QSr ,Sr ∆αSr )i∗δ + д̄i∗ (∆αi∗ + δ ) (10)

with ai∗ ≤ αi∗ + ∆αi∗ + δ ≤ bi∗ .

For kernel SVM, the one-variable subproblem (10) has a closed form

solution, while for logistic regression the subproblem can be solved

by Newton’s method (see [31] for the detailed discussions). The

bottleneck of both (9) and (10) is to compute QSr ,Sr ∆αSr , which

can be maintained after each update using O ( |Sr |) time.

Note that in our framework each subproblem does not need to

be solved exactly. In Section 5 we will give theoretical analysis to

the in-exact PBM method, and show that the linear convergence

is guaranteed when each subproblem runs more than 1 coordinate

update.

Communication Cost. There is no communication needed for

solving the subproblems between workers; however, after solving

the subproblems and obtaining the update direction d , each worker

needs to obtain the updated (Qd )Sr vector for next iteration, where

this term in (7) is the only łglobal informationž needed for each ma-

chine. Since each worker only has the local updatedSr , we compute

Q:,Sr (dSr ) in each worker, and use a Reduce_Scatter collective

communication to obtain updated (Qd )Sr for each worker. The



communication cost for the collective Reduce_Scatter operation

for an n-dimensional vector requires

log(k )Tinitial + nTbyte (11)

communication time, where Tinitial is the message startup time

and Tbyte is the transmission time per byte (see Section 6.3 of [1]).

When n is large, the second term usually dominates, so we need

O (n) communication time and this does not grow with the number

of processors.

4.2 Communication-efficient Line Search

After obtaining (Qd )Sr for each worker, we propose the following

efficient line search approaches.

Armijo-rule based step size selection. For general дi (·), a

commonly used line search approach is to try step sizes β ∈ {1, 12 , . . . }

until β satisfies the sufficient decrease condition (8). The only cost

is to evaluate the objective function value. For each choice of β ,

f (α + βd ) can be computed as

f (α + βd ) = f (α ) +
∑

r

{βdTSr (Qα )Sr +
1

2
β2dTSr (Qd )Sr

+

∑

i ∈Sr

дi (αi + βdi ) − дi (αi )},

so if eachworker r has the vector (Qd )Sr , we can compute f (α+βd )

usingO (n/k ) time andO (1) communication cost. In order to prove

convergence, we add another condition that f (α + βd ) ≤ f (α +

d/k ), although in practice we do not find any difference without

adding this condition.

Optimal step size selection. If eachдi is a linear function with

bounded constraint (such as for the kernel SVM case), the optimal

step size can be computed without communication. The optimal

step size is defined by

β∗ := argmin
β

f (α + βd ) s.t. a ≤ α + βd ≤ b . (12)

If
∑

i дi (αi ) = pα , then f (α + βd ) with respect to β is a univariate

quadratic function, and thus β∗t can be obtained by the following

closed form solution:

β = min(η̄,max(η,−(αTQd + pTd )/(dTQd ))), (13)

where η̄ := minni=1 (bi −αi ) and η := maxni=1 (ai −αi ). This can also

be computed in O (n/k ) time and O (1) communication time. Our

proposed algorithm is summarized in Algorithm 1.

4.3 Variable Partitioning

Our PBM algorithm converges for any choice of partition {Sr }
k
r=1.

However, it is important to select a good partition in order to achieve

faster convergence. Since our algorithm is solving an łapproximate

functionž at each iteration, the difference between the approximate

function f̄α and the true function f controls the convergence rate

of the algorithm. If Q̄ = Q in subproblem (4) (no approximation

error), then f̄α (∆α ) = f (α + ∆α ) for any ∆α , so our algorithm

converges in one iteration. However, there is no parallelism in this

case. On the other hand, if ∥Q − Q̄ ∥ is very large, the algorithm will

converge slowly. Therefore, the convergence rate can be speed up

Algorithm 1: PBM: Parallel Block Minimization for solving (1)

Input : The objective function (1), initial α 0.

Output : The solution α ∗.

1 Obtain a disjoint index partition {Sr }
k
r=1.

2 Compute Qα 0 in parallel (Qα 0 = 0 if α 0 = 0).

3 for t = 0, 1, . . .(until convergence) do

4 Obtain dSr by solving subproblems (7) in parallel.

5 Compute Q:,SrdSr in parallel.

6 Use Reduce_Scatter to obtain (Qd )Sr in each worker.

7 Obtain the step size β using line search (see Section 4.2 for

details)

8 αSr ← αSr + βdSr and (Qα )Sr ← (Qα )Sr + β (Qd )Sr in

parallel.

by finding a partition {Sr }
k
r=1 to minimize error

∥Q̄ −Q ∥2F =
∑

i, j
Q2
i j −

∑k

r=1

∑

i, j ∈Sr
Q2
i j ,

and the minimizer can be obtained by maximizing the second term.

However, we also want to have a balanced partition in order to

achieve better parallelization speedup.

The same problem has been encountered in [5, 24] for forming a

good kernel approximation. They have shown that kernel kmeans

can achieve a good partition for general kernel matrix, and if the

kernels are shift-invariant (e.g., Gaussian, Laplacian, . . . ), we can

use kmeans clustering on the data points to find a balanced parti-

tion with small kernel approximation error. Since we do not need

the łoptimalž partition, in practice we only run kmeans or kernel

kmeans on a subset of 20000 training samples, so the overhead is

very small compared with the whole training procedure.

We observe PBM with kmeans partition converges much faster

compared to random partition. By random partition, we will assign

each variable into a random partition. Due to randomness, each

partition will roughly have the same number of variables. In Fig-

ure 1, we test the PBM algorithm on the kernel SVM problem with

Gaussian kernel, and show that the convergence is much faster

when the partition is obtained by kmeans clustering.

Local Prediction. We further propose a local prediction strat-

egy for PBM when data is partitioned by kmeans clustering. Let α t

be the solution before the t-th iteration of Algorithm 1, and dt be

the solution of the quadratic subproblem (4). The traditional way is

to use α t+1 = α t + βtdt for predicting new data.

However, we find the following procedure gives better predic-

tion accuracy compared to using α t+1: we first identify the cluster

indicator of the test point x by choosing the nearest kmeans center.

If x belongs to the r -th cluster, we then compute the prediction by

the local modelα t + (dt )<Sr > , where (dt )<Sr > is ann dimensional

vector that sets all the elements outside Sr to be 0. Experimental

results in Figure 1 show that this local prediction strategy is gener-

ally better than predicting by α t+1. The main reason is that during

the optimization procedure each local machine fits the local data by

α t + (dt )<Sr > , so the prediction accuracy is better than the global

model (α t + dt ) which may not fit each local model that well.

Summary: Computational andMemoryCost: In Section 4.1,

we showed that the greedy coordinate descent solver only requires



(a) webspam obj (b) webspam accuracy (c) covtype obj (d) covtype accuracy

Figure 1: Comparison of different variances of PBM.We observe PBMwith kmeans partitioning converges faster than random partition, and

the accuracy can further be improved by using our local prediction heuristic.

O ( |Sr |) time complexity per inner iteration. Before communica-

tion, we need to computeQ:,SrdSr in each machine, which requires

O (tn) time complexity, where t is number of inner iterations. The

line search requires only O (n/k ) time. Therefore, the overall time

complexity is O (tn) for totally O (tk ) coordinate updates from all

workers, so the average time per update isO (n/k ), which is k times

faster than the original greedy coordinate descent (or SMO) algo-

rithm for kernel SVM, where k is number of machines.

The time for running kmeans isO (n̄d̄ ) using k computers, where

n̄ is number subsamples (we set it to 20,000). This is a one time

cost and is very small comparing to the cost of solving kernel

machines. For example, on Covtype dataset the kmeans step only

took 13 seconds, while the overall training time is 772 seconds. Note

that we include the clustering time in all the experimental

results.

Memory Cost: In kernel SVM, the main memory bottleneck is

the memory needed for storing the kernel matrix. Without any trick

(such as shrinking) to reduce the kernel storage, the space complex-

ity isO (n2) for kernel SVM (otherwise we have to recompute kernel

values when needed). Using our approach, (1) the subproblem solver

only requires O (n2/k2) space for the sub-matrix of kernel QSr ,Sr

(2) Before synchronization, computing Q:,SrdSr requires O (n2/k )

kernel entries. Therefore, the memory requirement will be reduced

from n2 to n2/k using our algorithm. However, for large datasets

the memory is still not enough. Therefore, similar to the LIBSVM

software, we maintain a kernel cache to store columns of Q , and

maintain the cache using the Least Recent Used (LRU) policy. In

short, if memory is not enough, we use the kernel caching tech-

nique (implemented in LIBSVM) that computes the kernel values

on-the-fly when it is not in the kernel cache and maintains recently

used values in memory.

If each machine contains all the training samples, then Q:,SrdSr
can be computed in parallel without any communication, and we

only need one REDUCE_SCATTER mpi operation to gather the

results. However, if each machine only contains a subset of samples,

they have to broadcast {x i | i ∈ Sr ,di , 0} to other machines so

that each machine q can compute (Qd )Sq . In this case, we do not

need to store the whole training data in each machine, and the

communication time will be proportional to number of support

vectors, which is usually much smaller than n.

5 CONVERGENCE ANALYSIS

In this section we show that PBM has a global linear convergence

rate under certain mild conditions. Note that our result is stronger

than some recent theoretical analysis of distributed coordinate

descent. Compared to [9], we show linear convergence even when

the objective function (1) is not strictly positive definite (e.g., for

SVM with hinge loss), while [9] only has sub-linear convergence

rate for those cases. In comparing to [14], they assume that the

subproblems in each worker are solved exactly, while we allow an

approximate subproblem solver (e.g., coordinate descent with ≥ 1

steps).

First we assume the objective function satisfies the following

global error bound property. This is a weaker notion of strong

convexity, in the sense that all the strongly convex functions satisfy

this assumption (in those cases, κ is the condition number), but

many other machine learning problems also satisfy this assumption

even if they are not strongly convex [7, 26].

Definition 5.1 (Global error bound). Problem (1) admits a łglobal

error boundž if there is a constant κ such that

∥α − PS (α )∥ ≤ κ∥T (α ) − α ∥, (14)

where PS (·) is the Euclidean projection to the set S of optimal

solutions, and T : Rn → Rn is the operator defined by

Ti (α ) = argmin
u

f (α + (u − αi )ei ), ∀i = 1, . . . ,n. (15)

where ei is the standard i-th unit vector and u is the variable to

minimize. We say that the algorithm satisfies a global error bound

from the beginning if (14) holds for the level set {α | f (α ) ≤ f (0)}.

Next, we discuss some problems that admit a global error bound:

Corollary 5.2. Problem (1) satisfies a global error bound from

the beginning if one of the following conditions is true.

• Q is positive definite (kernel is positive definite).

• For all i = 1, . . . ,n, дi (·) is strongly convex for all the iterates

(e.g., dual ℓ2-regularized logistic regression with positive semi-

definite kernel).

• Q is positive semi-definite and дi (·) is linear for all i with a box

constraint (e.g., dual hinge loss SVM with positive semi-definite

kernel).



Corollary 5.2 implies that many widely used machine learning

problems, including dual formulation of SVM and ℓ2-regularized

logistic regression, admit a global error bound from the beginning

evenwhen the kernel has a zero eigenvalue. These have been proved

in Theorem 1 of [7] and in [26].

We do not require the inner solver to obtain the exact solution

of (7). Instead, we define the following condition for the inexact

inner solver.

Definition 5.3. An inexact solver for solving the subproblem (7)

achieves a łlocal linear improvementž if the inexact solution dSr
satisfies

f
(r )
α (dSr ) − f

(r )
α (d̂Sr ) ≤ η

(

f
(r )
α (0) − f

(r )
α (d̂Sr )

)

, (16)

for all iterates, where f
(r )
α is the subproblem defined in (7), d̂Sr :=

argmin∆ f
(r )
α (∆) is the optimal solution of the subproblem, and

η ∈ (0, 1) is a constant.

In the following we list some widely-used subproblem solvers

that satisfy Definition 5.3.

Corollary 5.4. The following subproblem solvers satisfy Defini-

tion 5.3 if the objective function admits a global error bound from the

beginning: (1) Greedy Coordinate Descent with at least one step. (2)

Cyclic coordinate descent with at least one epoch.

The condition of (16) will be satisfied if an algorithm has a global

linear convergence rate. The global linear convergence rate of cyclic

coordinate descent has been proved in Section 3 of [26], and the

linear convergence rate for greedy coordinate descent can be shown

easily using the same analysis (see http://arxiv.org/abs/1608.02010).

We now show our proposed method PBM in Algorithm 1 has a

global linear convergence rate in the following theorem.

Theorem 5.5. Assume (1) the objective function admits a global

error bound from the beginning (Definition 5.1), (2) the inner solver

achieves a local linear improvement (Definition 5.3), (3) Rmin =

mini Qii , 0, and (4) the objective function is L-Lipschitz continuous

for the level set. Then the following global linear convergence rate

holds:

f (α t+1) − f (α ∗) ≤
(

1 − (1 − η)
Rmin

kBLκ2

) (

f (α t ) − f (α ∗)
)

,

where α ∗ is an optimal solution, and B = maxkr=1 |Sr | is the maxi-

mum block size.

Proof. We first define some notations that we will use in the

proof. Let α t be the current solution of iteration t , dt is the approx-

imate solution of (7) satisfying Definition 5.3. For convenience we

will omit the subscript t here (so d := dt ). We use dSr to denote the

size |Sr | subvector, and d<Sr > to denote the n dimensional vector

with

d<Sr > =


di if i ∈ Sr

0 otherwise

By the definition of our line search procedure described in Sec-

tion 4.2, we have

f (α t + βd ) ≤ f (α t +
1

k

k
∑

r=1

d<Sr > )

= f (
1

k

k
∑

r=1

(α t + d<Sr > )) ≤
1

k

k
∑

r=1

f (α t + d<Sr > ),

where the last inequality is from the convexity of f (·). We define d̂

to be the optimal solution of (4) (so each d̂Sr is the optimal solution

of the r -th subproblem (7)). Then we have

f (α t ) − f (α t + dt ) ≥ f (α t ) −
1

k

k
∑

r=1

f (α t + d<Sr > )

=

1

k

k
∑

r=1

(

f (α t )− f (α t + d̂<Sr > )+ f (α t + d̂<Sr > )− f (α t +d<Sr > )

)

≥
1

k

k
∑

r=1

(1 − η)

(

f (α t ) − f (α t + d̂<Sr > )

)

, (17)

where the last inequality is from the local linear improvement of

the in-exact subproblem solver (Definition 5.3). We then define a

vector d̄ where each element is the optimal solution of the one

variable subproblem:

d̄i = Ti (α t ) − (α t )i ∀i = 1, . . . ,n,

whereTi (α t ) was defined in (15). First, by the definition of Q̄ in (5),

there is no approximation if the update vector is within one block,

so we have f̄α (d<Sr > ) = f (α +d<Sr > ) for any block r . Since d̂Sr
is the optimal solution of each subproblem, we have

f (α t + d̂<Sr > ) ≤ f (α t + d̄<Sr >/|Sr |), ∀r = 1, . . . ,k .

Combining with (17) we get

f (α t ) − f (α t + dt ) ≥
1 − η

k

k
∑

r=1

(

f (α t ) − f (α t + d̄<Sr >/|Sr |)
)

≥
1 − η

k

k
∑

r=1

(

f (α t ) −
1

|Sr |

∑

i ∈Sr

f (α t + d̄<i> )

)

(by convexity)

≥
1 − η

kB

n
∑

i=1

(

f (α t ) − f (α t + d̄<i> )
)

,

where the last inequality is by the definition of B. Now consider the

one variable problem f (α t +uei ). Since Rmin is the lower bound of

f ′′(α t + uei ) and d̄i is the optimal for this single variate function,

we have f (α t ) ≥ f (α t + d̄<i> ) +
1
2Rmind̄

2
i . As a result,

n
∑

i=1

(

f (α t ) − f (α t + d̄<i> )

)

≥

n
∑

i=1

Rmind̄
2
i = Rmin ∥d̄ ∥

2.

Therefore,

f (α t ) − f (α t + dt ) ≥
Rmin (1 − η)

kB
∥T (α t ) − α t ∥

2

≥
Rmin (1 − η)

kBκ2
∥PS (α t ) − α t ∥

2 (by (14))

≥
LRmin (1 − η)

kBκ2
∥ f (α t ) − f (α ∗)∥.



Table 1: Dataset statistics

Dataset # training samples # testing samples # features C γ

cifar 50,000 10,000 3072 23 2−22

webspam 280,000 70,000 254 23 25

covtype 464,810 116,202 54 25 25

mnist8m 8,000,000 100,000 784 20 2−21

kddb 19,264,097 748,401 29,890,095 21 2−1

Therefore, we have

f (α t+1) − f (α ∗) = f (α t ) −
(

f (α t ) − f (α t+1)
)

− f (α ∗)

≤

(

1 −
Rmin (1 − η)

kBLκ2

)

(

f (α t ) − f (α ∗)
)

.

□

Note that we do not make any assumption on the partition used

in PBM, so our analysis works for a wide class of optimization

solvers, including distributed linear SVM solver in [14] where they

only consider that case when the subproblems are solved exactly.

To sum up, Theorem 5.5 shows that the proposed PBM frame-

work converges linearly as long as the subproblem solver satisfies

Definition 5.3, which means that the subproblem solver linearly

reduces the approximate function f̄α . Since coordinate descent has

linear convergence rate (Corollary 5.4), the PBM algorithm con-

verges linearly if we run ≥ 1 greedy or random coordinate descent

update in the inner iteration for solving the subproblem.

6 EXPERIMENTAL RESULTS

We conduct experiments on five public large-scale datasets listed

in Table 1. We follow the procedure in [5, 33] to transform ci-

far and mnist8m into binary classification problems, and Gauss-

ian kernel K (x i ,x j ) = e−γ ∥x i−x j ∥
2
is used in all the compar-

isons. Our code can be downloaded fromhttps://github.com/cjhsieh/

Distributed-KSVM.

We follow the parameter settings in [5], where C and γ are

selected by 5-fold cross validation on a grid of parameters. The

experiments are conducted on Texas Advanced Computing Center

Maverick cluster, where each machine has a 20-core CPU with

256GB memory. In this paper, we mainly focus on kernel SVM and

kernel logistic regression.

We compare our PBM method with the following distributed

kernel SVM solvers, where all of them are implemented in C++ and

the inter-machine communication is using MPI:

1. P-pack SVM [35]: a parallel Stochastic Gradient Descent (SGD)

algorithm for kernel SVM training. We set the pack size r = 100

according to the original paper.

2. Random Fourier features with distributed LIBLINEAR ( RFF-

LIBLINEAR): RFF-LIBLINEAR generates random Fourier features

and solves the resulting problem by LIBLINEAR. In a distributed

system, we can compute random features [19] for each sample

in parallel (this is a one-time preprocessing step), and then solve

the resulting linear SVM problem by distributed dual coordi-

nate descent [14] implemented in MPI LIBLINEAR. Note that

although Fastfood [13] can generate random features in a faster

way, the bottleneck for RFF-LIBLINEAR is solving the resulting

linear SVM problem after generating random features, so the

performance is similar.

3. Nyström approximation with distributed LIBLINEAR ( NYS-

LIBLINEAR): We implemented the ensemble Nyström approxi-

mation [12] with kmeans sampling in a distributed system and

solved the resulting linear SVM problem by MPI LIBLINEAR.

The approach is similar to [16].

4. PSVM [3]: a parallel kernel SVM solver by in-complete Cholesky

factorization and a parallel interior point method. We test the

performance of PSVM with the rank suggested by the original

paper (n0.5 or n0.6 where n is number of samples).

We also compare with the state-of-the-art single-thread nonlinear

kernel SVM solver DC-SVM [5] and multi-core kernel SVM solver

Asyn-GCD [30] in our experiments. Unfortunately, they cannot run

on distributed systems (see our discussions in Section 2, so we just

use them to serve as baselines for single-thread and single-machine

multi-thread kernel SVM solvers respectively. For these two solvers

we directly run the code released by the authors.

Comparison with other distributed kernel SVM solvers.

We use 32 machines (each with 1 thread) and the bestC,γ for all the

solvers. Our parameter settings are exactly the samewith [5] chosen

by cross-validation in [2−30, 210]. For cifar andmnist8m the samples

are not normalized, so the averaged norm mean(∥x i ∥) is large (it is

876 on cifar). Since Gaussian kernel is e−γ ∥x i−x j ∥
2
, a good γ will

be very small. We can normalize the data as well, and then a good

γ will become larger. We mainly compare the prediction accuracy

in the paper because most of the parallel kernel SVM solvers are

łapproximate solversžÐthey solve an approximated problem, so it

is not fair to evaluate them using the original objective function.

In Figure 2 (a)-(d) we compare our proposed algorithm with other

kernel SVM solvers. Note that in these figures, we vary the number

random features for RFF-LIBLINEAR and the number of landmark

points for NYS-LIBLINEAR. The results in Figure 2 (a)-(d) indicate

that our proposed algorithm is much faster than other approaches.

We further test the algorithms with varied number of workers and

parameters in Table 2. Note that PSVM usually gets much lower

test accuracy since it approximates the kernel matrix by incomplete

Cholesky factorization, so we only show its results in Table 2.

MPI+OpenMPHybrid Implementation. In the previous ex-

periment, each machine only runs with one MPI worker. To exploit

the power of each machine, we further implement an MPI+OpenMP

hybrid version of our algorithm. In this setting, each machine can

use multiple cores with OpenMP, and the between-machine commu-

nication is still done by MPI. Since cores in the same machine can

access the shared memory space, the parallelism is often simpler

because there is almost no communication cost.



(a) webspam, comparison (b) covtype, comparison (c) cifar, comparison

(d) mnist8m, comparison (e) covtype, scaling (f) kddb, scaling

Figure 2: (a)-(d): Comparison with other distributed kernel SVM solvers using 32 workers. Markers for RFF-LIBLINEAR and

NYS-LIBLINEAR are obtained by varying the number random features and landmark points respectively. (e)-(f): The objective

function of PBM as a function of computation time (time in seconds × the number of workers), when the number of workers

is varied. Results show that PBM has very good scalability on large datasets.

Table 2: Comparison on real datasets for kernel SVM. Here we use 32 machines (each machine with 1 thread) for all the distributed solvers

(PBM, P-packSGD, PSVM), and 1 machine for the serial solver (DC-SVM). For kddb, we use 32 machines and 20 cores in each machine to test

MPI+OpenMP Hybrid Implementation of PBM. The first column of PBM shows that PBM achieves good test accuracy after 1 iteration, and

the second column of PBM shows PBM can achieve an accurate solution (with
f (α )−f (α ∗ )
|f (α ∗ ) |

< 10−3) quickly and obtain even better accuracy.

Note that ł-ž indicates the training time is more than 10 hours.

PBM (first step) PBM (10−3 error) P-packSGD PSVM p = n0.5 PSVM p = n0.6 DC-SVM (10−3 error)

time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%) time(s) acc(%)

webspam 16 99.07 360 99.26 1478 98.99 773 75.79 2304 88.68 8742 99.26

covtype 14 96.05 772 96.13 1349 92.67 286 76.00 7071 81.53 10457 96.13

cifar 15 85.91 540 89.72 1233 88.31 41 79.89 1474 69.73 13006 89.72

mnist8m 321 98.94 8112 99.45 2414 98.60 - - - - - -

kddb 1832 88.59 32740 88.76 - - - - - - - -

In our implementation, within each machine, we use OpenMP

to compute the elements of kernel matrix in parallel. There are two

places requiring kernel value computations: (1) When using the

greedy coordinate descent algorithm to solve the subproblem (Step

4 in Algorithm 1), we need to access the i-th column of kernel ma-

trix Q when updating the variable αi , and (2) Step 5 in Algorithm 1

for computingQ:,SrdSr . Note that we use the kernel cache strategy

developed in LIBSVM for maintaining several columns of kernel

matrix in memory, and remove the Least Recent Used (LRU) col-

umn when running out of memory space. Therefore, the OpenMP

parallelism is used when the required kernel matrix column is not

found in kernel cache (cache miss) and needed to be computed from

scratch. Surprisingly, this simple hybrid implementation achieves

superb speedup, especially in very large datasets when the memory

can only cache a small portion of kernel matrix. For example, on

covtype dataset, PBM with 32 machines and using 20 cores per ma-

chine is 8.9 times faster than its pure MPI implementation that only

uses 1 core per machine; on kddb dataset, with the same setting,

hybrid PBM is 15.2 times faster than its MPI version with 1 core

per machine.

Scalability of PBM. For the second experiment we varied the

number of machines from 1 to 32, and plot the scaling behavior of

PBM. In Figure 2 (e)-(f), we sety-axis to be the relative error defined



(a) covtype, obj (b) covtype, accuracy (c) kddb, obj (d) kddb, accuracy

Figure 3: Comparison with Asyn-GCD, the state-of-the-art multi-core single machine kernel SVM solver. Results show that our algortihm is

uch faster than Asyn-GCD by using multiple computers.

by ( f (α t ) − f (α ∗))/f (α ∗) where α ∗ is the optimal solution, and

x-axis to be the total CPU time expended which is given by the

number of seconds elapsed multiplied by the number of workers.

We plot the convergence curves by changing number of machines

(and using all the 20 cores in each machine). The perfect linear

speedup is achieved if the curves overlap. This is indeed the case

for both covtype and kddb.

Interestingly, in the kddb dataset, we observe a super-linear

speedup when using 8 and 32 machines compared with the single-

machine version. This is mainly due to the increasing amount

of memory available for caching kernel valuesÐfor example, a

single machine can only afford 100GB memory for storing the

computed kernel values, while using 32 machines there will be a

total amount of 3200GBmemory for storing those values. Therefore,

the łkernel cache miss ratež (portion of kernel values that needs to

be recomputed) is much better as number of machine increases. As

a result, the speedup of is almost linear and sometimes even super

linear.

Comparison with single-machine solvers. We also com-

pare PBM with state-of-the-art single machine solver for kernel

SVM: Asyn-GCD [30] which uses multiple cores in a single ma-

chine, and DC-SVM [5] which can only run with a single thread.

The results are in Table 2 and Figure 3. DC-SVM first computes the

solutions in each partition, and then use the concatenation of local

(dual) solutions to initialize a global kernel SVM solver (e.g., LIB-

SVM). However, the top level of DC-SVM is the bottleneck (taking

2/3 of the run time), so the speed is still slow in Table 2. Asyn-GCD

is an asynchronous parallel coordinate descent algorithm for kernel

SVM, and it performs much better than other single-machine SVM

solvers including LIBSVM (see [30]). In Figure 3, we show that our

distributed algorithm is much faster using multiple machines which

might not be the case for some other distributed solvers. This con-

firms that our algorithm is much faster than the best single-machine

kernel SVM solver.

Kernel logistic regression. We implement the PBM algo-

rithm to solve the kernel logistic regression problem. Note that

PSVM cannot be directly applied to kernel logistic regression. We

use greedy coordinate descent proposed in [11] to solve each sub-

problem (7). The results are presented in Table 3, showing that our

algorithm is faster than P-packSGD.

Table 3: Comparison on real datasets for kernel logistic re-

gression. Here we use 32 machines (each machine with 1

thread).

PBM (first step) PBM (10−3 error) P-packSGD

time(s) acc(%) time(s) acc(%) time(s) acc(%)

webspam 1679 92.01 2131 99.07 4417 98.96

cifar 471 83.37 758 88.14 2115 87.07

7 CONCLUSION

We have proposed a parallel block minimization (PBM) framework

for solving kernel machines on distributed systems. We show that

PBM significantly outperforms other approaches on large-scale

datasets, and prove a global linear convergence of PBM under mild

conditions. By using 32 machines with totally 640 cores, our algo-

rithm can solve the kddb dataset with 20 millions samples and 30

millions features in half hour.
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