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ELLIPTIC INVERSE PROBLEMS OF IDENTIFYING

NONLINEAR PARAMETERS

B. JADAMBA∗, A. A. KHAN†, R. KAHLER, AND M. SAMA‡

Dedicated to Stephen M. Robinson on his 75th birthday

Abstract. Inverse problems of identifying parameters in partial differential
equations (PDEs) is an important class of problems with many real-world ap-
plications. Inverse problems are commonly studied in optimization setting with
various known approaches having their advantages and disadvantages. Although
a non-convex output least-squares (OLS) objective has often been used, a con-
vex modified output least-squares (MOLS) attracted quite an attention in recent
years. However, the convexity of the MOLS has only been established for pa-
rameters appearing linearly in the PDEs. The primary objective of this work
is to introduce and analyze a variant of the MOLS for the inverse problem of
identifying parameters that appear nonlinearly in variational problems. Besides
giving an existence result for the inverse problem, we derive the first-order and
second-order derivative formulas for the new functional and use them to identify
the conditions under which the new functional is convex. We give a discretiza-
tion scheme for the continuous inverse problem and prove its convergence. We
also obtain discrete formulas for the new MOLS functional, and present detailed
numerical examples.

1. Introduction

Applied models frequently lead to partial differential equations involving param-
eters attributed to physical characteristics of the model. The direct problem in this
setting is to solve the partial differential equation. By contrast, an inverse problem
seeks for the identification of the parameters when a measurement of a solution of
the partial differential equation is available.
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For clarification, consider the boundary value problem (BVP)

(1.1) −∇ · (q∇u) = f in Ω, u = 0 on ∂Ω,

where Ω is a sufficiently smooth domain in R2 or R3 and ∂Ω is its boundary. The
above BVP models interesting real-world problems and has been studied in great
detail. For instance, here u = u(x) may represent the steady-state temperature at a
given point x of a body; then q would be a variable thermal conductivity coefficient,
and f the external heat source. This system also models underground steady state
aquifers in which the parameter q is the aquifer transmissivity coefficient, u is the
hydraulic head, and f is the recharge. The inverse problem in the context of the
above BVP is to estimate the coefficient q from a measurement z of the solution u.

A number of methods to the aforementioned inverse problem have been proposed
in the literature; most involve either regarding (1.1) as a hyperbolic PDE in q or
posing an optimization problem whose solution is an estimate of q. The approach
of reformulating (1.1) as an optimization problem is divided into two possibilities,
namely either formulating the problem as an unconstrained optimization problem
or treating it as a constrained optimization problem, in which the PDE itself is
the constraint. Among the optimization-based techniques the output least-squares
(OLS) method is among the most widely used methods. The output least-squares
approach minimizes the functional

(1.2) q → ∥u(q)− z∥2,

where z is the data and u(q) solves the variational form of (1.1) given by

(1.3)

∫
Ω
q∇u · ∇v =

∫
Ω
fv, for all v ∈ H1

0 (Ω).

A known deficiency of the OLS functional is that it is, in general, nonconvex.
There are other functionals that have been used. For example, the equation error

method (cf. [1, 2]), consists of minimizing the functional

q → ∥∇(q∇z) + f∥2H−1(Ω)

where H−1(Ω) is the dual of H1
0 (Ω) and z is the data. Chen and Zou [6] developed

an augmented Lagrangian algorithm to solve the OLS problem by treating the PDE
as an explicit constraint.

Knowles [13] proposed minimizing a coefficient-dependent norm

(1.4) q →
∫
q∇(u(q)− z) · ∇(u(q)− z),

where z is the data and u(a) solves (1.3). Knowles [13] established that the above
functional is convex. Some related developments are given in [4, 5, 7, 14].

It is convenient to investigate the inverse problem of parameter identification in
an abstract setting allowing for more general PDEs. Let B be a Banach space and
let A be a nonempty, closed, and convex subset of B. Given a Hilbert space V , let
T : B×V ×V → R be a trilinear form with T (a, u, v) symmetric in u, v, and let m
be a bounded linear functional on V. Assume there are constants α > 0 and β > 0
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such that the following conditions hold:

T (a, u, v) ≤ β∥a∥B∥u∥V ∥v∥V , for all u, v ∈ V, a ∈ B,(1.5)

T (a, u, u) ≥ α∥u∥2V , for all u ∈ V, a ∈ A.(1.6)

Consider the variational problem: Given a ∈ A, find u = u(a) ∈ V with

(1.7) T (a, u, v) = m(v), for every v ∈ V.

Due to the imposed conditions, it follows from the Riesz representation theorem
that for every a ∈ A, the variational problem (1.7) admits a unique solution u(a).
In this abstract setting, the inverse problem of identifying parameter now seeks a
in (1.7) from a measurement z of u.

In [10], the following modified OLS functional (MOLS) was introduced

(1.8) J(a) =
1

2
T (a, u(a)− z, u(a)− z)

where z is the data (the measurement of u) and u(a) solves (1.7). This functional
generalizes (1.4). In [10], the author established that (1.8) is convex and used it to
estimate the Lamé moduli in the equations of isotropic elasticity. Studies related
to MOLS functional and its extensions can be found in [8, 11, 12].

The first observation necessary for the convexity of the MOLS is that for each a
in the interior of A, the first derivative δu = Du(a)δa is the unique solution of the
variational equation (see [10]):

(1.9) T (a, δu, v) = −T (δa, u, v), for every v ∈ V,

Using (1.9), the authors in [10] obtained the following derivative formulae:

DJ(a)δa = −1

2
T (δa, u(a) + z, u(a)− z),(1.10)

D2J(a)(δa, δa) = T (a,Du(a)δa,Du(a)δa).(1.11)

Due to the coercivity (1.6), it follows that D2J(a)(δa, δa) ≥ α∥Du(a)δa∥2V , and
hence the convexity of (1.8) in the interior of A follows.

A careful look at the proofs of the above mentioned results reveals that for the
convexity of the MOLS, it is essential that the first argument of T be the parameter
to be identified. On the other hand, interesting applications lead to cases when the
first argument of T is in fact contains a nonlinear function of the sought parameter
(see [15]).

The objective of this paper is to introduce and analyze a variant of the MOLS
for the inverse problem of identifying parameter that appears nonlinearly in general
variational problems. We are interested in understanding what geometric proper-
ties of the MOLS can be retained for such a case. We derive the first-order and
second-order derivative formulas for the new functional and use them to identify
the conditions under which the new functional is convex. We give a discretization
scheme for the continuous inverse problem and prove its convergence. We obtain
discrete formulas for the new MOLS functional. We also provide numerical results
to show the feasibility of the proposed functional.
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2. Solvability of the inverse problem and derivative formulae

Given an open and convex set S ⊂ X, a map f : S ⊂ X → Y is directionally
differentiable at x ∈ S in a direction δx ∈ X if the following limit exists

f ′(x; δx) = lim
t↓0

f(x+ tδx)− f(x)

t
.

The map f is called directionally differentiable at x if f is directionally differentiable
at x ∈ S in every direction δx ∈ X. Given f is directionally differentiable, the
second-order directional derivative along directions (δx1, δx2) ∈ X ×X is given by
the limit (provided that it exists):

f ′′(x; δx1, δx2) = lim
t↓0

f ′(x+ tδx2; δx1)− f ′(x; δx1)

t

Note that

Df(x)(δx) = f ′(x; δx),

D2f(x)(δx1, δx2) = f ′′(x; δx1, δx2)

if f is differentiable, twice differentiable at x, respectively.
Let σ : S ⊂ B → B be a map such σ(x) ∈ A for every x ∈ dom(σ). Moreover,

assume that σ is continuous and directionally differentiable at any point in the
interior of A which we assume to be nonempty. Given a ∈ A, consider the variational
problem of finding u(a) ∈ V such that

(2.1) T (σ(a), u(a), v) = m(v), for every v ∈ V.

Our objective is to identify the parameter a from a measurement z of u.
We give the following continuity result for its later use.

Lemma 2.1. The following bounds are valid:

∥u(a)− u(b)∥V ≤ min

{
β

α
∥u(a)∥V ,

β

α
∥u(b)∥V ,

β

α2
∥m∥V ∗

}
∥σ(b)− σ(a)∥B.

Proof. For any v ∈ V, we have T (σ(a), u(a), v) = m(v) = T (σ(b), u(b), v) imply-
ing T (σ(a), u(a), v) − T (σ(b), u(b), v) = 0 or T (σ(a), u(a) − u(b), u(a) − u(b)) =
−T (σ(a)− σ(b), u(b), u(a)− u(b)). Using (1.5) and (1.6), we get

∥u(a)− u(b)∥V ≤ β

α
∥u(b)∥V ∥σ(a)− σ(b)∥B,

proving the second bound; the first is obtained by interchanging the roles of a and b.
The bound ∥u(b)∥V ≤ α−1∥m∥V ∗ , which is easy to prove, yield the third bound. �

We introduce the following new modified output least squares

(2.2) J(a) =
1

2
T (σ(a), u(a)− z, u(a)− z),

where z is the data (the measurement of u) and u(a) solves (2.1).
We can now formulate the inverse problem as an optimization problem using

(2.2). However, due to the known ill-posedness of inverse problems, we need some
kind of regularization for developing a stable computational framework. Therefore,
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instead of (2.2), we will use its regularized analogue and consider the regularized
optimization problem: Find a ∈ A by solving

(2.3) min
a∈A

Jκ(a) :=
1

2
T (σ(a), u(a)− z, u(a)− z) + κ∥a∥2H ,

where, given a Hilbert space H, κ > 0 is a regularization parameter, u(a) is the
unique solution of (2.1) for the coefficient a, and z is the measured data.

The following is an existence result for the regularized problem (2.3).

Theorem 2.2. Assume that the space H is compactly embedded into B, A ⊂ H is
nonempty, closed, and convex. Then (2.3) has a nonempty solution set.

Proof. Since Jκ(a) ≥ 0, for all a ∈ A, there exists a minimizing sequence {an} in A
such that limn→∞ Jκ(an) = inf{Jκ(a)| a ∈ A}. Therefore, {Jκ(an)} is bounded from
above which implies that {an} is bounded in H. Due to the compact embedding
of H into B, there exists a subsequence converging strongly in B. By keeping
the same notations for subsequences as well, we assume that an converges strongly
some ā ∈ A. Moreover, due to the continuity of σ, we have σ(an) → σ(ā). By the
definition of un, for every v ∈ V, we have T (σ(an), un, v) = m(v), which for v = un
yields T (σ(an), un, un) = m(un). Using (1.6), we get α∥un∥2V ≤ ∥m∥V ∗∥un∥V , which
ensures the boundedness of un = u(an). Therefore, there exists a subsequence of
{un} that converges weakly to some ū ∈ V. We claim that ū = u(ā). Recall that for
every v ∈ V, we have T (σ(an), un, v) = m(v). This, after a simple rearrangements
of terms, implies that T (σ(ā), ū, v)−m(v) = −T (σ(an)−σ(ā), un, v)−T (σ(ā), un−
u, v), which, when passed to the limit n→ ∞, implies that T (σ(ā), ū, v) = m(v) as
all the terms on the right-hand side go to zero. Since v ∈ V is arbitrary and since
(1.7) is uniquely solvable, we deduce that ū = u(ā).

We claim that J(an) → J(ā). The identities T (σ(an), un − z, un − z) = m(un −
z)− T (σ(an), z, un − z) and T (σ(ā), ū− z, ū− z) = m(ū− z)− T (σ(ā), z, ū− z), in
view of the rearrangement

T (σ(an), z, un − z)− T (σ(ā), z, ū− z) = T (σ(an)− σ(ā), z, un − z)

− T (σ(ā), z, un − ū),

ensure that T (σ(an), un − z, un − z) → T (σ(ā), ū− z, ū− z), and consequently,

Jκ(ā) = T (σ(ā), ū− z, ū− z) + κ∥ā∥2H
≤ lim

n→∞
T (σ(an), u(an)− z, u(an)− z) + lim inf

n→∞
κ∥an∥2H

≤ lim inf
n→∞

{T (σ(an), u(an)− z, u(an)− z) + κ∥an∥2H}

= inf {Jκ(a) : a ∈ A} ,
confirming that ā is a solution of (2.3). The proof is complete. �

The following result shows the smoothness of the parameter-to-solution map u :
a→ u(a). Recall that we are assuming that σ is directionally differentiable.
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Theorem 2.3. For each a in the interior of A, the parameter-to-solution u : A ⊂
B → V is directionally differentiable. Moreover, for each direction δa ∈ B the
directional derivative u′(a; δa) is the unique solution of the following variational
equation

(2.4) T
(
σ(a), u′(a; δa), v

)
= −T

(
σ′(a; δa), u(a), v

)
, for every v ∈ V.

Furthermore, if σ is differentiable at a, then u is differentiable at a.

Proof. The Lax-Milgram lemma confirms that the variational equation is uniquely
solvable. For any a in the interior of A, let δa ∈ B be arbitrary. For any t > 0 and
any v ∈ V, we have

T (σ(a+ tδa), u(a+ tδa), v) = m(v),

T (σ(a), u(a), v) = m(v) .

The above equations after a rearrangement of terms, yield

0 =
1

t
[T (σ(a+ tδa), u(a+ tδa), v)− T (σ(a), u(a), v)]

=
1

t
[T (σ(a+ tδa), u(a+ tδa), v)− T (σ(a), u(a+ tδa), v)]

+
1

t
[T (σ(a), u(a+ tδa), v)− T (σ(a), u(a), v)]

= T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa), v

)
+ T

(
σ(a),

u(a+ tδa)− u(a)

t
, v

)
,

and therefore, for an arbitrary v ∈ V , we have

(2.5) T

(
σ(a),

u(a+ tδa)− u(a)

t
, v

)
= −T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa), v

)
.

Let w ∈ V be the unique solution to the following variational equation

(2.6) T (σ(a), w, v) = −T
(
σ′(a; δa), u(a), v

)
, for every v ∈ V.

By combining (2.5) and (2.6), and setting

δut := t−1(u(a+ tδa)− u(a)),

we have

T (σ(a), δut − w, v) =− T

(
σ(a+ tδa)− σ(a)

t
− σ′(a; δa), u(a+ tδa), v

)
− T

(
σ′(a; δa), u(a+ tδa)− u(a), v

)
.(2.7)
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Taking v = δut − w in this expression, we get

α ∥δut − w∥2V ≤ T (σ(a), δut − w, δut − w)

= −T
(
σ(a+ tδa)− σ(a)

t
− σ′(a; δa), u(a+ tδa), δut − w

)
− T

(
σ′(a; δa), u(a+ tδa)− u(a), δut − w

)
and hence

α ∥δut − w∥V ≤ β

∥∥∥∥σ(a+ tδa)− σ(a)

t
− σ′(a; δa)

∥∥∥∥
B

× ∥u(a+ tδa)∥V + β
∥∥σ′(a; δa)∥∥

B
∥u(a+ tδa)− u(a)∥V .

By taking the limit t ↓ 0, the right-hand side tends to zero since u is continuous
and σ is directionally differentiable, we get ∥δut − w∥V → 0, which implies that
t−1(u(a+ tδa)− u(a)) → w in V, and hence u is directionally differentiable at a in
the direction δa with u′(a; δa) = w.

We follow similar arguments to prove the differentiability. For this we take a
fixed a in the interior of A. Define the linear operator T : B → V such that for
every δa ∈ B, T (δa) gives the unique solution to the following variational equation:

T (σ(a), T (δa), v) = −T (Dσ(a)(δa), u(a), v) , for every v ∈ V.

Since −T (Dσ(a)(δa), u(a), ·) ∈ V ∗, T is well defined. Furthermore,

α ∥T (δa)∥2V ≤ T (σ(a), T (δa), T (δa))

= −T (Dσ(a)(δa), u(a), T (δa))

≤ β ∥Dσ(a)(δa)∥B ∥T (δa)∥V ∥u(a)∥V

Since σ is differentiable we have ∥Dσ(a)(δa)∥B ≤ C ∥δa∥B , and hence

∥T (δa)∥V ≤ (βC ∥u(a)∥V ) ∥δa∥B .

On the other hand, following the previous calculation, we have

T

(
σ(a),

u(a+ δa)− u(a)

∥δa∥B
, v

)
= −T

(
σ(a+ δa)− σ(a)

∥δa∥B
, u(a+ δa), v

)
,

and therefore

T

(
σ(a),

u(a+ δa)− u(a)

∥δa∥B
, v

)
− T

(
σ(a), T

(
δa

∥δa∥B

)
, v

)
= −T

(
σ(a+ δa)− σ(a)

∥δa∥B
, u(a+ δa), v

)
+ T

(
Dσ(a)

(
δa

∥δa∥B

)
, u(a), v

)
,
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or equivalently,

T

(
σ(a),

u(a+ δa)− u(a)− T (δa)

∥δa∥B
, v

)
= −T

(
Dσ(a)

(
δa

∥δa∥B

)
, u(a+ δa)− u(a), v

)
− T

(
σ(a+ δa)− σ(a)−Dσ(a) (δa)

∥δa∥B
, u(a+ δa), v

)
.

If we denote ∆u = ∥δa∥−1
B (u(a+ δa)− u(a)− T (δa)) ∈ V, then by following the

same reasoning as for the previous case, we have

α ∥∆u∥2V ≤ T (σ(a),∆u,∆u)

= −T
(
σ(a+ δa)− σ(a)−Dσ(a) (δa)

∥δa∥B
, u(a+ δa),∆u

)
+ T

(
Dσ(a)

(
δa

∥δa∥B

)
, u(a+ δa)− u(a),∆u

)
,

implying

α ∥∆u∥2V ≤
(
β
∥σ(a+ δa)− σ(a)−Dσ(a) (δa)∥B

∥δa∥B
∥u(a+ δa)∥V

+β

∥∥∥∥Dσ(a)( δa

∥δa∥B

)∥∥∥∥
B

∥u(a+ δa)− u(a)∥V
)
∥∆u∥V

and hence

α ∥∆u∥V ≤ β
∥σ(a+ δa)− σ(a)−Dσ(a) (δa)∥B

∥δa∥B
∥u(a+ δa)∥V

+ β

∥∥∥∥Dσ(a)( δa

∥δa∥B

)∥∥∥∥
B

∥u(a+ δa)− u(a)∥V .

Since u is continuous by hypothesis and σ is differentiable, we have

∥σ(a+ δa)− σ(a)−Dσ(a) (δa)∥B
∥δa∥B

∥u(a+ δa)∥V

+

∥∥∥∥Dσ(a)( δa

∥δa∥B

)∥∥∥∥
B

∥u(a+ δa)− u(a)∥V → 0,

for ∥δa∥B → 0. Finally, for ∥δa∥B → 0 and for any v ∈ V , we have

∥∆u∥V =
∥u(a+ δa)− u(a)− T (δa)∥V

∥δa∥B
→ 0,

and this ensures differentiability. The proof is complete. �
We have the following derivative formulas for the MOLS:

Theorem 2.4. The MOLS functional (2.2) is directionally differentiable at any a
in the interior of A. The first-order derivative is given by

(2.8) J ′(a; δa) = −1

2
T
(
σ′(a; δa), u(a) + z, u(a)− z

)
, for every δa ∈ B.
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Proof. We fix an element a in the interior of A and let δa ∈ B be also fixed. Set

∆J = 2
J(a+ tδa)− J(a)

t
.

Then,

∆J

2
=

1

t
[T (σ(a+ tδa), u(a+ tδa)− z, u(a+ tδa)− z)

−T (σ(a), u(a)− z, u(a)− z)]

=
1

t
[T (σ(a+ tδa), u(a+ tδa)− z, u(a+ tδa)− z)

−T (σ(a), u(a+ tδa)− z, u(a+ tδa)− z)]

+
1

t
[T (σ(a), u(a+ tδa)− z, u(a+ tδa)− z)− T (σ(a), u(a)− z, u(a)− z)]

= T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+

1

t
[T (σ(a), u(a+ tδa)− z, u(a+ tδa)− z)− T (σ(a), u(a)− z, u(a)− z)]

= T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+

1

t
[T (σ(a), u(a+ tδa)− z, u(a+ tδa)− z)

−T (σ(a), u(a)− z, u(a+ tδa)− z)]

+
1

t
[T (σ(a), u(a)− z, u(a+ tδa)− z)− T (σ(a), u(a)− z, u(a)− z)] ,

which further simplifies to

∆J

2
= T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+ T

(
σ(a),

u(a+ tδa)− u(a)

t
, u(a+ tδa)− z

)
+ T

(
σ(a), u(a+ tδa)− z,

u(a+ tδa)− u(a)

t

)
= T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
+ 2T

(
σ(a), u(a+ tδa)− z,

u(a+ tδa)− u(a)

t

)
= A1(t) +A2(t),
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where

A1(t) = T

(
σ(a+ tδa)− σ(a)

t
, u(a+ tδa)− z, u(a+ tδa)− z

)
,

A2(t) = 2T

(
σ(a),

u(a+ tδa)− u(a)

t
, u(a+ tδa)− z

)
.

By using the following identities

lim
t→0

A1(t) = T
(
σ′(a; δa), u(a)− z, u(a)− z

)
lim
t→0

A2(t) = 2T
(
σ(a), u′(a; δa), u(a)− z

)
,

we obtain

J ′(a, δa) =
1

2
lim
t→0

∆J =
1

2
lim
t→0

[A1(t) +A2(t)]

=
1

2
T
(
σ′(a; δa), u(a)− z, u(a)− z

)
+ T

(
σ(a), u′(a; δa), u(a)− z

)
=

1

2
T
(
σ′(a; δa), u(a)− z, u(a)− z

)
− T (σ′(a; δa), u(a), u(a)− z)

[3pt] = −1

2
T
(
σ′(a; δa), u(a) + z, u(a)− z

)
,

where Theorem 2.3 was used. Since δa ∈ B is arbitrary, we conclude that J is
directionally differentiable. The proof is complete. �

Remark 2.5. The derivative characterization (2.4) is a natural extension of (1.9)
and the derivative (2.8) is a natural extension of (1.10).

We now proceed to give the second-order derivative for the MOLS:

Theorem 2.6. The MOLS (2.2) is second-order directionally differentiable at anya
in the interior of A. The second-order derivative, for any δa1, δa2 ∈ X, reads:

J ′′(a; δa1, δa2) = −1

2
T
(
σ′′(a; δa1, δa2), u(a) + z, u(a)− z

)
+ T (σ(a), u′(a, δa1), u

′(a, δa2))

Proof. Setting

∆J =
J ′(a+ tδa2; δa1)− J ′(a; δa1)

t
,

by Theorem 2.4, we have

∆J = − 1

2t

[
T
(
σ′(a+ tδa2; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z

)
− T

(
σ′(a; δa1), u(a) + z, u(a)− z

) ]
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and

∆J = − 1

2t

[
T
(
σ′(a+ tδa2; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z

)
− T (σ′(a; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z)

]
− 1

2t

[
T (σ′(a; δa1), u(a+ tδa2) + z, u(a+ tδa2)− z)

− T
(
σ′(a; δa1), u(a) + z, u(a)− z

) ]
= −1

2

[
T
(
t−1

(
σ′(a+ tδa2; δa1)− σ′(a; δa1)

)
,

u(a+ tδa2) + z, u(a+ tδa2)− z)]

− 1

2t

[
T (σ′(a; δa1), u(a+ tδa2)− z, u(a+ tδa2)− z)

− T
(
σ′(a; δa1), u(a) + z, u(a+ tδa2)− z

) ]
− 1

2t

[
T (σ′(a; δa1), u(a) + z, u(a+ tδa2)− z)

−T
(
σ′(a; δa1), u(a) + z, u(a)− z

)]
which becomes

∆J =− 1

2

(
T
(
t−1

(
σ′(a+ tδa2; δa1)− σ′(a; δa1)

)
,

u(a+ tδa2) + z, u(a+ tδa2)− z))

− 1

2
T
(
σ′(a; δa1), t

−1 (u(a+ tδa2)− u(a)) , u(a+ tδa2)− z
)

− 1

2
T
(
σ′(a; δa1), u(a) + z, t−1 (u(a+ tδa2)− u(a))

)
= −1

2
B1(t)−

1

2
B2(t)−

1

2
B3(t).

where

B1(t) = T
(
t−1

(
σ′(a+ tδa2; δa1)− σ′(a; δa1)

)
,

u(a+ tδa2) + z, u(a+ tδa2)− z)

B2(t) = T
(
σ′(a; δa1), t

−1 (u(a+ tδa2)− u(a)) , u(a+ tδa2)− z
)

B3(t) = T
(
σ′(a; δa1), u(a) + z, t−1 (u(a+ tδa2)− u(a))

)
.
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Therefore,

J ′′(a, δa1, δa2) = lim
t→0

[
−1

2
B1(t)−

1

2
B2(t)−

1

2
B3(t)

]
=− 1

2
T
(
σ′′(a; δa1, δa2), u(a) + z, u(a)− z

)
− 1

2
T (σ′(a; δa1), u

′(a; δa2), u(a)− z)

− 1

2
T (σ′(a; δa1), u(a) + z, u′(a; δa2))

=− 1

2
T
(
σ′′(a; δa1, δa2), u(a) + z, u(a)− z

)
− T (σ′(a; δa1), u

′(a; δa2), u(a)).

By applying Theorem 2.3, we obtain

J ′′(a, δa1, δa2) =− 1

2
T
(
σ′′(a; δa1, δa2), u(a) + z, u(a)− z

)
− T (σ′(a; δa1), u

′(a; δa2), u(a))

=− 1

2
T
(
σ′′(a; δa1, δa2), u(a) + z, u(a)− z

)
+ T (σ(a), u′(a; δa1), u

′(a; δa2)),

and the proof is complete. �

Remark 2.7. The second-order derivative is positive if

α∥u′(a, δa)∥2V − 1

2
T
(
σ′′(a; δa, δa), u(a) + z, u(a)− z

)
≥ 0,

uniformly. Clearly, if σ coincides with the identity map, then σ′(a, ·) = id, σ′′(a, ·, ·) =
0 and we recover the formula corresponding to (1.11).

3. Finite dimensional approximation

In this section, we develop a discretization framework. Assume that we are given
a parameter h converging to 0 and a family {Vh} of finite dimensional subspaces of
V. Analogously, we assume that Bh is a family of finite-dimensional subspaces of
B. We set Ah = Bh ∩A and assume that ∩∞

h=1Ah ̸= ∅. Recall that H is compactly
embedded in B and A ⊂ H. We assume that, for each h > 0, Ph : V → Vh and

P̃h : A→ Ah are the projection operators that satisfy

∥Phv − v∥V → 0, for every v ∈ V.(3.1)

∥P̃ha− a∥H → 0, for every a ∈ A.(3.2)

The discrete analogue of (1.7) reads: Given ah ∈ Ah, find uh ∈ Vh such that

(3.3) T (σ(ah), uh, vh) = m(vh), for every vh ∈ Vh.
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We consider the discrete minimization problem: Find a∗h ∈ Ah by solving

(3.4) min
ah∈Ah

Jh(ah) =
1

2
T (σ(ah), uh − z, uh − z) + κ∥ah∥2H ,

where uh is the unique solution of (3.3).
The following result ensures the convergence of the discrete problem:

Theorem 3.1. For each h, assume that a∗h ∈ Ah is a minimizer of (3.4). Then there
is a subsequence of {a∗h} that converges to a solution of the continuous optimization
problem (2.3).

Proof. The solvability of (3.4) follows from the arguments used earlier. For all h,
there exists a constant C such that Jh(a∗h) ≤ C, and hence {a∗h} is bounded in ∥·∥H .
Due to the compact embedding of H into B, there is a subsequence that converges
strongly, in ∥ · ∥B, to an element of A. We assume that {a∗h} converges, in ∥ · ∥B, to
some a∗ ∈ A. Let u∗ and u∗h be the unique solutions of the corresponding variational
problems for the parameters a∗ and a∗h, respectively. Note that the sequence {u∗h}
is bounded, independently of h. Therefore, there exists a subsequence, still denoted
by {u∗h} , such that u∗h converges weakly to some u∗ ∈ V as h → 0. We claim that
u∗ = u∗(a∗).

Let v ∈ V be fixed. By taking vh = Phv, where Ph is given in (3.1), we get

m(vh) = T (σ(a∗h), u
∗
h, vh)

= T (σ(a∗), u∗h, v) + T (σ(a∗h), u
∗
h, vh − v) + T (σ(a∗h)− σ(a∗), u∗h, v).(3.5)

The weak convergence of {u∗h} to u∗ gives T (σ(a∗), u∗h, v) → T (σ(a∗), u∗, v). By using
(3.1), we obtain |T (σ(a∗h), uh, vh − v)| ≤ β∥u∗h∥V ∥vh − v∥V → 0. Since a∗h → a∗ in
B, we have |T (σ(a∗h)− σ(a∗), u∗h, v)| → 0. Finally, the convergence vh = Phv → v
as h → 0, implies that m(vh) → m(v). Consequently, from (3.5), we infer that
T (σ(a∗), u∗, v) = m(v), for every v ∈ V, and since the variational problem is uniquely
solvable for every a ∈ A, we deduce that u∗ = u∗(a∗). Since {a∗h} ⊂ Ah converges to
a∗ ∈ A as h → 0 in B, we can show that T (σ(a∗h), u

∗
h − z, u∗h − z) → T (σ(a∗), u∗ −

z, u∗ − z). This observation yields

Jκ(a
∗) =

1

2
T (σ(a∗), u∗(σ(a∗))− z, u∗(a∗)− z) + κ∥a∗∥2H

≤ lim
h→0

{
1

2
T (σ(a∗h), u

∗
h(a

∗
h)− z, u∗h(a

∗
h)− z)

}
+ lim inf

h→0
κ∥a∗h∥2H

≤ lim inf
h→0

{
1

2
T (σ(a∗h), u

∗
h(a

∗
h)− z, u∗h(a

∗
h)− z) + κ∥a∗h∥2H

}
.

Let a ∈ A be arbitrary, and let ah = P̃ha, where P̃h is given in (3.2). We have

Jκ(a
∗) ≤ lim inf

h→0

{
1

2
T (σ(a∗h), u

∗
h − z, u∗h − z) + κ∥a∗h∥2H

}
≤ lim inf

h→0

{
1

2
T (ah, uh(ah)− z, uh(ah)− z) + κ∥ah∥2H

}
=

1

2
T (a, u(a)− z, u(a)− z) + κ∥a∥2H = Jκ(a),
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and since a ∈ A was chosen arbitrarily, we deduce that a∗ solves (2.3). �

4. Computational framework

We begin with a triangulation Th on Ω, Lh is the space of all piecewise con-
tinuous polynomials of degree da relative to Th and Vh is the space of all piece-
wise continuous polynomials of degree du relative to Th. Let the basis for Ah

and Vh be given by {φ1, φ2, . . . , φm} , and {ψ1, ψ2, . . . , ψk}, respectively. For any
a ∈ Lh, we define A ∈ Rm by Ai = a(xi), for i = 1, 2, . . . ,m, where the nodal
basis {φ1, φ2, . . . , φm} corresponds to the nodes {x1, x2, . . . , xm}. Conversely, each
A ∈ Rm corresponds to a ∈ Ah defined by a =

∑m
i=1Aiφi. We take σ(ah) =∑m

i=1 σ(Ai)φi and σ′(ah) =
∑m

i=1 σ
′(Ai)φi. Similarly, u ∈ Vh will correspond to

U ∈ Rk, where Ui = u(zi), i = 1, 2, . . . , k, and u =
∑k

i=1 Uiψi, where z1, z2, . . . , zk
are the nodes of the mesh defining Vh.

We define S : Rm → Rk to be the finite element solution operator that assigns
to each ah ∈ Ah, the unique solution uh ∈ Vh of the discrete problem (3.3) Then
S(A) = U , where U is given by K(A)U = F, where K(A)i,j = T (σ(a), ψj , ψi), for
i, j = 1, 2, . . . , k.

The discrete MOLS function J : Rm → R is given by

J(A) =
1

2
(V − Z) ·K(A)(V − Z),

where V is defined by S(A) = V and z is the discrete data. The gradient and the
Hessian formulas can be easily deduced from this discrete version.

5. Numerical results

We now present some numerical results that demonstrate the successful identifi-
cation of parameters using the MOLS functional. Recall that our goal is to identify
the parameter a in the equation

−∇ · (σ(a)∇u) = f in Ω.

We consider homogeneous Dirichlet boundary condition along the entire boundary.
Consider the problem in a two-dimensional domain Ω = [0, 1] × [0, 1], the position
vector is thus x = (x1, x2). We choose the (exact) parameter a and the load function
f as

a(x) = 1.5 + 0.2x22 + 0.1(sin(20x1) + 1)

f(x) = 4 + 0.02(x2 − 0.5)2.

The following options for the parameter map are investigated:

σ1(a) = a, σ2(a) = a3, σ3(a) =
1

a
.

The measured solution z in each case is produced by first solving the forward prob-
lem with the exact parameter a and then adding random noise. The noise added to
the measured solution z is from a uniform random distribution on the range [−α, α]
with α = 10−5. The regularization parameter for these computations is taken as
κ = 4 · 10−6.
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Figures 1-3 show reconstructions of a parameter a for parameter maps σ1 through
σ3 using MOLS functional. Comparisons of exact and identified parameters in top
rows show that the parameter is identified well for both linear σ1 map where the
functional is convex and nonlinear (σ2, σ3) where it is not convex. While the exact
parameter is the same always, the magnitude of the solution u (lower right images)
are very different for each parameter map, so the effect of the added random noise
(which is the same α = 10−5) is different in each case. The noise adds some
noticeable corruption in the reconstruction due to its relatively large magnitude
especially in the case of parameter map σ2. For this parameter map, the magnitude
of the solution u is really small and the effect of the noise in reconstruction is clearly
seen in the top right image of Figure 2.

All numerical experiments are carried out by using finite element library deal.II
[3]. The computational framework is tested extensively by a set of example problems
and it is shown to be quite robust. The computational cost of solving the inverse
problem is significantly higher in cases of nonlinear parameter maps σ2 and σ3
than the linear map σ1. For the case of linear parameter map, certain performance
optimizations are possible and this makes the overall identification process very
efficient.

We have also compared the performance of the new MOLS with the OLS. In all
our experiments; the new MOLS was significantly faster than the OLS. This benefit
of the new MOLS, however, was expected as the gradient computation of the OLS
requires the computation of the derivative of the parameter-to-solution map. The
proposed MOLS does not have any such requirement.

Figure 1. Exact and estimated parameters a and ah (top row),
error in parameter a (bottom left), and estimated solution uh for
the case of parameter map σ1.
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Figure 2. Exact and estimated parameters a and ah (top row),
error in parameter a (bottom left), and estimated solution uh for
the case of parameter map σ2.

Figure 3. Exact and estimated parameters a and ah (top row),
error in parameter a (bottom left), and estimated solution uh for
the case of parameter map σ3.
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6. Concluding remarks

In this paper, we investigated the inverse problem of identifying parameters which
appear nonlinearly in general variational problems. We proposed an extension of
the MOLS and showed that the convexity of the original MOLS cannot be retained
without additional assumptions. It would be of interest to further investigate the
stability aspect of the considered inverse problem under data perturbation. The
classical theory developed by Robinson [16] seems to pave the right path for such
development.
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