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ABSTRACT

�ere is an ocean of available storage solutions in modern high-

performance and distributed systems. �ese solutions consist of Par-

allel File Systems (PFS) for the more traditional high-performance

computing (HPC) systems and of Object Stores for emerging cloud

environments. More o�en than not, these storage solutions are

tied to speci�c APIs and data models and thus, bind developers,

applications, and entire computing facilities to using certain inter-

faces. Each storage system is designed and optimized for certain

applications but does not perform well for others. Furthermore,

modern applications have become more and more complex consist-

ing of a collection of phases with di�erent computation and I/O

requirements. In this paper, we propose a uni�ed storage access

system, called IRIS (i.e., I/O Redirection via Integrated Storage). IRIS

enables uni�ed data access and seamlessly bridges the semantic

gap between �le systems and object stores. With IRIS, emerging

High-Performance Data Analytics so�ware has capable and diverse

I/O support. IRIS can bring us closer to the convergence of HPC

and Cloud environments by combining the best storage subsystems

from both worlds. Experimental results show that IRIS can grant

more than 7x improvement in performance than existing solutions.
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1 INTRODUCTION
In the age of Big Data, scienti�c applications are required to process

large volumes, velocities, and varieties of data, leading to an explo-

sion of data requirements and increased complexity of use [10]. In

High-Performance Computing (HPC), traditional data management
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consists mostly of parallel �le systems (PFS), such as Lustre [4],

PVFS2 [37], GPFS [39], etc. Historically, the data model of the un-

derlying storage systems has followed the POSIX standard and PFSs

have been responsible for managing it. However, while the single

stream of bytes model of POSIX is needed for strong consistency, it

is inconvenient for parallel access and might also lead to expensive

data transformations. As we get closer to the exa-scale era, PFSs

face signi�cant challenges in performance, scalability, complexity,

limited metadata services, and others [12], [17]. Modern HPC stor-

age systems are not the best �t for Big Data applications since they

were designed with traditional scienti�c applications in mind.

High availability of popular general purpose analysis frame-

works like MapReduce [11], Spark [51], and others in Apache Big-

Top [2], as well as the wide variety of available Object Stores such

as MongoDB [28], HyperDex [13], and Cassandra [24], have created

a healthy so�ware environment in Cloud computing and Big Data

applications. However, these analysis frameworks are not designed

for HPC machines and do not take advantage of any capabilities

of the extremely expensive and sophisticated technologies present

in existing supercomputers. �ey also cannot support traditional

HPC workloads (i.e., MPI applications) and would most likely fail

to meet the demand of High-Performance Data Analytics (HPDA)

[19], the new generation of Big Data applications, which involve

su�cient data volumes and algorithmic complexity to require HPC

resources. International Data Corp. (IDC) forecasts that the HPDA

market will grow from $3.2 billion in 2010 to $16.9 billion in 2018

[20]. Currently, approximately 70% of HPC sites around the world

with at least 30% of their available compute cycles perform HPDA.

HPDA is driven by the increasing ability of powerful HPC sys-

tems to run data-intensive problems at larger scale, at higher res-

olution and with more elements. In addition, the proliferation of

larger, more complex scienti�c instruments and sensor networks to

collect extreme amounts of data pushes for more capable analysis

platforms. Performing data analysis using HPC resources can lead

to performance and energy ine�ciencies. In [43] the authors point

out that traditional o�ine analysis results in excessive data move-

ment which in turn causes unnecessary energy costs. Alternatively,

performing data analysis inside the compute nodes can eliminate

the above mentioned redundant I/O, but can lead to wastage of

expensive compute resources and will slow down the simulation

job due to interference. �erefore, modern scienti�c work�ows

require both high-performance computing and high-performance

data processing power. However, HPC and HPDA systems are dif-

ferent in design philosophies and target di�erent applications. D.

Reed and J. Dongarra in [35] point out that the tools and cultures of

HPC and HPDA have diverged, to the detriment of both; uni�cation

is essential to address a spectrum of major research domains.

�is divergence led HPC sites to employ separate computing

and data analysis clusters. For example, NASA’s Goddard Space

Flight Center uses one cluster to conduct climate simulation, and
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another one for the data analysis of the observation data [54]. Due

to the data copying between the two clusters, the data analysis is

currently conducted o�-line, not at runtime. However, runtime

simulation/analysis will lead to more accurate and faster solutions.

�e data transfer between storage systems along with any neces-

sary data transformations are a serious performance bo�leneck

and cripples the productivity of those systems. Additionally, it in-

creases the wastage of energy and the complexity of the work�ow.

Another example is the JASMIN platform [7] run by the Center of

Environmental Data Analysis (CEDA) in the UK. It is designed as a

”super-data-cluster”, which supports the data analysis requirements

of the UK and European climate and earth systemmodeling commu-

nity. A major challenge they face is the variety of di�erent storage

subsystems and the plethora of di�erent interfaces that their teams

are using to access and process data. �ey claim that PFSs alone

cannot support their mission as JASMINE needs to support a wide

range of deployment environments.

�ere is an increasingly important need of a uni�ed storage

access system which will support complex applications in a cost-

e�ective way leading to the convergence of HPC and HPDA. How-

ever, such uni�cation is extremely challenging with a wide range

of issues [35]: a) gap between traditional storage solutions with

semantics-rich data formats and high-level speci�cations, and mod-

ern scalable data frameworks with simple abstractions such as

key-value stores and MapReduce, b) di�erence in architecture of

programming models and tools, c) management of heterogeneous

resources, d) management of diverse global namespaces stemming

from di�erent data pools, etc. A radical departure from the existing

so�ware stack for both communities is not realistic. Instead, future

so�ware design and architectures will have to raise the abstraction

level, and therefore, bridge the semantic and architectural gaps.

In this paper, we introduce two novel abstractions, namely Vir-

tual Files and Virtual Objects, that help overcome the above men-

tioned challenges. We present the design and implementation of

IRIS (I/O Redirection via Integrated Storage), a uni�ed and inte-

grated storage access system. IRIS is a middleware layer between

applications and storage. By using virtual �les and objects, IRIS can

unify any data model and underlying storage framework, and thus,

allow applications to use them collaboratively and interchangeably.

With IRIS, an MPI application can directly access data from an Ob-

ject Store avoiding the costly data movement from one system to

another while providing an e�ective computing infrastructure for

HPDA. �us, IRIS creates a uni�ed ”storage language” to bridge the

two very di�erent compute-centric and data-centric data storage

camps. By using this ”language”, IRIS extends HPC to HPDA; a vital

need from both the HPC and the data analytic community. IRIS

seamlessly enables cross-storage system data access without any

change to user code. IRIS’s modular design allows the support of a

wide variety of applications and interfaces. From MPI simulations

to HPDA analysis so�ware and from high-level I/O libraries such

as pNetCDF [26], HDF5 [14], MOAB [41], MPI-IO [42] etc., to the

more Cloud-based Amazon S3 [1] and Openstack Swi� [30] REST

APIs, IRIS comfortably integrates the I/O requests.

�e contributions of this paper are: 1) We designed and im-

plemented a uni�ed storage access system that integrates various

underlying storage solutions such as PFSs or Object Stores. �is

system is called IRIS. 2) We introduced two novel abstract ideas, the

Virtual File and the Virtual Object that can help map user’s data

structures to any data management framework. 3) We evaluated

our solution and the results show that, in addition to providing

programming convenience and e�ciency, IRIS can grant higher

performance by up to 7x than existing solutions in the intersection

of HPC and HPDA.

2 BACKGROUND
Parallel �le systems: PFSs are widely popular and well under-

stood within the storage community. �erefore we will not expand

much on the background and we only list some advantages and

disadvantages to provide context. �e main advantages a PFS o�ers

is simultaneous access by many clients, scalability, and capability

to distribute large �les across multiple nodes, a hierarchical global

name space, and high bandwidth via parallel data transfer. While

many scienti�c applications following the PFS assumption of access

one single large contiguous �le, some applications such as those

in astronomy and climatology have non-contiguous data access

pa�erns and generate many small I/O requests. While PFSs excel

at large and aligned concurrent accesses, they face signi�cant per-

formance degradation in case of small accesses, unaligned requests,

and heavy metadata operations [8]. Some limitations of PFSs [18],

originate from persistence: data access performance is dependent

of the underlying �les, directories, and tree structures (the higher

the number of �les in a PFS, the greater the risk of performance

degradation). Maintaining data consistency of �le systems poses

an overhead on the overall system, and o�en creates issues such

as fragmentation, journaling, and simultaneous operations on the

same �le system structures. Finally, the storage subsystem may

pose additional limitations because of RAID, disk sizes, and other

limiting factors by either hardware or so�ware. PFS will need a

major li�ing for the next generation of exascale supercomputers,

even without considering the newly emerged HPDA I/O demands.

Object Storage: Object Stores encapsulate data, metadata, a

globally unique identi�er, and data a�ributes into a single im-

mutable entity termed object. In an Object Store, objects are orga-

nized in a �at address space (i.e., every object exists at the same level

in a large scalable pool of storage). Object Stores follow location

independent addressing and are accessed via the unique identi�er.

Object Stores are designed primarily to manipulate data sets that do

not have a prede�ned data model or in other words are unstructured

or semi-structured. �e key operations for an Object Store include

retrieval (get), storage (put), and deletion (delete). Object Stores can

be categorized as generic key-value stores, document-based stores,

column-based stores, and graph-based stores. With a �at names-

pace and the ability to easily expand and store large data sets at a

relatively low cost, Object Stores o�er scalability, �exibility, rapid

data retrieval, and distributed access. �ey are easily expandable

and are well suited for applications requesting non contiguous data

accesses and/or heavy metadata operations. Object Stores o�er

consistent data access throughput and a set of extensible metadata.

�e Object Store space (also known as NoSQL schemes) demon-

strates a huge variety of di�erent implementations each with its

own strengths and weaknesses. Most of the implementations main-

tain the above characteristics. On the other hand, Object Stores are

ill suited for access pa�erns with frequently changing data and ones

involving complex operations since each update operation leads
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to the creation of a new object and the destruction of the previous

one followed by an update to the metadata. Additionally, Object

Stores are not POSIX-compliant. �is blocks their wide adoption

by the HPC community. Object stores, however, are widely used in

the Cloud community and in Big Data processing engines.

With ever increasing data sizes, typical data intensive applica-

tions such as machine learning and data mining, require more and

more computing power. �ese applications seek traditional HPC

technologies to speed them up, including support for complex data

structures and algorithms. �ere is no ”one storage for all” solution

and each storage system, PFS and Object Store, has its strengths

and weaknesses. We explored architectural di�erences and perfor-

mance characteristics in [23] and we found that each storage system

performs best under speci�c conditions and they could perfectly

complement each other.

3 DESIGN AND IMPLEMENTATION
3.1 IRIS Objectives
While designing IRIS we kept three major objectives in mind:

A: Enable MPI-based applications to access data in an Object

Store without user intervention. �is objective is designed to

support two major use cases automatically. 1) An MPI application

canwrite data directly to anObject Store environmentwhere in turn

an HPDA application will operate upon. 2) An MPI application can

read data, previously created by an HPDA application, that reside

in an Object Store. IRIS enables MPI applications to access data

directly from Object Stores by making them accessible natively. �e

familiar fread() and fwrite() POSIX calls, used by MPI applications,

are still the interface to access data that reside in an Object Store.

Additionally, high-level I/O libraries such as MPI-IO, HDF5, and

pNetCDF are also supported by IRIS.

B: Enable HPDA-based applications to access data in a PFS

without user intervention. �is objective is designed with two

major use cases as well, similar but in an opposite direction as

the �rst objective. 1) HPDA application needs data, previously

generated by an MPI application, that reside in a PFS. 2) HPDA

application can write data directly to a PFS where an MPI applica-

tion will operate on it. With IRIS, HPDA applications can directly

access data to and from PFSs natively. In particular, IRIS allows

the get() and put() from an HPDA application to operate on �les

residing in a PFS. Combined with the �rst one, this objective gives

us a powerful way to store, access, and process data from two dif-

ferent environments by two di�erent computing engines, a more

computing-centric processing done byMPI, and a more data-centric

processing done by HPDA so�ware. Figure 1 (a) visualizes these

two objectives. �e black arrows represent the native data path for

each system while the blue arrows demonstrate the new data paths

IRIS enables.

C: Enable a hybrid storage access layer agnostic to �les or

objects. �is objective is designed to o�er a truly hybrid access to

data by abstracting the low-level storage interfaces and unifying the

APIs under one system. �erefore, IRIS allows developers to inter-

change the storage calls independent of the underlying architecture.

Via the hybrid storage layer that IRIS provides, applications can

access data from both storage systems at the same time. Addition-

ally, this allows IRIS to make intelligent decisions, use each storage

system exploiting its advantages, and o�er a higher I/O e�ciency.

(a) Uni�ed data access layer. (b) So�ware stack.

Figure 1: IRIS in high-level.

�is objective basically eliminates the black arrows in Figure 1 (a)

and grants IRIS the decision making responsibility about which

storage subsystem to use.

3.2 Design Considerations
While developing IRIS, we faced and solved many challenges. PFSs

are tightly coupled with the POSIX standard. �is is a known restric-

tion of the scalability of PFSs and a major source of performance

degradation [33]. On the other hand, Object Stores are not POSIX-

compliant which makes them scale very well and o�er low latency

for speci�c workloads [48]. However, they cannot replace PFSs

in scienti�c computing due to the lack of POSIX-compliance and

support of complex data structures. IRIS implements tunable consis-

tency [44] and two modes of POSIX-compliant metadata (i.e., strict

and relaxed). �erefore, IRIS can trade some POSIX-compliance to

grant be�er performance and scalability if the application demands

it. Fault tolerance is crucial in any system. IRIS adopts the fault

tolerance of the underlying storage subsystems. Additionally, IRIS

periodically writes the in-memory metadata information to the

disk. In case of a crash, IRIS restores the metadata image from

the disk and continues. In the current version of IRIS, there is still

a possibility of losing metadata in between of a checkpoint and

the time of the crash. We plan to extend this work and add fault

tolerance features such as write logs etc.

Note that di�erent implementations of a PFS or Object Store

might possibly lead to di�erent features and performance charac-

teristics. However, IRIS aims to bridge the semantic gap between

�les and objects by abstracting the lower level storage details. With

IRIS, HPC users can utilize a vast variety of data analysis so�ware

otherwise only available in Big Data environments, which in turn

will increase productivity, performance, and resource utilization.

3.3 IRIS Architecture
IRIS is a library that sits between applications and storage systems.

As such, it interacts with applications from above and issues its I/O

requests to the underlying storage system. �is is no di�erent from

any other middle-ware library. However, the design of IRIS makes

it capable to connect to many di�erent applications, both HPC and

HPDA, and storage systems at the same time. Figure 1 (b) demon-

strates the new so�ware stack with IRIS. One important note is that

IRIS is integrated transparently to the application and high-level

I/O libraries. Its modular design enables IRIS to support di�erent

applications and makes it �exible for future interfaces. IRIS already

supports POSIX, MPI-IO, HDF5, pNetCDF, and S3/Swi� user inter-

faces. From the storage system side, IRIS can interact with the local
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Figure 2: IRIS internal design.

Linux ext3 or ext4 �le systems, PVFS2 (also known as OrangeFS),

Lustre, as well as HyperDex and MongoDB Object Stores. �ere

are several components that work together to make IRIS a two-way

bridge between MPI applications/PFS and HPDA applications/Ob-

ject Stores. Two such components are abstract ideas, the VirtualFile

and the VirtualObject. IRIS utilizes these components internally to

build the connections between incompatible standards. Figure 2

demonstrates IRIS’ design. We use the following example to illus-

trate and explain the components one by one: an MPI application

accesses an Object Store to �rst write some data and then to read

them back.

VirtualFile is an in-memory construct that is used for mapping and

thus, bridging the semantic gap between POSIX �les and objects.

Its goal is to provide applications the illusion of the existence of a

normal �le system and that all operations are performed on a ”real”

�le. �e virtual �le is simply a space in memory which IRIS is using

to map user’s �le structures to key-value pairs. �e relationship

between a virtual �le and the objects that it includes is 1-to-N.

VirtualObject is an in-memory construct that is used for mapping

objects to �les and therefore bridges the semantic gap between

them. Its goal is to provide applications the illusion of the existence

of a normal Object Store much like the virtual �le above. �e

relationship between virtual objects and �les is N-to-1.

Mappers are responsible for creating a translation between what

the applications are passing to IRIS and what the underlying storage

system expects. �is translation is possible with the use of virtual

�les and/or objects. For instance, if the application calls fwrite(),

then IRIS intercepts it and calls the POSIX mapper to create a map-

ping to the underlying storage. For our example, a virtual �le is

created holding the keys responsible to carry out the operation.

�is virtual �le is then passed to the storage module. When the ap-

plication calls fread(), the mapper �nds the virtual �le that contains

the keys that hold the data and passes it to the storage module.

Storage modules are responsible for issuing I/O requests to the

underlying storage systems. IRIS aims to support many di�erent

storage systems, hence the modular design. Storage modules are

tied to the speci�c storage subsystem they implement. Storage

modules take a virtual �le or virtual object (e.g., if application is

MPI or S3, respectively) as an input and return the actual data.

Going back to our example, the storage module takes a virtual

�le created from the mapper and, using the appropriate interface

(e.g., MongoDB API), it calls get() or put() according to the desired

operation.

Metadata manager is responsible for keeping track of metadata

information about the entire library. First, it maintains any meta-

data required from the user interface in memory. We explored

two modes for IRIS: a strict-POSIX mode where all metadata from

POSIX are maintained in memory and persisted in the Object Store

at fclose(), and a relaxed-POSIX mode where basic metadata infor-

mation are kept. �ere is a trade-o� between POSIX compatibility

and performance. Metadata manager is also responsible for main-

taining all memory structures that facilitate the mapping between

user calls and storage system calls (i.e., virtual �les, virtual objects).

Compactor/defragmenter is a background internal service. IRIS

makes use of virtual namespaces, virtual �les, and virtual objects to

achieve a true integration of two incompatible systems. IRIS maps

application’s objects to virtual objects that are stored within �les in

the PFS. �erefore, these �les can end up fragmented a�er a series

of update operations. �is component is activated periodically

in the background to defrag fragmented data structures and �les,

or compact bu�ers and sets of key-value pairs. �e compactor

applies all object mutations asynchronously much like LevelDB

[16]. �e work done from this IRIS component is crucial internally,

and it guarantees a successful and e�cient execution. Lastly, it can

help with performance optimizations such as be�er indexing of the

active namespace.

Aggregator is a performance-driven designed component. It is

equivalent to the collective I/O operation in MPI-IO. Aggregator

always tries to combine requests together for be�er performance.

IRIS interacts with the storage systems in an optimized way. �at

means, either issue larger requests, avoiding small accesses and

excessive disk head movements, or minimizing network tra�c.

Prefetcher is the second performance-driven component. It does

exactly what the name suggests. It implements a few prefetching

algorithms to optimize I/O operations as whole. �e current version

of IRIS supports prefetching for sequential data access, strided

access, and random access. We plan to support user de�ned in

future versions.

Cache manager is the component that handles all bu�ers inside

IRIS. It is equipped with several cache replacement policies such as

least recently used (LRU) and least frequently used (LFU). It works

in conjunction with the prefetcher. It can be con�gured to hold

”hot” data for be�er I/O latency. It acts as a normal cache layer for

the entire framework.

3.4 Implementation Details
IRIS is implemented in C++ and totals more than 11000 lines of

code (LOC). A prototype version can be found online. We carefully

optimized the code to run as fast as possible and minimize the

overhead of the library. �e code is optimized with state-of-the-art

helper libraries. A few examples include the following. For memory

management we chose Google’s tcmalloc library that performs 20%

faster than the standard malloc and has a smaller memory foot-

print. For hashing, we selected the CityHash functions by Google,

the fastest collection of hashing algorithms at this moment. We

speci�cally used the 64-bit version of the hashing functions. For

structures such as maps and sets, we used Google’s BTree library

which is faster than the STL equivalent structures and reduces

memory usage by 50-80%. Finally, all con�gurable parameters in

IRIS are globally set per application via our Con�guration Manager.

3.4.1 Mapping modes. IRIS maps user’s data structures to an

underlying storage system in two directions: �les-to-objects and

objects-to-�les.
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Files-to-objects: we designed and implemented three di�erent

mapping strategies: a) balanced, b) write-optimized, and c) read-

optimized. �ese strategies aim to be�er serve respective workloads

and are all con�gurable through IRIS’s con�guration se�ings.

For the balanced mapping, IRIS divides the virtual �le into buck-

ets which are tied to a �xed-sized object. It then maps any �le

request, that falls into a bucket according to the o�set and the size

of the operation, to the respective object or collection of objects.

�e mapping is the same regardless of the read or write operation

since it maps �le location to objects. �e size of these buckets is

con�gurable and can a�ect the performance. A�er extensive test-

ing, we found that a bucket size of the median request size is the

best and more balanced choice. If the user does not have access to

an I/O trace �le of his/her application then a default bucket size of

512 KB is suggested.

For the write-optimized mapping, IRIS creates objects for each

request and inserts them in a B+ tree hierarchy for the subsequent

get operations. In this mapping, fwrite() and fread() have di�erent

mapping functions since we prioritize the write operation speed.

�erefore, for write operations we simply create objects as fast as

possible and we update our map of available ranges of �le o�sets

and keys. For read operations, themapper �rst �nds the correct keys

within the range of o�sets passed, and performs one or multiple

get() operations from the Object Store. It then concatenates the

correct data according to a timestamp (i.e., the latest data for each

key are kept) and it returns to the caller.

For the read-optimized mapping, IRIS �rst creates a plethora of

various-sized keys for each put request and updates the map of

available keys and ranges of �le o�sets. �e goal here is to speed up

the fread() so most of the work is done by the write operation. For

example, assuming an fwrite() of 2 MB request size at o�set 0, and

a granularity of object sizes of 512 KB, the mapper will create the

following keys: 1 key of 2MB, 2 keys of 1 MB, and 4 keys of 512 KB.

�erefore, a subsequent fread() will access the best combination

of these keys minimizing the calls to the underlying Object Store

while maintaining a strong data consistency. �is mapping strategy

signi�cantly speeds up read operations by sacri�cing extra storage

capacity, method generally acceptable due to the low cost of disk

space. More on the design, implementation, and evaluation results

of these three mapping strategies are explored and presented in

details in [21].

Objects-to-�les: we designed and implemented four mapping

strategies regarding object-to-�le mapping: a) 1-to-1, b) N-to-1, c)

N-to-M simple, and d) N-to-M optimized. �ese strategies aim to

maintain data consistency while being general enough to support

a variety of workloads. �ese mapping modes are con�gurable

through IRIS’s con�guration se�ings.

In the 1-to-1mapping strategy, each application’s object ismapped

to a unique �le. �e goal is to enable processing of existing col-

lections of �les and one can access and process data by simply

using a get() and put() interface. �e overhead of this mapping and

the memory footprint are kept at minimum. Update operations

simply mutate the respective �le. �e mapping semantics are also

the simplest making this strategy quite fast for a relatively small

number of objects.

In the N-to-1 mapping strategy, the entire keyspace of the appli-

cation’s objects is mapped to one big �le. �e goal is to maintain the

simplicity of the mapping. Virtual objects are wri�en sequentially

in the �le. Any updates are simply appended at the end of the �le

while marking the previous object as invalid. �is strategy is good

for smaller dataset sizes. Since each object resides in one big �le,

indexing is very important to facilitate faster get() operations. For

this reason each virtual object maintains the �le o�set where the

actual object resides. Under this strategy, metadata operations of

the underlying �le system are lightweight. Searching is o�oaded

from the �le system to IRIS with in-memory structures for faster

operations. �e mapping cost is relatively low. Data consistency is

guaranteed by the �le system. Concurrent reads are allowed.

For the N-to-M simple mapping strategy, we �rst introduce a

new structure, called container, which represents a �le that holds

virtual objects and othermetadata information useful to IRIS such as

indexing and updating logs. In this mapping strategy, a collection

of application’s objects is mapped to a collection of containers.

�e constraint for the creation of new containers is the container

size. A�er each container reaches the maximum container size

(i.e., default in IRIS is 128MB) it will trigger the creation of the

next container. �e number of �les is controllable by the strategy

and containers’ size is prede�ned (i.e., user can tune this). Update

operations mutate the virtual object that resides in the container.

In the optimized version of N-to-M objects to �les mapping strat-

egy, application’s objects are �rst hashed into a key space and then

mapped to the container responsible for that range of hash values.

Speci�cally, keys go through the hashing function and get a 128 bit

hash value. Containers are created according to a range of hash val-

ues. �is strategy is extremely scalable since containers represent a

range of keys regardless of their size. �e container size is relative

to the overall size of the keys it holds. Update operations simply

write at the end of the container while invalidating the previous

object. IRIS’ defragmenter periodically runs in the background to

save storage space. Searching is performed in constant time. To

achieve this, we associated a truth array with each container. If an

object exists in the container, then the index of that object’s hash

will be true. �e goal of this strategy is to be able to scale and to

support fast writes, reads, and updates. More on the design, imple-

mentation, and evaluation results of these four mapping strategies

are explored and presented in details in [22].

3.4.2 Prefetching modes. Traditional PFSs and Object Stores

implement optimizations such as read-ahead and prefetching to

o�er be�er read performance. �ese optimizations rely on the

data access pa�ern created by the applications. However, when

IRIS maps a �le call over an Object Store, it loses this capability

since an fread() will be transformed to one or more get() opera-

tions with keys that may not have a relation between them, and

thus, any prefetching the underlying Object Store tries to perform

will not work. Similarly, a get() in IRIS may be transformed in a

sequence of fread() operations that may not demonstrate locality or

sequentiality, and thus, the underlying �le system prefetching will

not help. �erefore, we implemented these optimizations within

IRIS. Speci�cally, prefetching in IRIS has two modes: synchronous

(i.e., read-ahead) and asynchronous. We have also implemented

three prefetching algorithms: sequential, random, and user-de�ned.

For the sync mode, prefetching is performed synchronously. Each

fread() triggers the prefetcher component and, depending on the
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Table 1: IRIS’ metadata modes (time in ms)

#�les IRIS Strict IRIS Relaxed Local-Ext4 Remote-OrangeFS

1000 3.398 2.941 149.439 4,513.024

10000 33.712 28.928 1,257.540 50,058.524

100000 345.769 287.198 13,152.400 434,528.242

1000000 3,644.250 2,989.640 143,828.000 4,934,578.340

access pa�ern, it uses one of the prefetching algorithms, sequential

or random, to fetch the next piece of data. It passes the fetched

data to the cache manager. Any subsequent fread() will check if

the requested data are already in cache before reaching to the disk.

�e di�erence with the async mode, as the name suggests, is that

the fread() will return to the caller a�er it triggers an asynchronous

fetch. IRIS maintains a map of outstanding asynchronous opera-

tions, and thus, every fread() �rst checks for any pending fetch

before it actually performs any other reading. �is asynchronicity

will boost the performance for certain workloads where I/O and

computation are periodically switching. �e sequential algorithm

takes the current read arguments, such as the o�set, the size, and

the count, and tries to calculate the next piece of data that the ap-

plication will need. IRIS o�ers a con�gurable parameter about the

prefetching unit. It can be exactly the size of the previous fread() or

a prede�ned value (e.g., 2 MB). For instance, an fread() of 1 MB will

trigger a fetching of the next 1 MB or if the prede�ned value is set,

the next 2 MB. For all the asynchronous calls, we used the built-in

standard library std::future with the ”async” scheduling �ag on.

3.4.3 POSIX-compliant metadata modes. While the POSIX

standard has been around for a very long time and has served us

well, there are certain features in the standard that may have less

value as we move to the exa-scale era. One of the much debated

characteristics of the POSIX �le is its metadata information. �ese

are expressed by a structure named Stat and they include the fol-

lowing: the device ID, the �le serial number, the mode of the �le,

the number of hard links, the user ID, the group ID, the size of the

�le, the time of last access, the time of last data modi�cation, the

time of last status change, the block size, and lastly, the number of

blocks. All of this information is involved in all POSIX calls. Main-

taining these structure updated (e.g., updating the time accessed

or checking the �le permissions) can be a performance bo�leneck.

IRIS o�ers a fully POSIX compliant mode, we call strict-POSIX that

obeys the standard. However, since the �les are mapped into an

Object Store, it is not always needed to maintain all above infor-

mation. Hence, we created a second mode called relaxed-POSIX

where we only update crucial information about the virtual �le

such as the �le size, and the mode checking. By skipping the rest

of the metadata operations, IRIS can o�er higher performance. �e

test comprises of opening and closing up to a million �les. Table 1

compares each IRIS’ metadata mode with POSIX and reports the

time. �e relaxed-POSIX o�ers about 18% higher performance when

compared with the strict-POSIX mode. �is test was conducted on

our development machine with an Interl i7, 16GB RAM and an SSD

drive of 480MB read and 350MB write speed. �e actual POSIX calls

were tested on a local Linux ext4 �le system and on a remote Or-

angeFS �le system and are presented as a reference. Moreover, IRIS

maintains metadata information in-memory until fclose() is called

when IRIS persists the memory structures to disk. �is way, IRIS

demonstrates orders of magnitude be�er performance compared to

a traditional �le system that updates metadata on disk.

3.4.4 Caching. IRIS utilizes many bu�ers and caches. �e

cache manager o�ers a memory space to the prefetcher to cache

data and also to the application itself to cache user’s data. �e size

of all bu�ers are con�gurable via IRIS’s con�guration se�ings. We

have implemented two cache replacement policies, least recently

used (LRU) and least frequently used (LFU).�ese algorithms are no

di�erent than any other common LRU and LFU implementations.

IRIS also o�ers the ability to cache write operations for subsequent

reads. �is write-caching, along with prefetching, can boost the

reading performance, and is spatial and temporal tunable, giving

more control to the user. Caching plays a big role in the perfor-

mance optimization, and good memory management is crucial.

IRIS has successfully incorporated such technologies. Note that

IRIS’ caching is on top of any caching mechanisms inherent by the

underlying storage solution.

4 EVALUATION

4.1 Hardware and so�ware used

Testbed: All experiments were conducted on Chameleon systems

[9]. More speci�cally, we used the bare metal con�guration o�ered

by Chameleon. Each client node has a dual Intel(R) Xeon(R) CPU

E5-2670 v3 @ 2.30GHz (i.e., a total of 48 cores per node), 128 GB

RAM, 10Gbit Ethernet, and a local 200GB HDD. Each server node

has the same internal components but, instead of Ethernet network,

we used In�niband 56Gbit/s to avoid possible network thro�ling.

�e total experimental cluster consists of 1536 client MPI ranks (i.e.,

32 nodes), and 16 server nodes for PFS and Object Store each.

So�ware: �e operating system of the cluster is CentOS 7.0, the

MPI version is Mpich 3.2, the PFS we used is OrangeFS 2.9.6, and

the Object Store MongoDB 3.4.3. Our choice of those speci�c stor-

age systems as representatives from each category (e.g., PFS and

Object Stores) was made for several reasons. OrangeFS (formerly

known as PVFS2) is widely understood by the HPC community,

and it is mature enough in terms of development and research to

be the representative for the PFS. MongoDB has established itself

as one of the most popular Object Stores. It o�ers competitive per-

formance and several API bindings. We acknowledge that di�erent

representatives of each storage subsystem may have di�erences

in their implementations. However, the focus of this study is not

benchmarking OrangeFS and MongoDB, but the evaluation of the

uni�ed data access layer and how IRIS performs against the native

workload of a PFS and of an Object Store. �us, we believe this

issue does not hurt the conclusions and contributions of this study.

Applications: �e applications we used span over a wide range

of scienti�c simulations and data analysis kernels. �ese appli-

cations are real-world code representative of applications run-

ning on current supercomputers. �ey have been used on NCSI’s

Kraken and NCSA’s Blue Waters, ORNL’s Titan, and ANL’s Intrepid

and Mira. Speci�cally we used: CM1 [6, 15], a three-dimensional,

non-hydrostatic, non-linear, time-dependent numerical model de-

signed for idealized studies of atmospheric phenomena, LAMMPS

[34, 38], a classical molecular dynamics code and an acronym for
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Figure 3: IRIS mapping overhead.

Large-scale Atomic/Molecular Massively Parallel Simulator, Mon-

tage [29], an astronomical image mosaic engine, WRF [46], a next-

generation mesoscale numerical weather prediction system de-

signed for both atmospheric research and operational forecasting

needs, LANL App1 [27], an anonymous scienti�c application run-

ning in Los Alamos National Lab, and K-Means clustering, a typical

HPDA data analysis kernel. All test results are the average of �ve

repetitions to eliminate OS noise.

4.2 Evaluation Results
4.2.1 IRIS library overhead. In this test, wemeasure the over-

head of I/O calls using IRIS expressed in time (nanoseconds). �e

reported time refers to the di�erence between an I/O call to the

native storage solution and the same call over IRIS which will redi-

rect it to a di�erent storage system. For example, a normal fread()

will read data from a �le system whereas in IRIS will be mapped

to a get() operation, and data will be fetched from an Object Store.

�e I/O time is excluded since we wanted to isolate the overhead

added by the translation of the I/O calls. Figure 3 shows the average

overhead in time for both mapping �les-to-objects and objects-to-

�les. In the �rst case, the input is 128K �le operations (i.e., 131,072

POSIX calls) of 64KB size with mixed reads and writes. �e over-

head per call on average in this case is about 1100 nanoseconds or

0.00025%. In objects-to-�les case, the input is similarly 128K object

operations (i.e., 131,072) of 64KB size with mixed gets and puts. In

this case, the extra time needed by IRIS to map an object call to a

�le is on average 1300 nanoseconds, or a 0.00030% relative to the

native system, depending on the mapping strategy used. �us, the

mapping overhead of IRIS is minimal.

4.2.2 IRIS I/O performance. In this series of tests, we evalu-

ate IRIS in real world scenarios. We �rst run the applications and

we isolate the I/O phases since we only want to study the storage

performance and not the time spent in computations. Using the

IOSIG tracing tool [50] we collect all I/O traces. Each process oper-

ates on its own �le (i.e., �le-per-process) and performs I/O of about

100MB. �e total dataset is 150GB for the largest scale.

Each test consists of several phases. We �rst run the simulation

part of the application on top of a PFS. In the �gures, this is noted

SimWrite followed by the storage system in parenthesis. We then

convert and copy all data (i.e., output of the simulation phase)

to a data-intensive cluster equipped with an Object Store (e.g.,

MongoDB in our case). Note that in this section we refer to Object

Stores as KVS (i.e., Key-Value Stores) for short. In the �gures, this

is noted as Convert&Copy followed by the direction of the data

transfer (i.e., �les-to-objects as F2O and objects-to-�les as O2F).

We then execute the data analysis using the respective analysis

kernel, and it is presented in the �gures as Analysis followed by

the storage system in parenthesis. �e results of the analysis are

wri�en in the KVS and then are converted and copied back to

the PFS for the next phase of the simulation which is referred

as SimRead followed by the storage system in parenthesis. �is

execution �ow is similar to how NASA’s Goddard Space Flight

Center �rst conducts climate simulation on their supercomputer

facilities and then the data analysis of the observation data on a

di�erent cluster designed for data-intensive computations. We refer

to this �ow as Baseline in the following �gures. �e reported time

is a compound of the time needed by all phases and is calculated as:

Total time = SimulationWrite + CopyDataf romPFStoKVS +

DataAnalysis + CopyDataf romKVStoPFS + SimulationRead (1).

�e typical I/O workload of simulations is mostly checkpointing

and it is repeated periodically [5]. �us, we focus our evaluation

to one such checkpoint phase in which application’s data access

pa�erns are the same.

When executing the tests on top of IRIS, applications can use

new data paths to read or write data. As Figure 1 (a) shows, IRIS

can store simulation output from an MPI application directly to a

KVS, and analysis results directly to a PFS eliminating any data

transfers between KVS and PFS. �erefore, during the execution

�ow we examine, IRIS o�ers two new directions of performing the

I/O. First, the MPI simulation can directly write data to the KVS. In

the �gures, this is noted as SimWrite or SimRead followed by IRIS

in parenthesis with the underlying storage system in brackets (e.g.,

IRIS[KVS] means IRIS runs on top of KVS). �is way, the data anal-

ysis application makes native I/O calls to the KVS in order to write

the analysis results. A�er that, the simulation can read the data

directly from the KVS (i.e., fread() via IRIS). Second I/O direction

via IRIS is the case where data analysis application reads simulation

data and writes analysis results directly from/to PFS, noted as Anal-

ysis followed by IRIS in parenthesis with the underlying storage

system in brackets (e.g., IRIS[PFS] means IRIS runs on top of PFS).

Besides the elimination of data movements between storage sub-

systems, IRIS o�ers the opportunity to further optimize the entire

work�ow by overlapping the phases in Equation 1. When the HPC

and data analytic environments are separated, as in the baseline, all

phases are also separated and must execute serially one a�er the

other. With IRIS, these phases can be overlapped (e.g., data anal-

ysis can start as soon as the �rst simulation results are available).

IRIS’ overlapping mode, noted as IRIS-Overlap, can signi�cantly

reduce the total execution time and transform the work�ow from

a pure serialized process to a concurrent one. Figure 4 shows all

performance results.

CM1: CM1’s workload demonstrates a sequential write pa�ern.

In this test, every process �rst writes the checkpoint data (e.g.,

atmospheric points with a set of features), then data are combined

with observation data residing on the KVS and are analyzed with

a Kmeans clustering kernel. Finally the analysis results are fed

back to the simulation as an input for the next phase. As it can

be seen in Figure 4(a), the fastest simulation time is on top of the

PFS and the fastest analysis time is on top of the KVS. However,

the transfer of data between PFS and KVS dominates the overall

execution time. On the other hand, IRIS eliminates the need for

copying data and redirects the calls to the appropriate storage
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(a) CM1 performance with IRIS
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(b) Montage performance with IRIS
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(c) WRF performance with IRIS.

Figure 4: IRIS’ I/O performance.

system. �e performance gain is more than 7x for the IRIS-overlap.

�e scalability of our solution is characterized as linear. Note that

running Kmeans clustering on top of PFS is 1.7x slower on average

when compared to running on top of the KVS due to the small data

accesses that this kernel demonstrates.

Montage: Montage’s workload demonstrates a diverse pool of

tasks. As an image mosaic builder, it creates a mosaic with 10

astronomy images. It uses 8 analysis kernels, and is composed of a

total of 36 tasks. �e �rst phase is performed using MPI on top of

the PFS. �en, the analysis tasks are o�oaded to the data analysis

cluster. �ere are task dependencies and therefore the analysis

results are wri�en back to the PFS as input to the simulation tasks.

Figure 4(b) demonstrates the results of the evaluation. Similarly

to the previous application, the copying takes much of the overall

time for the base case. Since IRIS avoids the data transfer, it can

speed up the overall time by more than 4.5x and scales linearly.

Furthermore, IRIS-overlap outperforms the baseline by 6x. Note

that running the Montage Analysis kernels on top of PFS is 2.2x

slower on average when compared to running on top of the KVS.

WRF: WRF’s workload characteristics demonstrates two distinct

phases. As a weather forecast model, it �rst performs a simulation

using MPI. Data are (x,y,z) data points with several �elds such as

temperature, wind, humidity, etc. �e simulation output is copied

to the KVS and data are merged with other data collected from

sensor networks, and are then analyzed. �e analysis results are

copied back to the PFS for the next simulation phase. �is process is

repeated until the model converges. As it can be seen in Figure 4(c),

IRIS signi�cantly speeds up by 7x the overall execution time. Note

that running the WRF Analysis kernels on top of PFS is 50% slower

against running them on top of the KVS.

4.2.3 IRIS in Hybrid mode. One of the objectives of IRIS’

design is to present a uni�ed access to storage as mentioned in

Subsection 3.1. �roughout the above tests, we observed that a

PFS is sensitive to frequent small data accesses whereas a KVS

demonstrates stable performance. We implemented a hybrid mode

in IRIS where requests are being redirected according to their size

towards the appropriate storage subsystem. Our hypothesis is that

each storage system can grant higher I/O performance when faced

with a favorable workload. In other words, larger data accesses

can leverage the parallelism of PFS, and smaller ones can be placed

on the KVS due to the vertical data distribution. We collected and
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Figure 5: IRIS in Hybrid mode.

examined the I/O traces of LAMMPS and LANL App1 to understand

the I/O behavior of these two scienti�c applications. We found that

both of them have a repetitive data access pa�ern. For LAMMPS,

each process �rst writes a few requests in the order of KBs followed

by one large request of several MBs. For LANL App1 the pa�ern is

similar but it performs read operations instead of write. To test our

hypothesis, we run both applications on top of a PFS, a KVS, and

IRIS in hybrid mode, and measured the time needed to complete all

I/O requests. Each process performs 32MB of I/O, with 1536 MPI

ranks the total I/O is 48GB. IRIS redirects small data access to the

KVS and larger than the threshold to the PFS. For LAMMPS, the

threshold was set to 64KB and there were twice as many small data

accesses than large ones (i.e., favoring the KVS). For LANL App1,

the threshold was set to 128KB and the ratio of small to large data

accesses was roughly 1/4 (i.e., favoring the PFS). In Figure 5, it can be

seen that based on the workload with the above ratios, each storage

subsystem performs be�er than the other. IRIS in hybrid mode is

able to adapt to di�erent workloads and leverage the appropriate

storage solution. In our test, IRIS shows a 40-60% improvement

in performance since it avoids hurtful access pa�erns trying to

leverage the best of both storage systems.

5 RELATED WORK
Object Stores in HPC: Object Stores have been capturing the

HPC community’s a�ention for a while now due to the advantages

they can o�er. Scalability and lower latency for small accesses

are the most important bene�ts of using Object Stores. However,

current usage of Object Stores is very limited, mostly as a sup-

plemental component, where PFS remain as the storage backend.
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IndexFS [36] and BatchFS [53] have proposed removing the meta-

data management responsibility, which is proven to be one of the

major performance bo�lenecks from the PFS, and o�oading it to

an Object Store. Similarly, FusionFS [52] implements an analo-

gous technique in which it uses a distributed hash table to store

and query metadata information. While this approach boosts the

performance of PFS by optimizing the metadata workload, it does

not introduce Object Stores as a general storage to the scienti�c

community. Applications still use the PFS as a storage solution. On

the contrary, MarFS [3] utilizes an Object Store as the storage pool

and maintains the POSIX semantics by exposing a �le system to the

applications. In this case, the Object Store replaces the PFS as the

back-end storage solution. While there are bene�ts in doing so, PFS

and Object Store are competing instead of peacefully coexisting

and complementing each other. All the above use cases of Object

Stores in HPC do not solve what we aim to achieve: a uni�cation

of the storage subsystems and the liberation of the interfaces to

allow applications to transition from a compute-intensive phase

to a data-intensive one. Both storage systems are treated equally

inside IRIS and data can be accessed from any data interface.

Object Storage Devices inside PFS: Few distributed �le sys-

tems replaced the way they store data internally. Conventional

PFSs split a �le into smaller pieces or stripes and store them sep-

arately on local �le systems of di�erent storage nodes. �is new

category of distributed �le systems replaces the local �le system

with Object Storage Devices (OSD) to distribute the smaller pieces

of data. CephFS [47] is a new type of distributed �le system that

promotes the separation of data and metadata management. It

does so by replacing the allocation tables, which PFSs usually use,

with a pseudo-random data distribution function. With this design,

they created APIs that can support both �le operations and object

operations. However, it does not support the integration of PFS

and Object Stores. PanasasFS [31, 49] uses parallel and redundant

access to OSD, per-�le RAID, distributed metadata management,

and other internal technologies to o�er a high performance dis-

tributed �le system. Since they use OSDs, their design o�oads

some administrative tasks on the disk itself making it run faster for

speci�c workloads. Similarly, OBFS [45] utilizes OSDs internally to

create a distributed �le system. Again, it is not an integration. It is

an enhancement of PFS with some object operations. To use their

system, HPC systems need to switch the entire storage installation

to their proposed solution, and applications need to be rewri�en

to be able to use their solution. In contrast, IRIS aims to bridge

any existing �le system with any object store, and users can utilize

both subsystems without modifying their code. With IRIS even

CephFS or Panasas can be bridged with any other storage solution

by adding the appropriate storage module.

MapReduce on top of PFS:�ere has been some work about

bringing MapReduce to the HPC community. In [40], the authors

created a layer on top of PVFS2 to support MapReduce workloads.

Its limitations involve limited scalability and while it allows MapRe-

duce applications to access data in PFS, it does not enable the other

direction of an MPI application accessing data on an Object Store. It

is also speci�c to PVFS2. In [32] the authors demonstrated the poten-

tial of BlobSeer in substituting HDFS to enable e�cient MapReduce

applications. BlobSeer adopts versioning instead of locking pro-

tocols to handle the concurrency issue. Both of the above works

assume the existence of one type of �le system to support both

HPC and MapReduce applications. IRIS is developed to hide the

complexity of underlying storage systems, and does not require

the modi�cation of existing �le systems. Alluxio [25] (formerly

known as Tachyon), is a distributed system enabling reliable data

sharing at memory speed across cluster computing frameworks. It

supports various existing frameworks, such as Spark, MapReduce,

and Flink. Alluxio, in a way, is the closest system to our proposal in

terms of its goals and objectives to integrate multiple programming

environments with several storage pools. However, it relies heavily

on main memory which is a valuable resource especially in HPC

systems. Additionally, its �le support (i.e., MPI-IO, HDF5, pNetCDF

etc.) is basic to simple POSIX calls without any of the optimizations

IRIS has.

6 CONCLUSIONS AND FUTUREWORK
Parallel �le systems have been the defacto storage solution in the

HPC community. On the other hand Object Stores have emerged

in recent years to serve the increasingly important data-intensive

computation paradigm. In this paper we designed and implemented

a novel I/O system, named IRIS, which can redirect I/O requests to

an integrated storage layer. By abstracting the lower level storage

system details, we managed to enable new data paths agnostic to

the underlying storage system and o�er a truly uni�ed data ac-

cess layer. �e new potential is valuable to application developers

who are now free to use any storage interface interchangeably.

Experimental evaluations show that, in addition to providing pro-

gramming convenience and e�ciency, IRIS can grant more than

7x higher performance for certain work�ows. IRIS aims to bridge

the best storage solutions of both worlds (i.e., PFS from HPC and

Object Stores from Cloud) and bring us closer to the convergence

of the HPC and Cloud ecosystems.

As a future step, we plan to incorporate a prediction model we al-

ready have built into IRIS. �is model takes as an input an I/O trace

�le (i.e., a log that describes the I/O behavior of the application),

the system con�guration along with the application arguments

(total number of processes, size of input data), and predicts which

storage system between PFS and Object Store will lead to be�er

performance. Second, if the user provides a work�ow description

in a form of a directed acyclic graph (DAG), then IRIS will be able

to adjust to the work�ow and utilize the available resources accord-

ingly. We also plan to test IRIS on a burst bu�er deployment. We

believe there is plenty of work le� towards a truly agnostic, uni�ed

data access model for the exa-scale era to come.
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