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Abstract

Recent studies have highlighted the vulnerability of deep neu-
ral networks (DNNs) to adversarial examples - a visually
indistinguishable adversarial image can easily be crafted to
cause a well-trained model to misclassify. Existing methods
for crafting adversarial examples are based on Ly and Lo
distortion metrics. However, despite the fact that L, distor-
tion accounts for the total variation and encourages sparsity
in the perturbation, little has been developed for crafting L1 -
based adversarial examples.

In this paper, we formulate the process of attacking DNNs via
adversarial examples as an elastic-net regularized optimiza-
tion problem. Our elastic-net attacks to DNNs (EAD) fea-
ture L;-oriented adversarial examples and include the state-
of-the-art Lo attack as a special case. Experimental results on
MNIST, CIFAR10 and ImageNet show that EAD can yield a
distinct set of adversarial examples with small L; distortion
and attains similar attack performance to the state-of-the-art
methods in different attack scenarios. More importantly, EAD
leads to improved attack transferability and complements ad-
versarial training for DNNs, suggesting novel insights on
leveraging L, distortion in adversarial machine learning and
security implications of DNNs.

Introduction

Deep neural networks (DNNs) achieve state-of-the-art per-
formance in various tasks in machine learning and artificial
intelligence, such as image classification, speech recogni-
tion, machine translation and game-playing. Despite their
effectiveness, recent studies have illustrated the vulnerabil-
ity of DNNSs to adversarial examples (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2015). For instance, a
carefully designed perturbation to an image can lead a well-
trained DNN to misclassify. Even worse, effective adversar-
ial examples can also be made virtually indistinguishable to
human perception. For example, Figure 1 shows three adver-
sarial examples of an ostrich image crafted by our algorithm,
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(a) Image  (b) Adversarial examples with target class labels
Figure 1: Visual illustration of adversarial examples crafted
by EAD (Algorithm 1). The original example is an ostrich
image selected from the ImageNet dataset (Figure 1 (a)).
The adversarial examples in Figure 1 (b) are classified as
the target class labels by the Inception-v3 model.

the Inception-v3 model (Szegedy et al. 2016), a state-of-the-
art image classification model.

The lack of robustness exhibited by DNNs to adversar-
ial examples has raised serious concerns for security-critical
applications, including traffic sign identification and mal-
ware detection, among others. Moreover, moving beyond
the digital space, researchers have shown that these adver-
sarial examples are still effective in the physical world at
fooling DNNs (Kurakin, Goodfellow, and Bengio 2016a;
Evtimov et al. 2017). Due to the robustness and security im-
plications, the means of crafting adversarial examples are
called attacks to DNNSs. In particular, fargeted attacks aim to
craft adversarial examples that are misclassified as specific
target classes, and untargeted attacks aim to craft adversarial
examples that are not classified as the original class. Trans-
fer attacks aim to craft adversarial examples that are trans-
ferable from one DNN model to another. In addition to eval-
uating the robustness of DNNSs, adversarial examples can be
used to train a robust model that is resilient to adversarial
perturbations, known as adversarial training (Madry et al.
2017). They have also been used in interpreting DNNs (Koh
and Liang 2017; Dong et al. 2017).

Throughout this paper, we use adversarial examples to
attack image classifiers based on deep convolutional neu-
ral networks. The rationale behind crafting effective adver-
sarial examples lies in manipulating the prediction results
while ensuring similarity to the original image. Specifically,
in the literature the similarity between original and adversar-
ial examples has been measured by different distortion met-



rics. One commonly used distortion metric is the L, norm,
where |x||, = (327, [x:|%)'/? denotes the L, norm of a
p-dimensional vector x = [x1,...,X,] for any ¢ > 1. In
particular, when crafting adversarial examples, the L, dis-
tortion metric is used to evaluate the maximum variation
in pixel value changes (Goodfellow, Shlens, and Szegedy
2015), while the Ly distortion metric is used to improve the
visual quality (Carlini and Wagner 2017b). However, despite
the fact that the L1 norm is widely used in problems related
to image denoising and restoration (Fu et al. 2006), as well
as sparse recovery (Candes and Wakin 2008), L-based ad-
versarial examples have not been rigorously explored. In the
context of adversarial examples, L, distortion accounts for
the total variation in the perturbation and serves as a popular
convex surrogate function of the Ly metric, which measures
the number of modified pixels (i.e., sparsity) by the pertur-
bation. To bridge this gap, we propose an attack algorithm
based on elastic-net regularization, which we call elastic-
net attacks to DNNs (EAD). Elastic-net regularization is a
linear mixture of L; and Lo penalty functions, and it has
been a standard tool for high-dimensional feature selection
problems (Zou and Hastie 2005). In the context of attacking
DNNs, EAD opens up new research directions since it gen-
eralizes the state-of-the-art attack proposed in (Carlini and
Wagner 2017b) based on Lo distortion, and is able to craft
L+ -oriented adversarial examples that are more effective and
fundamentally different from existing attack methods.

To explore the utility of L;-based adversarial exam-
ples crafted by EAD, we conduct extensive experiments on
MNIST, CIFAR10 and ImageNet in different attack scenar-
ios. Compared to the state-of-the-art Lo and L., attacks
(Kurakin, Goodfellow, and Bengio 2016b; Carlini and Wag-
ner 2017b), EAD can attain similar attack success rate when
breaking undefended and defensively distilled DNNs (Pa-
pernot et al. 2016b). More importantly, we find that L, at-
tacks attain superior performance over Lo and L, attacks
in transfer attacks and complement adversarial training. For
the most difficult dataset (MNIST), EAD results in improved
attack transferability from an undefended DNN to a defen-
sively distilled DNN, achieving nearly 99% attack success
rate. In addition, joint adversarial training with L; and Lo
based examples can further enhance the resilience of DNNs
to adversarial perturbations. These results suggest that EAD
yields a distinct, yet more effective, set of adversarial ex-
amples. Moreover, evaluating attacks based on L; distor-
tion provides novel insights on adversarial machine learning
and security implications of DNNs, suggesting that L; may
complement Lo and L, based examples toward furthering
a thorough adversarial machine learning framework.

Related Work

Here we summarize related works on attacking and defend-
ing DNNs against adversarial examples.

Attacks to DNNs

FGM and I-FGM: Let x and x denote the original and ad-
versarial examples, respectively, and let ¢ denote the target
class to attack. Fast gradient methods (FGM) use the gradi-

ent V.J of the training loss J with respect to x¢ for craft-
ing adversarial examples (Goodfellow, Shlens, and Szegedy
2015). For L, attacks, x is crafted by

x = x¢ — € - sign(VJ(xo, t)), (1)
where € specifies the L., distortion between x and xg, and

sign(V J) takes the sign of the gradient. For L; and L, at-
tacks, x is crafted by
— ¢ VJ(X07 t) 2)
IV (x0,1)llq
for ¢ = 1, 2, where € specifies the corresponding distortion.
Iterative fast gradient methods (I-FGM) were proposed in
(Kurakin, Goodfellow, and Bengio 2016b), which iteratively
use FGM with a finer distortion, followed by an e-ball clip-
ping. Untargeted attacks using FGM and I-FGM can be im-
plemented in a similar fashion.
C&W attack: Instead of leveraging the training loss, Carlini
and Wagner designed an Ly-regularized loss function based
on the logit layer representation in DNNs for crafting adver-
sarial examples (Carlini and Wagner 2017b). Its formulation
turns out to be a special case of our EAD formulation, which
will be discussed in the following section. The C&W attack
is considered to be one of the strongest attacks to DNNGs, as it
can successfully break undefended and defensively distilled
DNNs and can attain remarkable attack transferability.
JSMA: Papernot et al. proposed a Jacobian-based saliency
map algorithm (JSMA) for characterizing the input-output
relation of DNNss (Papernot et al. 2016a). It can be viewed as
a greedy attack algorithm that iteratively modifies the most
influential pixel for crafting adversarial examples.
DeepFool: DeepFool is an untargeted Lo attack algorithm
(Moosavi-Dezfooli, Fawzi, and Frossard 2016) based on the
theory of projection to the closest separating hyperplane in
classification. It is also used to craft a universal perturba-
tion to mislead DNNs trained on natural images (Moosavi-
Dezfooli et al. 2016).
Black-box attacks: Crafting adversarial examples in the
black-box case is plausible if one allows querying of the tar-
get DNN. In (Papernot et al. 2017), JSMA is used to train a
substitute model for transfer attacks. In (Chen et al. 2017),
an effective black-box C&W attack is made possible using
zeroth order optimization (ZOO). In the more stringent at-
tack scenario where querying is prohibited, ensemble meth-
ods can be used for transfer attacks (Liu et al. 2016).

X = X

Defenses in DNNs

Defensive distillation: Defensive distillation (Papernot et al.
2016b) defends against adversarial perturbations by using
the distillation technique in (Hinton, Vinyals, and Dean
2015) to retrain the same network with class probabilities
predicted by the original network. It also introduces the tem-
perature parameter 7' in the softmax layer to enhance the
robustness to adversarial perturbations.

Adpversarial training: Adversarial training can be imple-
mented in a few different ways. A standard approach is
augmenting the original training dataset with the label-
corrected adversarial examples to retrain the network. Mod-
ifying the training loss or the network architecture to in-
crease the robustness of DNNs to adversarial examples has




been proposed in (Zheng et al. 2016; Madry et al. 2017,
Tramer et al. 2017; Zantedeschi, Nicolae, and Rawat 2017).
Detection methods: Detection methods utilize statistical
tests to differentiate adversarial from benign examples
(Feinman et al. 2017; Grosse et al. 2017; Lu, Issaranon, and
Forsyth 2017; Xu, Evans, and Qi 2017). However, 10 differ-
ent detection methods were unable to detect the C&W attack
(Carlini and Wagner 2017a).

EAD: Elastic-Net Attacks to DNNs
Preliminaries on Elastic-Net Regularization

Elastic-net regularization is a widely used technique in solv-
ing high-dimensional feature selection problems (Zou and
Hastie 2005). It can be viewed as a regularizer that lin-
early combines L; and Lo penalty functions. In general,
elastic-net regularization is used in the following minimiza-
tion problem:

minimize,c =z f(z) + A\1|z][1 + A2||z/3, 3)

where z is a vector of p optimization variables, Z indicates
the set of feasible solutions, f(z) denotes a loss function,
lz||; denotes the L, norm of z, and Ay, Ay > 0 are the
L, and L regularization parameters, respectively. The term
A1|z]]1 +A2]|z]|3 in (3) is called the elastic-net regularizer of
z. For standard regression problems, the loss function f(z)
is the mean squared error, the vector z represents the weights
(coefficients) on the features, and the set Z = RP. In partic-
ular, the elastic-net regularization in (3) degenerates to the
LASSO formulation when Ay = 0, and becomes the ridge
regression formulation when Ay = 0. It is shown in (Zou
and Hastie 2005) that elastic-net regularization is able to se-
lect a group of highly correlated features, which overcomes
the shortcoming of high-dimensional feature selection when
solely using the LASSO or ridge regression techniques.

EAD Formulation and Generalization

Inspired by the C&W attack (Carlini and Wagner 2017b),
we adopt the same loss function f for crafting adversarial
examples. Specifically, given an image X and its correct la-
bel denoted by ¢y, let x denote the adversarial example of
x( with a target class ¢ # tg. The loss function f(x) for
targeted attacks is defined as

Fx,#) = max{max{Logit(x)], — [Logit(x)}:, =}, @

where Logit(x) = [[Logit(x)]1,.. ., [Logit(x)]x] € RX
is the logit layer (the layer prior to the softmax layer) rep-
resentation of x in the considered DNN, K is the num-
ber of classes for classification, and x > 0 is a confi-
dence parameter that guarantees a constant gap between
max ;¢ |Logit(x)]; and [Logit(x)];.

It is worth noting that the term [Logit(x)]; is proportional
to the probability of predicting x as label ¢, since by the
softmax classification rule,

Prob(Label(x) = t) = ;Xp([Log’t(’f)]t) NG
>_j—1 exp([Logit(x)];)

Consequently, the loss function in (4) aims to render the la-
bel t the most probable class for x, and the parameter
controls the separation between ¢ and the next most likely
prediction among all classes other than ¢. For untargeted at-
tacks, the loss function in (4) can be modified as

f(x) = max{[Logit(x)]:, — I?gic[Logit(x)]j, —k}. (6)

In this paper, we focus on targeted attacks since they are
more challenging than untargeted attacks. Our EAD algo-
rithm (Algorithm 1) can directly be applied to untargeted
attacks by replacing f(x, t) in (4) with f(x) in (6).

In addition to manipulating the prediction via the loss
function in (4), introducing elastic-net regularization further
encourages similarity to the original image when crafting
adversarial examples. Our formulation of elastic-net attacks
to DNNs (EAD) for crafting an adversarial example (x,t)
with respect to a labeled natural image (xg, o) is as follows:

minimizex ¢ f(x,t) + f||x — xolj1 + ||x — XOH%
subject to x € [0,1]7, (7)

where f(x,t) is as defined in (4), ¢, 8 > 0 are the regular-
ization parameters of the loss function f and the L; penalty,
respectively. The box constraint x € [0, 1]? restricts x to a
properly scaled image space, which can be easily satisfied by
dividing each pixel value by the maximum attainable value
(e.g.,255). Upon defining the perturbation of x relative to xg
as = x—X, the EAD formulation in (7) aims to find an ad-
versarial example x that will be classified as the target class
t while minimizing the distortion in 4 in terms of the elastic-
net loss 3||8]|1 + ||8]|3, which is a linear combination of L;
and L, distortion metrics between x and xo. Notably, the
formulation of the C&W attack (Carlini and Wagner 2017b)
becomes a special case of the EAD formulation in (7) when
B8 = 0, which disregards the L; penalty on §. However, the
L penalty is an intuitive regularizer for crafting adversarial
examples, as [|8]j1 = >_7_, |8;| represents the total varia-
tion of the perturbation, and is also a widely used surrogate
function for promoting sparsity in the perturbation. As will
be evident in the performance evaluation section, including
the L, penalty for the perturbation indeed yields a distinct
set of adversarial examples, and it leads to improved attack
transferability and complements adversarial learning.

EAD Algorithm

When solving the EAD formulation in (7) without the L
penalty (i.e., 8 = 0), Carlini and Wagner used a change-
of-variable (COV) approach via the tanh transformation on
x in order to remove the box constraint x € [0, 1]? (Car-
lini and Wagner 2017b). When S > 0, we find that the same
COV approach is not effective in solving (7), since the corre-
sponding adversarial examples are insensitive to the changes
in 5 (see the performance evaluation section for details).
Since the L, penalty is a non-differentiable, yet piece-wise
linear, function, the failure of the COV approach in solving
(7) can be explained by its inefficiency in subgradient-based
optimization problems (Duchi and Singer 2009).

To efficiently solve the EAD formulation in (7) for
crafting adversarial examples, we propose to use the iter-
ative shrinkage-thresholding algorithm (ISTA) (Beck and



Teboulle 2009). ISTA can be viewed as a regular first-
order optimization algorithm with an additional shrinkage-
thresholding step on each iteration. In particular, let g(x) =
c- f(x)+]||x—xo||3 and let Vg(x) be the numerical gradient
of g(x) computed by the DNN. At the k + 1-th iteration, the
adversarial example x(*+1) of x, is computed by
xH = 55(xM) — apVg(x ™)), @®)
where o, denotes the step size at the k + 1-th iteration, and
Sg : RP +— RP is an element-wise projected shrinkage-
thresholding function, which is defined as
min{z; — 3,1}, ifz; —x¢; > 5;
[Ss(z)]; = { X0, if |z; — x0;| < B;
max{z; + 3,0}, ifz; —xq¢; < —f,
©)
for any i € {1,...,p}. If |z; — xo;] > 3, it shrinks the
element z; by 8 and projects the resulting element to the
feasible box constraint between 0 and 1. On the other hand,
if |z; — x0;| < B, it thresholds z; by setting [S5(z)]; = Xo;.
The proof of optimality of using (8) for solving the EAD
formulation in (7) is given in the supplementary material'.
Notably, since g(x) is the attack objective function of the
C&W method (Carlini and Wagner 2017b), the ISTA oper-
ation in (8) can be viewed as a robust version of the C&W
method that shrinks a pixel value of the adversarial example
if the deviation to the original image is greater than (3, and
keeps a pixel value unchanged if the deviation is less than 3.
Our EAD algorithm for crafting adversarial examples is
summarized in Algorithm 1. For computational efficiency, a
fast ISTA (FISTA) for EAD is implemented, which yields
the optimal convergence rate for first-order optimization
methods (Beck and Teboulle 2009). The slack vector y(*)
in Algorithm 1 incorporates the momentum in x*) for ac-
celeration. In the experiments, we set the initial learning rate
ap = 0.01 with a square-root decay factor in k. During the
EAD iterations, the iterate x(*) is considered as a success-
ful adversarial example of xq if the model predicts its most
likely class to be the target class ¢. The final adversarial ex-
ample x is selected from all successful examples based on
distortion metrics. In this paper we consider two decision
rules for selecting x: the least elastic-net (EN) and L dis-
tortions relative to xq. The influence of /3, x and the decision
rules on EAD will be investigated in the following section.

Performance Evaluation

In this section, we compare the proposed EAD with the
state-of-the-art attacks to DNNs on three image classifica-
tion datasets - MNIST, CIFAR10 and ImageNet. We would
like to show that (i) EAD can attain attack performance sim-
ilar to the C&W attack in breaking undefended and defen-
sively distilled DNNs, since the C&W attack is a special
case of EAD when 8 = 0; (ii) Comparing to existing L;-
based FGM and I-FGM methods, the adversarial examples
using EAD can lead to significantly lower L; distortion and
better attack success rate; (iii) The L-based adversarial ex-
amples crafted by EAD can achieve improved attack trans-
ferability and complement adversarial training.

"https://arxiv.org/abs/1709.04114

Algorithm 1 Elastic-Net Attacks to DNNs (EAD)

Input: original labeled image (xo, o), target attack class
t, attack transferability parameter , L regularization pa-
rameter 3, step size «y, # of iterations [
Output: adversarial example x
Initialization: x(©) = y(©) = x,
fork=0tol —1do

x(E1 = §5(y ) — Vg (y ™))

y (kD) — (k1) 4 kLH(X(k-ﬁ—l) — x()
end for
Decision rule: determine x from successful examples in
{x"®}_ (EN rule or L, rule).

Comparative Methods

We compare EAD with the following targeted attacks, which
are the most effective methods for crafting adversarial exam-
ples in different distortion metrics.

C&W attack: The state-of-the-art L, targeted attack pro-
posed by Carlini and Wagner (Carlini and Wagner 2017b),
which is a special case of EAD when 8 = 0.

FGM: The fast gradient method proposed in (Goodfellow,
Shlens, and Szegedy 2015). The FGM attacks using differ-
ent distortion metrics are denoted by FGM-L;, FGM-L5 and
FGM-L .

I-FGM: The iterative fast gradient method proposed in (Ku-
rakin, Goodfellow, and Bengio 2016b). The I-FGM attacks
using different distortion metrics are denoted by I-FGM-L1,
[-FGM-L4 and I-FGM- L.

Experiment Setup and Parameter Setting

Our experiment setup is based on Carlini and Wagner’s
framework?. For both the EAD and C&W attacks, we use the
default setting!, which implements 9 binary search steps on
the regularization parameter c (starting from 0.001) and runs
I = 1000 iterations for each step with the initial learning
rate aig = 0.01. For finding successful adversarial examples,
we use the reference optimizer' (ADAM) for the C&W at-
tack and implement the projected FISTA (Algorithm 1) with
the square-root decaying learning rate for EAD. Similar to
the C&W attack, the final adversarial example of EAD is se-
lected by the least distorted example among all the success-
ful examples. The sensitivity analysis of the L; parameter 3
and the effect of the decision rule on EAD will be investi-
gated in the forthcoming paragraph. Unless specified, we set
the attack transferability parameter x = 0 for both attacks.
We implemented FGM and I-FGM using the CleverHans
package’. The best distortion parameter ¢ is determined by
a fine-grained grid search - for each image, the smallest e
in the grid leading to a successful attack is reported. For
I-FGM, we perform 10 FGM iterations (the default value)
with e-ball clipping. The distortion parameter ¢’ in each
FGM iteration is set to be €/10, which has been shown to
be an effective attack setting in (Tramer et al. 2017). The

“https://github.com/carlini/nn_robust_attacks
*https://github.com/tensorflow/cleverhans



Table 1: Comparison of the change-of-variable (COV) approach and EAD (Algorithm 1) for solving the elastic-net formulation
in (7) on MNIST. ASR means attack success rate (%). Although these two methods attain similar attack success rates, COV is
not effective in crafting L -based adversarial examples. Increasing (3 leads to less L;-distorted adversarial examples for EAD,

whereas the distortion of COV is insensitive to changes in 3.

Best case Average case Worst case
r?}gtggéza“on B ASR I, Lo Lo | ASR I, Lo Lo | ASR I, Lo Lo
0 100 1393 1377 0379 | 100 2246 1972 0.514 | 999 323 2639 0.663
107° | 100 13.92 1.377 0379 | 100 22.66 198 0.508 | 99.5 3233 2.64 0.663
cov 1074 {100 1391 1377 0.379 | 100 23.11 2.013 0.517 | 100 3232 2.639 0.664
1073 | 100 138 1.377 0381 | 100 2242 1977 05121999 322 2639 0.664
1072 {100 1298 1.38 0.389 | 100 2227 2.026 0.53 | 99.5 3141 2643 0.673
0 100 14.04 1.369 0376 | 100 22.63 1.953 0512 | 99.8 3143 251 0.644
EAD 1075 { 100 13.66 1.369 0.378 | 100 22,6 1.98 0.515|99.9 30.79 2507 0.648
(EN rule) 10_f1 100 12,79 1.372 0388 | 100 20.98 1.951 0.521 | 100 29.21 2514 0.667
1072 | 100  9.808 1.427 0452|100 174 2001 0.594 | 100  25.52 2582 0.748
1072 { 100 7271 1.718 0.674 | 100  13.56 2.395 0.852 | 100 20.77 3.021 0.976

range of the grid and the resolution of these two methods
are specified in the supplementary material'.

The image classifiers for MNIST and CIFARI10 are
trained based on the DNN models provided by Carlini and
Wagner'. The image classifier for ImageNet is the Inception-
v3 model (Szegedy et al. 2016). For MNIST and CIFARI10,
1000 correctly classified images are randomly selected from
the test sets to attack an incorrect class label. For ImageNet,
100 correctly classified images and 9 incorrect classes are
randomly selected to attack. All experiments are conducted
on a machine with an Intel E5-2690 v3 CPU, 40 GB RAM
and a single NVIDIA K80 GPU. Our EAD code is publicly
available for download*.

Evaluation Metrics

Following the attack evaluation criterion in (Carlini and
Wagner 2017b), we report the attack success rate and dis-
tortion of the adversarial examples from each method. The
attack success rate (ASR) is defined as the percentage of
adversarial examples that are classified as the target class
(which is different from the original class). The average L,
Lo and L, distortion metrics of successful adversarial ex-
amples are also reported. In particular, the ASR and distor-
tion of the following attack settings are considered:

Best case: The least difficult attack among targeted attacks
to all incorrect class labels in terms of distortion.

Average case: The targeted attack to a randomly selected
incorrect class label.

Worst case: The most difficult attack among targeted at-
tacks to all incorrect class labels in terms of distortion.

Sensitivity Analysis and Decision Rule for EAD

We verify the necessity of using Algorithm 1 for solving
the elastic-net regularized attack formulation in (7) by com-
paring it to a naive change-of-variable (COV) approach. In
(Carlini and Wagner 2017b), Carlini and Wagner remove the
box constraint x € [0,1]” by replacing x with 1ttanhw

*https://github.com/ysharmal 126/EAD- Attack

where w € RP and 1 € RP is a vector of ones. The de-
fault ADAM optimizer (Kingma and Ba 2014) is then used
to solve w and obtain x. We apply this COV approach to
(7) and compare with EAD on MNIST with different orders
of the L, regularization parameter 3 in Table 1. Although
COV and EAD attain similar attack success rates, it is ob-
served that COV is not effective in crafting L;-based ad-
versarial examples. Increasing (3 leads to less L;-distorted
adversarial examples for EAD, whereas the distortion (L,
L5 and L) of COV is insensitive to changes in 3. Similar
insensitivity of COV on /3 is observed when one uses other
optimizers such as AdaGrad, RMSProp or built-in SGD in
TensorFlow. We also note that the COV approach prohibits
the use of ISTA due to the subsequent tanh term in the L
penalty. The insensitivity of COV suggests that it is inade-
quate for elastic-net optimization, which can be explained by
its inefficiency in subgradient-based optimization problems
(Duchi and Singer 2009). For EAD, we also find an interest-
ing trade-off between L; and the other two distortion met-
rics - adversarial examples with smaller L; distortion tend
to have larger Lo and L, distortions. This trade-off can be
explained by the fact that increasing [ further encourages
sparsity in the perturbation, and hence results in increased
Lo and L distortion. Similar results are observed on CI-
FAR10 (see supplementary material').

In Table 1, during the attack optimization process the final
adversarial example is selected based on the elastic-net loss
of all successful adversarial examples in {x(*)}{_,, which
we call the elastic-net (EN) decision rule. Alternatively, we
can select the final adversarial example with the least L
distortion, which we call the L decision rule. Figure 2 com-
pares the ASR and average-case distortion of these two de-
cision rules with different 5 on MNIST. Both decision rules
yield 100% ASR for a wide range of 3 values. For the same
B, the Ly rule gives adversarial examples with less L dis-
tortion than those given by the EN rule at the price of larger
Ly and L., distortions. Similar trends are observed on CI-
FARI10 (see supplementary material'). The complete results
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Figure 2: Comparison of EN and L, decision rules in EAD on MNIST with varying L regularization parameter 5 (average
case). Comparing to the EN rule, for the same  the L rule attains less L, distortion but may incur more Ly and L distortions.

Table 2: Comparison of different attacks on MNIST, CIFAR10 and ImageNet (average case). ASR means attack success rate
(%). The distortion metrics are averaged over successful examples. EAD, the C&W attack, and [-FGM- L, attain the least L1,
Lo, and L, distorted adversarial examples, respectively. The complete attack results are given in the supplementary material'.

MNIST CIFAR10 ImageNet ]
Attack method ASR Ll L2 Loo ASR Ll L2 Loo ASR Ll L2 Loo
C&W (L3) 100 2246 1972 0514 | 100 13.62 0392 0.044 | 100 2322 0.705 0.03
FGM-L, 39 53,5 4186 0.782 | 48.8 51.97 148 0.152 | 1 61 0.187 0.007
FGM-L, 346 39.15 3.284 0.747 | 428 395 1.157 0.136 | 1 2338 6.823  0.25
FGM-L 425 1272 6.09 0296 | 523 127.81 2373 0.047 | 3 3655 7.102 0.014
I-FGM-L, 100 3294 2.606 0.591 | 100 17.53 0.502 0.055 | 77 526.4 1.609 0.054
I-FGM- L4 100 3032 241 0561 | 100 17.12  0.489 0.054 | 100 774.1 2358 0.086
I-FGM- L 100 71.39 3.472 0.227 | 100 333 068 0.018 | 100 8642 2.079 0.01
EAD (ENrule) | 100 174  2.001 0.594 | 100  8.18 0.502 0.097 | 100 6947 1.563 0.238
EAD (L; rule) | 100 1411 2211 0.768 | 100 6.066 0.613 0.17 | 100 409 1598 0.293
MNIST CIFAR10

of these two rules on MNIST and CIFAR10 are given in the
supplementary material'. In the following experiments, we
will report the results of EAD with these two decision rules
and set 3 = 1072, since on MNIST and CIFAR10 this j3
value significantly reduces the L; distortion while having
comparable Ly and L., distortions to the case of 3 = 0
(i.e., without L regularization).

Attack Success Rate and Distortion on MNIST,
CIFAR10 and ImageNet

We compare EAD with the comparative methods in terms
of attack success rate and different distortion metrics on at-
tacking the considered DNNs trained on MNIST, CIFAR10
and ImageNet. Table 2 summarizes their average-case per-
formance. It is observed that FGM methods fail to yield suc-
cessful adversarial examples (i.e., low ASR), and the cor-
responding distortion metrics are significantly larger than
other methods. On the other hand, the C&W attack, I-FGM
and EAD all lead to 100% attack success rate. Further-
more, EAD, the C&W method, and I-FGM-L, attain the
least Ly, Lo, and L, distorted adversarial examples, respec-
tively. We note that EAD significantly outperforms the exist-
ing L1-based method (I-FGM-L). Compared to I-FGM-L1,
EAD with the EN decision rule reduces the L distortion by
roughly 47% on MNIST, 53% on CIFAR10 and 87% on Im-
ageNet. We also observe that EAD with the L decision rule
can further reduce the L; distortion but at the price of no-
ticeable increase in the Lo and L distortion metrics.
Notably, despite having large Lo and L., distortion met-
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Figure 3: Attack success rate (average case) of the C&W
method and EAD on MNIST and CIFAR10 with respect to
varying temperature parameter 7' for defensive distillation.
Both methods can successfully break defensive distillation.

rics, the adversarial examples crafted by EAD with the L,
rule can still attain 100% ASRs in all datasets, which implies
the Lo and L, distortion metrics are insufficient for evaluat-
ing the robustness of neural networks. Moreover, the attack
results in Table 2 suggest that EAD can yield a set of distinct
adversarial examples that are fundamentally different from
Lo or L, based examples. Similar to the C&W method and
I-FGM, the adversarial examples from EAD are also visu-
ally indistinguishable (see supplementary material').

Breaking Defensive Distillation

In addition to breaking undefended DNNs via adversarial
examples, here we show that EAD can also break defen-
sively distilled DNNs. Defensive distillation (Papernot et al.
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Figure 4: Attack transferability (average case) from the un-
defended network to the defensively distilled network on
MNIST by varying . EAD can attain nearly 99% attack
success rate (ASR) when x = 50, whereas the top ASR of
the C&W attack is nearly 88% when x = 40.

2016b) is a standard defense technique that retrains the net-
work with class label probabilities predicted by the original
network, soft labels, and introduces the temperature parame-
ter T in the softmax layer to enhance its robustness to adver-
sarial perturbations. Similar to the state-of-the-art attack (the
C&W method), Figure 3 shows that EAD can attain 100%
attack success rate for different values of 7" on MNIST and
CIFAR10. Moreover, since the C&W attack formulation is
a special case of the EAD formulation in (7) when 5 = 0,
successfully breaking defensive distillation using EAD sug-
gests new ways of crafting effective adversarial examples by
varying the L regularization parameter /3. The complete at-
tack results are given in the supplementary material'.

Improved Attack Transferability

It has been shown in (Carlini and Wagner 2017b) that the
C&W attack can be made highly transferable from an unde-
fended network to a defensively distilled network by tuning
the confidence parameter « in (4). Following (Carlini and
Wagner 2017b), we adopt the same experiment setting for
attack transferability on MNIST, as MNIST is the most dif-
ficult dataset to attack in terms of the average distortion per
image pixel from Table 2.

Fixing k, adversarial examples generated from the origi-
nal (undefended) network are used to attack the defensively
distilled network with the temperature parameter 7" = 100
(Papernot et al. 2016b). The attack success rate (ASR) of
EAD, the C&W method and I-FGM are shown in Figure 4.
When « = 0, all methods attain low ASR and hence do
not produce transferable adversarial examples. The ASR of
EAD and the C&W method improves when we set K > 0,
whereas I-FGM’s ASR remains low (less than 2%) since the
attack does not have such a parameter for transferability.

Notably, EAD can attain nearly 99% ASR when x = 50,
whereas the top ASR of the C&W method is nearly 88%
when x = 40. This implies improved attack transferabil-
ity when using the adversarial examples crafted by EAD,

Table 3: Adversarial training using the C&W attack and
EAD (L rule) on MNIST. ASR means attack success rate.
Incorporating L; examples complements adversarial train-
ing and enhances attack difficulty in terms of distortion. The
complete results are given in the supplementary material'.

Attack Adversarial Average case

method training ASR L, Lo Lo
None 100 2246 1972 0.514

C&W EAD 100 26.11 2468 0.643

(L2) C&W 100 2497 247 0.684
EAD +C&W | 100 2732 2513 0.653
None 100 14.11 2.211 0.768

EAD EAD 100  17.04 2.653 0.86

(L1 rule) C&W 100 1549 2.628 0.892
EAD + C&W | 100 16.83 2.66  0.87

which can be explained by the fact that the ISTA operation
in (8) is a robust version of the C&W attack via shrinking
and thresholding. We also find that setting x too large may
mitigate the ASR of transfer attacks for both EAD and the
C&W method, as the optimizer may fail to find an adver-
sarial example that minimizes the loss function f in (4) for
large x. The complete attack transferability results are given
in the supplementary material'.

Complementing Adversarial Training

To further validate the difference between L;-based and Lo-
based adversarial examples, we test their performance in ad-
versarial training on MNIST. We randomly select 1000 im-
ages from the training set and use the C&W attack and EAD
(L4 rule) to generate adversarial examples for all incorrect
labels, leading to 9000 adversarial examples in total for each
method. We then separately augment the original training set
with these examples to retrain the network and test its ro-
bustness on the testing set, as summarized in Table 3. For
adversarial training with any single method, although both
attacks still attain a 100% success rate in the average case,
the network is more tolerable to adversarial perturbations, as
all distortion metrics increase significantly when compared
to the null case. We also observe that joint adversarial train-
ing with EAD and the C&W method can further increase the
L, and L distortions against the C&W attack and the Lo
distortion against EAD, suggesting that the L;-based exam-
ples crafted by EAD can complement adversarial training.

Conclusion

We proposed an elastic-net regularized attack framework
for crafting adversarial examples to attack deep neural net-
works. Experimental results on MNIST, CIFAR10 and Ima-
geNet show that the 1-based adversarial examples crafted
by EAD can be as successful as the state-of-the-art Lo and
L attacks in breaking undefended and defensively distilled
networks. Furthermore, EAD can improve attack transfer-
ability and complement adversarial training. Our results cor-
roborate the effectiveness of EAD and shed new light on
the use of L-based adversarial examples toward adversarial
learning and security implications of deep neural networks.
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