IRIS: I/O Redirection via Integrated Storage

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun
Mlinois Institute of Technology, Department of Computer Science, Chicago, IL
akougkas@hawk.iit.edu,hdevarahan@hawk.iit.edu,sun@iit.edu

ABSTRACT

There is an ocean of available storage solutions in modern high-
performance and distributed systems. These solutions consist of Par-
allel File Systems (PFS) for the more traditional high-performance
computing (HPC) systems and of Object Stores for emerging cloud
environments. More often than not, these storage solutions are
tied to specific APIs and data models and thus, bind developers,
applications, and entire computing facilities to using certain inter-
faces. Each storage system is designed and optimized for certain
applications but does not perform well for others. Furthermore,
modern applications have become more and more complex consist-
ing of a collection of phases with different computation and I/O
requirements. In this paper, we propose a unified storage access
system, called IRIS (i.e., I/O Redirection via Integrated Storage). IRIS
enables unified data access and seamlessly bridges the semantic
gap between file systems and object stores. With IRIS, emerging
High-Performance Data Analytics software has capable and diverse
I/O support. IRIS can bring us closer to the convergence of HPC
and Cloud environments by combining the best storage subsystems
from both worlds. Experimental results show that IRIS can grant
more than 7x improvement in performance than existing solutions.

CCS CONCEPTS

«Information systems — Mediators and data integration; Dis-
tributed storage; Data exchange; Data federation tools; Cloud based
storage; Hierarchical storage management; Wrappers (data mining);

KEYWORDS

Parallel File Systems, Object Storage, Integrated Access, Unified
Storage, I/O Convergence

ACM Reference format:

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun. 2018. IRIS: I/O
Redirection via Integrated Storage. In Proceedings of ICS ’18: International
Conference on Supercomputing, Beijing, China, June 12-15, 2018 (ICS ’18),
10 pages.

DOI: 10.1145/3205289.3205322

1 INTRODUCTION

In the age of Big Data, scientific applications are required to process
large volumes, velocities, and varieties of data, leading to an explo-
sion of data requirements and increased complexity of use [10]. In
High-Performance Computing (HPC), traditional data management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’18, Beijing, China

© 2018 ACM. 978-1-4503-5783-8/18/06...$15.00

DOI: 10.1145/3205289.3205322

consists mostly of parallel file systems (PFS), such as Lustre [4],
PVFS2 [37], GPFS [39], etc. Historically, the data model of the un-
derlying storage systems has followed the POSIX standard and PFSs
have been responsible for managing it. However, while the single
stream of bytes model of POSIX is needed for strong consistency, it
is inconvenient for parallel access and might also lead to expensive
data transformations. As we get closer to the exa-scale era, PFSs
face significant challenges in performance, scalability, complexity,
limited metadata services, and others [12], [17]. Modern HPC stor-
age systems are not the best fit for Big Data applications since they
were designed with traditional scientific applications in mind.

High availability of popular general purpose analysis frame-
works like MapReduce [11], Spark [51], and others in Apache Big-
Top [2], as well as the wide variety of available Object Stores such
as MongoDB [28], HyperDex [13], and Cassandra [24], have created
a healthy software environment in Cloud computing and Big Data
applications. However, these analysis frameworks are not designed
for HPC machines and do not take advantage of any capabilities
of the extremely expensive and sophisticated technologies present
in existing supercomputers. They also cannot support traditional
HPC workloads (i.e., MPI applications) and would most likely fail
to meet the demand of High-Performance Data Analytics (HPDA)
[19], the new generation of Big Data applications, which involve
sufficient data volumes and algorithmic complexity to require HPC
resources. International Data Corp. (IDC) forecasts that the HPDA
market will grow from $3.2 billion in 2010 to $16.9 billion in 2018
[20]. Currently, approximately 70% of HPC sites around the world
with at least 30% of their available compute cycles perform HPDA.

HPDA is driven by the increasing ability of powerful HPC sys-
tems to run data-intensive problems at larger scale, at higher res-
olution and with more elements. In addition, the proliferation of
larger, more complex scientific instruments and sensor networks to
collect extreme amounts of data pushes for more capable analysis
platforms. Performing data analysis using HPC resources can lead
to performance and energy inefficiencies. In [43] the authors point
out that traditional offline analysis results in excessive data move-
ment which in turn causes unnecessary energy costs. Alternatively,
performing data analysis inside the compute nodes can eliminate
the above mentioned redundant I/O, but can lead to wastage of
expensive compute resources and will slow down the simulation
job due to interference. Therefore, modern scientific workflows
require both high-performance computing and high-performance
data processing power. However, HPC and HPDA systems are dif-
ferent in design philosophies and target different applications. D.
Reed and J. Dongarra in [35] point out that the tools and cultures of
HPC and HPDA have diverged, to the detriment of both; unification
is essential to address a spectrum of major research domains.

This divergence led HPC sites to employ separate computing
and data analysis clusters. For example, NASA’s Goddard Space
Flight Center uses one cluster to conduct climate simulation, and

ICS 18, June 12-15, 2018, Beijing, China

another one for the data analysis of the observation data [54]. Due
to the data copying between the two clusters, the data analysis is
currently conducted off-line, not at runtime. However, runtime
simulation/analysis will lead to more accurate and faster solutions.
The data transfer between storage systems along with any neces-
sary data transformations are a serious performance bottleneck
and cripples the productivity of those systems. Additionally, it in-
creases the wastage of energy and the complexity of the workflow.
Another example is the JASMIN platform [7] run by the Center of
Environmental Data Analysis (CEDA) in the UK. It is designed as a
“super-data-cluster”, which supports the data analysis requirements
of the UK and European climate and earth system modeling commu-
nity. A major challenge they face is the variety of different storage
subsystems and the plethora of different interfaces that their teams
are using to access and process data. They claim that PFSs alone
cannot support their mission as JASMINE needs to support a wide
range of deployment environments.

There is an increasingly important need of a unified storage
access system which will support complex applications in a cost-
effective way leading to the convergence of HPC and HPDA. How-
ever, such unification is extremely challenging with a wide range
of issues [35]: a) gap between traditional storage solutions with
semantics-rich data formats and high-level specifications, and mod-
ern scalable data frameworks with simple abstractions such as
key-value stores and MapReduce, b) difference in architecture of
programming models and tools, ¢) management of heterogeneous
resources, d) management of diverse global namespaces stemming
from different data pools, etc. A radical departure from the existing
software stack for both communities is not realistic. Instead, future
software design and architectures will have to raise the abstraction
level, and therefore, bridge the semantic and architectural gaps.

In this paper, we introduce two novel abstractions, namely Vir-
tual Files and Virtual Objects, that help overcome the above men-
tioned challenges. We present the design and implementation of
IRIS (I/O Redirection via Integrated Storage), a unified and inte-
grated storage access system. IRIS is a middleware layer between
applications and storage. By using virtual files and objects, IRIS can
unify any data model and underlying storage framework, and thus,
allow applications to use them collaboratively and interchangeably.
With IRIS, an MPI application can directly access data from an Ob-
ject Store avoiding the costly data movement from one system to
another while providing an effective computing infrastructure for
HPDA. Thus, IRIS creates a unified “storage language” to bridge the
two very different compute-centric and data-centric data storage
camps. By using this "language”, IRIS extends HPC to HPDA; a vital
need from both the HPC and the data analytic community. IRIS
seamlessly enables cross-storage system data access without any
change to user code. IRIS’s modular design allows the support of a
wide variety of applications and interfaces. From MPI simulations
to HPDA analysis software and from high-level I/O libraries such
as pNetCDF [26], HDF5 [14], MOAB [41], MPI-IO [42] etc., to the
more Cloud-based Amazon S3 [1] and Openstack Swift [30] REST
APIs, IRIS comfortably integrates the I/O requests.

The contributions of this paper are: 1) We designed and im-
plemented a unified storage access system that integrates various
underlying storage solutions such as PFSs or Object Stores. This
system is called IRIS. 2) We introduced two novel abstract ideas, the

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Virtual File and the Virtual Object that can help map user’s data
structures to any data management framework. 3) We evaluated
our solution and the results show that, in addition to providing
programming convenience and efficiency, IRIS can grant higher
performance by up to 7x than existing solutions in the intersection
of HPC and HPDA.

2 BACKGROUND

Parallel file systems: PFSs are widely popular and well under-
stood within the storage community. Therefore we will not expand
much on the background and we only list some advantages and
disadvantages to provide context. The main advantages a PFS offers
is simultaneous access by many clients, scalability, and capability
to distribute large files across multiple nodes, a hierarchical global
name space, and high bandwidth via parallel data transfer. While
many scientific applications following the PFS assumption of access
one single large contiguous file, some applications such as those
in astronomy and climatology have non-contiguous data access
patterns and generate many small I/O requests. While PFSs excel
at large and aligned concurrent accesses, they face significant per-
formance degradation in case of small accesses, unaligned requests,
and heavy metadata operations [8]. Some limitations of PFSs [18],
originate from persistence: data access performance is dependent
of the underlying files, directories, and tree structures (the higher
the number of files in a PFS, the greater the risk of performance
degradation). Maintaining data consistency of file systems poses
an overhead on the overall system, and often creates issues such
as fragmentation, journaling, and simultaneous operations on the
same file system structures. Finally, the storage subsystem may
pose additional limitations because of RAID, disk sizes, and other
limiting factors by either hardware or software. PFS will need a
major lifting for the next generation of exascale supercomputers,
even without considering the newly emerged HPDA I/O demands.

Object Storage: Object Stores encapsulate data, metadata, a
globally unique identifier, and data attributes into a single im-
mutable entity termed object. In an Object Store, objects are orga-
nized in a flat address space (i.e., every object exists at the same level
in a large scalable pool of storage). Object Stores follow location
independent addressing and are accessed via the unique identifier.
Object Stores are designed primarily to manipulate data sets that do
not have a predefined data model or in other words are unstructured
or semi-structured. The key operations for an Object Store include
retrieval (get), storage (put), and deletion (delete). Object Stores can
be categorized as generic key-value stores, document-based stores,
column-based stores, and graph-based stores. With a flat names-
pace and the ability to easily expand and store large data sets at a
relatively low cost, Object Stores offer scalability, flexibility, rapid
data retrieval, and distributed access. They are easily expandable
and are well suited for applications requesting non contiguous data
accesses and/or heavy metadata operations. Object Stores offer
consistent data access throughput and a set of extensible metadata.
The Object Store space (also known as NoSQL schemes) demon-
strates a huge variety of different implementations each with its
own strengths and weaknesses. Most of the implementations main-
tain the above characteristics. On the other hand, Object Stores are
ill suited for access patterns with frequently changing data and ones
involving complex operations since each update operation leads

IRIS: 1/O Redirection via Integrated Storage

to the creation of a new object and the destruction of the previous
one followed by an update to the metadata. Additionally, Object
Stores are not POSIX-compliant. This blocks their wide adoption
by the HPC community. Object stores, however, are widely used in
the Cloud community and in Big Data processing engines.

With ever increasing data sizes, typical data intensive applica-
tions such as machine learning and data mining, require more and
more computing power. These applications seek traditional HPC
technologies to speed them up, including support for complex data
structures and algorithms. There is no “one storage for all” solution
and each storage system, PFS and Object Store, has its strengths
and weaknesses. We explored architectural differences and perfor-
mance characteristics in [23] and we found that each storage system
performs best under specific conditions and they could perfectly
complement each other.

3 DESIGN AND IMPLEMENTATION
3.1 IRIS Objectives

While designing IRIS we kept three major objectives in mind:

A: Enable MPI-based applications to access data in an Object
Store without user intervention. This objective is designed to
support two major use cases automatically. 1) An MPI application
can write data directly to an Object Store environment where in turn
an HPDA application will operate upon. 2) An MPI application can
read data, previously created by an HPDA application, that reside
in an Object Store. IRIS enables MPI applications to access data
directly from Object Stores by making them accessible natively. The
familiar fread() and fwrite() POSIX calls, used by MPI applications,
are still the interface to access data that reside in an Object Store.
Additionally, high-level I/O libraries such as MPI-IO, HDF5, and
pNetCDF are also supported by IRIS.

B: Enable HPDA-based applications to access data in a PFS
without user intervention. This objective is designed with two
major use cases as well, similar but in an opposite direction as
the first objective. 1) HPDA application needs data, previously
generated by an MPI application, that reside in a PFS. 2) HPDA
application can write data directly to a PFS where an MPI applica-
tion will operate on it. With IRIS, HPDA applications can directly
access data to and from PFSs natively. In particular, IRIS allows
the get() and put() from an HPDA application to operate on files
residing in a PFS. Combined with the first one, this objective gives
us a powerful way to store, access, and process data from two dif-
ferent environments by two different computing engines, a more
computing-centric processing done by MPI, and a more data-centric
processing done by HPDA software. Figure 1 (a) visualizes these
two objectives. The black arrows represent the native data path for
each system while the blue arrows demonstrate the new data paths
IRIS enables.

C: Enable a hybrid storage access layer agnostic to files or
objects. This objective is designed to offer a truly hybrid access to
data by abstracting the low-level storage interfaces and unifying the
APIs under one system. Therefore, IRIS allows developers to inter-
change the storage calls independent of the underlying architecture.
Via the hybrid storage layer that IRIS provides, applications can
access data from both storage systems at the same time. Addition-
ally, this allows IRIS to make intelligent decisions, use each storage
system exploiting its advantages, and offer a higher I/O efficiency.

ICS 18, June 12-15, 2018, Beijing, China

Computing Intensive Data Intensive

Systems Systems l -r -Graph -Machme ‘
m MapReduce Genomics |
MPI-based HPC BigData analysis GEED ing
applications ications High-Level IO s
|
IRIS

Unified Data Access

IRIS

Storage Systems

PFS Object
Store
Object

(b) Software stack.

(a) Unified data access layer.

Figure 1: IRIS in high-level.

This objective basically eliminates the black arrows in Figure 1 (a)
and grants IRIS the decision making responsibility about which
storage subsystem to use.

3.2 Design Considerations

While developing IRIS, we faced and solved many challenges. PFSs
are tightly coupled with the POSIX standard. This is a known restric-
tion of the scalability of PFSs and a major source of performance
degradation [33]. On the other hand, Object Stores are not POSIX-
compliant which makes them scale very well and offer low latency
for specific workloads [48]. However, they cannot replace PFSs
in scientific computing due to the lack of POSIX-compliance and
support of complex data structures. IRIS implements tunable consis-
tency [44] and two modes of POSIX-compliant metadata (i.e., strict
and relaxed). Therefore, IRIS can trade some POSIX-compliance to
grant better performance and scalability if the application demands
it. Fault tolerance is crucial in any system. IRIS adopts the fault
tolerance of the underlying storage subsystems. Additionally, IRIS
periodically writes the in-memory metadata information to the
disk. In case of a crash, IRIS restores the metadata image from
the disk and continues. In the current version of IRIS, there is still
a possibility of losing metadata in between of a checkpoint and
the time of the crash. We plan to extend this work and add fault
tolerance features such as write logs etc.

Note that different implementations of a PFS or Object Store
might possibly lead to different features and performance charac-
teristics. However, IRIS aims to bridge the semantic gap between
files and objects by abstracting the lower level storage details. With
IRIS, HPC users can utilize a vast variety of data analysis software
otherwise only available in Big Data environments, which in turn
will increase productivity, performance, and resource utilization.

3.3 IRIS Architecture

IRIS is a library that sits between applications and storage systems.
As such, it interacts with applications from above and issues its I/O
requests to the underlying storage system. This is no different from
any other middle-ware library. However, the design of IRIS makes
it capable to connect to many different applications, both HPC and
HPDA, and storage systems at the same time. Figure 1 (b) demon-
strates the new software stack with IRIS. One important note is that
IRIS is integrated transparently to the application and high-level
1/0 libraries. Its modular design enables IRIS to support different
applications and makes it flexible for future interfaces. IRIS already
supports POSIX, MPI-IO, HDF5, pNetCDF, and S3/Swift user inter-
faces. From the storage system side, IRIS can interact with the local

ICS 18, June 12-15, 2018, Beijing, China

A IMEPPEFS Metadata Cache '\S/Itoga?e I
'; manager manager odules |
: ROSIS [Prefetcher] [Aggregator] [pvrs2 i ?
c MPI-IO | Lustre ||‘_' °
? HDF5 [Compactor / Defragmenter] [Coxarxes) r
i I
o b= -0 Virtual Object i e
n sa/switt ypocen | | 3
s

i Virtual File [+—— :

Figure 2: IRIS internal design.
Linux ext3 or ext4 file systems, PVFS2 (also known as OrangeFS),
Lustre, as well as HyperDex and MongoDB Object Stores. There
are several components that work together to make IRIS a two-way
bridge between MPI applications/PFS and HPDA applications/Ob-
ject Stores. Two such components are abstract ideas, the VirtualFile
and the VirtualObject. IRIS utilizes these components internally to
build the connections between incompatible standards. Figure 2
demonstrates IRIS’ design. We use the following example to illus-
trate and explain the components one by one: an MPI application
accesses an Object Store to first write some data and then to read
them back.
VirtualFile is an in-memory construct that is used for mapping and
thus, bridging the semantic gap between POSIX files and objects.
Its goal is to provide applications the illusion of the existence of a
normal file system and that all operations are performed on a "real”
file. The virtual file is simply a space in memory which IRIS is using
to map user’s file structures to key-value pairs. The relationship
between a virtual file and the objects that it includes is 1-to-N.
VirtualObject is an in-memory construct that is used for mapping
objects to files and therefore bridges the semantic gap between
them. Its goal is to provide applications the illusion of the existence
of a normal Object Store much like the virtual file above. The
relationship between virtual objects and files is N-to-1.
Mappers are responsible for creating a translation between what
the applications are passing to IRIS and what the underlying storage
system expects. This translation is possible with the use of virtual
files and/or objects. For instance, if the application calls fwrite(),
then IRIS intercepts it and calls the POSIX mapper to create a map-
ping to the underlying storage. For our example, a virtual file is
created holding the keys responsible to carry out the operation.
This virtual file is then passed to the storage module. When the ap-
plication calls fread(), the mapper finds the virtual file that contains
the keys that hold the data and passes it to the storage module.
Storage modules are responsible for issuing I/O requests to the
underlying storage systems. IRIS aims to support many different
storage systems, hence the modular design. Storage modules are
tied to the specific storage subsystem they implement. Storage
modules take a virtual file or virtual object (e.g., if application is
MPI or S3, respectively) as an input and return the actual data.
Going back to our example, the storage module takes a virtual
file created from the mapper and, using the appropriate interface
(e.g., MongoDB API), it calls get() or put() according to the desired
operation.
Metadata manager is responsible for keeping track of metadata
information about the entire library. First, it maintains any meta-
data required from the user interface in memory. We explored
two modes for IRIS: a strict-POSIX mode where all metadata from

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

POSIX are maintained in memory and persisted in the Object Store
at fclose(), and a relaxed-POSIX mode where basic metadata infor-
mation are kept. There is a trade-off between POSIX compatibility
and performance. Metadata manager is also responsible for main-
taining all memory structures that facilitate the mapping between
user calls and storage system calls (i.e., virtual files, virtual objects).
Compactor/defragmenter is a background internal service. IRIS
makes use of virtual namespaces, virtual files, and virtual objects to
achieve a true integration of two incompatible systems. IRIS maps
application’s objects to virtual objects that are stored within files in
the PFS. Therefore, these files can end up fragmented after a series
of update operations. This component is activated periodically
in the background to defrag fragmented data structures and files,
or compact buffers and sets of key-value pairs. The compactor
applies all object mutations asynchronously much like LevelDB
[16]. The work done from this IRIS component is crucial internally,
and it guarantees a successful and efficient execution. Lastly, it can
help with performance optimizations such as better indexing of the
active namespace.

Aggregator is a performance-driven designed component. It is
equivalent to the collective I/O operation in MPI-IO. Aggregator
always tries to combine requests together for better performance.
IRIS interacts with the storage systems in an optimized way. That
means, either issue larger requests, avoiding small accesses and
excessive disk head movements, or minimizing network traffic.
Prefetcher is the second performance-driven component. It does
exactly what the name suggests. It implements a few prefetching
algorithms to optimize I/O operations as whole. The current version
of IRIS supports prefetching for sequential data access, strided
access, and random access. We plan to support user defined in
future versions.

Cache manager is the component that handles all buffers inside
IRIS. It is equipped with several cache replacement policies such as
least recently used (LRU) and least frequently used (LFU). It works
in conjunction with the prefetcher. It can be configured to hold
hot” data for better I/O latency. It acts as a normal cache layer for
the entire framework.

3.4 Implementation Details

IRIS is implemented in C++ and totals more than 11000 lines of
code (LOC). A prototype version can be found online. We carefully
optimized the code to run as fast as possible and minimize the
overhead of the library. The code is optimized with state-of-the-art
helper libraries. A few examples include the following. For memory
management we chose Google’s tcmalloc library that performs 20%
faster than the standard malloc and has a smaller memory foot-
print. For hashing, we selected the CityHash functions by Google,
the fastest collection of hashing algorithms at this moment. We
specifically used the 64-bit version of the hashing functions. For
structures such as maps and sets, we used Google’s BTree library
which is faster than the STL equivalent structures and reduces
memory usage by 50-80%. Finally, all configurable parameters in
IRIS are globally set per application via our Configuration Manager.

34.1 Mapping modes. IRIS maps user’s data structures to an
underlying storage system in two directions: files-to-objects and
objects-to-files.

IRIS: 1/O Redirection via Integrated Storage

Files-to-objects: we designed and implemented three different
mapping strategies: a) balanced, b) write-optimized, and c) read-
optimized. These strategies aim to better serve respective workloads
and are all configurable through IRIS’s configuration settings.

For the balanced mapping, IRIS divides the virtual file into buck-
ets which are tied to a fixed-sized object. It then maps any file
request, that falls into a bucket according to the offset and the size
of the operation, to the respective object or collection of objects.
The mapping is the same regardless of the read or write operation
since it maps file location to objects. The size of these buckets is
configurable and can affect the performance. After extensive test-
ing, we found that a bucket size of the median request size is the
best and more balanced choice. If the user does not have access to
an I/O trace file of his/her application then a default bucket size of
512 KB is suggested.

For the write-optimized mapping, IRIS creates objects for each
request and inserts them in a B+ tree hierarchy for the subsequent
get operations. In this mapping, fwrite() and fread() have different
mapping functions since we prioritize the write operation speed.
Therefore, for write operations we simply create objects as fast as
possible and we update our map of available ranges of file offsets
and keys. For read operations, the mapper first finds the correct keys
within the range of offsets passed, and performs one or multiple
get() operations from the Object Store. It then concatenates the
correct data according to a timestamp (i.e., the latest data for each
key are kept) and it returns to the caller.

For the read-optimized mapping, IRIS first creates a plethora of
various-sized keys for each put request and updates the map of
available keys and ranges of file offsets. The goal here is to speed up
the fread() so most of the work is done by the write operation. For
example, assuming an fwrite() of 2 MB request size at offset 0, and
a granularity of object sizes of 512 KB, the mapper will create the
following keys: 1 key of 2MB, 2 keys of 1 MB, and 4 keys of 512 KB.
Therefore, a subsequent fread() will access the best combination
of these keys minimizing the calls to the underlying Object Store
while maintaining a strong data consistency. This mapping strategy
significantly speeds up read operations by sacrificing extra storage
capacity, method generally acceptable due to the low cost of disk
space. More on the design, implementation, and evaluation results
of these three mapping strategies are explored and presented in
details in [21].

Objects-to-files: we designed and implemented four mapping
strategies regarding object-to-file mapping: a) 1-to-1, b) N-to-1, c)
N-to-M simple, and d) N-to-M optimized. These strategies aim to
maintain data consistency while being general enough to support
a variety of workloads. These mapping modes are configurable
through IRIS’s configuration settings.

In the 1-to-1 mapping strategy, each application’s object is mapped
to a unique file. The goal is to enable processing of existing col-
lections of files and one can access and process data by simply
using a get() and put() interface. The overhead of this mapping and
the memory footprint are kept at minimum. Update operations
simply mutate the respective file. The mapping semantics are also
the simplest making this strategy quite fast for a relatively small
number of objects.

In the N-to-1 mapping strategy, the entire keyspace of the appli-
cation’s objects is mapped to one big file. The goal is to maintain the

ICS 18, June 12-15, 2018, Beijing, China

simplicity of the mapping. Virtual objects are written sequentially
in the file. Any updates are simply appended at the end of the file
while marking the previous object as invalid. This strategy is good
for smaller dataset sizes. Since each object resides in one big file,
indexing is very important to facilitate faster get() operations. For
this reason each virtual object maintains the file offset where the
actual object resides. Under this strategy, metadata operations of
the underlying file system are lightweight. Searching is offloaded
from the file system to IRIS with in-memory structures for faster
operations. The mapping cost is relatively low. Data consistency is
guaranteed by the file system. Concurrent reads are allowed.

For the N-to-M simple mapping strategy, we first introduce a
new structure, called container, which represents a file that holds
virtual objects and other metadata information useful to IRIS such as
indexing and updating logs. In this mapping strategy, a collection
of application’s objects is mapped to a collection of containers.
The constraint for the creation of new containers is the container
size. After each container reaches the maximum container size
(i.e., default in IRIS is 128MB) it will trigger the creation of the
next container. The number of files is controllable by the strategy
and containers’ size is predefined (i.e., user can tune this). Update
operations mutate the virtual object that resides in the container.

In the optimized version of N-to-M objects to files mapping strat-
egy, application’s objects are first hashed into a key space and then
mapped to the container responsible for that range of hash values.
Specifically, keys go through the hashing function and get a 128 bit
hash value. Containers are created according to a range of hash val-
ues. This strategy is extremely scalable since containers represent a
range of keys regardless of their size. The container size is relative
to the overall size of the keys it holds. Update operations simply
write at the end of the container while invalidating the previous
object. IRIS’ defragmenter periodically runs in the background to
save storage space. Searching is performed in constant time. To
achieve this, we associated a truth array with each container. If an
object exists in the container, then the index of that object’s hash
will be true. The goal of this strategy is to be able to scale and to
support fast writes, reads, and updates. More on the design, imple-
mentation, and evaluation results of these four mapping strategies
are explored and presented in details in [22].

3.4.2 Prefetching modes. Traditional PFSs and Object Stores
implement optimizations such as read-ahead and prefetching to
offer better read performance. These optimizations rely on the
data access pattern created by the applications. However, when
IRIS maps a file call over an Object Store, it loses this capability
since an fread() will be transformed to one or more get() opera-
tions with keys that may not have a relation between them, and
thus, any prefetching the underlying Object Store tries to perform
will not work. Similarly, a get() in IRIS may be transformed in a
sequence of fread() operations that may not demonstrate locality or
sequentiality, and thus, the underlying file system prefetching will
not help. Therefore, we implemented these optimizations within
IRIS. Specifically, prefetching in IRIS has two modes: synchronous
(i.e., read-ahead) and asynchronous. We have also implemented
three prefetching algorithms: sequential, random, and user-defined.
For the sync mode, prefetching is performed synchronously. Each
fread() triggers the prefetcher component and, depending on the

ICS 18, June 12-15, 2018, Beijing, China

Table 1: IRIS’ metadata modes (time in ms)

#files IRIS Strict | IRIS_Relaxed | Local-Ext4 | Remote-OrangeFS
1000 3.398 2.941 149.439 4,513.024
10000 33.712 28.928 1,257.540 50,058.524
100000 345.769 287.198 13,152.400 434,528.242
1000000 3,644.250 2,989.640 143,828.000 4,934,578.340

access pattern, it uses one of the prefetching algorithms, sequential
or random, to fetch the next piece of data. It passes the fetched
data to the cache manager. Any subsequent fread() will check if
the requested data are already in cache before reaching to the disk.
The difference with the async mode, as the name suggests, is that
the fread() will return to the caller after it triggers an asynchronous
fetch. IRIS maintains a map of outstanding asynchronous opera-
tions, and thus, every fread() first checks for any pending fetch
before it actually performs any other reading. This asynchronicity
will boost the performance for certain workloads where I/0 and
computation are periodically switching. The sequential algorithm
takes the current read arguments, such as the offset, the size, and
the count, and tries to calculate the next piece of data that the ap-
plication will need. IRIS offers a configurable parameter about the
prefetching unit. It can be exactly the size of the previous fread() or
a predefined value (e.g., 2 MB). For instance, an fread() of 1 MB will
trigger a fetching of the next 1 MB or if the predefined value is set,
the next 2 MB. For all the asynchronous calls, we used the built-in
standard library std::future with the “async” scheduling flag on.

3.4.3 POSIX-compliant metadata modes. While the POSIX
standard has been around for a very long time and has served us
well, there are certain features in the standard that may have less
value as we move to the exa-scale era. One of the much debated
characteristics of the POSIX file is its metadata information. These
are expressed by a structure named Stat and they include the fol-
lowing: the device ID, the file serial number, the mode of the file,
the number of hard links, the user ID, the group ID, the size of the
file, the time of last access, the time of last data modification, the
time of last status change, the block size, and lastly, the number of
blocks. All of this information is involved in all POSIX calls. Main-
taining these structure updated (e.g., updating the time accessed
or checking the file permissions) can be a performance bottleneck.
IRIS offers a fully POSIX compliant mode, we call strict-POSIX that
obeys the standard. However, since the files are mapped into an
Object Store, it is not always needed to maintain all above infor-
mation. Hence, we created a second mode called relaxed-POSIX
where we only update crucial information about the virtual file
such as the file size, and the mode checking. By skipping the rest
of the metadata operations, IRIS can offer higher performance. The
test comprises of opening and closing up to a million files. Table 1
compares each IRIS’ metadata mode with POSIX and reports the
time. The relaxed-POSIX offers about 18% higher performance when
compared with the strict-POSIX mode. This test was conducted on
our development machine with an Interl i7, 16GB RAM and an SSD
drive of 480MB read and 350MB write speed. The actual POSIX calls
were tested on a local Linux ext4 file system and on a remote Or-
angeFS file system and are presented as a reference. Moreover, IRIS
maintains metadata information in-memory until fclose() is called
when IRIS persists the memory structures to disk. This way, IRIS

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

demonstrates orders of magnitude better performance compared to
a traditional file system that updates metadata on disk.

3.4.4 Caching. IRIS utilizes many buffers and caches. The
cache manager offers a memory space to the prefetcher to cache
data and also to the application itself to cache user’s data. The size
of all buffers are configurable via IRIS’s configuration settings. We
have implemented two cache replacement policies, least recently
used (LRU) and least frequently used (LFU). These algorithms are no
different than any other common LRU and LFU implementations.
IRIS also offers the ability to cache write operations for subsequent
reads. This write-caching, along with prefetching, can boost the
reading performance, and is spatial and temporal tunable, giving
more control to the user. Caching plays a big role in the perfor-
mance optimization, and good memory management is crucial.
IRIS has successfully incorporated such technologies. Note that
IRIS’ caching is on top of any caching mechanisms inherent by the
underlying storage solution.

4 EVALUATION
4.1 Hardware and software used

Testbed: All experiments were conducted on Chameleon systems
[9]. More specifically, we used the bare metal configuration offered
by Chameleon. Each client node has a dual Intel(R) Xeon(R) CPU
E5-2670 v3 @ 2.30GHz (i.e., a total of 48 cores per node), 128 GB
RAM, 10Gbit Ethernet, and a local 200GB HDD. Each server node
has the same internal components but, instead of Ethernet network,
we used Infiniband 56Gbit/s to avoid possible network throttling.
The total experimental cluster consists of 1536 client MPI ranks (i.e.,
32 nodes), and 16 server nodes for PFS and Object Store each.

Software: The operating system of the cluster is CentOS 7.0, the
MPI version is Mpich 3.2, the PFS we used is OrangeFS 2.9.6, and
the Object Store MongoDB 3.4.3. Our choice of those specific stor-
age systems as representatives from each category (e.g., PFS and
Object Stores) was made for several reasons. OrangeFS (formerly
known as PVFS2) is widely understood by the HPC community,
and it is mature enough in terms of development and research to
be the representative for the PFS. MongoDB has established itself
as one of the most popular Object Stores. It offers competitive per-
formance and several API bindings. We acknowledge that different
representatives of each storage subsystem may have differences
in their implementations. However, the focus of this study is not
benchmarking OrangeFS and MongoDB, but the evaluation of the
unified data access layer and how IRIS performs against the native
workload of a PFS and of an Object Store. Thus, we believe this
issue does not hurt the conclusions and contributions of this study.
Applications: The applications we used span over a wide range
of scientific simulations and data analysis kernels. These appli-
cations are real-world code representative of applications run-
ning on current supercomputers. They have been used on NCSI’s
Kraken and NCSA’s Blue Waters, ORNL’s Titan, and ANL’s Intrepid
and Mira. Specifically we used: CM1 [6, 15], a three-dimensional,
non-hydrostatic, non-linear, time-dependent numerical model de-
signed for idealized studies of atmospheric phenomena, LAMMPS
[34, 38], a classical molecular dynamics code and an acronym for

IRIS: 1/O Redirection via Integrated Storage

) Balanced s o1 Em=m
2000 Read-Optimized 1 2000 Nio
Write-Optimized £zzz2 N-to-M(Simple)
- N-to-M(Optimized) £zzza
<1500 £1500
@
2 3
o o
21000 21000
= =
o Q
(v ©
= 500 = 500

Read Write
Operation type

Put
Operation type

(a) Files-to-objects (b) Objects-to-files

Figure 3: IRIS mapping overhead.

Large-scale Atomic/Molecular Massively Parallel Simulator, Mon-
tage [29], an astronomical image mosaic engine, WRF [46], a next-
generation mesoscale numerical weather prediction system de-
signed for both atmospheric research and operational forecasting
needs, LANL_App1 [27], an anonymous scientific application run-
ning in Los Alamos National Lab, and K-Means clustering, a typical
HPDA data analysis kernel. All test results are the average of five
repetitions to eliminate OS noise.

4.2 Evaluation Results

4.2.1 IRIS library overhead. In this test, we measure the over-
head of I/O calls using IRIS expressed in time (nanoseconds). The
reported time refers to the difference between an I/O call to the
native storage solution and the same call over IRIS which will redi-
rect it to a different storage system. For example, a normal fread()
will read data from a file system whereas in IRIS will be mapped
to a get() operation, and data will be fetched from an Object Store.
The I/O time is excluded since we wanted to isolate the overhead
added by the translation of the I/O calls. Figure 3 shows the average
overhead in time for both mapping files-to-objects and objects-to-
files. In the first case, the input is 128K file operations (i.e., 131,072
POSIX calls) of 64KB size with mixed reads and writes. The over-
head per call on average in this case is about 1100 nanoseconds or
0.00025%. In objects-to-files case, the input is similarly 128K object
operations (i.e., 131,072) of 64KB size with mixed gets and puts. In
this case, the extra time needed by IRIS to map an object call to a
file is on average 1300 nanoseconds, or a 0.00030% relative to the
native system, depending on the mapping strategy used. Thus, the
mapping overhead of IRIS is minimal.

4.2.2 IRIS 1/0 performance. In this series of tests, we evalu-
ate IRIS in real world scenarios. We first run the applications and
we isolate the I/O phases since we only want to study the storage
performance and not the time spent in computations. Using the
IOSIG tracing tool [50] we collect all I/O traces. Each process oper-
ates on its own file (i.e., file-per-process) and performs I/O of about
100MB. The total dataset is 150GB for the largest scale.

Each test consists of several phases. We first run the simulation
part of the application on top of a PFS. In the figures, this is noted
SimWrite followed by the storage system in parenthesis. We then
convert and copy all data (i.e., output of the simulation phase)
to a data-intensive cluster equipped with an Object Store (e.g.,
MongoDB in our case). Note that in this section we refer to Object
Stores as KVS (i.e., Key-Value Stores) for short. In the figures, this
is noted as Convert&Copy followed by the direction of the data
transfer (i.e., files-to-objects as F20 and objects-to-files as O2F).

ICS 18, June 12-15, 2018, Beijing, China

We then execute the data analysis using the respective analysis
kernel, and it is presented in the figures as Analysis followed by
the storage system in parenthesis. The results of the analysis are
written in the KVS and then are converted and copied back to
the PFS for the next phase of the simulation which is referred
as SimRead followed by the storage system in parenthesis. This
execution flow is similar to how NASA’s Goddard Space Flight
Center first conducts climate simulation on their supercomputer
facilities and then the data analysis of the observation data on a
different cluster designed for data-intensive computations. We refer
to this flow as Baseline in the following figures. The reported time
is a compound of the time needed by all phases and is calculated as:

Total time = SimulationWrite + CopyDatafromPFStoKVS +
DataAnalysis + CopyDatafromKVStoPFS + SimulationRead (1).
The typical I/O workload of simulations is mostly checkpointing
and it is repeated periodically [5]. Thus, we focus our evaluation
to one such checkpoint phase in which application’s data access
patterns are the same.

When executing the tests on top of IRIS, applications can use
new data paths to read or write data. As Figure 1 (a) shows, IRIS
can store simulation output from an MPI application directly to a
KVS, and analysis results directly to a PFS eliminating any data
transfers between KVS and PFS. Therefore, during the execution
flow we examine, IRIS offers two new directions of performing the
I/0. First, the MPI simulation can directly write data to the KVS. In
the figures, this is noted as SimWrite or SimRead followed by IRIS
in parenthesis with the underlying storage system in brackets (e.g.,
IRIS[KVS] means IRIS runs on top of KVS). This way, the data anal-
ysis application makes native I/O calls to the KVS in order to write
the analysis results. After that, the simulation can read the data
directly from the KVS (i.e., fread() via IRIS). Second I/O direction
via IRIS is the case where data analysis application reads simulation
data and writes analysis results directly from/to PFS, noted as Anal-
ysis followed by IRIS in parenthesis with the underlying storage
system in brackets (e.g., IRIS[PFS] means IRIS runs on top of PFS).
Besides the elimination of data movements between storage sub-
systems, IRIS offers the opportunity to further optimize the entire
workflow by overlapping the phases in Equation 1. When the HPC
and data analytic environments are separated, as in the baseline, all
phases are also separated and must execute serially one after the
other. With IRIS, these phases can be overlapped (e.g., data anal-
ysis can start as soon as the first simulation results are available).
IRIS’ overlapping mode, noted as IRIS-Overlap, can significantly
reduce the total execution time and transform the workflow from
a pure serialized process to a concurrent one. Figure 4 shows all
performance results.

CM1: CM1’s workload demonstrates a sequential write pattern.
In this test, every process first writes the checkpoint data (e.g.,
atmospheric points with a set of features), then data are combined
with observation data residing on the KVS and are analyzed with
a Kmeans clustering kernel. Finally the analysis results are fed
back to the simulation as an input for the next phase. As it can
be seen in Figure 4(a), the fastest simulation time is on top of the
PFS and the fastest analysis time is on top of the KVS. However,
the transfer of data between PFS and KVS dominates the overall
execution time. On the other hand, IRIS eliminates the need for
copying data and redirects the calls to the appropriate storage

ICS 18, June 12-15, 2018, Beijing, China

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

" simwrite(PFS) ——1 ' | 2500 " SimWrite(PFS) mmmm 2500 " SimWrite(PFS) ==—2
2500 Converta&Copy(F20) m===m Convert&Copy(F20) mmmm Conver(&Copy(FzO) —
Analysis(KVS) === Analysis(KVS) Analysis(KVS) m===
e Conven&Copy O2F) ——= 2000 + Conven&Copy(OZF = 2000 + Ccnven&Copy(OZF) —
82000 | d(PFS) == B ad(PFS) mmmm 9 ad(PFS)
2 SlmW\s(\RIS[S)) mm— k3 S\mee(\R\S[K\/S]) = 3 S\mee(IRIS[KVS]) —
- SimRead(IRIS[KVS]) == =500 | SimRead(IRISIKVS) == =500 | SimRead(IRISIKVS)) ==
2] Analysis(IRIS[PFS]) mmmmm o Analysis(IRIS[PFS]) == o Analys\s(lR\S[PFS])
£1500 - £ £
® T1000 1000
$1000 5 5]
3 3 3
500 500 500 |+
0 0 E}:r—h—‘—‘ E’_"_H:l
& Fs @ (& @ & P& & & & L& O & & £ & @ & P& @ & ¢ <& @ @ LB
384 1 536 384 1 536 1536

Number ofii processes

(a) CM1 performance with IRIS

Number ot6 processes

(b) Montage performance with IRIS

Number otGprocesses

(c) WREF performance with IRIS.

Figure 4: IRIS’ I/0 performance.

system. The performance gain is more than 7x for the IRIS-overlap.
The scalability of our solution is characterized as linear. Note that
running Kmeans clustering on top of PFS is 1.7x slower on average
when compared to running on top of the KVS due to the small data
accesses that this kernel demonstrates.

Montage: Montage’s workload demonstrates a diverse pool of
tasks. As an image mosaic builder, it creates a mosaic with 10
astronomy images. It uses 8 analysis kernels, and is composed of a
total of 36 tasks. The first phase is performed using MPI on top of
the PFS. Then, the analysis tasks are offloaded to the data analysis
cluster. There are task dependencies and therefore the analysis
results are written back to the PFS as input to the simulation tasks.
Figure 4(b) demonstrates the results of the evaluation. Similarly
to the previous application, the copying takes much of the overall
time for the base case. Since IRIS avoids the data transfer, it can
speed up the overall time by more than 4.5x and scales linearly.
Furthermore, IRIS-overlap outperforms the baseline by 6x. Note
that running the Montage Analysis kernels on top of PFS is 2.2x
slower on average when compared to running on top of the KVS.

WRF: WRF’s workload characteristics demonstrates two distinct
phases. As a weather forecast model, it first performs a simulation
using MPL Data are (x,y,z) data points with several fields such as
temperature, wind, humidity, etc. The simulation output is copied
to the KVS and data are merged with other data collected from
sensor networks, and are then analyzed. The analysis results are
copied back to the PFS for the next simulation phase. This process is
repeated until the model converges. As it can be seen in Figure 4(c),
IRIS significantly speeds up by 7x the overall execution time. Note
that running the WRF Analysis kernels on top of PES is 50% slower
against running them on top of the KVS.

4.2.3 IRIS in Hybrid mode. One of the objectives of IRIS’
design is to present a unified access to storage as mentioned in
Subsection 3.1. Throughout the above tests, we observed that a
PES is sensitive to frequent small data accesses whereas a KVS
demonstrates stable performance. We implemented a hybrid mode
in IRIS where requests are being redirected according to their size
towards the appropriate storage subsystem. Our hypothesis is that
each storage system can grant higher I/O performance when faced
with a favorable workload. In other words, larger data accesses
can leverage the parallelism of PFS, and smaller ones can be placed
on the KVS due to the vertical data distribution. We collected and

o
S

PFS mxexza PFS mea
KVS KVS
IRIS IRIS

2 @
S o

Overall time (sec)
»
3

Overall time (se
@
3

n
=3

192
Number of processes

192 384 768 1536
Number of processes

384 768 1536

(a) LAMMPS I/O performance (b) LANL_App1 I/O performance

Figure 5: IRIS in Hybrid mode.

examined the I/O traces of LAMMPS and LANL_App1 to understand
the I/O behavior of these two scientific applications. We found that
both of them have a repetitive data access pattern. For LAMMPS,
each process first writes a few requests in the order of KBs followed
by one large request of several MBs. For LANL_Appl1 the pattern is
similar but it performs read operations instead of write. To test our
hypothesis, we run both applications on top of a PFS, a KVS, and
IRIS in hybrid mode, and measured the time needed to complete all
/O requests. Each process performs 32MB of I/0O, with 1536 MPI
ranks the total I/O is 48GB. IRIS redirects small data access to the
KVS and larger than the threshold to the PFS. For LAMMPS, the
threshold was set to 64KB and there were twice as many small data
accesses than large ones (i.e., favoring the KVS). For LANL_App1,
the threshold was set to 128KB and the ratio of small to large data
accesses was roughly 1/4 (i.e., favoring the PFS). In Figure 5, it can be
seen that based on the workload with the above ratios, each storage
subsystem performs better than the other. IRIS in hybrid mode is
able to adapt to different workloads and leverage the appropriate
storage solution. In our test, IRIS shows a 40-60% improvement
in performance since it avoids hurtful access patterns trying to
leverage the best of both storage systems.

5 RELATED WORK

Object Stores in HPC: Object Stores have been capturing the
HPC community’s attention for a while now due to the advantages
they can offer. Scalability and lower latency for small accesses
are the most important benefits of using Object Stores. However,
current usage of Object Stores is very limited, mostly as a sup-
plemental component, where PFS remain as the storage backend.

IRIS: 1/O Redirection via Integrated Storage

IndexFS [36] and BatchFS [53] have proposed removing the meta-
data management responsibility, which is proven to be one of the
major performance bottlenecks from the PFS, and offloading it to
an Object Store. Similarly, FusionFS [52] implements an analo-
gous technique in which it uses a distributed hash table to store
and query metadata information. While this approach boosts the
performance of PFS by optimizing the metadata workload, it does
not introduce Object Stores as a general storage to the scientific
community. Applications still use the PFS as a storage solution. On
the contrary, MarFS [3] utilizes an Object Store as the storage pool
and maintains the POSIX semantics by exposing a file system to the
applications. In this case, the Object Store replaces the PFS as the
back-end storage solution. While there are benefits in doing so, PFS
and Object Store are competing instead of peacefully coexisting
and complementing each other. All the above use cases of Object
Stores in HPC do not solve what we aim to achieve: a unification
of the storage subsystems and the liberation of the interfaces to
allow applications to transition from a compute-intensive phase
to a data-intensive one. Both storage systems are treated equally
inside IRIS and data can be accessed from any data interface.

Object Storage Devices inside PFS: Few distributed file sys-
tems replaced the way they store data internally. Conventional
PFSs split a file into smaller pieces or stripes and store them sep-
arately on local file systems of different storage nodes. This new
category of distributed file systems replaces the local file system
with Object Storage Devices (OSD) to distribute the smaller pieces
of data. CephFS [47] is a new type of distributed file system that
promotes the separation of data and metadata management. It
does so by replacing the allocation tables, which PFSs usually use,
with a pseudo-random data distribution function. With this design,
they created APIs that can support both file operations and object
operations. However, it does not support the integration of PFS
and Object Stores. PanasasFS [31, 49] uses parallel and redundant
access to OSD, per-file RAID, distributed metadata management,
and other internal technologies to offer a high performance dis-
tributed file system. Since they use OSDs, their design offloads
some administrative tasks on the disk itself making it run faster for
specific workloads. Similarly, OBFS [45] utilizes OSDs internally to
create a distributed file system. Again, it is not an integration. It is
an enhancement of PFS with some object operations. To use their
system, HPC systems need to switch the entire storage installation
to their proposed solution, and applications need to be rewritten
to be able to use their solution. In contrast, IRIS aims to bridge
any existing file system with any object store, and users can utilize
both subsystems without modifying their code. With IRIS even
CephFS or Panasas can be bridged with any other storage solution
by adding the appropriate storage module.

MapReduce on top of PFS: There has been some work about
bringing MapReduce to the HPC community. In [40], the authors
created a layer on top of PVFS2 to support MapReduce workloads.
Its limitations involve limited scalability and while it allows MapRe-
duce applications to access data in PFS, it does not enable the other
direction of an MPI application accessing data on an Object Store. It
is also specific to PVFS2. In [32] the authors demonstrated the poten-
tial of BlobSeer in substituting HDFS to enable efficient MapReduce
applications. BlobSeer adopts versioning instead of locking pro-
tocols to handle the concurrency issue. Both of the above works

ICS 18, June 12-15, 2018, Beijing, China

assume the existence of one type of file system to support both
HPC and MapReduce applications. IRIS is developed to hide the
complexity of underlying storage systems, and does not require
the modification of existing file systems. Alluxio [25] (formerly
known as Tachyon), is a distributed system enabling reliable data
sharing at memory speed across cluster computing frameworks. It
supports various existing frameworks, such as Spark, MapReduce,
and Flink. Alluxio, in a way, is the closest system to our proposal in
terms of its goals and objectives to integrate multiple programming
environments with several storage pools. However, it relies heavily
on main memory which is a valuable resource especially in HPC
systems. Additionally, its file support (i.e., MPI-IO, HDF5, pNetCDF
etc.) is basic to simple POSIX calls without any of the optimizations
IRIS has.

6 CONCLUSIONS AND FUTURE WORK

Parallel file systems have been the defacto storage solution in the
HPC community. On the other hand Object Stores have emerged
in recent years to serve the increasingly important data-intensive
computation paradigm. In this paper we designed and implemented
a novel I/O system, named IRIS, which can redirect I/O requests to
an integrated storage layer. By abstracting the lower level storage
system details, we managed to enable new data paths agnostic to
the underlying storage system and offer a truly unified data ac-
cess layer. The new potential is valuable to application developers
who are now free to use any storage interface interchangeably.
Experimental evaluations show that, in addition to providing pro-
gramming convenience and efficiency, IRIS can grant more than
7x higher performance for certain workflows. IRIS aims to bridge
the best storage solutions of both worlds (i.e., PFS from HPC and
Object Stores from Cloud) and bring us closer to the convergence
of the HPC and Cloud ecosystems.

As a future step, we plan to incorporate a prediction model we al-
ready have built into IRIS. This model takes as an input an I/O trace
file (i.e., a log that describes the I/O behavior of the application),
the system configuration along with the application arguments
(total number of processes, size of input data), and predicts which
storage system between PFS and Object Store will lead to better
performance. Second, if the user provides a workflow description
in a form of a directed acyclic graph (DAG), then IRIS will be able
to adjust to the workflow and utilize the available resources accord-
ingly. We also plan to test IRIS on a burst buffer deployment. We
believe there is plenty of work left towards a truly agnostic, unified
data access model for the exa-scale era to come.

ACKNOWLEDGMENT

This material is based upon work supported by the National Science
Foundation under Grants no. CCF-1744317, CNS-1526887, and CNS-
0751200.

REFERENCES

[1] Amazon Inc. 2017. Amazon S3. (2017).
http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html.

[2] Apache Software Foundation. 2017. Bigtop software collection. (2017).
http://bigtop.apache.org/.

[3] David John Bonnie. 2015. MarFS-Scalable POSIX on Object File System. Technical
Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

[4] Peter] Braam et al. 2014. The Lustre storage architecture. (2014).
ftp://ftp.uni- duisburg.de/linux/filesys/Lustre/lustre.pdf.

ICS 18, June 12-15, 2018, Beijing, China

[9

=

[10]

[11]

[13]

[14

[15]
[16]
[17]
[18]

[19]

[20]

[21

)
£

[23]

[24]

[25]

[26]

[27]

[28

[29]

[30

[31]

Gorda Brent. 2015. DAOS: An Architecture for Exascale Storage. (2015).
http://storageconference.us/2015/Presentations/Gorda.pdf.

George H Bryan and] Michael Fritsch. 2002. A benchmark simulation for
moist nonhydrostatic numerical models. Monthly Weather Review 130, 12 (2002),
2917-2928.

Lawrence Bryan. 2017. The UK JASMIN Environmental Data Commons. (2017).
https://wr.informatik.uni-hamburg.de/_media/events/2017/iodc-17-lawerence.
pdf.

Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur, Julian Kunkel, and
Thomas Ludwig. 2009. Small-file access in parallel file systems. In Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE Symposium on. IEEE, Rome, Italy,
1-11.

Chameleon.org. 2017. Chameleon system. (2017).
https://www.chameleoncloud.org/about/chameleon/.

Steve Conway and Chirag Dekate. 2014. High-Performance Data Analysis: HPC
Meets Big Data. Technical Report. IDC.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

Jack Dongarra et al. 2011. The International Exascale Software Project roadmap.
International Journal of High Performance Computing Applications 25, 1 (2011),
3-60. https://doi.org/10.1177/1094342010391989

Robert Escriva, Bernard Wong, and Emin Giin Sirer. 2012. HyperDex: A dis-
tributed, searchable key-value store. Acm sigcomm computer communication
review 42, 4 (2012), 25-36.

Mike Folk, Albert Cheng, and Kim Yates. 1999. HDF5: A file format and I/O library
for high performance computing applications. In Proceedings of the International
Conference for High Performance Computing, Networks, Storage and Analysis
(Supercomputing), Vol. 99. ACM, Portland, OR, 5-33.

Bryan George. 2017. UCAR CM1 atmospheric simulation. (2017).
http://www2.mmm.ucar.edu/people/bryan/cm1/.

Google Inc. 2017. LevelDB. (2017).

https://github.com/google/leveldb.

John L Hennessy and David A Patterson. 2011. Computer architecture: a quanti-
tative approach. Elsevier, New York, NY.

Tony Hey, Stewart Tansley, Kristin M Tolle, et al. 2009. The fourth paradigm:
data-intensive scientific discovery. Vol. 1. Microsoft Research, Redmond, WA.
High Performance Data Division Intel® Enterprise Edition for Lustre* Software.
2014. WHITE PAPER Big Data Meets High Performance Computing. Technical
Report. Intel.

https://goo.gl/GLZrRH.

Earl Joseph and Steve Conway. 2014. IDC Update on How Big Data Is Redefining
High Performance Computing. Technical Report. IDC.

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2017. Enosis: Bridg-
ing the Semantic Gap between File-based and Object-based Data Models. In
Data-Intensive Computing in the Clouds(Datacloud’17), 8th International Work-
shop on. ACM SIGHPC, Denver, CO.

Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2017. Syndesis: Map-
ping Objects to Files for a Unified Data Access System. In Many-Task Computing
on Clouds, Grids, and Supercomputers(MTAGS’17), 9th International Workshop on.
ACM SIGHPC, Denver, CO.

Anthony Kougkas, Hassan Eslami, Xian-He Sun, Rajeev Thakur, and William
Gropp. 2017. Rethinking key-value store for parallel I/O optimization. The
International Journal of High Performance Computing Applications 31, 4 (2017),
335-356.

Avinash Lakshman and Prashant Malik. 2010. Cassandra. ACM SIGOPS Operating
Systems Review 44, 2 (2010), 35. https://doi.org/10.1145/1773912.1773922
Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014.
Tachyon: Reliable, memory speed storage for cluster computing frameworks.
In Proceedings of the ACM Symposium on Cloud Computing. ACM, Seattle, WA,
1-15.

Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William
Gropp, Robert Latham, Andrew Siegel, Brad Gallagher, and Michael Zingale. 2003.
Parallel netCDF: A high-performance scientific I/O interface. In Supercomputing,
2003 ACM/IEEE Conference. ACM/IEEE, Phoenix, AZ, 39-39.

Los Alamos National Laboratory. 2017. Anonymous Scientific Application.
(2017).

http://institute.lanl.gov/data/tdata/.

MongoDB Inc. 2017. MongoDB. (2017).
https://www.mongodb.com/white-papers.

Montage. 2017. An Astronomical Image Mosaic Engine. (2017).
http://montage.ipac.caltech.edu/docs/m101tutorial.html.

Monty, Taylor. 2017. OpenStack Object Storage (swift). (2017).
https://launchpad.net/swift.

David Nagle, Denis Serenyi, and Abbie Matthews. 2004. The panasas activescale
storage cluster: Delivering scalable high bandwidth storage. In Proceedings of the
2004 ACM/IEEE conference on Supercomputing. IEEE Computer Society, Pittsburgh,
PA, 53.

(32]

[33

[34

[35

[36]

[48

[49

[50

[52

[53

Anthony Kougkas, Hariharan Devarajan, Xian-He Sun

Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, and Matthieu Dorier.
2010. BlobSeer: Bringing high throughput under heavy concurrency to Hadoop
Map-Reduce applications. In Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. IEEE, Atlanta, GA, 1-11.

Swapnil Patil and Garth A Gibson. 2011. Scale and Concurrency of GIGA+: File
System Directories with Millions of Files.. In FAST, Vol. 11. ACM/Usenix, San
Jose, CA, 13.

Steve Plimpton. 1995. Fast parallel algorithms for short-range molecular dynam-
ics. Journal of computational physics 117, 1 (1995), 1-19.

Daniel A Reed and Jack Dongarra. 2015. Exascale computing and big data.
Commun. ACM 58, 7 (2015), 56—-68.

Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS: scaling file
system metadata performance with stateless caching and bulk insertion. In SC14:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, New Orleans, LA, 237-248.

Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel file system for Linux
clusters. In Proceedings of the 4th annual Linux Showcase and Conference. Usenix,
Atlanta, GA, 391-430.

Sandia National Laboratories. 2017. LAMMPS. (2017).
http://lammps.sandia.gov/.

Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies, Vol. 2. Usenix, Monterey, CA, 231-244.

Wittawat Tantisiriroj, Seung Woo Son, Swapnil Patil, Samuel J Lang, Garth Gib-
son, and Robert B Ross. 2011. On the duality of data-intensive file system design:
reconciling HDFS and PVFS. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, Seattle,
WA, 67.

Timothy James Tautges, Corey Ernst, Clint Stimpson, Ray] Meyers, and Karl
Merkley. 2004. MOAB: a mesh-oriented database. Technical Report. Sandia
National Laboratories.

Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data sieving and collective
1/O in ROMIO. In Frontiers of Massively Parallel Computation, 1999. Frontiers’ 99.
The Seventh Symposium on the. IEEE, Annapolis, Maryland, 182-189.

Devesh Tiwari, Simona Boboila, Sudharshan S Vazhkudai, Youngjae Kim, Xi-
aosong Ma, Peter Desnoyers, and Yan Solihin. 2013. Active flash: towards
energy-efficient, in-situ data analytics on extreme-scale machines.. In FAST.
Usenix, San Jose, CA, 119-132.

Murali Vilayannur, Partho Nath, and Anand Sivasubramaniam. 2005. Provid-
ing Tunable Consistency for a Parallel File Store.. In FAST, Vol. 5. Usenix, San
Francisco, CA, 2-2.

Feng Wang, Scott A Brandt, Ethan L Miller, and Darrell DE Long. 2004. OBFS: A
File System for Object-Based Storage Devices.. In MSST, Vol. 4. IEEE Computer
Society, Adelphi, MD, 283-300.

Weather Research and Forecasting Model. 2017. WREF. (2017).
http://www.wrf-model.org/index.php.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos
Maltzahn. 2006. Ceph: A scalable, high-performance distributed file system.
In Proceedings of the 7th symposium on Operating systems design and implemen-
tation. USENIX Association, Seattle, WA, United States, 307-320.

Brent Welch and Garth A Gibson. 2004. Managing Scalability in Object Storage
Systems for HPC Linux Clusters.. In MSST. IEEE, Adelphi, Maryland, USA, 433-
445.

Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In FAST, Vol. 8. USENIX Association, San Jose, CA, 1-17.
Yanlong Yin, Surendra Byna, Huaiming Song, Xian-He Sun, and Rajeev Thakur.
2012. Boosting application-specific parallel i/o optimization using IOSIG. In
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International
Symposium on. IEEE, Ottawa, Canada, 196-203.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, San Jose, CA, 2-2.

Dongfang Zhao, Zhao Zhang, Xiaobing Zhou, Tonglin Li, Ke Wang, Dries Kimpe,
Philip Carns, Robert Ross, and Ioan Raicu. 2014. Fusionfs: Toward supporting
data-intensive scientific applications on extreme-scale high-performance com-
puting systems. In Big Data (Big Data), 2014 IEEE International Conference on.
IEEE, Washington DC, 61-70.

Qing Zheng, Kai Ren, and Garth Gibson. 2014. BatchFS: scaling the file system
control plane with client-funded metadata servers. In Proceedings of the 9th
Parallel Data Storage Workshop. IEEE Press, New Orleans, LA, 1-6.

Shujia Zhou, Bruce H Van Aartsen, and Thomas L Clune. 2008. A lightweight
scalable I/O utility for optimizing High-End Computing applications. In Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on.
IEEE, Miami, FL, USA, 1-7.

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 IRIS Objectives
	3.2 Design Considerations
	3.3 IRIS Architecture
	3.4 Implementation Details

	4 Evaluation
	4.1 Hardware and software used
	4.2 Evaluation Results

	5 Related Work
	6 Conclusions and Future Work
	References

