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Abstract—We consider the problem of estimating high-
dimensional and nonparametric distributions in distributed net-
works, where each sensor in the network observes an independent
sample from the underlying distribution and can communicate
it to a central processor by writing at most k bits on a public
blackboard. We obtain matching upper and lower bounds for the
minimax risk of estimating the underlying distribution under
L1 loss. Our results reveal that the minimax risk reduces
exponentially in k. Instead of relying on strong data processing
inequalities for the converse as commonly done in the literature,
we build on a new representation of the communication con-
straint, which leads to a tight characterization of the problem.

I. INTRODUCTION AND MAIN RESULTS

Consider the following density estimation model

X1, X2, · · · , Xn
i.i.d.∼ f

where we would like to estimate the unknown density f under
L1 loss. Unlike the traditional nonparametric setting where
samples X1, · · · , Xn are available to the estimator as they are,
we consider a distributed setting where each observation Xi is
available at a different sensor and has to be communicated to
a central processor by using k bits. We consider two different
communication protocols:

1) Independent communication protocol ΠInd: each sensor
outputs a k-bit string Yi = bi(Xi) ∈ [2k] simultane-
ously (independent of the other sensots) to the central
processor, and the final transcript is Y = (Y1, · · · , Yn);

2) Blackboard communication protocol ΠBB [1]: all sensors
communicate via a publicly shown blackboard while
the total number of bits each sensor can write in the
final transcript Y is limited by k. Note that when one
sensor writes a message (bit) on the blackboard, all other
sensors can see the content of the message. We assume
that public randomness is available in the blackboard
communication protocol.

Upon receiving the transcript Y , the central processor produces
an estimate f̂ of density f based on the transcript Y and known
procotol Π.

As is typical in nonparametric statistics [2], we assume
that f possesses some regularity conditions. For the sake of
simplicity, suppose that the density f is supported on [0, 1] and
has Hölder smoothness s ∈ (0, 1], though the generalization to
unbounded support, higher dimension and higher smoothness

is straightforward. Hölder smoothness s ∈ (0, 1] implies that
there exists some constant L > 0 such that

sup
x 6=y∈[0,1]

|f(x)− f(y)|
|x− y|s ≤ L. (1)

We denote by Hs(L) the set of all densities satisfying (1).
The first main result of this paper is as follows:

Theorem 1. Let s ∈ (0, 1], L > 0, k ∈ N. There exist positive

constants c = c(s, L), C = C(s, L) such that

c
[

(n · 2k)−
s

2(s+1) + n− s
2s+1

]

≤ inf
ΠBB

inf
f̂

sup
f∈Hs(L)

Ef‖f̂ − f‖1

≤ C
[

(n · 2k)−
s

2(s+1) + n− s
2s+1

]

(2)

where the infimum is taken over all possible blackboard

communication protocols ΠBB and estimators f̂ = f̂(Y ).
Moreover, there exists an independent communication protocol

under which the upper bound is attained.

Since it is well-known that the minimax L1 risk of den-
sity estimation over Hs(L) is Θ(n− s

2s+1 ) [2], the following
corollary is immediate.

Corollary 1. For nonparametric density estimation over

Hs(L), it is necessary and sufficient to have k ≥ 1
2s+1 log2 n−

O(1) to achieve the centralized performance without commu-

nication constraints.

Based on parametric reduction, the nonparametric density
estimation problem is closely related to the following prob-
lem of estimating high-dimensional distributions: let P =
(p1, · · · , pS) be a discrete distribution, and X1, · · · , Xn be n
i.i.d. samples drawn from P . Given the k-bit communication
constraints, the problem is to find a rate-optimal estimator P̂ of
P . By “high-dimensional” we mean that the support size S of
the underlying distribution may be comparable to the sample
size n. Our main result for distributed high-dimensional dis-
tribution estimation is summarized in the following theorem:

Theorem 2. Let k ∈ N and n & S ∨ 2−kS2. There exist

constants c, C independent of n, S, k such that

cS
√

n(2k ∧ S)
≤ inf

ΠBB

inf
P̂

sup
P∈MS

EP ‖P̂ − P‖1 ≤ CS
√

n(2k ∧ S)
(3)



where MS denotes the probability simplex over S elements,

and the infimum is taken over all possible blackboard commu-

nication protocols ΠBB and estimators f̂ = f̂(Y ). Moreover,

there exists an independent communication protocol under

which the upper bound is attained.

In the centralized case, it has been shown in [3]–[5] that the

minimax L1 risk of discrete distribution estimation is Θ(
√

S
n
).

As a result, we have the following corollary:

Corollary 2. For discrete distribution estimation over MS ,

it is necessary and sufficient to have k ≥ log2 S − O(1) to

achieve the centralized performance.

Note that achievability in the case k = log2 S is in fact
trivial: each sensor can transmit its observation Xi as it is by
using log2 S bits, which yields the centralized performance.
Corollary 2 states that the centralized performance could not
be achieved with fewer bits (by a potentially smarter scheme)
even if interactions and public randomness are allowed; it is
essentially necessary to fully communicate the observations to
achieve the centralized performance.

Statistical estimation in distributed settings has gained in-
creasing popularity motivated by the fact that modern data
sets are often distributed across multiple machines and pro-
cessors, and bandwidth and energy limitations in networks
and within multiprocessor systems often impose significant
bottlenecks on the performance of algorithms. There are
also an increasing number of applications in which data is
generated in a distributed manner and it (or features of it)
are communicated over bandwidth-limited links to central
processors [6]. Distributed estimation and function computa-
tion has been considered in [7]–[11], where strong/distributed
data processing inequalities appear as the key technical step
in developing converse results. Our converse approach is
significantly different. We propose a new representation of
the communication constraint, which circumvents the need
for strong data processing inequalities. As we discuss in
Section IV, this approach can be generalized to other settings
and yields stronger results with respect to prior work. A
more recent work [12] studied the same discrete distribution
estimation problem, and obtained Corollary 2. We, on the other
hand, provide a complete characterization as function of the
communication constraint k.

Notations: for a finite set A, let |A| denote its cardinality;
[n] , {1, 2, · · · , n}; a ∧ b , min{a, b}, a ∨ b , max{a, b};
for non-negative sequences {an} and {bn}, the notation
an . bn (or bn & an, an = O(bn), bn = Ω(an)) means
lim supn→∞

an

bn
< ∞, and an � bn (bn � an, an =

o(bn), bn = ω(an)) means lim supn→∞
an

bn
= 0, and an � bn

(or an = Θ(bn)) is equivalent to both an . bn and bn . an.

II. ACHIEVABILITY: THE GROUPING IDEA

In this section, we prove the achievability parts of Theorem
1 and 2 under independent communication protocol ΠInd via
the grouping idea. We consider the discrete case first, which
serves as a key step of estimating nonparametric densities.

A. Achievability of Theorem 2

Without loss of generality we assume that k < log2 S. Note
that k bits can describe 2k distinct symbols. We partition the
alphabet [S] into ≈ S

2k
groups of size ≈ 2k each, and let

each sensor be responsible for one group. Specifically, let
S1, S2, · · · , Sm (each of size 2k − 1) be a partition of the
alphabet [S], where without loss of generality we assume that
m = S

2k−1
is an integer. For j ∈ [m], fix a labeling to

the symbols in Sj = {aj,1, · · · , aj,2k−1}, and consider the
following encoding function:

bj(s) =

{

` if s = aj,` ∈ Sj

2k if s /∈ Sj

∈ [2k].

Next we also partition n sensors in the network to m groups
N1, · · · , Nm of size n

m
each (also assume that n

m
is an integer

since n & 2−kS2), and apply the encoding function bj(·) to
sensors in j-th group Nj . The crucial observation is that, for
s = aj,` ∈ Sj and X ∼ P , we have

P(bj(X) = `) = ps.

Hence, for any s ∈ [S] with s = aj,`, the statistic

p̂s =
1

|Nj |
∑

i∈Nj

1(Yi = `) =
m

n

∑

i∈Nj

1(bj(Xi) = `)

satisfies n
m
p̂s ∼ B( n

m
, ps). By the binomial nature, p̂s is the

natural unbiased estimator for ps, and the resulting estimator
for P is P̂ = (p̂1, · · · , p̂S). To analyze the performance of P̂ ,
note that

E|p̂s − ps| ≤
√

E(p̂s − ps)2 =

√

m

n
ps(1− ps)

and thus by the concavity of x 7→ √
x and

∑S

s=1 ps = 1,

E‖P̂ − P‖1 ≤
S
∑

s=1

√

m

n
ps ≤

√

mS

n
=

S
√

n(2k − 1)

completing the proof of the achievability part of Theorem 2.

B. Achievability of Theorem 1

To estimate the nonparametric density f , a parametric
reduction is used. Specifically, we consider some bandwidth
h > 0 with S , h−1, and

fh(x) =

S
∑

j=1

pj
h
1(x ∈ Ij)

where Ij , [(j − 1)h, jh) and pj ,
∫

Ij
f(x)dx. Note that

f ∈ Hs(L) has Hölder smoothness s ∈ (0, 1], it is well-
known [2] that the piecewise approximation fh of f satisfies
‖fh − f‖1 ≤ Chs with constant C > 0 depending on L only.

Moreover, defining Zi ∈ {1, 2, · · · , S} to be the index such

that Xi ∈ IZi
, one may verify that Z1, · · · , Zn

i.i.d∼ P =
(p1, · · · , pS). As a result, the estimator

f̂h(x) ,
S
∑

j=1

p̂j
h
1(x ∈ Ij)



with the vector P̂ = (p̂1, · · · , p̂S) given by the achievability
part of Theorem 2 satisfies

E‖f̂h − f‖1 ≤ E‖f̂h − fh‖1 + ‖fh − f‖1
= E‖P̂ − P‖1 + ‖fh − f‖1
≤ 1

h
√

n(2k ∧ h−1)
+ Chs.

Now the choice of the optimal bandwidth

h∗ = (n · 2k)−
1

2(s+1) ∨ n− 1
2s+1

completes the proof of the achievability part of Theorem 1.

III. PROOF OF THE CONVERSE

In this section, we prove the converse results of Theorem 1
and 2, showing that the simple grouping idea is in fact optimal.
We first prove the lower bound for discrete distribution esti-
mation, which serves as an intermediate step for establishing
the lower bound for nonparametric density estimation. The key
starting point in our proof is a convenient representation of the
communication constrained blackboard protocol ΠBB.

A. The Blackboard Communication Protocol

Assume first that there is no public/private randomness,
which will be revisited at the end of Section III-B. In this case,
the blackboard communication protocol ΠBB can be viewed
as a binary tree [1], where each internal node v of the tree is
assigned a deterministic label lv ∈ [n] indicating the identity
of the sensor to write the next bit on the blackboard if the
protocol reaches node v. The left and right edges departing
from v correspond to the two possible values of this bit and
are labeled by 0 and 1 respectively. Note that because all bits
written on the blackboard up to the current time are observed
by all nodes, the sensors can keep track of the progress of
the protocol in the binary tree. The value of the bit written by
node lv (when the protocol is at node v) can depend on the
sample Xlv observed by this node (and implicitly on all bits
previously written on the blackboard encoded in the position
of the node v in the binary tree). Therefore, this bit can be
represented by a binary function av(x) ∈ {0, 1}, which we
associate with the node v; node lv evaluates this function on
its sample Xlv to determine the value of its bit.

Note that the k-bit communication constraint for each node
can be viewed as a labeling constraint for the binary tree; for
each i ∈ [n], each possible path from the root node to a leaf
node can visit exactly k internal nodes with label i. In partic-
ular, the depth of the binary tree is nk and there is one-to-one
correspondance between all possible transcripts y ∈ {0, 1}nk
and paths in the tree. Note that a proper labeling of the binary
tree together with the collection of functions {av(·)} (where
v ranges over all internal nodes) completely characterizes
all possible (deterministic) communication strategies for the
sensors. Under this protocol model, the distribution of the
transcript Y is

PX1,··· ,Xn∼P (Y = y) = EX1,··· ,Xn∼P

∏

v∈τ(y)

bv,y(Xlv )

where v ∈ τ(y) ranges over all internal nodes in the path τ(y)
corresponding to y ∈ {0, 1}nk, and bv,y(x) = av(x) if the
path τ(y) goes through the right child of v and bv,y(x) = 1−
av(x) otherwise. Due to the independence of X1, · · · , Xn, we
have the following lemma which is similar to the “cut-paste"
property [13] for the blackboard communication protocol:

Lemma 1. The distribution of the transcript Y can be written

as follows: for any y ∈ {0, 1}nk,

PX1,··· ,Xn∼P (Y = y) =

n
∏

i=1

EX∼P pi,y(X)

where pi,y(x) ,
∏

v∈τ(y),lv=i bv,y(x).

The k-bit communication constraint results in the following
important property (see [14] for the proof):

Lemma 2. For each i ∈ [n] and {xj}nj=1,

∑

y∈{0,1}nk

n
∏

j=1

pj,y(xj) = 1,
∑

y∈{0,1}nk

∏

j 6=i

pj,y(xj) = 2k.

B. Proof of Theorem 2

The lower bound Ω(
√

S
n
) for the centralized case has been

established, so it suffices to prove the lower bound Ω( S√
n·2k ).

We will establish the lower bound via a testing argument. First,
we construct a class of hypotheses on the binary hypercube
and relate the minimax risk to some mutual information
via a distance-based Fano’s inequality. Second, we derive a
universal upper bound for the mutual information which holds
for any blackboard communication procotol ΠBB and encoding
strategy {av(·)}.

1) Distance-based Fano’s inequality: Let T , S
2 be an

integer, and random vector U be uniformly distributed on the
binary hypercube {±1}T . For each u ∈ {±1}T , we associate
with a probability vector Pu ∈ MS given by

Pu ,

(

1

S
+ δu1, · · · ,

1

S
+ δuT ,

1

S
− δu1, · · · ,

1

S
− δuT

)

where δ > 0 is some parameter to be specified later. To ensure
that Pu is a probability vector, we will assume that

δ ∈
(

0,
1

S

)

(4)

throughout the proof, and will get back to it when we specify δ
in the end. This construction of Pu is known as the Paninski’s

construction [15].
Now by a standard testing argument [16], we have

inf
P̂

sup
P∈MS

EP ‖P̂ − P‖1 ≥ Sδ

10
inf
Û

P

(

dH(Û , U) ≥ T

5

)

where dH(·, ·) denotes the (unnormalized) Hamming distance.

To lower bound P

(

dH(Û , U) ≥ T
5

)

for any estimator Û , we

use the following distance-based Fano’s inequality:

Lemma 3. [17, Corollary 1] Let random variables V and V̂
take value in V , V be uniform on some finite V , and V −X−V̂



form a Markov chain. Let d be any metric on V , and for t > 0,

define Nmax(t) , maxv∈V |v′ ∈ V : d(v, v′) ≤ t|, Nmin(t) ,
minv∈V |v′ ∈ V : d(v, v′) ≤ t|.

If Nmax(t)+Nmin(t) < |V|, the following inequality holds:

P(d(V, V̂ ) > t) ≥ 1− I(V ;X) + ln 2

ln |V|
Nmax(t)

.

Applying Lemma 3 to the Markov chain U − Y − Û with
Hamming distance dH(·, ·) and t = T

4 , we have

inf
P̂

sup
P∈MS

EP ‖P̂ − P‖1 ≥ Sδ

8

(

1− I(U ;Y ) + ln 2

T/8

)

(5)

where Chernoff bound implies |Nmax(t)|
|V| ≤ exp(−T

8 ). Now it
remains to upper bound the mutual information I(U ;Y ).

2) Upper bound of I(U ;Y ): Let P0 be the uniform distri-
bution over [S], we have

I(U ;Y )
(a)

≤ EUD(PY |U‖PY |X∼P0
)

(b)
= EUEY |U

n
∑

i=1

log
EPU

pi,Y (X)

EP0pi,Y (X)

(c)

≤ EUEY |U

n
∑

i=1

(

EPU
pi,Y (X)

EP0
pi,Y (X)

− 1

)

(d)
= EU

n
∑

i=1

∑

y∈{0,1}nk





∏

j 6=i

EPU
pj,y(X)





· (EPU
pi,y(X)− EP0

pi,y(X))2

EP0
pi,y(X)

where (a) follows from the variational representation of mutual
information I(X;Y ) = infQY

EXD(PY |X‖QY ), (b) follows
from Lemma 1, (c) is due to log x ≤ x − 1, and (d) follows
from Lemma 1 and the first equality of Lemma 2.

Since X ∼ PU can only take S distinct values, the function
pi,y(·) is a length-S vector, and EP pi,y(X) = pTi,yP . Hence,

EU

(EPU
pi,y(X)− EP0

pi,y(X))2

EP0pi,y(X)
=

EU [p
T
i,y(PU − P0)]

2

pTi,y1/S

(e)

≤ 2δ2S ·
pTi,ypi,y

pTi,y1
≤ 2δ2S

where in (e) we have used EU (PU −P0)(PU −P0)
T � 2δ2I ,

and the last inequality follows from the fact that pi,y(·) is a
binary function.

Finally, combining the previous inequalities and invoking
Lemma 2, we have

I(U ;Y ) ≤ 2nδ2S · 2k. (6)

Combining (5) and (6), and choosing δ = c√
n2k

with constant
c > 0 small enough, we arrive at

inf
P̂

sup
P∈MS

EP ‖P̂ − P‖1 &
S√
n2k

which is the desired lower bound. Moreover, since it is
assumed that n & S2

2k
in this case, we indeed have δ ∈ (0, 1

S
)

by choosing c small enough, i.e., (4) holds, as desired.

3) Public/Private randomness: We show that the previous
lower bound remains valid if some randomness is available.
Let R denote any (private or public) randomness, then

I(U ;Y ) ≤ EUD(PY |U‖PY |X∼P0
)

≤ EUERD(PY |R,U‖PY |R,X∼P0
)

= EREUD(PY |R,U‖PY |R,X∼P0
)

where the second step follows from the joint convexity of
the KL divergence. Note that everything becomes deter-
ministic conditioning on R, therefore we can upper bound
EUD(PY |R,U‖PY |R,X∼P0

) as before and arrive at the same
minimax lower bound.

C. Proof of Theorem 1

Similar to the achievability proof, we prove the lower bound
of nonparametric density estimation via a standard parametric
reduction [2]. Let g be some non-negative smooth function on
R vanishing outside [0, 1] with ‖g‖1 = 1. Fix some bandwidth
h > 0 with integer S , h−1, and choose

fP (x) = 1 +

S
∑

j=1

pj − h

h
· g

(

x− xj

h

)

, x ∈ [0, 1]

where P = (p1, · · · , pS) ∈ MS , xj , (j − 1)h. As long as
|pj − h| ≤ Chs+1 for any j ∈ [S], then fP is a valid density
on [0, 1] for any P ∈ MS , and fP has Hölder smoothness s.

Assume by contradiction that there is some estimator f̂
which achieves supf∈Hs(L) Ef‖f̂ − f‖1 � (n · 2k)−

s
2(s+1) +

n− s
2s+1 , then for p̂j =

∫ jh

(j−1)h
f̂(x)dx, the estimator P̂ =

(p̂1, · · · , p̂S) satisfies

sup
P∈P

EP ‖P̂ − P‖1 � (n · 2k)−
s

2(s+1) + n− s
2s+1 (7)

where P , {P ∈ MS : |pj − h| ≤ Chs+1, j ∈ [S]}.
On the other hand, restricting to the parametric submodel

f ∈ {fP : P ∈ P}, the statistics Z1, · · · , Zn ∈ [S] with
Xi ∈ [(Zi − 1)h, Zih) become sufficient, and

Z1, · · · , Zn
i.i.d.∼ P. (8)

Hence, model reduction by sufficiency reduces the parametric
submodel f ∈ {fP : P ∈ P} to the discrete Multinomial
model (8), and by the proof of Theorem 2, as long as [n(2k ∧
S)]−

1
2 . hs+1, we have

inf
P̂

sup
P∈P

EP ‖P̂ − P‖1 &
S

√

n(2k ∧ S)
. (9)

Finally, choosing h = (n ·2k)−
1

2(s+1) ∨n− 1
2s+1 yields to the

desired contradiction between inequalities (7) and (9).

IV. DISCUSSIONS

The common approach for proving lower bounds in com-
munication constrained settings in the literature is to develop
so called strong data processing inequalities. Our approach on
the other hand directly incorporates the k-bit communication
constraint in the representation of the blackboard protocol. In



this section, we compare our proof technique with strong data
processing inequalities and show that our technique can indeed
be generalized to other statistical models.

A. Comparison with Strong Data Processing

By Fano’s inequality, the key step in proving the converse
is to upper bound the mutual information I(U ;Y ) under
the Markov chain U − X − Y , where the link U − X is
dictated by the statistical model, and the link X−Y is subject
to a k-bit communication constraint, which in turn implies
that I(X;Y ) ≤ k. While trivially I(U ;Y ) ≤ I(U ;X) and
I(U ;Y ) ≤ I(X;Y ), neither of these two inequalities are
typically sufficient to obtain a good lower bound, and most
works [8], [10], [11] rely on strong data processing inequalities
of the form

I(U ;Y ) ≤ γ∗(U,X)I(X;Y ), ∀pY |X (10)

with γ∗(U,X) < 1, which turns out to be tight in certain
models (e.g., the Gaussian model [8], [10]). However, this
approach is also subject to some drawbacks:

1) The tight constant γ∗(U,X) is hard to obtain in general;
2) The conditional distribution pY ∗|X achieving the equal-

ity in (10) typically leads to I(X;Y ∗) → 0, and (10)
may be loose for I(X;Y ) = k;

3) The linearity of (10) in I(X;Y ) can only give a linear
dependence of I(U ;Y ) on k, which may not be tight.
For example, in our case the optimal dependence on k
is exponential;

4) The operational meaning of (10) is not clear, which
may not result in a valid encoding scheme from X to
Y . In contrast, the functions {av(·)} in our approach
have clear operational meanings, and lead directly to an
encoding scheme.

B. Generalization to other problems

Since our representations for the blackboard model and sen-
sors’ strategy are valid for general models, we can generalize
our result to other distributed estimation problems with com-

munication constraints. Consider the model X1, · · · , Xn
i.i.d.∼

Pθ1 × · · · × Pθd in the same setting and we would like to
estimate the parameter vector θ = (θ1, · · · , θd) (say, under the
`1 loss). We can show that, under mild regularity conditions,
the optimal centralized performance in a local minimax sense
[18] is Θ( d√

nI(θ0)
), while it is Ω( d3/2√

n2kI(θ0)
) in the distributed

setting, where I(θ0) denotes the Fisher information of the
model (Pθ) at some target θ0. Theorem 2 roughly corresponds
to Pθ = Bern(θ), θ0 = 1

S
and d = S, so it is implied by the

general result with I(θ0) � S. Moreover, the general result
shows that the dependence on k is at most exponential, which
is tight for distribution estimation.

One may wonder whether our technique would always yield
an exponential dependence on k, which may not be tight in
some models. The answer is actually no: in addition to solely
applying the second equality in Lemma 2 to prove Theorem
2, the combination of both equalities of Lemma 2 may be

useful in other models. We show via a geometric isoperimetric
inequality that in Gaussian location models, new constraints
give the final linear dependence on k, recovering the result of
[8]. We refer to [14] for details.
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