


rics. One commonly used distortion metric is the Lq norm,

where ‖x‖q = (
∑p

i=1 |xi|
q)1/q denotes the Lq norm of a

p-dimensional vector x = [x1, . . . ,xp] for any q ≥ 1. In
particular, when crafting adversarial examples, the L∞ dis-
tortion metric is used to evaluate the maximum variation
in pixel value changes (Goodfellow, Shlens, and Szegedy
2015), while the L2 distortion metric is used to improve the
visual quality (Carlini and Wagner 2017b). However, despite
the fact that the L1 norm is widely used in problems related
to image denoising and restoration (Fu et al. 2006), as well
as sparse recovery (Candès and Wakin 2008), L1-based ad-
versarial examples have not been rigorously explored. In the
context of adversarial examples, L1 distortion accounts for
the total variation in the perturbation and serves as a popular
convex surrogate function of the L0 metric, which measures
the number of modified pixels (i.e., sparsity) by the pertur-
bation. To bridge this gap, we propose an attack algorithm
based on elastic-net regularization, which we call elastic-
net attacks to DNNs (EAD). Elastic-net regularization is a
linear mixture of L1 and L2 penalty functions, and it has
been a standard tool for high-dimensional feature selection
problems (Zou and Hastie 2005). In the context of attacking
DNNs, EAD opens up new research directions since it gen-
eralizes the state-of-the-art attack proposed in (Carlini and
Wagner 2017b) based on L2 distortion, and is able to craft
L1-oriented adversarial examples that are more effective and
fundamentally different from existing attack methods.

To explore the utility of L1-based adversarial exam-
ples crafted by EAD, we conduct extensive experiments on
MNIST, CIFAR10 and ImageNet in different attack scenar-
ios. Compared to the state-of-the-art L2 and L∞ attacks
(Kurakin, Goodfellow, and Bengio 2016b; Carlini and Wag-
ner 2017b), EAD can attain similar attack success rate when
breaking undefended and defensively distilled DNNs (Pa-
pernot et al. 2016b). More importantly, we find that L1 at-
tacks attain superior performance over L2 and L∞ attacks
in transfer attacks and complement adversarial training. For
the most difficult dataset (MNIST), EAD results in improved
attack transferability from an undefended DNN to a defen-
sively distilled DNN, achieving nearly 99% attack success
rate. In addition, joint adversarial training with L1 and L2

based examples can further enhance the resilience of DNNs
to adversarial perturbations. These results suggest that EAD
yields a distinct, yet more effective, set of adversarial ex-
amples. Moreover, evaluating attacks based on L1 distor-
tion provides novel insights on adversarial machine learning
and security implications of DNNs, suggesting that L1 may
complement L2 and L∞ based examples toward furthering
a thorough adversarial machine learning framework.

Related Work

Here we summarize related works on attacking and defend-
ing DNNs against adversarial examples.

Attacks to DNNs

FGM and I-FGM: Let x0 and x denote the original and ad-
versarial examples, respectively, and let t denote the target
class to attack. Fast gradient methods (FGM) use the gradi-

ent ∇J of the training loss J with respect to x0 for craft-
ing adversarial examples (Goodfellow, Shlens, and Szegedy
2015). For L∞ attacks, x is crafted by

x = x0 − ε · sign(∇J(x0, t)), (1)

where ε specifies the L∞ distortion between x and x0, and
sign(∇J) takes the sign of the gradient. For L1 and L2 at-
tacks, x is crafted by

x = x0 − ε
∇J(x0, t)

‖∇J(x0, t)‖q
(2)

for q = 1, 2, where ε specifies the corresponding distortion.
Iterative fast gradient methods (I-FGM) were proposed in
(Kurakin, Goodfellow, and Bengio 2016b), which iteratively
use FGM with a finer distortion, followed by an ε-ball clip-
ping. Untargeted attacks using FGM and I-FGM can be im-
plemented in a similar fashion.
C&W attack: Instead of leveraging the training loss, Carlini
and Wagner designed an L2-regularized loss function based
on the logit layer representation in DNNs for crafting adver-
sarial examples (Carlini and Wagner 2017b). Its formulation
turns out to be a special case of our EAD formulation, which
will be discussed in the following section. The C&W attack
is considered to be one of the strongest attacks to DNNs, as it
can successfully break undefended and defensively distilled
DNNs and can attain remarkable attack transferability.
JSMA: Papernot et al. proposed a Jacobian-based saliency
map algorithm (JSMA) for characterizing the input-output
relation of DNNs (Papernot et al. 2016a). It can be viewed as
a greedy attack algorithm that iteratively modifies the most
influential pixel for crafting adversarial examples.
DeepFool: DeepFool is an untargeted L2 attack algorithm
(Moosavi-Dezfooli, Fawzi, and Frossard 2016) based on the
theory of projection to the closest separating hyperplane in
classification. It is also used to craft a universal perturba-
tion to mislead DNNs trained on natural images (Moosavi-
Dezfooli et al. 2016).
Black-box attacks: Crafting adversarial examples in the
black-box case is plausible if one allows querying of the tar-
get DNN. In (Papernot et al. 2017), JSMA is used to train a
substitute model for transfer attacks. In (Chen et al. 2017),
an effective black-box C&W attack is made possible using
zeroth order optimization (ZOO). In the more stringent at-
tack scenario where querying is prohibited, ensemble meth-
ods can be used for transfer attacks (Liu et al. 2016).

Defenses in DNNs

Defensive distillation: Defensive distillation (Papernot et al.
2016b) defends against adversarial perturbations by using
the distillation technique in (Hinton, Vinyals, and Dean
2015) to retrain the same network with class probabilities
predicted by the original network. It also introduces the tem-
perature parameter T in the softmax layer to enhance the
robustness to adversarial perturbations.
Adversarial training: Adversarial training can be imple-
mented in a few different ways. A standard approach is
augmenting the original training dataset with the label-
corrected adversarial examples to retrain the network. Mod-
ifying the training loss or the network architecture to in-
crease the robustness of DNNs to adversarial examples has



been proposed in (Zheng et al. 2016; Madry et al. 2017;
Tramèr et al. 2017; Zantedeschi, Nicolae, and Rawat 2017).
Detection methods: Detection methods utilize statistical
tests to differentiate adversarial from benign examples
(Feinman et al. 2017; Grosse et al. 2017; Lu, Issaranon, and
Forsyth 2017; Xu, Evans, and Qi 2017). However, 10 differ-
ent detection methods were unable to detect the C&W attack
(Carlini and Wagner 2017a).

EAD: Elastic-Net Attacks to DNNs

Preliminaries on Elastic-Net Regularization

Elastic-net regularization is a widely used technique in solv-
ing high-dimensional feature selection problems (Zou and
Hastie 2005). It can be viewed as a regularizer that lin-
early combines L1 and L2 penalty functions. In general,
elastic-net regularization is used in the following minimiza-
tion problem:

minimizez∈Z f(z) + λ1‖z‖1 + λ2‖z‖
2
2, (3)

where z is a vector of p optimization variables, Z indicates
the set of feasible solutions, f(z) denotes a loss function,
‖z‖q denotes the Lq norm of z, and λ1, λ2 ≥ 0 are the
L1 and L2 regularization parameters, respectively. The term
λ1‖z‖1+λ2‖z‖

2
2 in (3) is called the elastic-net regularizer of

z. For standard regression problems, the loss function f(z)
is the mean squared error, the vector z represents the weights
(coefficients) on the features, and the set Z = R

p. In partic-
ular, the elastic-net regularization in (3) degenerates to the
LASSO formulation when λ2 = 0, and becomes the ridge
regression formulation when λ1 = 0. It is shown in (Zou
and Hastie 2005) that elastic-net regularization is able to se-
lect a group of highly correlated features, which overcomes
the shortcoming of high-dimensional feature selection when
solely using the LASSO or ridge regression techniques.

EAD Formulation and Generalization

Inspired by the C&W attack (Carlini and Wagner 2017b),
we adopt the same loss function f for crafting adversarial
examples. Specifically, given an image x0 and its correct la-
bel denoted by t0, let x denote the adversarial example of
x0 with a target class t 6= t0. The loss function f(x) for
targeted attacks is defined as

f(x, t) = max{max
j 6=t

[Logit(x)]j − [Logit(x)]t,−κ}, (4)

where Logit(x) = [[Logit(x)]1, . . . , [Logit(x)]K ] ∈ R
K

is the logit layer (the layer prior to the softmax layer) rep-
resentation of x in the considered DNN, K is the num-
ber of classes for classification, and κ ≥ 0 is a confi-
dence parameter that guarantees a constant gap between
maxj 6=t[Logit(x)]j and [Logit(x)]t.

It is worth noting that the term [Logit(x)]t is proportional
to the probability of predicting x as label t, since by the
softmax classification rule,

Prob(Label(x) = t) =
exp([Logit(x)]t)

∑K
j=1 exp([Logit(x)]j)

. (5)

Consequently, the loss function in (4) aims to render the la-
bel t the most probable class for x, and the parameter κ
controls the separation between t and the next most likely
prediction among all classes other than t. For untargeted at-
tacks, the loss function in (4) can be modified as

f(x) = max{[Logit(x)]t0 −max
j 6=t

[Logit(x)]j ,−κ}. (6)

In this paper, we focus on targeted attacks since they are
more challenging than untargeted attacks. Our EAD algo-
rithm (Algorithm 1) can directly be applied to untargeted
attacks by replacing f(x, t) in (4) with f(x) in (6).

In addition to manipulating the prediction via the loss
function in (4), introducing elastic-net regularization further
encourages similarity to the original image when crafting
adversarial examples. Our formulation of elastic-net attacks
to DNNs (EAD) for crafting an adversarial example (x, t)
with respect to a labeled natural image (x0, t0) is as follows:

minimizex c · f(x, t) + β‖x− x0‖1 + ‖x− x0‖
2
2

subject to x ∈ [0, 1]p, (7)

where f(x, t) is as defined in (4), c, β ≥ 0 are the regular-
ization parameters of the loss function f and the L1 penalty,
respectively. The box constraint x ∈ [0, 1]p restricts x to a
properly scaled image space, which can be easily satisfied by
dividing each pixel value by the maximum attainable value
(e.g., 255). Upon defining the perturbation of x relative to x0

as δ = x−x0, the EAD formulation in (7) aims to find an ad-
versarial example x that will be classified as the target class
t while minimizing the distortion in δ in terms of the elastic-
net loss β‖δ‖1 + ‖δ‖22, which is a linear combination of L1

and L2 distortion metrics between x and x0. Notably, the
formulation of the C&W attack (Carlini and Wagner 2017b)
becomes a special case of the EAD formulation in (7) when
β = 0, which disregards the L1 penalty on δ. However, the
L1 penalty is an intuitive regularizer for crafting adversarial
examples, as ‖δ‖1 =

∑p
i=1 |δi| represents the total varia-

tion of the perturbation, and is also a widely used surrogate
function for promoting sparsity in the perturbation. As will
be evident in the performance evaluation section, including
the L1 penalty for the perturbation indeed yields a distinct
set of adversarial examples, and it leads to improved attack
transferability and complements adversarial learning.

EAD Algorithm

When solving the EAD formulation in (7) without the L1

penalty (i.e., β = 0), Carlini and Wagner used a change-
of-variable (COV) approach via the tanh transformation on
x in order to remove the box constraint x ∈ [0, 1]p (Car-
lini and Wagner 2017b). When β > 0, we find that the same
COV approach is not effective in solving (7), since the corre-
sponding adversarial examples are insensitive to the changes
in β (see the performance evaluation section for details).
Since the L1 penalty is a non-differentiable, yet piece-wise
linear, function, the failure of the COV approach in solving
(7) can be explained by its inefficiency in subgradient-based
optimization problems (Duchi and Singer 2009).

To efficiently solve the EAD formulation in (7) for
crafting adversarial examples, we propose to use the iter-
ative shrinkage-thresholding algorithm (ISTA) (Beck and



Teboulle 2009). ISTA can be viewed as a regular first-
order optimization algorithm with an additional shrinkage-
thresholding step on each iteration. In particular, let g(x) =
c·f(x)+‖x−x0‖

2
2 and let ∇g(x) be the numerical gradient

of g(x) computed by the DNN. At the k+1-th iteration, the

adversarial example x(k+1) of x0 is computed by

x(k+1) = Sβ(x
(k) − αk∇g(x(k))), (8)

where αk denotes the step size at the k + 1-th iteration, and
Sβ : R

p 7→ R
p is an element-wise projected shrinkage-

thresholding function, which is defined as

[Sβ(z)]i =

{

min{zi − β, 1}, if zi − x0i > β;
x0i, if |zi − x0i| ≤ β;
max{zi + β, 0}, if zi − x0i < −β,

(9)

for any i ∈ {1, . . . , p}. If |zi − x0i| > β, it shrinks the
element zi by β and projects the resulting element to the
feasible box constraint between 0 and 1. On the other hand,
if |zi − x0i| ≤ β, it thresholds zi by setting [Sβ(z)]i = x0i.
The proof of optimality of using (8) for solving the EAD
formulation in (7) is given in the supplementary material1.
Notably, since g(x) is the attack objective function of the
C&W method (Carlini and Wagner 2017b), the ISTA oper-
ation in (8) can be viewed as a robust version of the C&W
method that shrinks a pixel value of the adversarial example
if the deviation to the original image is greater than β, and
keeps a pixel value unchanged if the deviation is less than β.

Our EAD algorithm for crafting adversarial examples is
summarized in Algorithm 1. For computational efficiency, a
fast ISTA (FISTA) for EAD is implemented, which yields
the optimal convergence rate for first-order optimization

methods (Beck and Teboulle 2009). The slack vector y(k)

in Algorithm 1 incorporates the momentum in x(k) for ac-
celeration. In the experiments, we set the initial learning rate
α0 = 0.01 with a square-root decay factor in k. During the

EAD iterations, the iterate x(k) is considered as a success-
ful adversarial example of x0 if the model predicts its most
likely class to be the target class t. The final adversarial ex-
ample x is selected from all successful examples based on
distortion metrics. In this paper we consider two decision
rules for selecting x: the least elastic-net (EN) and L1 dis-
tortions relative to x0. The influence of β, κ and the decision
rules on EAD will be investigated in the following section.

Performance Evaluation
In this section, we compare the proposed EAD with the
state-of-the-art attacks to DNNs on three image classifica-
tion datasets - MNIST, CIFAR10 and ImageNet. We would
like to show that (i) EAD can attain attack performance sim-
ilar to the C&W attack in breaking undefended and defen-
sively distilled DNNs, since the C&W attack is a special
case of EAD when β = 0; (ii) Comparing to existing L1-
based FGM and I-FGM methods, the adversarial examples
using EAD can lead to significantly lower L1 distortion and
better attack success rate; (iii) The L1-based adversarial ex-
amples crafted by EAD can achieve improved attack trans-
ferability and complement adversarial training.

1https://arxiv.org/abs/1709.04114

Algorithm 1 Elastic-Net Attacks to DNNs (EAD)

Input: original labeled image (x0, t0), target attack class
t, attack transferability parameter κ, L1 regularization pa-
rameter β, step size αk, # of iterations I
Output: adversarial example x

Initialization: x(0) = y(0) = x0

for k = 0 to I − 1 do
x(k+1) = Sβ(y

(k) − αk∇g(y(k)))

y(k+1) = x(k+1) + k
k+3 (x

(k+1) − x(k))
end for
Decision rule: determine x from successful examples in

{x(k)}Ik=1 (EN rule or L1 rule).

Comparative Methods

We compare EAD with the following targeted attacks, which
are the most effective methods for crafting adversarial exam-
ples in different distortion metrics.

C&W attack: The state-of-the-art L2 targeted attack pro-
posed by Carlini and Wagner (Carlini and Wagner 2017b),
which is a special case of EAD when β = 0.

FGM: The fast gradient method proposed in (Goodfellow,
Shlens, and Szegedy 2015). The FGM attacks using differ-
ent distortion metrics are denoted by FGM-L1, FGM-L2 and
FGM-L∞.

I-FGM: The iterative fast gradient method proposed in (Ku-
rakin, Goodfellow, and Bengio 2016b). The I-FGM attacks
using different distortion metrics are denoted by I-FGM-L1,
I-FGM-L2 and I-FGM-L∞.

Experiment Setup and Parameter Setting

Our experiment setup is based on Carlini and Wagner’s
framework2. For both the EAD and C&W attacks, we use the
default setting1, which implements 9 binary search steps on
the regularization parameter c (starting from 0.001) and runs
I = 1000 iterations for each step with the initial learning
rate α0 = 0.01. For finding successful adversarial examples,
we use the reference optimizer1 (ADAM) for the C&W at-
tack and implement the projected FISTA (Algorithm 1) with
the square-root decaying learning rate for EAD. Similar to
the C&W attack, the final adversarial example of EAD is se-
lected by the least distorted example among all the success-
ful examples. The sensitivity analysis of the L1 parameter β
and the effect of the decision rule on EAD will be investi-
gated in the forthcoming paragraph. Unless specified, we set
the attack transferability parameter κ = 0 for both attacks.

We implemented FGM and I-FGM using the CleverHans
package3. The best distortion parameter ε is determined by
a fine-grained grid search - for each image, the smallest ε
in the grid leading to a successful attack is reported. For
I-FGM, we perform 10 FGM iterations (the default value)
with ε-ball clipping. The distortion parameter ε′ in each
FGM iteration is set to be ε/10, which has been shown to
be an effective attack setting in (Tramèr et al. 2017). The

2https://github.com/carlini/nn robust attacks
3https://github.com/tensorflow/cleverhans



Table 1: Comparison of the change-of-variable (COV) approach and EAD (Algorithm 1) for solving the elastic-net formulation
in (7) on MNIST. ASR means attack success rate (%). Although these two methods attain similar attack success rates, COV is
not effective in crafting L1-based adversarial examples. Increasing β leads to less L1-distorted adversarial examples for EAD,
whereas the distortion of COV is insensitive to changes in β.

Best case Average case Worst case

Optimization
method

β ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞

COV

0 100 13.93 1.377 0.379 100 22.46 1.972 0.514 99.9 32.3 2.639 0.663

10−5 100 13.92 1.377 0.379 100 22.66 1.98 0.508 99.5 32.33 2.64 0.663

10−4 100 13.91 1.377 0.379 100 23.11 2.013 0.517 100 32.32 2.639 0.664

10−3 100 13.8 1.377 0.381 100 22.42 1.977 0.512 99.9 32.2 2.639 0.664

10−2 100 12.98 1.38 0.389 100 22.27 2.026 0.53 99.5 31.41 2.643 0.673

EAD
(EN rule)

0 100 14.04 1.369 0.376 100 22.63 1.953 0.512 99.8 31.43 2.51 0.644

10−5 100 13.66 1.369 0.378 100 22.6 1.98 0.515 99.9 30.79 2.507 0.648

10−4 100 12.79 1.372 0.388 100 20.98 1.951 0.521 100 29.21 2.514 0.667

10−3 100 9.808 1.427 0.452 100 17.4 2.001 0.594 100 25.52 2.582 0.748

10−2 100 7.271 1.718 0.674 100 13.56 2.395 0.852 100 20.77 3.021 0.976

range of the grid and the resolution of these two methods
are specified in the supplementary material1.

The image classifiers for MNIST and CIFAR10 are
trained based on the DNN models provided by Carlini and
Wagner1. The image classifier for ImageNet is the Inception-
v3 model (Szegedy et al. 2016). For MNIST and CIFAR10,
1000 correctly classified images are randomly selected from
the test sets to attack an incorrect class label. For ImageNet,
100 correctly classified images and 9 incorrect classes are
randomly selected to attack. All experiments are conducted
on a machine with an Intel E5-2690 v3 CPU, 40 GB RAM
and a single NVIDIA K80 GPU. Our EAD code is publicly
available for download4.

Evaluation Metrics

Following the attack evaluation criterion in (Carlini and
Wagner 2017b), we report the attack success rate and dis-
tortion of the adversarial examples from each method. The
attack success rate (ASR) is defined as the percentage of
adversarial examples that are classified as the target class
(which is different from the original class). The average L1,
L2 and L∞ distortion metrics of successful adversarial ex-
amples are also reported. In particular, the ASR and distor-
tion of the following attack settings are considered:
Best case: The least difficult attack among targeted attacks
to all incorrect class labels in terms of distortion.
Average case: The targeted attack to a randomly selected
incorrect class label.
Worst case: The most difficult attack among targeted at-
tacks to all incorrect class labels in terms of distortion.

Sensitivity Analysis and Decision Rule for EAD

We verify the necessity of using Algorithm 1 for solving
the elastic-net regularized attack formulation in (7) by com-
paring it to a naive change-of-variable (COV) approach. In
(Carlini and Wagner 2017b), Carlini and Wagner remove the
box constraint x ∈ [0, 1]p by replacing x with 1+tanhw

2 ,

4https://github.com/ysharma1126/EAD-Attack

where w ∈ R
p and 1 ∈ R

p is a vector of ones. The de-
fault ADAM optimizer (Kingma and Ba 2014) is then used
to solve w and obtain x. We apply this COV approach to
(7) and compare with EAD on MNIST with different orders
of the L1 regularization parameter β in Table 1. Although
COV and EAD attain similar attack success rates, it is ob-
served that COV is not effective in crafting L1-based ad-
versarial examples. Increasing β leads to less L1-distorted
adversarial examples for EAD, whereas the distortion (L1,
L2 and L∞) of COV is insensitive to changes in β. Similar
insensitivity of COV on β is observed when one uses other
optimizers such as AdaGrad, RMSProp or built-in SGD in
TensorFlow. We also note that the COV approach prohibits
the use of ISTA due to the subsequent tanh term in the L1

penalty. The insensitivity of COV suggests that it is inade-
quate for elastic-net optimization, which can be explained by
its inefficiency in subgradient-based optimization problems
(Duchi and Singer 2009). For EAD, we also find an interest-
ing trade-off between L1 and the other two distortion met-
rics - adversarial examples with smaller L1 distortion tend
to have larger L2 and L∞ distortions. This trade-off can be
explained by the fact that increasing β further encourages
sparsity in the perturbation, and hence results in increased
L2 and L∞ distortion. Similar results are observed on CI-
FAR10 (see supplementary material1).

In Table 1, during the attack optimization process the final
adversarial example is selected based on the elastic-net loss

of all successful adversarial examples in {x(k)}Ik=1, which
we call the elastic-net (EN) decision rule. Alternatively, we
can select the final adversarial example with the least L1

distortion, which we call the L1 decision rule. Figure 2 com-
pares the ASR and average-case distortion of these two de-
cision rules with different β on MNIST. Both decision rules
yield 100% ASR for a wide range of β values. For the same
β, the L1 rule gives adversarial examples with less L1 dis-
tortion than those given by the EN rule at the price of larger
L2 and L∞ distortions. Similar trends are observed on CI-
FAR10 (see supplementary material1). The complete results



Figure 2: Comparison of EN and L1 decision rules in EAD on MNIST with varying L1 regularization parameter β (average
case). Comparing to the EN rule, for the same β the L1 rule attains less L1 distortion but may incur more L2 and L∞ distortions.

Table 2: Comparison of different attacks on MNIST, CIFAR10 and ImageNet (average case). ASR means attack success rate
(%). The distortion metrics are averaged over successful examples. EAD, the C&W attack, and I-FGM-L∞ attain the least L1,
L2, and L∞ distorted adversarial examples, respectively. The complete attack results are given in the supplementary material1.

MNIST CIFAR10 ImageNet

Attack method ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞

C&W (L2) 100 22.46 1.972 0.514 100 13.62 0.392 0.044 100 232.2 0.705 0.03
FGM-L1 39 53.5 4.186 0.782 48.8 51.97 1.48 0.152 1 61 0.187 0.007
FGM-L2 34.6 39.15 3.284 0.747 42.8 39.5 1.157 0.136 1 2338 6.823 0.25
FGM-L∞ 42.5 127.2 6.09 0.296 52.3 127.81 2.373 0.047 3 3655 7.102 0.014
I-FGM-L1 100 32.94 2.606 0.591 100 17.53 0.502 0.055 77 526.4 1.609 0.054
I-FGM-L2 100 30.32 2.41 0.561 100 17.12 0.489 0.054 100 774.1 2.358 0.086
I-FGM-L∞ 100 71.39 3.472 0.227 100 33.3 0.68 0.018 100 864.2 2.079 0.01
EAD (EN rule) 100 17.4 2.001 0.594 100 8.18 0.502 0.097 100 69.47 1.563 0.238
EAD (L1 rule) 100 14.11 2.211 0.768 100 6.066 0.613 0.17 100 40.9 1.598 0.293

of these two rules on MNIST and CIFAR10 are given in the
supplementary material1. In the following experiments, we
will report the results of EAD with these two decision rules
and set β = 10−3, since on MNIST and CIFAR10 this β
value significantly reduces the L1 distortion while having
comparable L2 and L∞ distortions to the case of β = 0
(i.e., without L1 regularization).

Attack Success Rate and Distortion on MNIST,
CIFAR10 and ImageNet

We compare EAD with the comparative methods in terms
of attack success rate and different distortion metrics on at-
tacking the considered DNNs trained on MNIST, CIFAR10
and ImageNet. Table 2 summarizes their average-case per-
formance. It is observed that FGM methods fail to yield suc-
cessful adversarial examples (i.e., low ASR), and the cor-
responding distortion metrics are significantly larger than
other methods. On the other hand, the C&W attack, I-FGM
and EAD all lead to 100% attack success rate. Further-
more, EAD, the C&W method, and I-FGM-L∞ attain the
least L1, L2, and L∞ distorted adversarial examples, respec-
tively. We note that EAD significantly outperforms the exist-
ing L1-based method (I-FGM-L1). Compared to I-FGM-L1,
EAD with the EN decision rule reduces the L1 distortion by
roughly 47% on MNIST, 53% on CIFAR10 and 87% on Im-
ageNet. We also observe that EAD with the L1 decision rule
can further reduce the L1 distortion but at the price of no-
ticeable increase in the L2 and L∞ distortion metrics.

Notably, despite having large L2 and L∞ distortion met-

Figure 3: Attack success rate (average case) of the C&W
method and EAD on MNIST and CIFAR10 with respect to
varying temperature parameter T for defensive distillation.
Both methods can successfully break defensive distillation.

rics, the adversarial examples crafted by EAD with the L1

rule can still attain 100% ASRs in all datasets, which implies
the L2 and L∞ distortion metrics are insufficient for evaluat-
ing the robustness of neural networks. Moreover, the attack
results in Table 2 suggest that EAD can yield a set of distinct
adversarial examples that are fundamentally different from
L2 or L∞ based examples. Similar to the C&W method and
I-FGM, the adversarial examples from EAD are also visu-
ally indistinguishable (see supplementary material1).

Breaking Defensive Distillation

In addition to breaking undefended DNNs via adversarial
examples, here we show that EAD can also break defen-
sively distilled DNNs. Defensive distillation (Papernot et al.



Figure 4: Attack transferability (average case) from the un-
defended network to the defensively distilled network on
MNIST by varying κ. EAD can attain nearly 99% attack
success rate (ASR) when κ = 50, whereas the top ASR of
the C&W attack is nearly 88% when κ = 40.

2016b) is a standard defense technique that retrains the net-
work with class label probabilities predicted by the original
network, soft labels, and introduces the temperature parame-
ter T in the softmax layer to enhance its robustness to adver-
sarial perturbations. Similar to the state-of-the-art attack (the
C&W method), Figure 3 shows that EAD can attain 100%
attack success rate for different values of T on MNIST and
CIFAR10. Moreover, since the C&W attack formulation is
a special case of the EAD formulation in (7) when β = 0,
successfully breaking defensive distillation using EAD sug-
gests new ways of crafting effective adversarial examples by
varying the L1 regularization parameter β. The complete at-
tack results are given in the supplementary material1.

Improved Attack Transferability

It has been shown in (Carlini and Wagner 2017b) that the
C&W attack can be made highly transferable from an unde-
fended network to a defensively distilled network by tuning
the confidence parameter κ in (4). Following (Carlini and
Wagner 2017b), we adopt the same experiment setting for
attack transferability on MNIST, as MNIST is the most dif-
ficult dataset to attack in terms of the average distortion per
image pixel from Table 2.

Fixing κ, adversarial examples generated from the origi-
nal (undefended) network are used to attack the defensively
distilled network with the temperature parameter T = 100
(Papernot et al. 2016b). The attack success rate (ASR) of
EAD, the C&W method and I-FGM are shown in Figure 4.
When κ = 0, all methods attain low ASR and hence do
not produce transferable adversarial examples. The ASR of
EAD and the C&W method improves when we set κ > 0,
whereas I-FGM’s ASR remains low (less than 2%) since the
attack does not have such a parameter for transferability.

Notably, EAD can attain nearly 99% ASR when κ = 50,
whereas the top ASR of the C&W method is nearly 88%
when κ = 40. This implies improved attack transferabil-
ity when using the adversarial examples crafted by EAD,

Table 3: Adversarial training using the C&W attack and
EAD (L1 rule) on MNIST. ASR means attack success rate.
Incorporating L1 examples complements adversarial train-
ing and enhances attack difficulty in terms of distortion. The
complete results are given in the supplementary material1.

Attack
method

Adversarial
training

Average case
ASR L1 L2 L∞

C&W
(L2)

None 100 22.46 1.972 0.514
EAD 100 26.11 2.468 0.643
C&W 100 24.97 2.47 0.684
EAD + C&W 100 27.32 2.513 0.653

EAD
(L1 rule)

None 100 14.11 2.211 0.768
EAD 100 17.04 2.653 0.86
C&W 100 15.49 2.628 0.892
EAD + C&W 100 16.83 2.66 0.87

which can be explained by the fact that the ISTA operation
in (8) is a robust version of the C&W attack via shrinking
and thresholding. We also find that setting κ too large may
mitigate the ASR of transfer attacks for both EAD and the
C&W method, as the optimizer may fail to find an adver-
sarial example that minimizes the loss function f in (4) for
large κ. The complete attack transferability results are given
in the supplementary material1.

Complementing Adversarial Training

To further validate the difference between L1-based and L2-
based adversarial examples, we test their performance in ad-
versarial training on MNIST. We randomly select 1000 im-
ages from the training set and use the C&W attack and EAD
(L1 rule) to generate adversarial examples for all incorrect
labels, leading to 9000 adversarial examples in total for each
method. We then separately augment the original training set
with these examples to retrain the network and test its ro-
bustness on the testing set, as summarized in Table 3. For
adversarial training with any single method, although both
attacks still attain a 100% success rate in the average case,
the network is more tolerable to adversarial perturbations, as
all distortion metrics increase significantly when compared
to the null case. We also observe that joint adversarial train-
ing with EAD and the C&W method can further increase the
L1 and L2 distortions against the C&W attack and the L2

distortion against EAD, suggesting that the L1-based exam-
ples crafted by EAD can complement adversarial training.

Conclusion

We proposed an elastic-net regularized attack framework
for crafting adversarial examples to attack deep neural net-
works. Experimental results on MNIST, CIFAR10 and Ima-
geNet show that the L1-based adversarial examples crafted
by EAD can be as successful as the state-of-the-art L2 and
L∞ attacks in breaking undefended and defensively distilled
networks. Furthermore, EAD can improve attack transfer-
ability and complement adversarial training. Our results cor-
roborate the effectiveness of EAD and shed new light on
the use of L1-based adversarial examples toward adversarial
learning and security implications of deep neural networks.
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