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Abstract

We consider parameter estimation in distributed networks, where each sensor in the network ob-

serves an independent sample from an underlying distribution and has k bits to communicate its

sample to a centralized processor which computes an estimate of a desired parameter. We develop

lower bounds for the minimax risk of estimating the underlying parameter under squared `2 loss for

a large class of distributions. Our results show that under mild regularity conditions, the communi-

cation constraint reduces the effective sample size by a factor of d when k is small, where d is the

dimension of the estimated parameter. Furthermore, this penalty reduces at most exponentially with

increasing k, which is the case for some models, e.g., estimating high-dimensional distributions.

For other models however, we show that the sample size reduction is re-mediated only linearly

with increasing k, e.g. when some sub-Gaussian structure is available. We apply our results to the

distributed setting with product Bernoulli model, multinomial model, and dense/sparse Gaussian

location models which recover or strengthen existing results.

Our approach significantly deviates from existing approaches for developing information-theoretic

lower bounds for communication-efficient estimation. We circumvent the need for strong data pro-

cessing inequalities used in prior work and develop a geometric approach which builds on a new

representation of the communication constraint. This approach allows us to strengthen and gener-

alize existing results with simpler and more transparent proofs.

Keywords: Distributed estimation; Minimax lower bound; High-dimensional geometry; Black-

board communication protocol; Strong data processing inequality

1. Introduction

Statistical estimation in distributed settings has gained increasing popularity motivated by the fact

that modern data sets are often distributed across multiple machines and processors, and bandwidth

and energy limitations in networks and within multiprocessor systems often impose significant bot-

tlenecks on the performance of algorithms. There are also an increasing number of applications

in which data is generated in a distributed manner and it (or features of it) are communicated over

bandwidth-limited links to central processors Boyd et al. (2011); Balcan et al. (2012); Daume III

et al. (2012); Daumé et al. (2012); Dekel et al. (2012).

In this paper, we focus on the impact of a finite-communication budget per sample on the perfor-

mance of several statistical estimation problems. More formally, consider the following parameter
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estimation problem

X1, X2, · · · , Xn
i.i.d∼ Pθ

where we would like to estimate θ ∈ Θ ⊂ R
d under squared `2 loss. In most examples throughout,

we will assume that Pθ enjoys a product structure

Pθ = pθ1 × pθ2 × · · · × pθd , θ = (θ1, · · · , θd) ∈ R
d.

Unlike the traditional setting where X1, · · · , Xn are available to the estimator as they are, we con-

sider a distributed setting where each observation Xi is available at a different sensor and has to be

communicated to a central estimator by using a communication budget of k bits. We consider the

blackboard communication protocol ΠBB Kushilevitz and Nisan (1997): all sensors communicate

via a publicly shown blackboard while the total number of bits each sensor can write in the final

transcript Y is limited by k. Note that when one sensor writes a message (bit) on the blackboard, all

other sensors can see the content of the message. We assume that public randomness is available in

the blackboard communication protocol.

Under both models, the central sensor needs to produce an estimate θ̂ of the underlying param-

eter θ from the the k-bit observations Y n it collects at the end of the communication. Our goal is to

jointly design the blackboard communication protocol ΠBB and the estimator θ̂(·) so as to minimize

the worst case squared `2 risk, i.e., to characterize

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22.

Distributed parameter estimation and function computation has been considered in many recent

works; we refer to Duchi et al. (2013); Zhang et al. (2013); Shamir (2014); Garg et al. (2014);

Braverman et al. (2016); Xu and Raginsky (2017) and the references therein for an overview. Most

of these works focus on the Gaussian location model and strong/distributed data processing inequal-

ities appear as the key technical step in developing converse results. A more recent work Diakoniko-

las et al. (2017) studied the high-dimensional distribution estimation problem under the blackboard

model without using strong data processing inequalities. However, a complete characterization of

the minimax risk for this problem with general (n, d, k) is still missing.

The main contributions of our paper are as follows:

1. For a large class of statistical models, we develop a novel geometric approach that builds on a

new representation of the communication constraint to establish information-theoretic lower

bounds for distributed parameter estimation problems. Our approach circumvents the need

for strong data processing inequalities, and relate the experimental design problem directly to

an explicit optimization problem in high-dimensional geometry.

2. Based on our new approach, we show that the communication constraint reduces the effective

sample size from n to n/d for k = 1 under mild regularity conditions and under both inde-

pendent and interactive models, where d is the dimension of the parameter to be estimated.

Moreover, as opposed to the linear dependence on k in prior works, our new approach en-

ables us to show that the penalty is at most exponential in k, which turns out to be tight in

high-dimensional distribution estimation.
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DISTRIBUTED PARAMETER ESTIMATION

3. Our new approach recovers the linear dependence on k when some sub-Gaussian structure is

available, e.g., in the Gaussian location model. This result builds on a geometric inequality

for the Gaussian measure, which may be of independent interest.

Notations: for a finite set A, let |A| denote its cardinality; [n] , {1, 2, · · · , n}; for a mea-

sure µ, let µ⊗n denote its n-fold product measure; lattice operations ∧,∨ are defined as a ∧ b =
min{a, b}, a ∨ b = max{a, b}; throughout the paper, logarithms log(·) are in the natural base;

standard notations from information theory are used: I(X;Y ) denotes the mutual information, and

D(P‖Q) denotes the Kullback–Leibler (KL) divergence between probability measures P and Q;

Multi(n;P ) denotes the multinomial model which observes n independent samples from P ; for

non-negative sequences {an} and {bn}, the notation an . bn (or bn & an, an = O(bn), bn =
Ω(an)) means lim supn→∞

an
bn

< ∞, and an � bn (bn � an, an = o(bn), bn = ω(an)) means

lim supn→∞
an
bn

= 0, and an � bn (or an = Θ(bn)) is equivalent to both an . bn and bn . an.

2. Main Results

2.1. Assumptions

We first consider the distributed estimation problem of θ in a general statistical model (Pθ)θ∈Θ⊂Rd .

Choose an interior point θ0 ∈ Θ, we consider the following regularity assumptions on (Pθ)θ∈Θ for

θ near θ0:

Assumption 1 The statistical model (Pθ)θ∈Θ is differentiable in quadratic mean at θ = θ0, with

score function Sθ0 and non-singular Fisher information matrix I(θ0).

Assumption 2 Let δ > 0 and θ0 + δ[−1, 1]d ⊂ Θ. There exist constants δ0, c0 > 0 such that if

δ < δ0(B
2d)−

1

4 , then

E

[

EU

(

dPθ0+δU
dPθ0

(X)− 1

)(

dPθ0+δU
dPθ0

(X ′)− 1

)

− δ2Sθ0(X)TSθ0(X
′)

]2

≤ (c0δ
4B2d)2, (1)

where U ∼ Unif({±1}d), random variables X,X ′ ∼ Pθ0 are independent, and B is the maximum

of all diagonal elements of I(θ0).

Assumption 3 Let δ > 0 and θ0 + δ[−1, 1]d ⊂ Θ. Let X be the sample space, and X0 ⊂ X
satisfy inf‖θ−θ0‖∞≤δ Pθ(X0) ≥ 1− d−5. Define (Qθ)θ∈Θ to be the conditional probability measure

obtained by restricting (Pθ)θ∈Θ on X0, i.e., Qθ(·) = Pθ(·∩X0)
Pθ(X0)

. There exist constants δ1, δ2, c1, c2 >

0 such that if δ < δ1(B
2d2 +B3d)−

1

4 , then

EQθ0

(

dQθ0+δu
dQθ0

(X)− 1

)4

≤ c21
(

B2d2 +B3d
)

δ4 (2)

holds for any u ∈ {±1}d, and if δ < δ2(B
2d log d)−

1

4 , then

EU

(

dQθ0+δU
dQθ0

(x)− 1

)(

dQθ0+δU
dQθ0

(x′)− 1

)

+ 1− exp(δ2Sθ0(x)
TSθ0(x

′))

≤ c2(δ
4B2d log d+

√

δ4B2d log d · exp(δ2Sθ0(x)TSθ0(x′)))
(3)

holds for any x, x′ ∈ X1 with Qθ0(X1) ≥ 1− d−5, where U,B are the same as Assumption 2.
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Assumption 1 is a standard regularity condition commonly used in asymptotic statistics Ibragi-

mov and Has’minskii (2013). Assumptions 2 and 3 roughly correspond to the product measure case

where Pθ0 = pθ1 × pθ2 × · · · × pθd , and control the remainder term in different ways. The insights

behind Assumptions 2 and 3 are that, based on local expansion of (Pθ)θ∈Θ around θ ≈ θ0, for small

δ we have

EU

(

dPθ0+δU
dPθ0

(x)− 1

)(

dPθ0+δU
dPθ0

(x′)− 1

)

≈ exp(δ2Sθ0(x)
TSθ0(x

′))− 1 ≈ δ2Sθ0(x)
TSθ0(x

′).

Roughly speaking, Assumption 2 corresponds to an approximate product measure for general sta-

tistical models and 3 imposes additional sub-Gaussian structure. We can choose X0 = X1 = X in

Assumption 3 under some models, while sometimes we use X0 to deal with the unbounded support

of (Pθ) and avoid the assumptions of bounded likelihood ratios, which were assumed in some pre-

vious works Braverman et al. (2016). The next proposition shows that, these assumptions hold for

many commonly used statistical models.

Proposition 1 Assumptions 1 and 2 hold for the Gaussian location model Pθ = N (θ, σ2Id) with

any θ0 ∈ R
d, the product Bernoulli model Pθ =

∏d
i=1 Bern(θi) with θ0 = (p, p, · · · , p) for p ∈

(0, 1), and the Multinomial model Pθ = Multi(1; θ) for any probability measure θ over d + 1
elements. In particular, for the Gaussian location model and the product Bernoulli model above,

Assumption 3 also holds.

2.2. Main Theorems

We present the following main theorem for the distributed inference of θ in general statistical models

(Pθ)θ∈Θ⊂Rd :

Theorem 2 (General lower bound) Let Pθ =
∏d
i=1 pθi , and Assumptions 1 and 2 be fulfilled for

(Pθ)θ∈Θ at θ0, with Pθ0 = p⊗dθ0 . Let s0(x), I0 be the score function and Fisher information of (pθ)

at θ = θ0, respectively. Then for any k ∈ N, n ≥ d2

2k∧d
, we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C · d2

n(2k ∧ d)Varpθ0 (s0(X))
= C · d2

n(2k ∧ d)I0

where the infimum is taken over all possible estimators θ̂ = θ̂(Y n) and blackboard protocols with

k-bit communication constraint, and the constant C > 0 is independent of n, d, k, I0.

We compare Theorem 2 with the centralized case. When there is no communication constraints,

classical Hájek–Le Cam theory Hájek (1972) tells that we can achieve a squared `2 risk 1/(nI0)
asymptotically for each coordinate, which sums up to d/(nI0) for the entire vector. Compared with

Theorem 2, we see an effective sample size reduction from n to n/(2−kd ∨ 1) if each sensor can

only transmit k bits. The following corollary is immediate for k = 1.

Corollary 3 (General lower bound for k = 1) When each sensor can only transmit one bit (i.e.,

k = 1), under the conditions of Theorem 2, for n ≥ d2 we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C · d
2

nI0
.
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Corollary 3 shows that when k = 1, we have an effective sample size reduction from n to n/d.

This bound can also possibly be achieved by a simple grouping idea: the sensors are splitted into d
groups, and all n/d sensors in one group contribute to estimating only one coordinate of θ. Hence,

we expect that the dependence on n, d of our lower bound to be tight for k = 1.

When k > 1, Theorem 2 shows that the dependence of the squared `2 risk on k cannot be faster

than 2−k, i.e., the penalty incurred by the distributed setting reduces at most exponentially in k. The

next theorem shows that, when the score function s0(X) has a sub-Gaussian tail, the above penalty

will reduce at most linearly in k. Recall that the ψ2-norm of a random variable X is defined by

‖X‖ψ2(P ) = inf{a > 0 : EP [exp(
X2

a2
)] ≤ 2},

which is the Orlicz norm of X associated with the Orlicz function ψ2(x) = exp(x2)− 1 Birnbaum

and Orlicz (1931). There are also some equivalent definitions of ψ2-norm, and ‖X‖ψ2
≤ σ if and

only ifX is sub-Gaussian with parameterC0σ for some absolute constantC0 > 0 Vershynin (2010).

Theorem 4 (Lower bound with sub-Gaussian structure) Let Assumptions 1 and 3 be fulfilled

for (Pθ)θ∈Θ at θ0, with Pθ =
∏d
i=1 pθi , Qθ =

∏d
i=1 qθi , Qθ0 = q⊗dθ0 . Let s0(x) be the score function

of (pθ) at θ = θ0, R , supx,x′∈X0
maxi∈[d] |s0(xi) − s0(x

′
i)| be the diameter of X0 in Assumption

3 in terms of the `∞ norm, and σ2 , ‖s0(X)‖2ψ2(qθ0 )
≤ d be the sub-Gaussian parameter of the

score function under qθ0 . Then for any k ≥ (R/σ)2 ∨ log d and n ≥ d2

k∧d , we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C · d2

n(k ∧ d)σ2 ,

where the constant C > 0 is independent of n, d, k, σ.

Theorem 4 improves over Theorem 2 in scenarios where s0(X) not only admits a finite variance

but also behaves like a Gaussian random variable. We remark that the different dependence on k in

Theorems 2 and 4 is due to the nature of different geometric inequalities (cf. Lemma 13 and Lemma

14) satisfied by general probability distributions and a sub-Gaussian distribution. Since typically

(R/σ)2 . log d, compared with the phase transition threshold k � d, the condition k ≥ (R/σ)2 is

mild; we believe this condition can be removed using better technical arguments.

2.3. Applications

Next we apply Theorems 2 and 4 to some concrete examples.

Corollary 5 (Distribution estimation) Let Pθ = Multi(1; θ) with Θ = Md being the probability

simplex over d elements. For k ∈ N and n ≥ d2

2k∧d
, we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C ·
(

d

n2k
∨ 1

n

)

where C > 0 is a universal constant independent of n, k, d.

5
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Corollary 6 (Gaussian location model) Let Pθ = N (θ, σ2Id) with Θ = R
d. Under any black-

board communication protocol, for k ≥ log d and n ≥ d2

k∧d , we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C ·
(

d2

nk
∨ d

n

)

σ2

where C > 0 is a universal constant independent of n, k, d, σ2.

Corollarys 5 and 6 follow from Theorems 2 and 4, respectively. Corollary 5 completely char-

acterizes the minimax risk for distribution estimation under general (n, k, d) Han et al. (2018),

which improves over Diakonikolas et al. (2017). Corollary 6 recover the results in Zhang et al.

(2013); Garg et al. (2014) (without logarithmic factors in the risk) under a mild technical condition

k ≥ log d. Note that these two models have different tight dependence on k: in Corollary 5, when

2k < d, we see an effective sample size reduction from n to n2k/d; in Corollary 6, when k < d, we

see an effective sample size reduction from n to nk/d. This phenomenon may be better illustrated

using the following example:

Proposition 7 (Product Bernoulli model) Let Pθ =
∏d
i=1 Bern(θi). If Θ = [0, 1]d and n ≥ d2

d∧k ,

we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 �
d2

nk
∨ d

n
.

If Θ , {(θ1, · · · , θd) ⊂ [0, 1]d :
∑d

i=1 θi = 1} and n ≥ d2

d∧2k
, we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 �
d

n2k
∨ 1

n
.

Note that the dependence of the squared `2 risk on k is significantly different under these two

scenarios, even if both of them are product Bernoulli models: the dependence is linear in k when

Θ = [0, 1]d, while it is exponential in k when Θ is the probability simplex. We remark that this is

due to the different behaviors of the score function: if θ0 =
1
2 , we have Var(s0(X)) � ‖s0(X)‖2ψ2

=

Θ(1); if θ0 = d−1, then Var(s0(X)) � d � d2 � ‖s0(X)‖2ψ2
. Hence, Theorem 4 utilizes the sub-

Gaussian nature and gives a better lower bound in the first case, and Theorem 2 becomes better in

the second case where the tail of the score function is essentially not sub-Gaussian.

Finally we look at the distributed mean estimation problem for sparse Gaussian location models.

Theorem 8 (Sparse Gaussian location model) Let Pθ = N (θ, σ2Id) with Θ = {θ ∈ R
d :

‖θ0‖ ≤ s ≤ d
2}. For k ≥ log d and n ≥ sd log(d/s)

k∧d , we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥ C ·
(

sd log(d/s)

nk
∨ s log(d/s)

n

)

σ2

where C > 0 is a universal constant independent of n, d, s, k, σ2.

Theorem 8 improves over Braverman et al. (2016) under a slightly different framework, with

tight logarithmic factors matching the upper bound in Garg et al. (2014). We see from Theorem 8

that as opposed to the logarithmic dependence on the ambient dimension d in the centralized setting,

the number of nodes required to achieve a vanishing error in the distributed setting must scale with

6
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d. Hence, the sparse mean estimation problem becomes much harder in the distributed case, and the

dimension involved in the effective sample size reduction (from n to nk/d) is the ambient dimension

d instead of the effective dimension s.
The rest of the paper is organized as follows. In Section 3 we introduce the tree representation

of the blackboard communication protocol, and sketch the lower bound proof based on the previous

representation. Section 4 is devoted to the proof of Theorems 2 and 4, where the key steps are two

geometric inequalities. Further discussions are in Section 5, and auxiliary lemmas and the proof of

main lemmas are in the appendices.

3. Representations of Blackboard Communication Protocol

The centralized lower bounds without communication constraints simply follows from the classical

asymptotics Hájek (1970, 1972), thus we devote our analysis to the communication constraints.

In this section, we establish an equivalent tree representation of the blackboard communication

protocol, and prove the statistical lower bound based on this representation.

3.1. Tree representation of blackboard communication protocol

Assume first that there is no public/private randomness, which will be revisited in the next subsec-

tion, and thus the protocol is deterministic. In this case, the blackboard communication protocol

ΠBB can be viewed as a binary tree Kushilevitz and Nisan (1997), where each internal node v of

the tree is assigned a deterministic label lv ∈ [n] indicating the identity of the sensor to write the

next bit on the blackboard if the protocol reaches node v; the left and right edges departing from v
correspond to the two possible values of this bit and are labeled by 0 and 1 respectively. Because all

bits written on the blackboard up to the current time are observed by all nodes, the sensors can keep

track of the progress of the protocol in the binary tree. The value of the bit written by node lv (when

the protocol is at node v) can depend on the sample Xlv observed by this node (and implicitly on all

bits previously written on the blackboard encoded in the position of the node v in the binary tree).

Therefore, this bit can be represented by a binary function av(x) ∈ {0, 1}, which we associate with

the node v; sensor lv evaluates this function on its sample Xlv to determine the value of its bit.

Note that the k-bit communication constraint for each node can be viewed as a labeling con-

straint for the binary tree; for each i ∈ [n], each possible path from the root node to a leaf node can

visit exactly k internal nodes with label i. In particular, the depth of the binary tree is nk and there is

one-to-one correspondance between all possible transcripts y ∈ {0, 1}nk and paths in the tree. Note

that a proper labeling of the binary tree together with the collection of functions {av(·)} (where v
ranges over all internal nodes) completely characterizes all possible (deterministic) communication

strategies for the sensors. Under this protocol model, the distribution of the transcript Y is

PX1,··· ,Xn∼P (Y = y) = EX1,··· ,Xn∼P

∏

v∈τ(y)

bv,y(Xlv)

where v ∈ τ(y) ranges over all internal nodes in the path τ(y) corresponding to y ∈ {0, 1}nk,

and bv,y(x) = av(x) if the path τ(y) goes through the right child of v and bv,y(x) = 1 − av(x)
otherwise. Due to the independence of X1, · · · , Xn, we have the following lemma which is similar

to the “cut-paste” property Bar-Yossef et al. (2004) for the blackboard communication protocol:

7



HAN ÖZGÜR WEISSMAN

Lemma 9 The distribution of the transcript Y can be written as follows: for any y ∈ {0, 1}nk, we

have PX1,··· ,Xn∼P (Y = y) =
∏n
i=1 EP [pi,y(Xi)] where pi,y(x) ,

∏

v∈τ(y),lv=i
bv,y(x).

The k-bit communication constraint results in the following important property:

Lemma 10 For each i ∈ [n] and {xj}nj=1 ∈ X n, the following equalities hold:
∑

y∈{0,1}nk

∏n
j=1 pj,y(xj) =

1 and
∑

y∈{0,1}nk

∏

j 6=i pj,y(xj) = 2k.

3.2. Minimax lower bound

This subsection is devoted to setting up the proof of the minimax lower bound in Theorems 2 and

4. We apply the standard testing argument: first, we construct a class of hypotheses and relate the

minimax risk to some mutual information via a distance-based Fano’s inequality; second, we derive

a universal upper bound for the mutual information which holds for any blackboard communication

protocol {av(·)}.

Let U ∼ Unif({±1}d). For each u ∈ {±1}d, we associate with a product probability measure

Pu given by Pu , pθ0+δu1×pθ0+δu2×· · ·×pθ0+δud ,where δ > 0 is some parameter to be specified

later. We also denote by P0 the product distribution Pθ0 = p⊗dθ0 for brevity. We will assume that

0 < δ < min{δ0, δ1} ·
1√
dI0

(4)

throughout the proof (with δ0, δ1 appearing in Assumptions 2 and 3), and will get back to it when

we specify δ in the end.

Now the setting is as follows: the observations X1, · · · , Xn are drawn from PU , then sensors

output the transcript Y ∈ {0, 1}nk according to the blackboard communication protocol, and finally

an estimator θ̂(Y ) is used to estimate θ. By a standard testing argument Tsybakov (2008), we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂(Y )− θ‖22 ≥
dδ2

10
inf
ΠBB

inf
Û

P

(

dHam(Û , U) ≥ d

5

)

where dHam(x, y) ,
∑d

i=1 1(xi 6= yi) denotes the Hamming distance. To lower bound P(dHam(Û , U) ≥
d
5) for any estimator Û under any blackboard communication protocol, we use the following distance-

based Fano’s inequality:

Lemma 11 (Duchi and Wainwright, 2013, Corollary 1) Let random variables V and V̂ take value

in V , V be uniform on some finite alphabet V , and V − X − V̂ form a Markov chain. Let d be

any metric on V , and for t > 0, define Nmax(t) , maxv∈V |v′ ∈ V : d(v, v′) ≤ t|, Nmin(t) ,
minv∈V |v′ ∈ V : d(v, v′) ≤ t|. If Nmax(t) +Nmin(t) < |V|, the following inequality holds:

P(d(V, V̂ ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nmax(t)

.

Applying Lemma 11 to the Markov chain U − Y − Û with Hamming distance dHam(·, ·) and

t = d
5 , we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂(Y )− θ‖22 ≥
dδ2

10

(

1− I(U ;Y ) + log 2

d/8

)

(5)

8
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where Chernoff bound (cf. Lemma 17) implies
Nmax(t)

|V| ≤ exp(−d
8). Hence, to establish the mini-

max lower bound, it suffices to upper bound the mutual information I(U ;Y ), where Lemma 9 plays

a central role in characterizing the distribution of Y given any U = u. Specifically,

I(U ;Y )
(a)

≤ EUD(PY |U‖PY |X∼P0
)
(b)
= EUEY |U

n
∑

i=1

log
EPU

pi,Y (Xi)

EP0
pi,Y (Xi)

(c)

≤ EUEY |U

n
∑

i=1

(

EPU
pi,Y (Xi)

EP0
pi,Y (Xi)

− 1

)

(d)
= EU

n
∑

i=1

∑

y∈{0,1}nk





∏

j 6=i

EPU
pj,y(Xj)



 · (EPU
pi,y(Xi)− EP0

pi,y(Xi))
2

EP0
pi,y(Xi)

, (6)

where (a) follows from the variational representation of mutual information I(X;Y ) = infQY
EXD(PY |X‖QY ),

inequality (b) follows from Lemma 9, (c) is due to log x ≤ x − 1, and (d) follows from Lemma 9

and the first equality of Lemma 10.

Before we further upper bound I(U ;Y ), we make some remarks. First, we show that it suf-

fices to consider deterministic protocols: this is due to the joint convexity of the KL divergence

D(P‖Q) ≤ ERD(P·|R‖Q·|R), and thus we can always condition on the randomness and prove an

upper bound on the mutual information in the deterministic case. Second, if Assumption 3 holds,

we may apply the previous analysis to (Qθ) instead of (Pθ). In fact, note that the total variation

distance between Qθ and Pθ is Pθ(X c
0 ) ≤ d−5 for ‖θ − θ0‖∞ ≤ δ, applying the testing arguments

to Qθ will only affect the test error by an additive factor of nd−5, which is negligible compared to

the Ω(1) test error we aim to obtain. With a slight abuse of notation we still write Qθ as Pθ in the

sequel for notational simplicity.

The main ingredient to upper bound I(U ;Y ) is summarized in the following lemma:

Lemma 12 Fix any i ∈ [n] and {xj}j 6=i ∈ X n−1, and define wi,y ,
∏

j 6=i pj,y(xj). Let S0(X) ,
(s0(X1), · · · , s0(Xd)) be the d-dimensional score function, and I0 be the Fisher information of the

1D model (pθ)θ∈Θ at θ = θ0. The following inequalities hold:

1. Under Assumptions 1 and 2, we have

∑

y∈{0,1}nk

wi,y · EU
(EPU

pi,y(Xi)− EP0
pi,y(Xi))

2

EP0
pi,y(Xi)

≤ S1 + c0I
2
0 · 2kδ4d

where c0 is the constant appearing in Assumption 2, and

S1 , δ2
∑

y∈{0,1}nk

wi,y ·
‖EP0

S0(X)pi,y(X)‖22
EP0

pi,y(X)
.

2. Under Assumptions 1 and 3, if I0 ≤ d, we have

∑

y∈{0,1}nk

wi,y · EU
(EPU

pi,y(Xi)− EP0
pi,y(Xi))

2

EP0
pi,y(Xi)

≤ S2 + 3(2c1I0 · δ2 + d−1) + c2(2I
2
0δ

4d log d+ S2 ·
√

I20δ
4d log d)

9
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where c1, c2 are the constants appearing in Assumption 3, and

S2 ,
∑

y∈{0,1}nk

wi,y ·
EP0

[pi,y(X)pi,y(X
′)(exp(δ2S0(X)TS0(X

′))− 1)]

EP0
pi,y(X)

with X ′ an independent copy of X .

The next section will upper bound the leading terms S1, S2 via geometric inequalities.

4. Lower Bounds via Geometric Inequalities

In this section, we upper bound S1, S2 in Lemma 12 using two different geometric inequalities, and

complete the proof of main Theorems 2 and 4.

4.1. Proof of Theorem 2 via Geometric Inequality I

Note that under a deterministic protocol, each summand of S1 has the following geometric interpre-

tation: since pi,y(X) = 1(Ay) must be an indicator function, then we may write S1 as

S1 = δ2
∑

y∈{0,1}nk

wi,y · P(Ay)‖E[S0(X)|Ay]‖22

where ‖E[S0(X)|Ay]‖2 is the `2 norm of the mean score function vector S0(X) conditioning on

the set Ay. Hence, we ask the following question:

Question 1 GivenP0(A) = t ∈ (0, 1), which setAmaximizes the `2 norm of the vector EP0
[S0(X)|A]?

What is the corresponding maximum `2 norm?

The following lemma presents an answer to Question 1:

Lemma 13 (Geometric Inequality I) For any set A ⊂ X , the following inequality holds:

‖EP0
[S0(X)|A]‖22 ≤ I0 ·

1− P0(A)

P0(A)
.

Note that Lemma 13 is a dimension-free result: the LHS depends on the dimensionality d, while

the RHS does not. For a comparison, if we directly apply Cauchy–Schwartz inequality to the LHS,

we will lose a multiplicative factor of d. The key observation in the dimensionality reduction is that

the independence between coordinates of S0(X) needs to be exploited.

Now we have all necessary tools for the proof of Theorem 2. By Lemma 13,

S1 ≤ δ2
∑

y∈{0,1}nk

wi,y · I0 = 2k · δ2I0 (7)

where the last identity is due to Lemma 10. Combining (5), (6), (7) and Lemma 12, we have

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥
dδ2

10

(

1− n2kI0(δ
2 + c0I0 · δ4d) + log 2

d/8

)

.

Now choosing δ2 = c d
n2kI0

, the condition n2k ≥ d2 ensures that δ2 ≤ c
dI0

. Hence, by choosing

c > 0 sufficiently small, the condition (4) is satisfied, and thus

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 &
d2

n2k · I0
.

10
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4.2. Proof of Theorem 4 via Geometric Inequality II

To upper bound S2, we first note that when δ is small, S2 coincides with S1 up to first-order Taylor

expansion. Hence, we may ask the following similar question:

Question 2 Suppose ‖s0(X)‖ψ2
≤ σ. Given P0(A) = t ∈ (0, 1), which set A ⊂ R

d maximizes

the `2 norm of the conditional mean vector EP0
[S0(X)|A] in A? What is the maximum `2 norm?

An upper bound on the `2 norm is given in the following lemma.

Lemma 14 (Geometric Inequality II) Assume that ‖s0(X)‖ψ2
≤ σ. Then for any A ⊂ X ,

‖EP0
[S0(X)|A]‖22 ≤ σ2 · log 2

P0(A)
.

Note that lemma 14 presents a dimension-free upper bound again. Compared with Lemma

13, for sub-Gaussian score function S0(X), Lemma 14 improves the upper bound from O(σ2) to

O(σ2t log 1
t ), where t = P0(A) is the “volume” of the setA. We provide two proofs of Lemma 14 in

the appendix. The first proof first reduces the problem to 1D and then makes use of the sub-Gaussian

tail. The second proof is more geometric when S0(X) is exactly Gaussian: information-theoretic

inequalities can be used to obtain a tight inequality for X ∼ Unif({±1}d), and then the “tensor

power trick” is applied to prove the Gaussian case.

Although Lemma 14 only upper bounds the first-order Taylor expansion of S2 when δ is small,

it serves as the key step in establishing the upper bound of S2:

Lemma 15 Assume that |s0(Xi)| ≤ R almost surely for any i ∈ [n] under pθ0 , and δ2dR2 ≤ 1.

Then if ‖s0(Xi)‖ψ2
≤ σ, there exists some constant C > 0 independent of δ, d, R, k, σ such that

S2 ≤ Cδ2
(

kσ2 +R2
)

.

Now we prove Theorem 4. Combining (5), (6), Lemma 12 and Lemma 15, we have

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥
dδ2

10

(

1− n(Cδ2(kσ2 +R2) + 3(2c1I0δ
2 + d−1) + c2CI

2
0δ

4d log d) + log 2

d/8

)

and choosing δ2 � d
nkσ2 completes the proof (note that k ≥ (R/σ)2 ∨ log d, and I0 ≤ σ2 ≤ d).

5. Discussions

5.1. Some Applications of Geometric Inequalities

The inequalities in Lemmas 13 and 14 have some other combinatorial applications related to geom-

etry. We consider the following combinatorial problem on the binary Hamming cube Ω = {±1}d:

1. Suppose we pick half of the vectors in Ω and compute the mean v̄ ∈ R
d, i.e., v̄ = |A|−1

∑

v∈A v
for some A ⊂ Ω, |A| = 2d−1, what is the maximum possible `2 norm ‖v̄‖2?

2. Suppose we pick 2dR vectors in Ω and compute the mean v̄ ∈ R
d, where R ∈ (0, 1), what is

the dependence of the maximum possible `2 norm ‖v̄‖2 on d and R?

11
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This geometric problem is closely related to the optimal data compression in multiterminal statistical

inference Amari (2011). We prove the following proposition:

Proposition 16 Under the previous setting, we have

max
A⊂Ω:|A|=2d−1

∥

∥

∥

∥

∥

1

|A|
∑

v∈A

v

∥

∥

∥

∥

∥

2

= 1, max
A⊂Ω:|A|=2dR

∥

∥

∥

∥

∥

1

|A|
∑

v∈A

v

∥

∥

∥

∥

∥

2

=
√
d(1− 2h−1

2 (R)) · (1 + od(1))

where h2(·) is the binary entropy function defined in Lemma 18.

Proposition 16 gives the exact maximum `2 norm when |A| = 2d−1 and its asymptotic behavior

on d and R as d → ∞ when |A| = 2dR. We see that for |A| = 2d−1, the maximum `2 norm is

attained when A is the half space (or the d− 1 dimensional sub-cube), i.e., A = {x ∈ Ω : x1 = 1}.

However, for relatively small |A| = 2dR, the maximum `2 norm is nearly attained at spherical

caps, i.e., A = {x ∈ Ω : dHam(x, x0) ≤ t} for any fixed x0 ∈ Ω and a proper radius t such that

|A| = 2dR. Hence, there are different behaviors for dense and sparse sets A.

5.2. Comparison with Strong Data Processing Inequalities (SDPI)

We compare our techniques with existing ones in establishing the lower bound for distributed pa-

rameter estimation problem. By Fano’s inequality, the key step is to upper bound the mutual in-

formation I(U ;Y ) under the Markov chain U −X − Y , where the link U −X is dictated by the

statistical model, and the link X − Y is subject to the communication constraint I(X;Y ) ≤ k.

While trivially I(U ;Y ) ≤ I(U ;X) and I(U ;Y ) ≤ I(X;Y ), neither of these two inequalities are

typically sufficient to obtain a good lower bound. A strong data processing inequality (SDPI)

I(U ;Y ) ≤ γ∗(U,X)I(X;Y ), ∀pY |X (8)

with γ∗(U,X) < 1 can be desirable. The SDPI may take different forms (e.g., for f -divergences),

and it is applied in most works on distributed estimation, e.g., Zhang et al. (2013); Braverman et al.

(2016); Xu and Raginsky (2017). The SDPI-based approach turns out to be tight in certain models

(e.g., the Gaussian model Zhang et al. (2013); Braverman et al. (2016)), while it is also subject to

some drawbacks:

1. The tight constant γ∗(U,X) is hard to obtain in general;

2. The linearity of (8) in I(X;Y ) can only give a linear dependence of I(U ;Y ) on k, which

may not be tight. For example, in Corollary 5 the optimal dependence on k is exponential;

3. The conditional distribution pY ∗|X achieving the equality in (8) typically leads to I(X;Y ∗) →
0, and (8) may be loose for I(X;Y ) = k;

4. The operational meaning of (8) is not clear, which may not result in a valid encoding scheme

from X to Y .

In contrast to the linear dependence on k using SDPI, our technique implies that the dependence

on k is closely related to the tail of the score function. It would be an interesting future direction to

explore other dependence on k (instead of linear or exponential) in other statistical models.

12
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Appendix A. Auxiliary Lemmas

Lemma 17 Mitzenmacher and Upfal (2005) For X ∼ Poi(λ) or X ∼ B(n, λn) and any δ > 0, we

have

P(X ≥ (1 + δ)λ) ≤
(

eδ

(1 + δ)1+δ

)λ

≤ exp(−(δ2 ∧ δ)λ
3

),

P(X ≤ (1− δ)λ) ≤
(

e−δ

(1− δ)1−δ

)λ

≤ exp(−δ
2λ

2
).

Lemma 18 Wyner (1973) For the binary entropy function h2(x) , −x log2 x− (1−x) log2(1−x)
on [0, 12 ], let h−1

2 (y) be its inverse for y ∈ [0, 1]. Then the function

f(y) = (1− 2h−1
2 (y))2

is a decreasing concave function, with f(y) ≤ 2 log 2 · (1− y) for all y ∈ [0, 1].

Appendix B. Proof of Main Lemmas

B.1. Proof of Lemma 10

We prove a stronger result: for any strategy {av(·)}, if each path from the root to any leaf node

visits exactly ki internal nodes with label i for each i ∈ [n], then

∑

y∈{0,1}
∑n

i=1
ki

∏

v∈τ(y),lv 6=i

bv,y(xlv) = 2ki (9)

for any {xj}j 6=i. Clearly (9) implies the lemma (i.e., with ki = 0 and ki = k, respectively).

We prove (9) by induction on the depth D =
∑n

i=1 ki of the binary tree. The base case D = 0
is obvious. To move fromD toD+1, distinguish into two cases and apply the induction hypothesis

to the left/right tree of the root:

1. If the root node is labeled as i, then (9) follows from 2ki = 2ki−1 + 2ki−1;

2. If the root node is not labeled as i, then (9) follows from 2ki = 2kiaroot(xi)+2ki(1−aroot(xi)).

B.2. Proof of Lemma 12

We first assume that Assumptions 1 and 2 hold. By Fubini’s theorem,

EU (EPU
pi,y(X)− EP0

pi,y(X))2 = EU

(

EP0

(

dPU
dP0

(X)− 1

)

pi,y(X)

)2

= EUEP0

(

dPU
dP0

(X)− 1

)(

dPU
dP0

(X ′)− 1

)

pi,y(X)pi,y(X
′)

= EP0

[

pi,y(X)pi,y(X
′)EU

(

dPU
dP0

(X)− 1

)(

dPU
dP0

(X ′)− 1

)]

15
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where X ′ is an independent copy of X . By (1), we write

EU

(

dPU
dP0

(X)− 1

)(

dPU
dP0

(X ′)− 1

)

= δ2S0(X)TS0(X
′) + r1(X,X

′)

with E[r1(X,X
′)2]

1

2 ≤ c0I0 · δ4d. Note that

EP0

[

pi,y(X)pi,y(X
′) · δ2S0(X)TS0(X

′)
]

= δ2‖EP0
S0(X)pi,y(X)‖22 (10)

and by Cauchy–Schwartz,

EP0

[

pi,y(X)pi,y(X
′) · r1(X,X ′)

]

≤
√

EP0
[pi,y(X)2pi,y(X ′)2] ·

√

EP0
r1(X,X ′)2

≤ EP0
[pi,y(X)2] · c0I20δ4d.

Hence, the sum of the remainder terms can be upper bounded as

∑

y∈{0,1}nk

wi,y ·
EP0

[pi,y(X)pi,y(X
′) · r1(X,X ′)]

EP0
[pi,y(X)]

≤ c0I
2
0δ

4d
∑

y∈{0,1}nk

wi,y ·
EP0

[pi,y(X)2]

EP0
[pi,y(X)]

≤ c0I
2
0δ

4d
∑

y∈{0,1}nk

wi,y

= c0I
2
0 · 2kδ4d (11)

where we have used pi,y(·) ∈ [0, 1] and the identity
∑

y wi,y = 2k in Lemma 10. Combining (10)

and (11) completes the proof of the first inequality of Lemma 12.

Next we assume that Assumptions 1 and 3 hold. By (3), we write

EU

(

dPU
dP0

(X)− 1

)(

dPU
dP0

(X ′)− 1

)

= exp(δ2S0(X)TS0(X
′))− 1 + r2(X,X

′)

where |r2(X,X ′)| ≤ c2I0 · (1 + exp(δ2S0(X)TS0(X
′))) · δ4d log d almost surely conditioning on

X,X ′ ∈ X1. Define Z , 1(X,X ′ ∈ X1), we split the remainder term into two parts:

EP0

[

pi,y(X)pi,y(X
′) · r2(X,X ′)

]

= EP0

[

pi,y(X)pi,y(X
′) · r2(X,X ′)Z

]

+ EP0

[

pi,y(X)pi,y(X
′) · r2(X,X ′)(1− Z)

]

, A1,y +A2,y.

For the first term A1,y, since r2(X,X
′)Z is upper bounded and pi,y(·) ≥ 0, we have

A1,y ≤ c2EP0

[

pi,y(X)pi,y(X
′) · (I20δ4d log d+

√

I20δ
4d log d · exp(δ2S0(X)TS0(X

′)))

]

= c2

(

I20δ
4d log d · (EP0

pi,y(X))2 +
√

I20δ
4d log d · EP0

[

pi,y(X)pi,y(X
′) · exp(δ2S0(X)TS0(X

′))
]

)

and thus the sum can be upper bounded as

∑

y∈{0,1}nk

wi,y ·
A1,y

EP0
[pi,y(X)]

≤ c2



I20δ
4d log d+

√

I20δ
4d log d

∑

y∈{0,1}nk

wi,y ·
EP0

[

pi,y(X)pi,y(X
′) · exp(δ2S0(X)TS0(X

′))
]

EP0
[pi,y(X)]





(12)
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where we have used the identity
∑

y wi,yEP0
pi,y(X) = 1 in Lemma 10.

As for the second term A2,y, note that

r2(X,X
′) ≤ r3(X,X

′) , EU

(

dPU
dP0

(X)− 1

)(

dPU
dP0

(X ′)− 1

)

+ 1.

We further write the indicator function

1− Z = 1(X ∈ X1, X
′ /∈ X1) + 1(X /∈ X1, X

′ ∈ X1) + 1(X /∈ X1, X
′ /∈ X1)

as the sum of three indicators functions on rectangles. For the first rectangle, by Fubini’s theorem

we have

EP0

[

pi,y(X)pi,y(X
′) · r3(X,X ′)1(X ∈ X1, X

′ /∈ X1)
]

=

(

EP0

[

pi,y(X)

(

dPU
dP0

(X)− 1

)

1(X ∈ X1)

])(

EP0

[

pi,y(X)

(

dPU
dP0

(X)− 1

)

1(X /∈ X1)

])

+ (EP0
[pi,y(X)1(X ∈ X1)]) (EP0

[pi,y(X)1(X /∈ X1)]) . (13)

To deal with the above terms, we define

f(X) ,

(

dPU
dP0

(X)− 1

)

1(X ∈ X1)

g(X) ,

(

dPU
dP0

(X)− 1

)

1(X /∈ X1)

ey(X) ,
√

wi,y
EP0

[pi,y(X)]
· pi,y(X), y ∈ {0, 1}nk.

Consider the inner product 〈u, v〉 , EP0
[u(X)v(X)] for u, v ∈ L2(P0), the sum of the first term of

(13) can be written as
∑

y〈f, ey〉〈g, ey〉. Since we are considering a deterministic protocol, we have

wi,y ∈ {0, 1}, pi,y(X) ∈ {0, 1}. As a result, {ey(·)} are orthogonal to each other, and ‖ey‖ ≤ 1.

Hence,

∣

∣

∣

∣

∣

∑

y

〈f, ey〉〈g, ey〉
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

f,
∑

y

ey〈g, ey〉
〉∣

∣

∣

∣

∣

≤ ‖f‖ ·
∥

∥

∥

∥

∥

∑

y

ey〈g, ey〉
∥

∥

∥

∥

∥

≤ ‖f‖ · ‖g‖

where the first inequality is due to Cauchy–Schwartz, and the second inequality is Bessel’s inequal-

ity due to orthogonality. By inequality (2) in Assumption 3, we further have

‖f‖ · ‖g‖ ≤
√

EP0

(

dPU
dP0

(X)− 1

)2

·
√

EP0

(

dPU
dP0

(X)− 1

)2

1(X /∈ X1)

≤
√

EP0

(

dPU
dP0

(X)− 1

)4

· [EP0
1(X /∈ X1)]

1

4

≤ c1(I0 · dδ2 + I
3

2

0 ·
√
dδ2) · d− 5

4

≤ 2c1I0 · δ2
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when I0 ≤ d. Using similar arguments to deal with the second term of (13), we arrive at
∑

y∈{0,1}nk

wi,y · EP0

[

pi,y(X)pi,y(X
′) · r3(X,X ′)1(X ∈ X1, X

′ /∈ X1)
]

≤ 2c1I0 · δ2 + d−1. (14)

We handle the other two rectangles analogously, and the proof of Lemma 12 is completed using

(12), (14).

B.3. Proof of Lemma 13

Consider the Hilbert space H consisting of all squared integrable random variables X under P0,

with inner product 〈X,Y 〉H , EP0
[XY ]. Since (s0(X1), · · · , s0(Xd)) is an i.i.d random vector

with

EP0
[s0(X1)] = 0, EP0

[s0(X1)
2] = I0

we conclude that the constant 1 and I
−1/2
0 (s0(X1), · · · , s0(Xd)) constitute an orthonormal system

in H. Now for the element 1A(X) ∈ H, Bessel’s inequality Rudin (1987) gives

‖1A‖2H ≥ 〈1A(X), 1〉2H +

d
∑

i=1

〈1A(X), I
− 1

2

0 s0(Xi)〉2H.

A rearrangement of this inequality gives the desired result.

B.4. Proof of Lemma 14

Using ‖u‖2 = supv:‖v‖2=1〈u, v〉, it suffices to prove that EP0
[〈X, v〉|A]2 ≤ C1 log

C2

P0(A)
for any

unit vector v. Note that the random vector S0(X) consists of i.i.d sub-Gaussian components, the

inner product 〈S0(X), v〉 is also sub-Gaussian with

‖〈S0(X), v〉‖2ψ2
≤

d
∑

i=1

v2i ‖s0(Xi)‖2ψ2
≤ σ2.

Hence, we may always reduce to the 1D case and assume that S0(X) is sub-Gaussian with ‖S0(X)‖ψ2
≤

σ. Now by the convexity of x 7→ exp(x
2

σ2 ),

2 ≥ EP0
[exp(

[S0(X)]2

σ2
)] ≥ EP0

[exp(
[S0(X)]2

σ2
)1A(X)] ≥ P0(A) · exp(

EP0
[S0(X)|A]2
σ2

)

which gives the desired lemma.

B.5. Another Proof of Lemma 14 in Gaussian Case

We prove the following lemma:

Lemma 19 For X ∼ N (0, Id) and any measurable A ⊂ R
d, we have

‖E[X|A]‖22 ≤ 2 · log 1

P(A)
.

We split the proof into two steps: we first consider the uniform distribution on the binary hypercube,

and then use the tensor power trick to reduce to the Gaussian case.
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B.5.1. GEOMETRIC INEQUALITY ON BINARY HYPERCUBE

We prove the following lemma:

Lemma 20 For X ∼ Unif({±1}d) and any non-negative function a(·) ∈ [0, 1], we have

∥

∥

∥

∥

EXa(X)

Ea(X)

∥

∥

∥

∥

2

2

≤ 2 · log 1

E[a(X)]

Moreover, the dimension-free constant 2 cannot be improved.

Proof Define a new probability measure Q(·) on the binary hypercube {±1}d with Q(y) ∝ a(y),
and let Y ∼ Q. Let pi , P(Yi = 1) for i ∈ [d], then

∥

∥

∥

∥

EXa(X)

Ea(X)

∥

∥

∥

∥

2

2

= ‖EY ‖22 =
d
∑

i=1

(EYi)
2 =

d
∑

i=1

(1− 2pi)
2.

Recall the definition of h2(·) in Lemma 18. Define qi , h2(pi), the concavity in Lemma 18 gives

∥

∥

∥

∥

EXa(X)

Ea(X)

∥

∥

∥

∥

2

2

=

d
∑

i=1

(1− 2h−1
2 (qi))

2 ≤ d

(

1− 2h−1
2

(

1

d

d
∑

i=1

qi

))2

.

On the other hand, by the subadditivity of Shannon entropy,

d
∑

i=1

qi =
1

log 2

d
∑

i=1

H(Yi) ≥
H(Y )

log 2
= d− E

[

log2
a(Y )

E[a(X)]

]

≥ d− E

[

log2
1

E[a(X)]

]

= d− log2
1

E[a(X)]
.

Hence, applying the decreasing property and the last inequality in Lemma 18, we have

∥

∥

∥

∥

EXa(X)

Ea(X)

∥

∥

∥

∥

2

2

≤ d

(

1− 2h−1
2

(

1− 1

d
log2

1

E[a(X)]

))2

≤ d · 2 log 2 · 1
d
log2

1

E[a(X)]

= 2 log
1

E[a(X)]
.

To show that 2 is the best possible constant, pick a(x) = 1B(x) where B is the Hamming ball

with center 1 and radius εd. Direct computation gives the constant 2 as d→ ∞ and ε→ 0.

B.5.2. TENSOR POWER TRICK

Next we make use of Lemma 20 to prove the Gaussian case. We apply the so-called tensor power

trick: we lift the dimension by making B independent copies, and apply CLT to move to the Gaus-

sian case as B → ∞. This idea has been widely used in harmonic analysis and high-dimensional

geometry, e.g., to prove the isoperimetric inequality for the Gaussian measure Ledoux (2005).
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Here the trick goes: fix any dimension d and any function a(·) ∈ [0, 1] defined on R
d. By a

suitable approximation we may assume that a(·) is continuous. Now for any B > 0, we define a

new function ã(·) on {±1}dB as follows:

ã(X) = ã({Xi,j}i∈[d],j∈[B]) , a

(

∑n
j=1X1,j√
B

, · · · ,
∑n

j=1Xd,j√
B

)

.

By symmetry, we have

‖EXã(X)‖22 =
d
∑

i=1

(

E

[

∑B
j=1Xi,j√
B

a

(

∑n
j=1X1,j√
B

, · · · ,
∑n

j=1Xd,j√
B

)])2

.

Moreover, by Lemma 20, we have

∥

∥

∥

∥

EXã(X)

Eã(X)

∥

∥

∥

∥

2

2

≤ 2 · log 1

E[ã(X)]
. (15)

Let Z ∼ N (0, Id), then CLT gives ‖EXã(X)‖22 → ‖EZa(Z)‖22 and E[ã(X)] → E[a(Z)] as

B → ∞. Hence, as B → ∞, (15) becomes

∥

∥

∥

∥

EZa(Z)

Ea(Z)

∥

∥

∥

∥

2

2

≤ 2 · log 1

E[a(Z)]
. (16)

Note that (16) holds for all d and a(·), the proof of Lemma 19 is complete by choosing a(·) = 1A(·).

B.6. Proof of Lemma 15

We use the notation 〈u, v〉 , uT v to denote the inner product between two vectors. Moreover, for

the sake of notational simplicity, we write y = S0(x), y
′ = S0(x

′). We have the Taylor expansion

exp(δ2〈S0(x), S0(x′)〉)− 1 =
∞
∑

m=1

δ2m〈y, y′〉m
m!

=
∞
∑

m=1

δ2m〈y⊗m, (y′)⊗m〉
m!

.

Hence,

S2 =
∞
∑

m=1

δ2m

m!

∑

y∈{0,1}nk

wi,y ·
‖EP0

Y ⊗mpi,y(X)‖22
EP0

pi,y(X)
. (17)

We upper bound ‖EP0
Y ⊗mpi,y(X)‖22 for each m ≥ 1. The tensor Y ⊗m has dimension dm, and

each coordinate of Y ⊗m takes the form yi1yi2 · · · yim for i1, i2, · · · , im ∈ [d]. We split the entire

dm indices into several groups:

1. If there are repeated elements in i1, · · · , im, we define d groups Gi1,i2,··· ,im = {(i1, · · · , im)}
for each im ∈ [d]. Each group G only has one element.

2. If there is no repeated element in i1, · · · , im−1, we define one group Hi1,i2,··· ,im−1
= {(i1, · · · , im) :

im /∈ {i1, · · · , im−1}}. Each group H has d−m+ 1 elements.
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It’s obvious that all possible G’s and H’s constitute a partition of [d]m. Let YG be the shortened

vector consisting of indices in G only, we have

‖EP0
Y ⊗mpi,y(X)‖22 =

∑

G

‖EP0
YGpi,y(X)‖22 +

∑

H

‖EP0
YHpi,y(X)‖22.

Next we upper bound each term of the RHS separately.

For each G-group Gi1,··· ,im , the restriction YGi1,··· ,im
is in fact a scalar, and thus by the bound-

edness assumption of Y , we have ‖EP0
YGpi,y(X)‖22 ≤ R2m(EP0

pi,y(X))2. The total number of

G-groups is at most dm−1 · (m− 1), and thus

∑

G

‖EP0
YGpi,y(X)‖22 ≤ dm−1(m− 1) ·R2m(EP0

pi,y(X))2. (18)

For each H-group Hi1,··· ,im−1
, the restriction YHi1,··· ,im−1

is a vector in R
d−m+1. Moreover, for

any unit vector v ∈ R
d−m+1, the inner product

〈YHi1,··· ,im−1
, v〉 = yi1yi2 · · · yim−1

〈(yim)im /∈{i1,··· ,im−1}, v〉

has squared ψ2 norm at most R2(m−1)σ2, where we have used |yil | ≤ R for any l ∈ [m − 1], the

sub-Gaussian assumption of each yim , and the independence between coordinates of Y . As a result,

using the same argument in Lemma 14, we have

‖EP0
YHi1,··· ,im−1

pi,y(X)‖22 ≤ R2(m−1)σ2 · (EP0
pi,y(X))2 log

2

EP0
pi,y(X)

.

The total number of H-groups is
(

d
m−1

)

≤ dm−1, and thus

∑

H

‖EP0
YHpi,y(X)‖22 ≤ dm−1 ·R2(m−1)σ2(EP0

pi,y(X))2 log
2

EP0
pi,y(X)

. (19)

Combining (18) and (19), we have

∑

y∈{0,1}nk

wi,y ·
‖EP0

Y ⊗mpi,y(X)‖22
EP0

pi,y(X)

≤ (dR2)m−1
∑

y∈{0,1}nk

wi,y

(

(m− 1)R2 · EP0
pi,y(X) + σ2 · EP0

pi,y(X) log
2

EP0
pi,y(X)

)

= (dR2)m−1 ·



(m− 1)R2 + σ2
∑

y∈{0,1}nk

wi,y · EP0
pi,y(X) log

2

EP0
pi,y(X)



 (20)
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where we have used Lemma 10 in the last equality. For the remaining sum, we apply Lemma 10

and Jensen’s inequality to the concave function x 7→ x log 1
x to obtain

∑

y∈{0,1}nk

wi,y · EP0
pi,y(X) log

2

EP0
pi,y(X)

= 2k
∑

y∈{0,1}nk

wi,y
2k

· EP0
pi,y(X) log

2

EP0
pi,y(X)

≤ 2k





∑

y∈{0,1}nk

wi,y
2k

EP0
pi,y(X)



 log
2

(

∑

y∈{0,1}nk
wi,y

2k
EP0

pi,y(X)
)

= 2k · 1

2k
log

2

2−k
= k + 1. (21)

Finally, a combination (17), (20) and (21) yields

S2 ≤
∞
∑

m=1

δ2m

m!
· (dR2)m−1

(

(m− 1)R2 + (k + 1)σ2
)

≤ δ2R2
∞
∑

m=1

(δ2dR2)m−1

(m− 1)!
+ (k + 1)δ2σ2

∞
∑

m=1

(δ2dR2)m−1

m!

≤ δ2 exp(δ2dR2) ·
(

(k + 1)σ2 +R2
)

≤ Cδ2
(

kσ2 +R2
)

where the last step used the assumption δ2dR2 ≤ 1. The proof is complete.

Appendix C. Proof of Propositions and Theorem 8

C.1. Proof of Proposition 1

For notational simplicity, let r1(x, x
′), r2(x, x

′) denote the remainder terms (inside the expectation

over X,X ′) appearing in (1) and (3), respectively.

For the Multinomial distribution with probability measure θ over d + 1 elements, we consider

the free parameter (θ1, · · · , θd) with θd+1 = 1−∑d
i=1 θi. In this model we have

Sθ0(X)i =
1(X = i)

θi
− 1(X = d+ 1)

θd+1
, I(θ0)i,j =

1(i = j)

θi
+

1

θd+1
, i, j ∈ [d].

Moreover,

dPθ0+δU
dPθ0

(X)− 1 =

d
∑

i=1

δui
θi
1(X = i)− δ

∑d
i=1 ui
θd+1

1(X = d+ 1) = δ · Sθ0(X)TU.

Since E[UUT ] = I , for any x, x′ ∈ X , we have

EU

(

dPθ0+δU
dPθ0

(x)− 1

)(

dPθ0+δU
dPθ0

(x′)− 1

)

= δ2 · Sθ0(x)TSθ0(x′)
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i.e., (1) is satisfied. Hence, the Multinomial distribution satisfies Assumptions 1 and 2.

Next we consider the product Bernoulli distribution
∏d
i=1 Bern(θi) with θ0 = (p, p, · · · , p),

where p ∈ (0, 1). Assume that X = {−1, 1}, in this model we have

Sθ0(X)i =
Xi + (1− 2p)

2p(1− p)
, I(θ0)i,j =

1(i = j)

p(1− p)
, i, j ∈ [d].

Moreover,

dPθ0+δU
dPθ0

(X)− 1 =
d
∏

i=1

(

1 + δui ·
Xi + (1− 2p)

2p(1− p)

)

− 1 =
d
∏

i=1

(1 + δui · Sθ0(Xi))− 1.

As a result,

EU

(

dPθ0+δU
dPθ0

(x)− 1

)(

dPθ0+δU
dPθ0

(x′)− 1

)

=

d
∏

i=1

(1 + δ2Sθ0(xi)Sθ0(x
′
i))− 1.

Since Sθ0(Xi), i ∈ [d] are i.i.d. Bernoulli random variables, we may calculate the second moment

of the remainder term r1(X,X
′) explicitly as (note that B = 1

p(1−p) )

Er1(X,X
′)2 = (1 + δ4B2)d − 1− δ4B2d ≤ (c0 · δ4B2d)2

as long as δ4B2d = O(1), establishing (1). As for Assumption 3, we choose X0 = X1 = X =
{±1}d. Since

r2(x, x
′) =

d
∏

i=1

(1 + δ2Sθ0(xi)Sθ0(x
′
i))− exp(δ2Sθ0(x)

TSθ0(x
′)) ≤ 0,

inequality (3) holds. As for inequality (2), for any u ∈ {±1}d we have

E

(

dPθ0+δu
dPθ0

(X)− 1

)4

=

4
∑

`=0

(−1)`
(

4

`

) d
∏

i=1

(

p

(

1 +
δui
p

)`

+ (1− p)

(

1− δui
1− p

)`
)

=

4
∑

`=0

(−1)`
(

4

`

) d
∏

i=1

(

1 +

(

`

2

)

Bδ2 +

(

`

3

)

u3i

(

1

p2
− 1

(1− p)2

)

δ3 +O(B3δ4)

)

=

4
∑

`=0

(−1)`
(

4

`

)

(

1 +

d
∑

i=1

((

`

2

)

Bδ2 +

(

`

3

)

u3i

(

1

p2
− 1

(1− p)2

)

δ3
)

+O(B2δ4d2 +B3δ4d)
)

= O(B2δ4d2 +B3δ4d)

if B2δ4d2 + B3δ4d = O(1). Hence, Assumptions 1, 2, 3 hold for product Bernoulli models with

any p ∈ (0, 1).
Finally we consider the Gaussian location model Pθ = N (θ, σ2Id) for any θ ∈ R

d, σ > 0. By

translation and scaling properties, it suffices to consider the case where θ0 = (0, 0, · · · , 0), σ2 = 1.

In this model we have

Sθ0(X)i = Xi, I(θ0)i,j = 1(i = j), i, j ∈ [d].
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Moreover,

dPθ0+δU
dPθ0

(X)− 1 = exp

(

δ

d
∑

i=1

uiXi −
δ2d

2

)

− 1.

As a result,

EU

(

dPθ0+δU
dPθ0

(x)− 1

)(

dPθ0+δU
dPθ0

(x′)− 1

)

= exp(−δ2d)
d
∏

i=1

cosh(δ(xi + x′i))− exp(−δ2d/2)
(

d
∏

i=1

cosh(δxi) +
d
∏

i=1

cosh(δx′i)

)

+ 1

= exp(−δ2d)
(

d
∏

i=1

cosh(δ(xi + x′i))−
d
∏

i=1

cosh(δxi)
d
∏

i=1

cosh(δx′i)

)

+

(

exp

(

−δ
2d

2

) d
∏

i=1

cosh(δxi)− 1

)(

exp

(

−δ
2d

2

) d
∏

i=1

cosh(δx′i)− 1

)

. (22)

Note that cosh(x) = exp(x
2

2 + O(x4)), and
∑d

i=1X
2
i = d + OP (

√
d),
∑d

i=1X
4
i = OP (d) for

X ∼ N (0, Id), we have

exp

(

−δ
2d

2

) d
∏

i=1

cosh(δXi)− 1 = exp

(

δ2(
∑d

i=1X
2
i − d)

2
+O(δ4) ·

d
∑

i=1

X4
i

)

− 1 = OP (δ
2
√
d)

as long as δ4d = O(1). Hence, the second term in (22) is of the order OP (δ
4d). Similarly, the first

term in (22) is of the order (1 + OP (δ
2
√
d)) · (exp(δ2XTX ′) − 1). Note that XTX ′ = OP (

√
d),

we have exp(δ2XTX ′)− 1 = δ2XTX ′ +OP (δ
4d), and therefore

EU

(

dPθ0+δU
dPθ0

(X)− 1

)(

dPθ0+δU
dPθ0

(X ′)− 1

)

= δ2XTX ′ +OP (δ
4d)

establishing (1).

As for Assumption (3), choose X0 = [−C√log d, C
√
log d]d ⊂ X = R

d. By Gaussian tail, by

choosing C large enough we have P(X0) ≥ 1− d−5. Also, choosing X1 = {x ∈ R
d : |∑d

i=1 x
2
i −

d| ≤ C
√
d log d,

∑d
i=1 x

4
i ≤ Cd}, for C large enough we have P(X1) ≥ 1 − d−5. For x, x′ ∈

X0 ∩ X1 and δ4d log d = O(1), applying cosh(x) = exp(x
2

2 +O(x4)) in (22) yields

EU

(

dPθ0+δU
dPθ0

(x)− 1

)(

dPθ0+δU
dPθ0

(x′)− 1

)

= (1 +O(δ2
√

d log d)) · (exp(δ2xTx′)− 1) +O(δ4d log d)

establishing (3).

Finally, for any u ∈ {±1}n and δ = O(d−
1

2 ), we have

E

(

dPθ0+δu
dPθ0

(X)− 1

)4

= E

[

exp

(

δ

d
∑

i=1

uiXi −
δ2d

2

)

− 1

]4

= exp(6δ2d)− 4 exp(3δ2d) + 6 exp(δ2d)− 3

= O(δ4d2)

where the last step follows from Taylor expansion. Hence, the Gaussian location model satisfies all

assumptions.
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C.2. Proof of Proposition 7

For the first result, the lower bound follows from Zhang et al. (2013) (or Theorem 4), with a match-

ing upper bound in Zhang et al. (2013). The lower bound of the second result follows from Theorem

2 (or along the same line of Han et al. (2018)), and it suffices to prove an upper bound for the case

where
∑d

i=1 θi = 1.

We apply a slightly different “simulate-and-infer” procedure in Acharya et al. (2018). Specif-

ically, for 2k ≤ d, we split [d] into m , d
2k−2

(assumed to be an integer) groups G1, · · · ,Gm of

size 2k − 2 each, and also split the sensors [n] into N = n
2m (also assumed to be an integer) groups

H1, · · · ,HN of size 2m each. For each group Hj of 2m sensors, consider the following protocol:

for any ` ∈ [m],

1. sensor (2`− 1) sends a0 ∈ [2k] if
∑

i∈G`
X2`−1,i = 0, sends a1 ∈ [2k] if

∑

i∈G`
X2`−1,i ≥ 2,

and sends the unique i∗ ∈ G` with X2`−1,i∗ = 1 in the remaining 2k − 2 cases;

2. sensor 2` first looks at the message that sensor (2`− 1) transmits. If the message is a0 or a1,

sensor 2` can transmit an arbitrary message; otherwise, sensor (2`−1) must have transmitted

a unique location i ∈ [d], and then sensor 2l tranmits the one-bit message X2`,i.

Clearly the communication constraints are satisfied here. For each group Hj of sensors, we call

this group succeeds if and only if:

1. there exists a unique `∗ ∈ [m] such that sensor (2`∗ − 1) does not send a0 or a1, and any

sensor (2`− 1) sends a0 for ` 6= `∗;

2. for the index `∗ above, sensor 2`∗ sends zero.

If this group succeeds, the centralizer records the index i∗ ∈ [d] sent by sensor (2`∗ − 1) above. We

show that:

1. conditioning on the event that the group succeeds, i∗ ∼ Multi(1; θ);

2. any group succeeds with probability Ω(1).

To establish the first result, note that the probability for any fixed group to succeed and i∗ = i ∈
G` is

pi =
∏

`′ 6=`

∏

i′∈G`′

(1− θi′) · θi
∏

i′∈G`,i′ 6=i

(1− θi′) · (1− θi) = θi

d
∏

i′=1

(1− θi′).

Hence, the probability of that group to succeed is p =
∑d

i=1 pi =
∏d
i′=1(1 − θi′), and thus the

conditional distribution of i∗ is exactly Multi(1; θ). The second result is established using the same

arguments as (Acharya et al., 2018, Theorem 4.7), while replacing one sensor by two sensors if

necessary.

Hence, we haveN groups, each of which succeeds independently with probability Ω(1). LetM
be the number of successful groups, Lemma 17 yields P(M ≥ Ω(1) ·N) ≥ 1− e−Ω(N). Moreover,

we observeM i.i.d. observations from the discrete distribution (θ1, θ2, · · · , θd), where the empirical

distribution has squared `2 risk at most

1

M
.

1

N
� d

n2k
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which completes the proof for the case where 2k ≤ d.

When 2k > d, we simply apply the previous protocol again with 2k replaced by d (and m = 1),

then any group of two sensors has Ω(1) probability to generate a random sample from the discrete

distribution (θ1, · · · , θd). As a result, the squared `2 risk of the empirical distribution is at most

O( 1n) with probability at least 1− e−Ω(n), as desired.

C.3. Proof of Proposition 16

Let X follow the uniform distribution on Ω, then v̄ = E[X|A]. Choosing S0(X) = X in Lemmas

13 and 14, each coordinate of X has variance 1 and is 1-sub-Gaussian. By Lemma 13, for |A| =
2d−1 we have

‖E[X|A]‖2 ≤ 1 · P(A)

1− P(A)
= 1,

establishing the first inequality.

Similarly, the second inequality follows from Lemma 20 (and its proof).

C.4. Proof of Theorem 8

We construct a new family of hypotheses: let U ∈ R
d be uniformly distributed on the finite set

U = {θ ∈ {0,±1}d : ‖θ‖0 = s}.

Clearly |U| = 2s
(

d
s

)

. For u ∈ U we associate with the Gaussian distribution Pu , N (δu, Id), and

∣

∣

∣

{

u′ ∈ U : dHam(u, u
′) ≤ s

5

}∣

∣

∣
=

∑

u+v≤ s
5

(

s

u

)(

s− u

v

)(

d− s

v

)

≤
(s

5
+ 1
)2

·
(

s

s/5

)2( d

s/5

)

.

As a result, we have log |U|
Nmax(s/5)

≥ cs log d
s for some constant c > 0, and Lemma 11 gives

inf
ΠBB

inf
θ̂
sup
θ∈Θ

Eθ‖θ̂ − θ‖22 ≥
sδ2

10

(

1− I(U ;Y ) + log 2

cs log(d/s)

)

. (23)

By construction, conditioning on the support T of U , the restriction UT is uniform on {±1}d.

Hence, by Proposition 1, Assumption (3) still holds with d replaced by s, d log d replaced by s log d,

and inner product between score functions replaced by the expected inner product between score

functions restricted on T , where the expectation is taken over the random support T with |T | = s.
Hence, by the same argument as in the proof of Theorem 4, we arrive at

I(U ;Y ) ≤ Cns

d

(

δ2

σ2
(k + log d) +

δ4s log d

σ4

)

for some universal constant C > 0. Now choosing δ2 � d log(d/s)
nk σ2 in (23) completes the proof.
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