
Accurate, Fast and Scalable Kernel Ridge Regression on Parallel
and Distributed Systems

Yang You, James Demmel
UC Berkeley

{youyang,demmel}@cs.berkeley.edu

Cho-Jui Hsieh
UC Davis

chohsieh@ucdavis.edu

Richard Vuduc
Georgia Tech

richie@cc.gatech.edu

ABSTRACT

Kernel Ridge Regression (KRR) is a fundamental method in machine
learning. Given an n-by-d data matrix as input, a traditional imple-
mentation requires Θ(n2) memory to form an n-by-n kernel matrix
and Θ(n3) flops to compute the final model. These time and storage
costs prohibit KRR from scaling up to large datasets. For example,
even on a relatively small dataset (a 520k-by-90 input requiring
357 MB), KRR requires 2 TB memory just to store the kernel matrix.
The reason is that n usually is much larger than d for real-world
applications. On the other hand, weak scaling becomes a problem:
if we keep d and n/p fixed as p grows (p is # machines), the mem-
ory needed grows as Θ(p) per processor and the flops as Θ(p2) per
processor. In the perfect weak scaling situation, both the memory
needed and the flops grow as Θ(1) per processor (i.e. memory and
flops are constant). The traditional Distributed KRR implementa-
tion (DKRR) only achieved 0.32% weak scaling efficiency from 96
to 1536 processors.

We propose two new methods to address these problems: the
Balanced KRR (BKRR) and K-means KRR (KKRR). These methods
consider alternative ways to partition the input dataset into p dif-

ferent parts, generating p different models, and then selecting
the best model among them. Compared to a conventional imple-
mentation, KKRR2 (optimized version of KKRR) improves the weak
scaling efficiency from 0.32% to 38% and achieves a 591× speedup
for getting the same accuracy by using the same data and the same
hardware (1536 processors). BKRR2 (optimized version of BKRR)
achieves a higher accuracy than the current fastest method using
less training time for a variety of datasets. For the applications
requiring only approximate solutions, BKRR2 improves the weak
scaling efficiency to 92% and achieves 3505× speedup (theoretical
speedup: 4096×).

CCS CONCEPTS

·Computingmethodologies→Massively parallel algorithms;

KEYWORDS

Distributed Machine Learning, Scalable Algorithm

ACM Reference Format:

Yang You, James Demmel, Cho-Jui Hsieh, and Richard Vuduc. 2018. Ac-
curate, Fast and Scalable Kernel Ridge Regression on Parallel and Dis-
tributed Systems. In Proceedings of The 32nd ACM International Confer-

ence on Supercomputing (ICS’18). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3205289.3205290

ICS’18, June 12ś15, 2018, Beijing, China

2018. ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205290

1 INTRODUCTION

Learning non-linear relationships between predictor variables and
responses is a fundamental problem in machine learning [2], [3].
One state-of-the-art method is Kernel Ridge Regression (KRR) [23],
whichwe target in this paper. It combines ridge regression, amethod
to address ill-posedness and overfitting in the standard regression
setting via L2 regularization, with kernel techniques, which adds
flexible support for capturing non-linearity.

Computationally, the input of KRR is an n-by-d data matrix with
n training samples and d features, where typically n ≫ d . At train-
ing time, KRR needs to solve a large linear system (K + λnI)α = y
where K is an n-by-n matrix, α and y are n-by-1 vectors, and λ

is a scalar. Forming and solving this linear system is the major
bottleneck of KRR. For example, even on a relatively small datasetÐ
357 megabytes (MB) for a 520,000-by-90 [3]ÐKRR needs to form
a 2 terabyte dense kernel matrix. A standard distributed parallel
dense linear solver on a p-processor system will require Θ(n3/p)
arithmetic operations per processor; we refer to this approach here-
after as Distributed KRR (DKRR). In machine learning, where weak
scaling is of primary interest, DKRR fares poorly: keeping n/p fixed,
the total storage grows as Θ(p) per processor and the total flops
as Θ(p2) per processor. In the perfect weak scaling situation, both
the memory needed and the flops grow as Θ(1) per processor (i.e.
memory and flops are constant). In one experiment, the weak scal-
ability of DKRR dropping from 100% to 0.32% as p increased from
96 to 1536 processors.

Divide-and-Conquer KRR (DC-KRR) [23], addresses the scaling
problems of DKRR. Its main idea is to randomly shuffle the rows of
the n-by-d data matrix and then partition it to p different n/p-by-d
matrices, one per machine, leading to an n/p-by-n/p kernel matrix
on each machine; it builds local KRR models that are then reduced
globally to obtain the final model. DC-KRR reduced the memory
and computational requirement. However, it can’t be used in prac-
tice because it sacrifices accuracy. For example, on the Million Song
Dataset (a recommendation system application) with 2k test sam-
ples, the mean squared error (MSE) decreased only from 88.9 to
81.0 as the number of training samples increased from 8k to 128k.
We double the number of processors as we double the number of
samples. This is a bad weak scaling problem in terms of accuracy.
By contrast, the MSE of DKRR decreased from 91 to 0.002, which is
substantially better.

The idea of DC-KRR is to partition the dataset into p similar

parts and generate p similar models, and then average these p
models to get the final solution. We seek other ways to partition the
problem that scale as well as DC-KRR while improving its accuracy.
Our idea is to partition the input dataset into p different parts and
generate p different models, from which we then select the best
model among them. Further addressing particular communication

ar
X

iv
:1

8
0
5
.0

0
5
6
9
v
1

[c

s.
D

C
]

 1
 M

ay
 2

0
1
8

ICS’18, June 12–15, 2018, Beijing, China Yang You, James Demmel, Cho-Jui Hsieh, and Richard Vuduc

Figure 1: Optimization flow of our algorithm. DKRR is the

baseline. DC-KRR is the existing method. All the others are

the new approaches proposed in this paper.

Figure 2: Trade-off between accuracy and speed for large-

scale weak scaling study. BKRR3 and KKRR3 are the un-

realistic approaches. BKRR2 is optimal for scaling and has

good accuracy. KKRR2 is optimal for accuracy and has good

speed.

overheads, we obtain two new methods, which we call Balanced
KRR (BKRR) and K-means KRR (KKRR). Figure 1 is the summary
of our optimization flow. We proposed a series of approaches with
details explained later (KKRR3 is an impractical algorithm used
later to bound the attainable accuracy). Figure 2 shows the funda-
mental trade-off between accuracy and scaling for these approaches.
Among them, we recommend BKRR2 (optimized version of BKRR)
and KKRR2 (optimized version of KKRR) to use in practice. BKRR2
is optimized for scaling and has good accuracy. KKRR2 is optimized
for accuracy and has good speed.

When we increase the number of samples from 8k to 128k,
KKRR2 (optimized version of KKRR) reduces the MSE from 95
to 10−7, which addresses the poor accuracy of DC-KRR. In addition,
KKRR2 is faster than DC-KRR for a variety of datasets. Our KKRR2
method improves weak scaling efficiency over DKRR from 0.32% to
38% and achieves a 591× speedup over DKRR on the same data at
the same accuracy and the hardware (1536 processors). For the ap-
plications requiring only approximate solutions, BKRR2 improves
the weak scaling efficiency to 92% and achieves 3505× speedup
with only a slight loss in accuracy.

2 BACKGROUND

2.1 Linear Regression and Ridge Regression

In machine learning, linear regression is a widely-used method for
modeling the relationship between a scalar dependent variable y

Table 1: Standard Kernel Functions

Linear Φ(xi , x j) = xi⊤x j
Polynomial Φ(xi , x j) = (axi⊤x j + r)d

Gaussian Φ(xi , x j) = exp(−| |xi − x j | |2/(2σ 2))
Sigmoid Φ(xi , x j) = tanh(axi⊤x j + r)

(regressand) and multiple explanatory variables (independent vari-
ables) denoted by x , where x is a d-dimensional vector. The training
data of a linear regression problem consists of n data points, where
each data point (or training sample) is a pair (xi ,yi) and 1 ≤ i ≤ n.
Linear regression has two phases: training and prediction. The
training phase builds a model from an input set of training samples,
while the prediction phase uses the model to predict the unknown
regressands ŷ of a new data point x̂ . The training phase is the
main limiter to scaling, both with respect to increasing the training
set size n and number of processors p. In contrast, prediction is
embarrassingly parallel and cheap per data point.

Training Process. Given n training data points {(xi ,yi)}ni=1
where each xi = (x1i , ...,x

j
i , ...,x

d
i) and yi is a scalar, we want to

build a model relating a given sample (xi) to its measured regres-
sand (yi). For convenience, we define X as an n-by-d matrix with

Xi j = x
j
i and y = (y1, · · · ,yn) be an n-dimensional vector. The

goal of regression is to find a w such that yi ≈ wT · xi . This can
be formulated as a least squares problem in Equation (1). To solve
some ill-posed problems or prevent overfitting, L2 regularization
[13] is used, as formulated in Equation (2), which is called Ridge

Regression. λ is a positive parameter that controlsw : the larger is
λ, the smaller is ∥w ∥2.

arдminw ∥Xw − y ∥22 (1)

arдminw { ∥Xw − y ∥22 + λ ∥w ∥22 } (2)

Prediction Process. Given a new sample x̂ , we can use the w
computed in the training process to predict the regressand of x̂ by
ỹ = wT · x̂ . If we have k test samples {x̂i }ki=1 and their true regres-

sands {ŷi }ki=1, the accuracy of the estimated regressand {ỹi }ni=1 can
be evaluated by MSE (Mean Squared Error) defined in Equation (3).

MSE =
1

k

∑k

i=1
(ỹi − ŷi)2 (3)

2.2 Kernel Method

For many real problems, the underlying model cannot be described
by a linear function, so linear ridge regression suffers from poor
prediction error. In those cases, a common approach is to map
samples to a high dimensional space using a nonlinear mapping,
and then learn the model in the high dimensional space. Kernel
method [8] is a widely used approach to conduct this learning
procedure implicitly by defining the kernel functionÐthe similarity
of samples in the high dimensional space. The commonly used
kernel functions are shown in Table 1, and we use the most widely
used Gaussian kernel in this paper.

Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems ICS’18, June 12–15, 2018, Beijing, China

2.3 Kernel Ridge Regression (KRR)

Combining the Kernel method with Ridge Regression yields Kernel
Ridge Regression, which is presented in Equations (4) and (5). The
∥ · ∥H in Equation (4) is a Hilbert space norm [23]. Given the n-by-n
kernel matrix K , this problem reduces to a linear system defined
in Equation (6). K is the kernel matrix constructed from training
data by Ki, j = Φ(xi ,x j), y is the input n-by-1 regressand vector
corresponding to X , and α is the n-by-1 unknown solution vector.

arдmin
1

n

∑n

i=1
∥fi − yi ∥22 + λ ∥f ∥2H (4)

fi =
∑n

j=1
α jΦ(x j , xi) (5)

In the Training phase, the algorithm’s goal is to get α by (approx-
imately) solving the linear system in (6). In the Prediction phase, the
algorithm uses α to predict the regressand of any unknown sample
x̂ using Equation (7). KRR is specified in Algorithm 1. The algorithm
searches for the best σ and λ from parameter sets. Thus, in practice,
Algorithm 1 is only a single iteration of KRR because people do
not know the best parameters before using the dataset. |Λ| × |Σ| is
the number of iterations where Λ and Σ are the parameter sets of
λ and σ (Gaussian Kernel) respectively. Thus, the computational
cost of KRR method is Θ(|Λ| |Σ|n3). In a typical case, if |Λ| = 50
and |Σ| = 50, then the algorithm needs to finish thousands of itera-
tions. People also use cross-validation technique to select the best
parameters, which needs much more time.

(K + λnI)α = y (6)

ỹ =
∑n

i=1
αiΦ(xi , x̂) (7)

Algorithm 1: Kernel Ridge Regression (KRR)

Input:

n labeled data points (xi , yi) for training;
another k labeled data points (x̂ j , ŷj) for testing;
both xi and x̂ j are d-dimensional vectors;
i ∈ {1, 2, ..., n }, j ∈ {1, 2, ..., k };
tuned parameters λ and σ

Output:

Mean Squared Error (MSE) of prediction
1 Create a n-by-n kernel matrix K

2 for i ∈ 1 : n do

3 for j ∈ 1 : n do

4 K [i][j] ← Φ(xi , x j) based on Table 1

5 Solve linear equation (K + λnI)α = y for α

6 for j ∈ 1 : k do

7 ỹj ←
∑n
i=1αiK (xi , x̂ j)

8 MSE ← 1
k

∑k
j=1(ỹj − ŷj)2

2.4 K-means clustering

Here we reviewK-means clustering algorithm, whichwill be used in
our algorithm. The objective of K-means clustering is to partition a
datasetTD into k ∈ Z+ subsets (TD1,TD2, ...,TDk), using a notion
of proximity based on Euclidean distance [7]. The value of k is
chosen by the user. Each subset has a center (CT1,CT2, ...,CTk),

each of which is a d-dimensional vector. A sample x belongs toTDi

if CTi is its closest center. K-means is shown in Algorithm 2.

Algorithm 2: Plain K-means Clustering

1 Input the training samples xi , i ∈ {1, 2, ..., n }
2 Initialize data centers CT1, CT2, ..., CTk randomly

3 δ ← 0

4 For every i = 1, · · · , n
5 Ð c i ← arдmin j | |xi −CTj | |
6 Ð If c i has been changed, δ ← δ + 1

7 End For

8 For every j = 1, · · · , k

9 Ð CTj ←
∑n
i=1 1{c

i
=j }xi∑n

i=1 1{c i=j }
10 End For

11 If δ/n > threshold, then go to Step 3

3 EXISTING METHODS

3.1 Distributed KRR (DKRR)

The bottleneck of KRR is solving the n-by-n linear system (6), which
is generated by a much smaller n-by-d input matrix with n ≫ d .
As stated before, this makes weak-scaling problematic, because
memory-per-machine grows like Θ(p), and flops-per-processor
grows like Θ(p2). In the perfect weak scaling situation, both the
memory needed and the flops grow as Θ(1) per processor (i.e. mem-
ory and flops are constant). Our experiments show the weak scaling
efficiency of DKRR decreases from 100% to 0.3% as we increase the
number of processors from 96 to 1536. Since the n-by-n matrix K
cannot be created on a single node, we create it in a distributed way
on a
√
p-by-

√
p machine grid (Fig. 3). We first divide the sample ma-

trix into
√
p equal parts by rows. To generate 1

p of the kernel matrix,

each machine will need two of these
√
p parts of the sample matrix.

For example, in Fig. 3, to generate the K(1, 2) block, machine 6
needs the second and the third parts of the blocked sample matrix.
Thus, we reduce the storage and computation for kernel creation
from Θ(n2) to Θ(n2/p) per machine. Then we use distributed linear
solver in ScaLAPACK [5] to solve for α .

3.2 Divide-and-Conquer KRR (DC-KRR)

DC-KRR [23] showed that using divide-and-conquer can reduce
the memory and computational requirement. We first shuffle the
original data matrix M = [X ,y] by rows. Then we distribute M

to all the nodes evenly by rows (lines 1-5 of Algorithm 3). On
each node, we construct a much smaller matrix (Θ(n2/p2)) than
the original kernel matrix (Θ(n2)) (lines 6-11 of Algorithm 3). After
getting the local kernel matrixK , we use it to solve a linear equation
(K + λnI)α = y on each node where y is the input labels and α is
the solution. After getting α , the training step is complete. Then we
use the local α to make predictions for each unknown data point
and do a global average (reduction) to output the final predicted
label (lines 13-15 of Algorithm 3). If we get a set of better hyper-
parameters, we record them by overwriting the old versions (lines
16-19 of Algorithm 3).

ICS’18, June 12–15, 2018, Beijing, China Yang You, James Demmel, Cho-Jui Hsieh, and Richard Vuduc

11.1 Time 11.2 Efficiency 11.3 Accuracy

Figure 11: Results based on MSD dataset. We use 96 processors (i.e. 4 nodes) and 8k samples as the baseline. The lowest MSE

of DKRR is 0.001848 on 1536 processors. The lowest MSE of BKRR3 is 10−7. The weak scaling efficiency of DKRR at 1536

processors is 0.32%. The weak scaling efficiency of KKRR2 and BKRR2 at 1536 processors is 38% and 92%, respectively. The

MSE of DC-KRR for 2k test samples only decreases from 88.9 to 81.0, which is a bad weak scaling accuracy. TheMSE of BKRR2

decreases from 93.1 to 14.7. The MSE of KKRR2 decreases from 95.0 to 10−7. The data is in Tables 3 and 4. We conclude that

the proposed methods outperform the existing methods.

proposed method, BKRR2, has good weak scaling behavior both
in terms of time and accuracy. The weak scaling of BKRR3 can be
shown in Table 5.

Table 5: Weak scaling results of BKRR3. We use 96 proces-

sors and 8k samples as the baseline. We double the number

of samples as we double the number of processors.

processors 96 192 384 768 1536

Time (s) 1311 1313 1328 1345 1471

Efficiency 100% 99.8% 98.7% 97.5% 89.1%

MSE 40.2 16.5 6.62 1.89 10−7

5.4 Method Selection

KKRR2 achieves better accuracy than the state-of-the-art method.
If the users need the most accurate method, KKRR2 is the best
choice. KKRR2 runs slower than DC-KRR but much faster than
DKRR. BKRR2 achieves better accuracy and also runs faster than the
DCKRR. BKRR2 is much faster than DKRR with the same accuracy.
The reason why BKRR2 is more efficient than DKRR is not that it
assumes more samples, but rather, because it has much better weak
scaling, so it is easier to use more samples to get a better model.
Thus, BKRR2 is the most practical method because it balances
the speed and the accuracy. BKRR3 can be used to evaluate the
performance of systems both in accuracy and speed. KKRR2 is
optimized for accuracy. We recommend using either BKRR2 or
KKRR2.

5.5 Implementation Details

We use CSR (Compressed Row Storage) format for processing the
sparse matrix (the original n-by-d input matrix, not the dense ker-
nel matrix) in our implementation. We use MPI for distributed
processing. To give a fair comparison, we use ScaLAPACK [5] for
solving the linear equation on distributed systems and LAPACK

[1] on shared memory systems, both of which are Intel MKL ver-
sions. Our experiments are conducted on NERSC Cori and Edison
supercomputer systems [12]. Our source code is available online1.

The kernel matrix is symmetric positive definite (SPD) [17],
and so is K + λnI . Thus we use Cholesky decomposition to solve
(K + λnI)α = y in DKRR, which is 2.2× faster than the Gaussian
Elimination version.

To conduct a weak scaling study, we select a subset (e.g. 64k,
128k, 256k) from 463,715 samples as the training data to generate a
model. Then we use the model to make a prediction. We use 2k test
samples to show the MSE comparisons among different methods.
If we change the number of test samples (e.g. change 2k to 20k),
the testing accuracy will be roughly the same. The reason is that
all the test samples are randomly shuffled so the 2k case will have
roughly the sample pattern as the 20k case.

6 RELATED WORK

The most related work to this paper is DC-KRR [23]. The difference
between DC-KRR and this work was presented in the Introduction
section. Scholkopf et al [14] conducted a nonlinear form of principal
component analysis (PCA) in high-dimensional feature spaces. Fine
et al [6] used Incomplete Cholesky Factorization (ICF) to design an
efficient Interior Point Method (IPM). Williams et al [18] designed a
Nyström sampling method by carrying out an eigendecomposition
on a smaller dataset. Si et al [16] designed a memory efficient
kernel approximation method by first dividing the kernel matrix
and then doing low-rank approximation on the smaller matrices.
These methods can reduce the running time from Θ(n2d) to Θ(nd2)
orΘ(ndk)wherek is the rank of the kernel approximation. However,
all of these methods are proposed for serial analysis on single node
systems. On the other hand, Kernel method is more accurate than
existing approximate methods [23]. Zhang et al. [23] showed DC-
KRR can beat all the previous approximate methods. DC-KRR is
considered as state-of-the-art approach. Thus, we focus on the
comparison with Zhang et al. [23].

1https://people.eecs.berkeley.edu/~youyang/cakrr.zip

Accurate, Fast and Scalable Kernel Ridge Regression on Parallel and Distributed Systems ICS’18, June 12–15, 2018, Beijing, China

The second line of work is to use iterative methods such as
gradient descent [20], block Jacobi method [15] and conjugate gra-
dient method[4] to reduce the running time. However, iterative
method can not make full use of computational powers efficiently
because they only load a small amount of data to memory. If we
scale the algorithm to 100+ cores, Kernel matrix method will be
much faster. These methods provide a trade-off between time and
accuracy, and we reserve them for future research. ASKIT [11]
used n-body ideas to reduce the time and storage of kernel matrix
evaluation, which is a direction of our future work. CA-SVM [21]
[22] used the divide-and-conquer approach for machine learning
applications. The differences include: (1) CA-SVM is for classifica-
tion while this work is for regression. (2) CA-SVM uses an iterative
method, whereas we use a direct method. (3) The iterative method
did not store the huge Kernel matrix, thus CA-SVM work has no
consideration on the huge Kernel matrix. The scalability of iterative
method is also limited.

Lu et al [10] designed a fast ridge regression algorithm, which
reduced the running time from Θ(n2d) to Θ(loд(n)nd). However,
first, this work made an unreasonable assumption: the number of
features is much larger than the number of samples (d ≫ n). This
is true for some datasets like the webspam dataset [9], which has
350,000 training samples and each sample has 16,609,143 features.
However, on average only about 10 of these 16 million features are
nonzero. This can be processed efficiently by the sparse format like
CSR (Compressed Sparse Row). Besides, this method only works for
the linear ridge regression algorithm rather than the kernel version,
which will lose non-linear space information.

7 CONCLUSION

Due to a Θ(n2) memory requirement and Θ(n3) arithmetic opera-
tions, KRR is prohibitive for large-scale machine learning datasets
when n is very large. The weak scaling of KRR is problematic be-
cause the total memory required will grow like Θ(p) per processor,
and the total flops will grow like Θ(p2) per processor. The reason
why BKRR2 is more scalable than DKRR is that it removes all the
communication in the training part and reduces the computation
cost from Θ(n3/p) to Θ((n/p)3). The reason why BKRR2 is more
accurate than DC-KRR is that it creates p different models and se-
lects the best one. Compared to DKRR, BKRR2 improves the weak
scaling efficiency from 0.32% to 92% and achieves 723× speedup
for the same accuracy on the same 1536 processors. Compared to
DC-KRR, BKRR2 achieves much higher accuracy with faster speed.
DC-KRR can never get the best accuracy achieved by BKRR2. When
we increase # samples from 8k to 128k and # processors from 96 to
1536, BKRR2 reduces the MSE from 93 to 14.7, which solves the poor
accuracy weak-scaling problem of DC-KRR (MSE only decreases
from 89 to 81). KKRR2 achieves 591× speedup over DKRR for the
same accuracy by using the same data and hardware. Based on a
variety of datasets used in this paper, we observe that KKRR2 is the
most accurate method. BKRR2 is the most practical algorithm that
balances the speed and accuracy. In conclusion, BKRR2 and KKRR2
are accurate, fast, and scalable methods.

8 ACKNOWLEDGEMENT

Yang You was supported by the U.S. DOE Office of Science, Office
of Advanced Scientific Computing Research under Award Numbers
DE-SC0008700 and AC02-05CH11231. Cho-Jui Hsieh acknowledges
the support of NSF via IIS-1719097

REFERENCES
[1] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, Jack Don-

garra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A McKenney, and
D Sorensen. 1999. LAPACK Users’ guide. Vol. 9. Siam.

[2] Ole E Barndorff-Nielsen andNeil Shephard. 2004. Econometric analysis of realized
covariation: High frequency based covariance, regression, and correlation in
financial economics. Econometrica 72, 3 (2004), 885ś925.

[3] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. 2011.
The million song dataset. In ISMIR 2011: Proceedings of the 12th International
Society for Music Information Retrieval Conference, October 24-28, 2011, Miami,
Florida. University of Miami, 591ś596.

[4] Gilles Blanchard and Nicole Krämer. 2010. Optimal learning rates for kernel
conjugate gradient regression. In Advances in Neural Information Processing
Systems. 226ś234.

[5] Jaeyoung Choi, James Demmel, Inderjiit Dhillon, Jack Dongarra, Susan Ostrou-
chov, Antoine Petitet, Ken Stanley, David Walker, and R Clinton Whaley. 1995.
ScaLAPACK: A portable linear algebra library for distributed memory computer-
sâĂŤDesign issues and performance. In Applied Parallel Computing Computations
in Physics, Chemistry and Engineering Science. Springer, 95ś106.

[6] Shai Fine and Katya Scheinberg. 2002. Efficient SVM training using low-rank
kernel representations. The Journal of Machine Learning Research 2 (2002), 243ś
264.

[7] Edward W Forgy. 1965. Cluster analysis of multivariate data: efficiency versus
interpretability of classifications. Biometrics 21 (1965), 768ś769.

[8] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. 2008. Kernel
methods in machine learning. The annals of statistics (2008), 1171ś1220.

[9] Chih-Jen Lin. 2017. LIBSVM Machine Learning Regression Repository. (2017).
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

[10] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. 2013. Faster ridge
regression via the subsampled randomized hadamard transform. In Advances in
Neural Information Processing Systems. 369ś377.

[11] William B March, Bo Xiao, and George Biros. 2015. ASKIT: Approximate skele-
tonization kernel-independent treecode in high dimensions. SIAM Journal on
Scientific Computing 37, 2 (2015), A1089śA1110.

[12] NERSC. 2016. NERSC Computational Systems. (2016). https://www.nersc.gov/
users/computational-systems/

[13] Mark Schmidt. 2005. Least squares optimization with l1-norm regularization.
(2005).

[14] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. 1998. Nonlinear
component analysis as a kernel eigenvalue problem. Neural computation 10, 5
(1998), 1299ś1319.

[15] R. Schreiber. 1986. Solving eigenvalue and singular value problems on an un-
dersized systolic array. SIAM J. Sci. Stat. Comput. 7 (1986), 441ś451. first block
Jacobi reference?

[16] Si Si, Cho-Jui Hsieh, and Inderjit Dhillon. 2014. Memory efficient kernel approxi-
mation. In Proceedings of The 31st International Conference on Machine Learning.
701ś709.

[17] Leila Wehbe. 2013. Kernel Properties - Convexity. (2013).
[18] Christopher Williams and Matthias Seeger. 2001. Using the Nystrom method

to speed up kernel machines. In Proceedings of the 14th Annual Conference on
Neural Information Processing Systems. 682ś688.

[19] Nicholas J WRIGHT, Sudip S DOSANJH, Allison K ANDREWS, Katerina B ANTY-
PAS, Brent DRANEY, R Shane CANON, Shreyas CHOLIA, Christopher S DALEY,
Kirsten M FAGNAN, Richard A GERBER, et al. 2015. Cori: A Pre-Exascale Super-
computer for Big Data and HPC Applications. Big Data and High Performance
Computing 26 (2015), 82.

[20] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On early stopping in
gradient descent learning. Constructive Approximation 26, 2 (2007), 289ś315.

[21] Yang You, James Demmel, Kenneth Czechowski, Le Song, and Richard Vuduc.
2015. Ca-svm: Communication-avoiding support vector machines on distributed
systems. In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International. IEEE, 847ś859.

[22] Yang You, Jim Demmel, Rich Vuduc, Le Song, and Kent Czechowski. 2016. Design
and Implementation of a Communication-Optimal Classifier for Distributed
Kernel Support Vector Machines. IEEE Transactions on Parallel and Distributed
Systems (2016).

[23] Yuchen Zhang, John Duchi, and Martin Wainwright. 2013. Divide and conquer
kernel ridge regression. In Conference on Learning Theory. 592ś617.

	Abstract
	1 Introduction
	2 Background
	2.1 Linear Regression and Ridge Regression
	2.2 Kernel Method
	2.3 Kernel Ridge Regression (KRR)
	2.4 K-means clustering

	3 Existing Methods
	3.1 Distributed KRR (DKRR)
	3.2 Divide-and-Conquer KRR (DC-KRR)

	4 Accurate, Fast, and Scalable KRR
	4.1 Kmeans KRR (KKRR)
	4.2 KKRR2
	4.3 Balanced KRR (BKRR)
	4.4 BKRR3 and KKRR3: Error Lower Bound and The Unrealistic Approach

	5 Implementation and Analysis
	5.1 Real-World Dataset
	5.2 Fair Comparison
	5.3 Weak-Scaling Issue
	5.4 Method Selection
	5.5 Implementation Details

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

