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ABSTRACT 1 INTRODUCTION

Kernel Ridge Regression (KRR) is a fundamental method in machine
learning. Given an n-by-d data matrix as input, a traditional imple-
mentation requires ©(n?) memory to form an n-by-n kernel matrix
and ©(n®) flops to compute the final model. These time and storage
costs prohibit KRR from scaling up to large datasets. For example,
even on a relatively small dataset (a 520k-by-90 input requiring
357 MB), KRR requires 2 TB memory just to store the kernel matrix.
The reason is that n usually is much larger than d for real-world
applications. On the other hand, weak scaling becomes a problem:
if we keep d and n/p fixed as p grows (p is # machines), the mem-
ory needed grows as ©(p) per processor and the flops as ©(p?) per
processor. In the perfect weak scaling situation, both the memory
needed and the flops grow as ©(1) per processor (i.e. memory and
flops are constant). The traditional Distributed KRR implementa-
tion (DKRR) only achieved 0.32% weak scaling efficiency from 96
to 1536 processors.

We propose two new methods to address these problems: the
Balanced KRR (BKRR) and K-means KRR (KKRR). These methods
consider alternative ways to partition the input dataset into p dif-
ferent parts, generating p different models, and then selecting
the best model among them. Compared to a conventional imple-
mentation, KKRR2 (optimized version of KKRR) improves the weak
scaling efficiency from 0.32% to 38% and achieves a 591X speedup
for getting the same accuracy by using the same data and the same
hardware (1536 processors). BKRR2 (optimized version of BKRR)
achieves a higher accuracy than the current fastest method using
less training time for a variety of datasets. For the applications
requiring only approximate solutions, BKRR2 improves the weak
scaling efficiency to 92% and achieves 3505% speedup (theoretical
speedup: 4096x).
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Learning non-linear relationships between predictor variables and
responses is a fundamental problem in machine learning [2], [3].
One state-of-the-art method is Kernel Ridge Regression (KRR) [23],
which we target in this paper. It combines ridge regression, a method
to address ill-posedness and overfitting in the standard regression
setting via L2 regularization, with kernel techniques, which adds
flexible support for capturing non-linearity.

Computationally, the input of KRR is an n-by-d data matrix with
n training samples and d features, where typically n > d. At train-
ing time, KRR needs to solve a large linear system (K + Anl)a =y
where K is an n-by-n matrix, a and y are n-by-1 vectors, and A
is a scalar. Forming and solving this linear system is the major
bottleneck of KRR. For example, even on a relatively small dataset—
357 megabytes (MB) for a 520,000-by-90 [3]—KRR needs to form
a 2 terabyte dense kernel matrix. A standard distributed parallel
dense linear solver on a p-processor system will require ©(n>/p)
arithmetic operations per processor; we refer to this approach here-
after as Distributed KRR (DKRR). In machine learning, where weak
scaling is of primary interest, DKRR fares poorly: keeping n/p fixed,
the total storage grows as ©(p) per processor and the total flops
as ©(p?) per processor. In the perfect weak scaling situation, both
the memory needed and the flops grow as ©(1) per processor (i.e.
memory and flops are constant). In one experiment, the weak scal-
ability of DKRR dropping from 100% to 0.32% as p increased from
96 to 1536 processors.

Divide-and-Conquer KRR (DC-KRR) [23], addresses the scaling
problems of DKRR. Its main idea is to randomly shuffle the rows of
the n-by-d data matrix and then partition it to p different n/p-by-d
matrices, one per machine, leading to an n/p-by-n/p kernel matrix
on each machine; it builds local KRR models that are then reduced
globally to obtain the final model. DC-KRR reduced the memory
and computational requirement. However, it can’t be used in prac-
tice because it sacrifices accuracy. For example, on the Million Song
Dataset (a recommendation system application) with 2k test sam-
ples, the mean squared error (MSE) decreased only from 88.9 to
81.0 as the number of training samples increased from 8k to 128k.
We double the number of processors as we double the number of
samples. This is a bad weak scaling problem in terms of accuracy.
By contrast, the MSE of DKRR decreased from 91 to 0.002, which is
substantially better.

The idea of DC-KRR is to partition the dataset into p similar
parts and generate p similar models, and then average these p
models to get the final solution. We seek other ways to partition the
problem that scale as well as DC-KRR while improving its accuracy.
Our idea is to partition the input dataset into p different parts and
generate p different models, from which we then select the best
model among them. Further addressing particular communication
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Figure 1: Optimization flow of our algorithm. DKRR is the
baseline. DC-KRR is the existing method. All the others are
the new approaches proposed in this paper.
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Figure 2: Trade-off between accuracy and speed for large-
scale weak scaling study. BKRR3 and KKRR3 are the un-
realistic approaches. BKRR2 is optimal for scaling and has
good accuracy. KKRR2 is optimal for accuracy and has good
speed.

overheads, we obtain two new methods, which we call Balanced
KRR (BKRR) and K-means KRR (KKRR). Figure 1 is the summary
of our optimization flow. We proposed a series of approaches with
details explained later (KKRR3 is an impractical algorithm used
later to bound the attainable accuracy). Figure 2 shows the funda-
mental trade-off between accuracy and scaling for these approaches.
Among them, we recommend BKRR2 (optimized version of BKRR)
and KKRR2 (optimized version of KKRR) to use in practice. BKRR2
is optimized for scaling and has good accuracy. KKRR2 is optimized
for accuracy and has good speed.

When we increase the number of samples from 8k to 128k,
KKRR2 (optimized version of KKRR) reduces the MSE from 95
to 107, which addresses the poor accuracy of DC-KRR. In addition,
KKRR?2 is faster than DC-KRR for a variety of datasets. Our KKRR2
method improves weak scaling efficiency over DKRR from 0.32% to
38% and achieves a 591 speedup over DKRR on the same data at
the same accuracy and the hardware (1536 processors). For the ap-
plications requiring only approximate solutions, BKRR2 improves
the weak scaling efficiency to 92% and achieves 3505X speedup
with only a slight loss in accuracy.

2 BACKGROUND

2.1 Linear Regression and Ridge Regression

In machine learning, linear regression is a widely-used method for
modeling the relationship between a scalar dependent variable y
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Table 1: Standard Kernel Functions

Linear D(x4, xj):xiij
Polynomial D(x;, x5) = (ax;ij' + r)d
Gaussian D(x;, x5) = exp(—||x; — x| 12/(20%))
Sigmoid O(x;, x;) = tanh(ax; " x; + 1)

(regressand) and multiple explanatory variables (independent vari-
ables) denoted by x, where x is a d-dimensional vector. The training
data of a linear regression problem consists of n data points, where
each data point (or training sample) is a pair (x;,y;) and 1 < i < n.
Linear regression has two phases: training and prediction. The
training phase builds a model from an input set of training samples,
while the prediction phase uses the model to predict the unknown
regressands ¢ of a new data point X. The training phase is the
main limiter to scaling, both with respect to increasing the training
set size n and number of processors p. In contrast, prediction is
embarrassingly parallel and cheap per data point.

Training Process. Given n training data points {(x;, i)},

where each x; = (xil, ...,x{, ...,x;i) and y; is a scalar, we want to
build a model relating a given sample (x;) to its measured regres-
sand (y;). For convenience, we define X as an n-by-d matrix with
Xij = x{ andy = (y1,- -
goal of regression is to find a w such that y; ~ w? - x;. This can
be formulated as a least squares problem in Equation (1). To solve
some ill-posed problems or prevent overfitting, L2 regularization
[13] is used, as formulated in Equation (2), which is called Ridge
Regression. A is a positive parameter that controls w: the larger is
A, the smaller is ||w]|2.

,Yn) be an n-dimensional vector. The

argmin,, ||Xw—y||§ (1)

argmin,, {|Xw -yl + Alwl} @

Prediction Process. Given a new sample x, we can use the w
computed in the training process to predict the regressand of x by
7 = w! - £ If we have k test samples {fci}f:l and their true regres-
sands {yi}j.;l, the accuracy of the estimated regressand {7 }|; can
be evaluated by MSE (Mean Squared Error) defined in Equation (3).

MSE =23 (i - ) )

2.2 Kernel Method

For many real problems, the underlying model cannot be described
by a linear function, so linear ridge regression suffers from poor
prediction error. In those cases, a common approach is to map
samples to a high dimensional space using a nonlinear mapping,
and then learn the model in the high dimensional space. Kernel
method [8] is a widely used approach to conduct this learning
procedure implicitly by defining the kernel function—the similarity
of samples in the high dimensional space. The commonly used
kernel functions are shown in Table 1, and we use the most widely
used Gaussian kernel in this paper.
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2.3 Kernel Ridge Regression (KRR)

Combining the Kernel method with Ridge Regression yields Kernel
Ridge Regression, which is presented in Equations (4) and (5). The
| - llzr in Equation (4) is a Hilbert space norm [23]. Given the n-by-n
kernel matrix K, this problem reduces to a linear system defined
in Equation (6). K is the kernel matrix constructed from training
data by K; j = ®(xj,x;j), y is the input n-by-1 regressand vector
corresponding to X, and « is the n-by-1 unknown solution vector.

1 n
argmin 3" 1Ify = yilld + Alf @

fi= ) . xi) 6)
In the Training phase, the algorithm’s goal is to get « by (approx-
imately) solving the linear system in (6). In the Prediction phase, the
algorithm uses « to predict the regressand of any unknown sample
X using Equation (7). KRR is specified in Algorithm 1. The algorithm
searches for the best o and A from parameter sets. Thus, in practice,
Algorithm 1 is only a single iteration of KRR because people do
not know the best parameters before using the dataset. [A| X |Z| is
the number of iterations where A and X are the parameter sets of
A and o (Gaussian Kernel) respectively. Thus, the computational
cost of KRR method is ©(|A||Z|n®). In a typical case, if |A| = 50
and |Z| = 50, then the algorithm needs to finish thousands of itera-
tions. People also use cross-validation technique to select the best
parameters, which needs much more time.

(K+AnDa =y (6)

g= . adxi,3) )

Algorithm 1: Kernel Ridge Regression (KRR)
Input:

n labeled data points (x;, y;) for training;
another k labeled data points (X}, §j;) for testing;
both x; and x; are d-dimensional vectors;
ie{,2...,n}je{1,2, ....k};
tuned parameters A and o
Output:
Mean Squared Error (M SE) of prediction
1 Create a n-by-n kernel matrix K
2 foriel:ndo
forjel:ndo
L | K[illj] < ®(x;, x;) based on Table 1

oW

5 Solve linear equation (K + Anl)a = y for a
6 forjel:kdo

7 L §j — X aiK(xq, X5)

8 MSE « %zj?:l(gj - ;)

2.4 K-means clustering

Here we review K-means clustering algorithm, which will be used in
our algorithm. The objective of K-means clustering is to partition a
dataset TD into k € Z* subsets (TDy, TDj, ..., TDy.), using a notion
of proximity based on Euclidean distance [7]. The value of k is
chosen by the user. Each subset has a center (CTy,CTy, ...,CTy),
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each of which is a d-dimensional vector. A sample x belongs to TD;
if CT; is its closest center. K-means is shown in Algorithm 2.

Algorithm 2: Plain K-means Clustering

[

Input the training samples x;, i € {1, 2, ..., n}

)

Initialize data centers CTj, CTy, ..., CT randomly
35«0

Foreveryi=1,---,n

'

5 —cl argmin;||x; — CT;|
6 —If ¢* has been changed, § « § +1
7 End For
8 Foreveryj=1,---,k
n o 1{c'=j}x;
9 — CTj 4221-";,1:1{1{01'2}'
10 End For
If §/n > threshold, then go to Step 3

-
oy

3 EXISTING METHODS

3.1 Distributed KRR (DKRR)

The bottleneck of KRR is solving the n-by-n linear system (6), which
is generated by a much smaller n-by-d input matrix with n > d.
As stated before, this makes weak-scaling problematic, because
memory-per-machine grows like ©(p), and flops-per-processor
grows like ©(p?). In the perfect weak scaling situation, both the
memory needed and the flops grow as ©(1) per processor (i.e. mem-
ory and flops are constant). Our experiments show the weak scaling
efficiency of DKRR decreases from 100% to 0.3% as we increase the
number of processors from 96 to 1536. Since the n-by-n matrix K
cannot be created on a single node, we create it in a distributed way
on a y/p-by-+/p machine grid (Fig. 3). We first divide the sample ma-

trix into /p equal parts by rows. To generate ’% of the kernel matrix,

each machine will need two of these +/p parts of the sample matrix.
For example, in Fig. 3, to generate the K(1,2) block, machine 6
needs the second and the third parts of the blocked sample matrix.
Thus, we reduce the storage and computation for kernel creation
from ©(n?) to ©(n?/p) per machine. Then we use distributed linear
solver in ScaLAPACK [5] to solve for a.

3.2 Divide-and-Conquer KRR (DC-KRR)

DC-KRR [23] showed that using divide-and-conquer can reduce
the memory and computational requirement. We first shuffle the
original data matrix M = [X,y] by rows. Then we distribute M
to all the nodes evenly by rows (lines 1-5 of Algorithm 3). On
each node, we construct a much smaller matrix (©(n?/p?)) than
the original kernel matrix (©(n?)) (lines 6-11 of Algorithm 3). After
getting the local kernel matrix K, we use it to solve a linear equation
(K + AnI)a = y on each node where y is the input labels and « is
the solution. After getting e, the training step is complete. Then we
use the local & to make predictions for each unknown data point
and do a global average (reduction) to output the final predicted
label (lines 13-15 of Algorithm 3). If we get a set of better hyper-
parameters, we record them by overwriting the old versions (lines
16-19 of Algorithm 3).
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Figure 3: Implementation of Distributed KRR. We divide the
input sample matrix into /p parts by rows, and each ma-
chine gets two of these /p parts. Then each machine gen-
erates 1/p part of the kernel matrix.

Algorithm 3: Divide-and-Conquer KRR (DC-KRR)
Input:
n labeled data points (x;, y;) for training;
k labeled data points (X;, ;) for testing;
x; and X; are d-dimensional vectors;
ie{lL,2 ... nhje{l2 ..k}
MSE « « (Initial Mean Squared Error);
Output:
Mean Squared Error (MSE) of prediction;
best parameters /i, J;
1 if rank = 0 then
2 Store data points (x;, y;) i € {1, ..., n} as [X, y]
3 M = [X, y] is a n-by-(d + 1) matrix
4 Shuffle M by rows
5 Scatter M to all the nodes evenly by rows

6 Create a m-by-m kernel matrix K, m = n/p
fori €1: mdo
7| xiyi = Mi][1:d+1]
8 for A € Aando € X do
9 foricl:mdo
10 forjel:mdo
L |_ K[i][j] = ®(x;, x;) based on Table 1

12 Solve linear equation (K + AmI)a = y for
13 forje1l:kdo
1 |_ 7; = 272 aiK(x;, %5)

15 Global reduce: §j = 3 §/p
16 if rank = 0 then

17 MSE = + 3K - 9;)?
18 if MSE < MSE then
19 L]WS\E%MSE,A%/LEFO'

4 ACCURATE, FAST, AND SCALABLE KRR

4.1 Kmeans KRR (KKRR)

DC-KRR performs better than state-of-the-art methods [23]. How-
ever, based on our observation, DC-KRR still needs to be improved.
DC-KRR has a poor weak scaling in terms of accuracy, which is the
bottleneck for distributed machine learning workloads. We observe
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Figure 4: Implementation of Kmeans KRR (KKRR). Both k-
means and sort can be parallelized. We use the standard MPI
implementation for scatter operation.

that the poor accuracy of DC-KRR is mainly due to the random
partitioning of training samples. Thus, our objective is to design a
better partitioning method to achieve a higher accuracy and main-
tain a high scaling efficiency. Our algorithm is accurate, fast, and
scalable on distributed systems.

The analysis in this section is based on the Gaussian kernel be-
cause it is the most widely used case [23]. Other kernels can work in
the same way with different distance metrics. For any two training
samples, their kernel value (exp{—||x; — xj||2/(20'2)}) is close to
zero when their Euclidean distance (||x; — x; ||2) is large. Therefore,
for a given sample %, only the training points close to X in Euclidean
distance can have an effect on the result (Equation (7)) of the pre-
diction process. Based on this idea, we partition the training dataset
into p subsets (TD1,TDy, ..., TDp). We use K-means to partition
the dataset since K-means maximizes Euclidean distance between
any two clusters. The samples with short Euclidean distance will
be clustered into one group. After K-means, each subset will have
its data center (CTy,CTo, ..., CTp). Then we launch p independent
KRRs (KRR1, KRRy, ..., KRR)) to process these p subsets.

Given a test sample X, instead of only using one model to predict
x, we make all the nodes have a copy of x. This additional cost is
trivial for two reasons: (1) the test dataset is much smaller than
the training dataset, and the training dataset is much smaller than
the kernel matrix, which is the major memory overhead. (2) This
broadcast is finished at initial step and there is no need to do it at
every iteration. Each node i makes a prediction gj; for X by using its
local model. Then we get the final prediction § by a global reduction
(average) over all nodes (§j = Zle 7i/p). Figure 4 is the framework
of KKRR. KKRR is highly parallel because all the subproblems are
independent of each other. However, the performance of KKRR is
not good as we expect. From Figure 5.1, we observe that DC-KRR
achieves better accuracy than KKRR. In addition, KKRR is slower
than DC-KRR. In the following sections, we will make the algorithm
more accurate and scalable, which is better than DC-KRR.
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Figure 5: Comparison between DC-KRR and KKRR family,
using same parameter set on 96 NERSC Edison processors.
The test data set MSD is described in Section 5.1. KKRR2 is
an accurate but slow algorithm. KKRR3 is an optimal but
unrealistic method for comparison purposes.

4.2 KKRR2

The low accuracy of KKRR is mainly due to its conquer step. For
DC-KRR, because the divide step is a random and even partition,
the sub-datasets and local models are similar to each other, and
thus averaging works pretty well. For KKRR, the clustering method
divides the original dataset into different sub-datasets which are
far away from each other in Euclidean distance. The local models
generated by sub-datasets are also totally different from each other.
Thus, using their average will get worse accuracy because some
models are unrelated to the test sample x. For example, if the data
center of i-th partition (CT;) is far away from % in Euclidean distance,
the i-th model should not be used to make prediction for x. Since we
divide the original dataset based on Euclidean distance, the similar
procedure should be used in the prediction phase. Thus, we design
the following algorithm.

After the training process, each sub-KRR will generate its own
model file (MF;, MFs, ..., MFp). We can use these models indepen-
dently for prediction. For a given unknown sample %, if its closest

ICS’18, June 12-15, 2018, Beijing, China

data center (in Euclidean distance) is CT;, we only use MF; to make
a prediction for x. We call this version KKRR2. From Figures 5.1 and
5.2 we observe that KKRR2 is more accurate than DCKRR. However,
KKRR? is slower than DCKRR. For example, to get the same accu-
racy (MSE=88), KKRR2 is 2.2x (436s vs 195s) slower than DCKRR.
Thus we need to focus on speed and scalability.

4.3 Balanced KRR (BKRR)

Based on the profiling results in Figure 6, we observe that the major
source of KKRR’s poor efficiency is load imbalance. The reason is
that the partitioning by K-means is irregular and imbalanced. For
example, processor 2 in Figure 6 has to handle n = 35,137 samples
while processor 3 only needs to process n = 7,349 samples. Since
the memory requirement grows like ©(n?) and the number of flops
grows like ©(n®), processor 3 runs 51x faster than processor 1
(Figure 6). On the other hand, partitioning by K-means is data-
dependent and the sizes of clusters cannot be controlled. This makes
it unreliable to be used in practice, and thus we need to replace K-
means with a load-balanced partitioning algorithm. To this end, we
design a K-balance clustering algorithm and use it to build Balanced
Kernel Ridge Regression (BKRR).

Algorithm 4: K-balance Clustering

Input:
CT/i] is the center of i-¢h cluster;
CS[i] is the size of i-th cluster;
SA[i] is the i-th sample;
n is the number of samples;
P is the number of clusters (#machines);
Output:
M BIi] is the closest center to i-th sample;
CTTi] is the center of i-¢h cluster;
1 Run K-means to get CT[1], CT[2], ..., CT[p]
2 balanced =n/p
3 fori €e1:ndo

4 mindis = inf

5 minind =0

6 forje1l:pdo

7 dist = EuclidDistance(SA[i], CT[j])

8 if dist < mindis and CS[j] < balanced then
9 mindis = dist

10 L minind = j

11 CS[minind]++
1z | MBJi] = minind

13 foriel:pdo

14 |_ CT[i]=0

15 fori €1:ndo

16 j = MBJi]

17 CTJj] += SA[i]

18 foriel:pdo
1 | CT[i]=CT[i]/CS[i]

In our design, a machine corresponds to a clustering center. If
we have p machines, then we partition the training dataset into p
parts. As mentioned above, the objective of K-balance partitioning
algorithm is to make the number of samples on each node close



ICS’18, June 12-15, 2018, Beijing, China

Load Balance vs Imbalance
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Figure 6: This experiment is conducted on NERSC Cori Su-
percomputer [19]. We use 8 nodes for load balance test. The
test dataset is MSD dataset and we use 16000 samples. We
observe that BKRR has roughly 2000 samples on each node,
which leads to a perfect load balance. For KKRR, because dif-
ferent nodes have different number of samples, the fastest
node is 51x faster than the slowest node, which leads to a
huge resource waste.

to n/p. If a data center has n/p samples, then we say it is balanced.
The basic idea of this algorithm is to find the closest center for each
sample, and if a given data center has been balanced, no additional
sample will be added to this center. The detailed K-balance cluster-
ing method is in Algorithm 4. Line 1 of Algorithm 4 is an important
step because K-balance needs to first run K-means algorithm to get
the data centers. This makes K-balance have a similar clustering
pattern as K-means. Lines 3-12 find the center for each sample.
Lines 6-10 find the best under-load center for the i-th sample. Lines
15-19 recompute the data center by averaging all the samples in a
certain center. Recomputing the centers by averaging is optional
because it will not necessarily make the results better. From Figure 6
we observe that K-balance partitions the dataset in a balanced way.
After K-balance clustering, all the nodes have the same number of
samples, so in the training phase all the nodes roughly have the
same training time and memory requirement.

After replacing K-means with K-balance, KKRR becomes BKRR,
and KKRR2 becomes BKRR2. Algorithm 5 is a framework of BKRR2.
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Algorithm 5: Balanced KRR2 (BKRR2)
Input:
n labeled data points (x;, y;) for training;
k labeled data points (%}, 7j;) for testing;
both x; and X; are d dimensional vectors;
ief{l,2,...n}je{1,2 ....k};
MSE « (Initial Mean Squared Error);
Output:
Mean Squared Error (m) of prediction
best parameters /i, o
1 t « rank of a machine, t € {1, ..., p}
2 Do K-balance clustering (Algorithm 4)
3 M =[X, ylisa(n/p)-by-(d + 1) matrix
4 Store data points (x;, y;) i € {1, ..., n/p} as [X, y]

5 Create a m-by-m kernel matrix K, m = n/p
foriel:mdo
6 xi, yi = M[i][1:d+1]
7 Machine #: (x}, y!) = (xi, yi), £ € {1, ..., p}
8 for A e Aando € £ do
9 foriel:mdo
10 forje1l:mdo
\\ |_ K[i][j] = ©(x;, x;) based on Table 1

11

12 Solve linear equation (K + AmI)a = y for a
13 fort €1:pdo

14 I_ erry «— 0

15 forjel:kdo

16 if t = MyCluster(x;) then

17 g — X7 alK(x!, %5)

18 L errt<—errt+\|gj—yj||2

19 Reduce: MSE = (Zleerrz)/k
20 if ¢ = 0 then

21 if MSE < MSE then
22 | MSE—MSE. 1< AG o

As we mentioned in the sections of Abstract and Introduction,
KKRR? is the optimized version of KKRR and BKRR? is the op-
timized version of BKRR. Lines 1-7 perform the partition. Lines
9-22 perform one iteration of the training. Lines 9-11 construct
the kernel matrix. Line 12 solves the linear equation on each ma-
chine. Lines 13-18 perform the prediction. Only the best model
does the prediction for a certain test sample. Lines 19-22 evaluate
the accuracy of the system. There is no communication cost of
BKRR2 during training except for the initial data partition and the
final model selection. The additional cost of BKRR2 comes from
two parts: (1) the K-balance algorithm and partition, and (2) the
prediction.

The overhead of K-balance is tiny compared with the training
part. K-balance first does K-means. The cost of K-means is ©(In)
where I is the number of K-means iterations, which is usually less
100. The cost of lines 3-12 in Algorithm 4 is ©(pn) where p is the
number of partitions and also the number of machines. ©(In+pn) is
tiny compared with the training part, which is ©(|2||A|n3/p®). For
example, if we use BKRR2 to process the 32k MSD training samples
on 96 NERSC Edison processors, the single-iteration training time
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Figure 7: Difference between BKRR2 and DCKRR. BKRR2:
partition the dataset into p different parts, generate p differ-
ent models, and select the best model. DCKRR: partition the
dataset into p similar parts, generate p similar models, and
use the average of all the models.

is 20 times larger than the K-balance and partition time. Since
the computational overhead of K-balance is low compared to KRR
training (n = ©(p*) in practice), we can just use one node to finish
the K-balance algorithm. Although it is not necessary, we have an
approximate parallel algorithm for K-balance. We conduct parallel
K-means clustering and distribute the centers to all the nodes. Then
we partition the samples to all the processors and set balanced
as n/p?. Since n = O(p*) in practice, this parallel implementation
roughly gets the same results with the single-node implementation.
The overhead of this approximate parallel algorithm is ©(In/p + n).

For the prediction part, instead of conducting k small communica-
tions, we make each machine first compute its own error (line 18 of
Algorithm 5) and then only conduct one global communication (line
19 of Algorithm 5). The reason is detailed below. The runtime on a
distributed system can be estimated by the sum of the time for com-
putation and the time for communication: f Xy +ngm, X (a +np X f),
where f is the number of floating point operations, y is the time per
floating point operation, « is latency, 1/ is the bandwidth, n, is
the number of messages, and ny, is the number of bytes per message.
In practice, & > > y (e.g. & = 7.2 X 107%s, B = 0.9 x 10~ for
Intel NetEffect NE020, y = 2 X 10115 for Intel 5300-series Clover-
town). Therefore, one big message is much cheaper than k small
messages because k X (@ + np X f) > (a + k X np x ). This opti-
mization reduces the latency overhead. Figures 8 and 9 show that
BKRR2 achieves lower error rate than DC-KRR in a shorter time for
a variety of datasets. Figure 7 shows the difference between BKRR2
and DC-KRR.

4.4 BKRR3 and KKRR3: Error Lower Bound
and The Unrealistic Approach

The KKRR and BKRR families share the same idea of partitioning
the data into p parts and making p different models, but they are
different in that the KKRR family is optimized for accuracy while
the BKRR family is optimized for performance. We want to know
the gap between our method and the best theoretical method. Let us
refer to the theoretical KKRR method as KKRR3 and the theoretical
BKRR method as BKRR3.
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BKRR3 is similar to BKRR2 in terms of communication and com-
putation pattern. Like BKRR and BKRRZ, after the training process,
each sub-BKRR will generate its own model file (MF, MFa, ..., MFp).
We can use these model files independently for prediction. For a
given test sample x (7 is its true regressand), we make all the nodes
have a copy of % (like KKRR). Each model will make a prediction
for x. We get 41, 2, ..., §jp from p models respectively. We select
MF; for prediction where i = argminj||§j — §||?. This means we
inspect the true regressand to make sure we select the best model
for each test sample. When changing K-balance to K-means, BKRR3
becomes KKRR3, which is much more accurate than DCKRR (Fig-
ures 5.1 and 5.2). The MSE of BKRR3 is the lower bound of the MSE
of BKRR2 because BKRR3 can always use the best model for each
test sample. In fact, BKRR3 is even much more accurate than the
original method (DKRR) for all the testings in our experiments. The
framework of BKRR3 is in Algorithm 6. Figures 8 and 9 show the
results. BKRR3 is always the best approach in these comparisons.
BKRR3 achieves much higher accuracy than DCKRR and BKRR2.

Algorithm 6: BKRR3
Input:

n labeled data points (x;, y;) for training;
another k labeled data points (X}, §;) for testing;
both x; and X; are d dimensional vectors;
ief{l,2,...n}je{1,2 ....k};

t is the rank of a machine, ¢t € {1, ..., p};

Output:

Mean Squared Error (MSE) of prediction
best parameters /i, &

1 Do K-balance clustering

2 M =[X, y]isa(n/p)-by-(d + 1) matrix

3 Store data points (x;, y;) i € {1, ..., n/p} as [X, y]

4 Create a m-by-m kernel matrix K, m = n/p

foriel:mdo

5 xi, Yi = M[i][1:d+1]

6 | Machine #: (x}, yf) = (xi, ya), t € {L, ..., p}

7 for A € Aando € X do

8 fori€e1: mdo

9 forj €1:mdo

10 |_ K[i][j] = ®(x;, x;) based on Table 1
11 Solve linear equation (K + AmI)a = y for
12 forjel:kdo

13 Machine ¢: g]f =37 alK(x], X5)

14 Global reduce: id = argmintllg; - gj||2
15 Send/Receive: §j; = g]lid

16 if rank = 0 then

Y MSE = £ 35, (57 - 9;)°

18 if MSE < MSE then

19 | MSE—MSE, 1< AG«o
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Figure 8: These figures do a point-do-point comparison be-
tween DC-KRR and BKRR family using test data set MSD
(described in Section 5.1). They use the same parameter set
and conduct the same number of iterations on 96 NERSC
Edison processors. DCKRR is more accurate than BKRR.
BKRR?2 is faster than DCKRR for getting the same accu-
racy. BKRR3 is an optimal but unrealistic implementation
for comparison purposes.

5 IMPLEMENTATION AND ANALYSIS
5.1 Real-World Dataset

To give a fair comparison with DC-KRR, we use the Million Song
Dataset (MSD) [3] as our major dataset in our experiments because
MSD was used in the paper of DC-KRR. It is a freely-available col-
lection of audio features and metadata for a million contemporary
popular music tracks. The dataset contains n = 515,345 samples.
Each sample is a song (track) released between 1922 and 2011, and
the song is represented as a vector of timbre information computed
from the song. Each sample consists of a pair of (x;, y;) where x; isa
d-dimensional (d = 90) vector and y; € [1922,2011] is the year that
the song was released. The Million Song Dataset Challenge aims at
being the best possible offline evaluation of a music recommenda-
tion system. It is a large-scale, personalized music recommendation
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challenge, where the goal is to predict the songs that a user will
listen to, given both the user’s listening history and full information
(including meta-data and content analysis) for all songs. To justify
the efficiency of our approach, we use another three real-world
datasets. The information of these four datasets are summarized in
Table 2. All these datasets were downloaded from [9].

Table 2: The test datasets

name MSD cadata MG space-ga
# Train 463,715 18,432 1,024 2,560
# Test 51,630 2,208 361 547
Dimension 90 8 6 6

Application  Music ~ Housing Dynamics  Politics

Table 3: Weak Scaling in time. We use 96 processors and 8000
MSD samples as the baseline. Constant time means perfect
scaling. BKRR2 has very good scaling efficiency. DKRR’s
scaling efficiency is poor.

Method  Processors 96 192 384 768 1536
BKRR2 IterTime (s) 1.06  1.06 1.06 1.08 1.15
KKRR2 IterTime (s) 2.60 3.66 4.05 4.23 6.85
DKRR IterTime (s) 13 75.1 234 1273 4048
BKRR2 Efficiency 1.0 1.0 1.0 0.99 0.92
KKRR2 Efficiency 1.0 0.71  0.64 0.62 0.38
DKRR Efficiency 1.0 0.17  0.06 0.01 0.003

Table 4: Weak Scaling in Accuracy on MSD Dataset. Lower is
better. DCKRR is a bad algorithm.

Samples DCKRR BKRR2 DKRR KKRR2 BKRR3

8k 88.9 93.1 90.9 95.0 40.2
32k 85.5 87.7 85.0 87.5 6.6
128k 81.0 14.7 0.002 1077 1077

5.2 Fair Comparison

Let us use p as the number of partitions or nodes, p as the number
of processors. Each node has 24 processors. When we use p=1536
processors, we actually divide the dataset into p=64 parts. Each
machine generates a local model for BKRR2. To give a fair com-
parison, we make sure all the comparisons were tuned based on
the same parameter set. Different methods may select different
best-parameters from the same parameter set to achieve its lowest
MSE. From Figures 8, 9 and 11, we clearly observe BKRR2 is faster
than DC-KRR and also achieves lower prediction error on all the
datasets. In other words, BKRR2 and DC-KRR may use different pa-
rameters to achieve their lowest MSEs. The lowest MSE of BKRR2 is
lower than the lowest MSE of DC-KRR. On the other hand, BKRR2
is slightly faster than both DC-KRR and BKRR3 (for both single
iteration time and overall time). The reason is that each machine
only needs to process 1/p of the test samples for prediction. For
DC-KRR and BKRR3, each machine needs to process all the test
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Figure 9: These figures do a point-to-point comparison between BKRR2, BKRR3 and DC-KRR. They use the same parameter
set and conduct the same number of iterations on 96 NERSC Edison processors. BKRR2 is faster than DCKRR for getting the
same accuracy. BKRR3 is an optimal but unrealistic implementation for comparison purposes.
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Figure 10: BKRR2 results based on MSD dataset. Using in-
creasing number of samples on a fixed number of proces-
sors, we can get a better model but also observe the time in-
crease in the speed of O(n3).

samples for prediction. BKRR2 achieves 1.2x speedup over DC-KRR
on average and has a much lower error rate for 128k-sample MSD
dataset (14.7 vs 81.0).

Because of DKRR’s poor weak scaling, BKRR2 runs much faster
than DKRR for 1536 processors and 128k training samples. The
single iteration time of BKRR2, t3, is 1.15 sec while the single iter-
ation time of DKRR, t, is 4048 sec. Here, single iteration means
picking a pair of parameters and solving the linear equation once
(e.g. lines 9-22 of Algorithm 5 are one iteration). The algorithm can
get a better pair of parameters after each iteration. All the algo-
rithms in this paper run the same number of iterations because
they use the same parameter tuning space. However, it is unfair to
say BKRR2 achieves 3505% speedup over DKRR because, for the
same 2k test dataset, the lowest MSE of BKRR2 is 14.7 while that of
DKRR is 0.002. This means the BKRR2 model with 128K samples
model (bmj2sg) is worse than DKRR model (dm2g) for accuracy. To
give a fair comparison, we increase the training samples of BKRR2
to 256k so that its lowest MSE can generate a better model (bmgse).
By using bmgse, the lowest MSE of BKRR2 is 0.53 (Figure 10). We
run it on the same 1536 processors and observe t;, becomes 5.6
sec. In this way, we can say that BKRR2 achieves 723X speedup

over DKRR for achieving roughly the same accuracy by using the
same hardware and the same test dataset. It is worth noting that
the biggest dataset that DKRR can handle on 1536 processors is
128k samples, otherwise it will collapse. Therefore, dmjag is the
best model DKRR can get on 1536 processors. However, BKRR2
can use a bigger dataset to get a better model than bmgse on 1536
processors (e.g. 512k model in Figure 10).

The theoretical speedup of bmizg over dmjgg is the ratio of
O(n3/p) and ©((n/p)®), which is 4096x for p = 64 and p = 1536.
We achieve 3505% speedup. The theoretical speedup of bmase over
dmy2s is the ratio of ©(n/p) and @((2n/p)?), which is 512x for p =
64 and p = 1536. We achieve 723X speedup. The difference between
theoretical speedup and practical speedup comes from systems
and low-level libraries (e.g. the implementation of LAPACK and
ScaLAPACK). In this comparison, BKRR2’s better scalability allows
it to use more data than DKRR, which cannot run on an input of
the same size. We also want to compare KKRR2 to DKRR for using
the same amount of data. Let us refer to the model generated by
KKRR?2 using 128k samples as kmizg and the single iteration time
as ty. ty is 6.9 sec in our experiment. The MSE of kmjag is 1077,
which is even lower than the MSE of dmj2g (0.002). Thus, KKRR2
achieves 591x speedup over DKRR for the same accuracy by using
the same data and hardware (Table 3 and 4).

5.3 Weak-Scaling Issue

As we mentioned in a previous section, weak scaling means we
fix the data size per node and increase the number of nodes. We
use from 96 to 1536 processors (4 to 64 partitions) for scaling tests
on the NERSC Edison supercomputer. The test dataset is the MSD
dataset. We set the 96-processor case as the baseline and assume
it has a 100% weak-scaling. We double the number of samples
as we double the number of processors. Figure 11 and Table 3
show the time weak-scaling and accuracy weak-scaling of BKRR.
In terms of time weak-scaling, BKRR2 achieves 92% efficiency on
1536 processors while DKRR only achieves 0.32%. We then compare
the weak scaling in terms of test accuracy: the MSE of DC-KRR for
2k test samples only decreases from 88.9 to 81.0, while the MSE
of BKRR2 decreases from 93.1 to 14.7. KKRR2 reduced the MSE
from 95 to 1077, In conclusion, we observe that DKRR has a bad
time scaling and DC-KRR has a poor accuracy weak scaling. Our
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Figure 11: Results based on MSD dataset. We use 96 processors (i.e. 4 nodes) and 8k samples as the baseline. The lowest MSE
of DKRR is 0.001848 on 1536 processors. The lowest MSE of BKRR3 is 10~7. The weak scaling efficiency of DKRR at 1536
processors is 0.32%. The weak scaling efficiency of KKRR2 and BKRR2 at 1536 processors is 38% and 92%, respectively. The
MSE of DC-KRR for 2k test samples only decreases from 88.9 to 81.0, which is a bad weak scaling accuracy. The MSE of BKRR2
decreases from 93.1 to 14.7. The MSE of KKRR2 decreases from 95.0 to 10~’. The data is in Tables 3 and 4. We conclude that

the proposed methods outperform the existing methods.

proposed method, BKRR2, has good weak scaling behavior both
in terms of time and accuracy. The weak scaling of BKRR3 can be
shown in Table 5.

Table 5: Weak scaling results of BKRR3. We use 96 proces-
sors and 8k samples as the baseline. We double the number
of samples as we double the number of processors.

processors 96 192 384 768 1536
Time (s) 1311 1313 1328 1345 1471
Efficiency  100% 99.8% 98.7% 97.5% 89.1%
MSE 40.2 16.5 6.62 1.89 1077

5.4 Method Selection

KKRR?2 achieves better accuracy than the state-of-the-art method.
If the users need the most accurate method, KKRR2 is the best
choice. KKRR2 runs slower than DC-KRR but much faster than
DKRR. BKRR2 achieves better accuracy and also runs faster than the
DCKRR. BKRR? is much faster than DKRR with the same accuracy.
The reason why BKRR2 is more efficient than DKRR is not that it
assumes more samples, but rather, because it has much better weak
scaling, so it is easier to use more samples to get a better model.
Thus, BKRR2 is the most practical method because it balances
the speed and the accuracy. BKRR3 can be used to evaluate the
performance of systems both in accuracy and speed. KKRR2 is
optimized for accuracy. We recommend using either BKRR2 or
KKRR2.

5.5 Implementation Details

We use CSR (Compressed Row Storage) format for processing the
sparse matrix (the original n-by-d input matrix, not the dense ker-
nel matrix) in our implementation. We use MPI for distributed
processing. To give a fair comparison, we use ScaLAPACK [5] for
solving the linear equation on distributed systems and LAPACK

[1] on shared memory systems, both of which are Intel MKL ver-
sions. Our experiments are conducted on NERSC Cori and Edison
supercomputer systems [12]. Our source code is available online!.

The kernel matrix is symmetric positive definite (SPD) [17],
and so is K + Anl. Thus we use Cholesky decomposition to solve
(K + Anl)a = y in DKRR, which is 2.2 faster than the Gaussian
Elimination version.

To conduct a weak scaling study, we select a subset (e.g. 64Kk,
128k, 256k) from 463,715 samples as the training data to generate a
model. Then we use the model to make a prediction. We use 2k test
samples to show the MSE comparisons among different methods.
If we change the number of test samples (e.g. change 2k to 20k),
the testing accuracy will be roughly the same. The reason is that
all the test samples are randomly shuffled so the 2k case will have
roughly the sample pattern as the 20k case.

6 RELATED WORK

The most related work to this paper is DC-KRR [23]. The difference
between DC-KRR and this work was presented in the Introduction
section. Scholkopf et al [14] conducted a nonlinear form of principal
component analysis (PCA) in high-dimensional feature spaces. Fine
et al [6] used Incomplete Cholesky Factorization (ICF) to design an
efficient Interior Point Method (IPM). Williams et al [18] designed a
Nystrom sampling method by carrying out an eigendecomposition
on a smaller dataset. Si et al [16] designed a memory efficient
kernel approximation method by first dividing the kernel matrix
and then doing low-rank approximation on the smaller matrices.
These methods can reduce the running time from ©(n%d) to ©(nd?)
or ©(ndk) where k is the rank of the kernel approximation. However,
all of these methods are proposed for serial analysis on single node
systems. On the other hand, Kernel method is more accurate than
existing approximate methods [23]. Zhang et al. [23] showed DC-
KRR can beat all the previous approximate methods. DC-KRR is
considered as state-of-the-art approach. Thus, we focus on the
comparison with Zhang et al. [23].

!https://people.eecs.berkeley.edu/~youyang/cakrr.zip
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The second line of work is to use iterative methods such as
gradient descent [20], block Jacobi method [15] and conjugate gra-
dient method[4] to reduce the running time. However, iterative
method can not make full use of computational powers efficiently
because they only load a small amount of data to memory. If we
scale the algorithm to 100+ cores, Kernel matrix method will be
much faster. These methods provide a trade-off between time and
accuracy, and we reserve them for future research. ASKIT [11]
used n-body ideas to reduce the time and storage of kernel matrix
evaluation, which is a direction of our future work. CA-SVM [21]
[22] used the divide-and-conquer approach for machine learning
applications. The differences include: (1) CA-SVM is for classifica-
tion while this work is for regression. (2) CA-SVM uses an iterative
method, whereas we use a direct method. (3) The iterative method
did not store the huge Kernel matrix, thus CA-SVM work has no
consideration on the huge Kernel matrix. The scalability of iterative
method is also limited.

Lu et al [10] designed a fast ridge regression algorithm, which
reduced the running time from ©(n?d) to ©(log(n)nd). However,
first, this work made an unreasonable assumption: the number of
features is much larger than the number of samples (d > n). This
is true for some datasets like the webspam dataset [9], which has
350,000 training samples and each sample has 16,609,143 features.
However, on average only about 10 of these 16 million features are
nonzero. This can be processed efficiently by the sparse format like
CSR (Compressed Sparse Row). Besides, this method only works for
the linear ridge regression algorithm rather than the kernel version,
which will lose non-linear space information.

7 CONCLUSION

Due to a ©(n?) memory requirement and ©(n?) arithmetic opera-
tions, KRR is prohibitive for large-scale machine learning datasets
when n is very large. The weak scaling of KRR is problematic be-
cause the total memory required will grow like ©(p) per processor,
and the total flops will grow like ©(p?) per processor. The reason
why BKRR2 is more scalable than DKRR is that it removes all the
communication in the training part and reduces the computation
cost from ©(n3/p) to ©((n/p)?). The reason why BKRR2 is more
accurate than DC-KRR is that it creates p different models and se-
lects the best one. Compared to DKRR, BKRR2 improves the weak
scaling efficiency from 0.32% to 92% and achieves 723X speedup
for the same accuracy on the same 1536 processors. Compared to
DC-KRR, BKRR2 achieves much higher accuracy with faster speed.
DC-KRR can never get the best accuracy achieved by BKRR2. When
we increase # samples from 8k to 128k and # processors from 96 to
1536, BKRR2 reduces the MSE from 93 to 14.7, which solves the poor
accuracy weak-scaling problem of DC-KRR (MSE only decreases
from 89 to 81). KKRR2 achieves 591x speedup over DKRR for the
same accuracy by using the same data and hardware. Based on a
variety of datasets used in this paper, we observe that KKRR2 is the
most accurate method. BKRR2 is the most practical algorithm that
balances the speed and accuracy. In conclusion, BKRR2 and KKRR2
are accurate, fast, and scalable methods.
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