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Abstract

Gene expression variation is extensive in nature, and is hypothesized to play a major role in

shaping phenotypic diversity. However, connecting differences in gene expression across

individuals to higher-order organismal traits is not trivial. In many cases, gene expression

variation may be evolutionarily neutral, and in other cases expression variation may only

affect phenotype under specific conditions. To understand connections between gene

expression variation and stress defense phenotypes, we have been leveraging extensive

natural variation in the gene expression response to acute ethanol in laboratory and wild

Saccharomyces cerevisiae strains. Previous work found that the genetic architecture under-

lying these expression differences included dozens of “hotspot” loci that affected many tran-

scripts in trans. In the present study, we provide new evidence that one of these expression

QTL hotspot loci affects natural variation in one particular stress defense phenotype—etha-

nol-induced cross protection against severe doses of H2O2. A major causative polymor-

phism is in the heme-activated transcription factor Hap1p, which we show directly impacts

cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further

support that distinct cellular mechanisms underlie basal and acquired stress resistance. We

also show that Hap1p-dependent cross protection relies on novel regulation of cytosolic cat-

alase T (Ctt1p) during ethanol stress in a wild oak strain. Because ethanol accumulation pre-

cedes aerobic respiration and accompanying reactive oxygen species formation, wild

strains with the ability to anticipate impending oxidative stress would likely be at an advan-

tage. This study highlights how strategically chosen traits that better correlate with gene

expression changes can improve our power to identify novel connections between gene

expression variation and higher-order organismal phenotypes.

Author summary

Amajor goal in genetics is to understand how individuals with different genetic makeups

respond to their environment. Understanding these “gene-environment interactions” is

important for the development of personalized medicine. For example, gene-environment
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interactions can explain why some people are more sensitive to certain drugs or are more

likely to get certain cancers. While the underlying causes of gene-environment interac-

tions are unclear, one possibility is that differences in gene expression across individuals

are responsible. In this study, we examined that possibility using baker’s yeast as a model.

We were interested in a phenomenon called acquired stress resistance, where cells ex-

posed to a mild dose of one stress can become resistant to an otherwise lethal dose of

severe stress. This response is observed in diverse organisms ranging from bacteria to

humans, though the specific mechanisms governing acquisition of higher stress resistance

are poorly understood. To understand the differences between yeast strains with and with-

out the ability to acquire further stress resistance, we employed genetic mapping. We

found that part of the variation in acquired stress resistance was due to sequence differ-

ences in a key regulatory protein, thus providing new insight into how different individu-

als respond to acute environmental change.

Introduction

A fundamental question in genetics is how individuals with extremely similar genetic makeups

can have dramatically different characteristics. One hypothesis is that a small number of regu-

latory polymorphisms can have large effects on gene expression, leading to the extensive phe-

notypic variation we see across individuals. In fact, gene expression variation is hypothesized

to underlie the extensive phenotypic differences we see between humans and chimpanzees

despite>98% DNA sequence identity [1, 2]. This hypothesis is supported by numerous exam-

ples of gene expression variation affecting higher-order organismal traits.

For example, human genome-wide association studies (GWAS) have found that a substan-

tial fraction of disease-associated variants are concentrated in non-coding regulatory DNA

regions [3–8]. Further examples include gene expression variation being linked to differences

in metabolism [9–11], physiology [12–16], morphology [17–23], and behavior [24–27].

While gene expression variation is pervasive, there is often a lack of obvious phenotypic

change associated with differentially expressed genes. This can occur for a variety of reasons.

First, a large fraction of expression variation has been postulated to be evolutionarily neutral

with no effect on organismal fitness [28–30]. Second, co-regulation of genes that share the

same upstream signaling network and transcription factors can lead to genes whose expression

differences correlate with phenotype but are not truly causative. Finally, some gene expression

differences may truly affect phenotype, but only under specific conditions. For example, the

predictive power of expression quantitative trait loci (eQTL) mapping studies on higher-order

phenotypes can be poor unless multiple environments are considered [31]. Similarly, tissue-

restricted eQTLs are more likely to map to known disease-associated loci identified from

GWAS than non-tissue-restricted eQTLs [32, 33].

Thus, a major challenge for connecting gene expression variation to downstream effects on

higher-order traits is the choice of which conditions and traits to examine. To this end, we

have been leveraging natural variation in the model eukaryote Saccharomyces cerevisiae, and a

phenotype called acquired stress resistance. Many studies have shown a poor correlation

between genes that respond to stress and their importance for surviving stress [34–43]. Thus,

we and others have argued that the role of stress-activated gene expression is not to survive the

initial insult, but instead protects cells from impending severe stress through a phenomenon

called acquired stress resistance [44, 45]. Acquired stress resistance (sometimes referred to as

“induced tolerance” or the “adaptive response”) occurs when cells pretreated with a mild dose
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of stress gain the ability to survive an otherwise lethal dose of severe stress. Notably, acquired

stress resistance can occur when the mild and severe stresses are the same (same-stress protec-

tion) or across pairs of different stresses (cross protection). This phenomenon has been

observed in diverse organisms ranging from bacteria to higher eukaryotes including humans

[44–50]. The specific mechanisms governing acquisition of higher stress resistance are poorly

understood, but there are wide reaching implications. In humans, ischemic preconditioning

(transient ischemia followed by reperfusion—i.e. mild stress pretreatment followed by severe

stress) may improve outcomes of cardiovascular surgery [51–54], while transient ischemic

attacks (“mini-strokes”) may protect the brain during massive ischemic stroke [55–57]. Thus,

understanding the genetic basis of acquired stress resistance in model organisms holds prom-

ise for mitigating the effects of stress in humans.

A previous study found that a commonly used S288c lab strain is unable to acquire further

ethanol resistance when pretreated with a mild dose of ethanol [44]. We found this phenotype

to be surprising, considering the unique role ethanol plays in the life history of Saccharomyces

yeast, where the evolution of aerobic fermentation gave yeast an advantage over ethanol-sensi-

tive competitors [58]. Because ethanol is a self-imposed stress that induces a robust stress re-

sponse [59–63], we expected that ethanol should provoke acquired stress resistance in wild

yeast strains. Indeed, this turned out to be the case, with the majority of tested wild strains ac-

quiring resistance to severe ethanol following a mild ethanol treatment [45]. Furthermore, this

phenotype correlated with extensive differences in the transcriptional response to acute etha-

nol stress in the lab strain when compared to a wild vineyard (M22) and wild oak (YPS163)

strain (>28% of S288c genes were differentially expressed at an FDR of 0.01) [45, 64]. We per-

formed linkage mapping of S288c crossed to a wild vineyard strain (M22) and wild oak strain

(YPS163), and observed numerous “hotspots” where the same eQTL loci affect the expression

of a large number of transcripts (anywhere from 10–500 transcripts per hotspot) [64].

In the present study, we provide new evidence that one of these eQTL hotspot loci affects

natural variation in acquired stress resistance, namely the ability of ethanol to cross protect

against oxidative stress in the form of hydrogen peroxide. The causative polymorphism is in

the heme-activated transcription factor Hap1p, which we show directly impacts cross protec-

tion, but not the basal resistance of unstressed cells. Finally, we show that the Hap1p effect is

mediated through novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in wild

strains. This study highlights how strategically chosen traits that are better correlated with

gene expression changes can improve our power to identify novel connections between gene

expression variation and higher-order organismal phenotypes.

Results

The genetic basis of natural variation in yeast cross protection

We previously found that an S288c-derived lab strain was unable to acquire further ethanol

resistance when pretreated with a mild dose of ethanol, in contrast to the vast majority of ~50

diverse yeast strains [45]. In addition to the S288c strain’s acquired ethanol resistance defect,

ethanol also failed to cross protect against other subsequent stresses [44, 65]. In nature, wild

yeast cells ferment sugars to ethanol, and then shift to a respiratory metabolism that generates

endogenous reactive oxygen species [66–68]. Thus, we hypothesized that ethanol might cross

protect against oxidative stress in wild yeast strains. We tested this hypothesis by assessing

whether mild ethanol treatment would protect a wild oak strain (YPS163) from severe oxida-

tive stress in the form of hydrogen peroxide (H2O2). Cross protection assays were performed

by exposing cells to a mild, sublethal dose of ethanol (5% v/v) for 60 min, followed by exposure

to a panel of 11 increasingly severe doses of H2O2 (see Materials and Methods). Confirming
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the observations of Berry and Gasch [44], ethanol failed to cross protect against H2O2 in

S288c, and in fact slightly exacerbated H2O2 toxicity (Fig 1). In contrast, ethanol strongly cross

protected against H2O2 in YPS163 (Fig 1).

The inability of ethanol to induce acquired stress resistance in S288c correlates with thou-

sands of differences in ethanol-dependent gene expression in comparison to wild strains that

can acquire ethanol resistance [45, 64]. In light of this observation, and the known dependency

of cross protection on stress-activated gene expression changes [44], we hypothesized that dif-

ferences in cross protection against H2O2 by ethanol may be linked to differential gene expres-

sion. To test this, we performed quantitative trait loci (QTL) mapping using the same mapping

population as our original eQTL study that mapped the genetic architecture of ethanol-respon-

sive gene expression [64]. Specifically, we conducted QTL mapping of both basal and acquired

H2O2 resistance in 43 F2 progeny of S288c crossed with YPS163 (see Materials and Methods).

While we found no significant QTLs for basal H2O2 resistance, we did find a significant QTL

peak on chromosome XII that explained 38% of the variation in cross protection (Fig 2). It is

unlikely that our failure to detect a chromosome XII QTL for basal H2O2 resistance was due to

a lack of statistical power, because two independent basal H2O2 resistance QTL studies using

millions of S288c x YPS163 F2 segregants also found no significant associations at this locus

[69, 70]. Additionally, we estimated the heritability of phenotypic variation in basal resistance

to be 0.79, which is slightly above the median value estimated by Bloom and colleagues for 46

yeast traits [71], and is only moderately lower than the heritability for cross protection (0.92).

Fig 1. Natural variation in ethanol-induced cross protection against H2O2. (A) A representative acquired H2O2

resistance assay is shown. S288c (lab strain–DBY8268) and YPS163 (wild oak strain) were exposed to 5% ethanol or
mock (5% water) pretreatment for 60 min, washed, exposed to 11 doses of severe H2O2 for 2 hr, and then plated to
score viability. (B) A single survival score was calculated from the viability at all H2O2 doses (see Materials and
Methods). Each plot shows the mean and standard deviation of 4 independent biological replicates. The replicates for
mock-treated YPS163 all had the same tolerance score and thus zero standard deviation (see S1 Table for raw
numerical data). Asterisks represent resistance that was significantly different frommock-treated cells (��� P< 0.001,
t-test).

https://doi.org/10.1371/journal.pgen.1007335.g001
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Lastly, the shape of the distribution of phenotypes in the F2 were markedly different between

basal and acquired H2O2 resistance, with basal resistance showing a transgressive segregation

pattern and acquired resistance showing a continuous distribution (S1 Fig). Altogether, these

results suggest that the genetic basis of natural variation in acquired stress resistance is distinct

from the basal resistance of unstressed cells (see Discussion).

The significant QTL for cross protection was located near a known polymorphism in

HAP1, a heme-dependent transcription factor that controls genes involved in aerobic respira-

tion [72–74], sterol biosynthesis [75–77], and interestingly, oxidative stress [77, 78]. S288c har-

bors a known defect inHAP1, where a Ty1 transposon insertion in the 3’ end of the gene’s

coding region has been shown to reduce its function [79]. In fact, we previously hypothesized

that the defectiveHAP1 allele was responsible for the inability of S288c to acquire further resis-

tance to ethanol. However, a YPS163 hap1Δ strain was still fully able to acquire ethanol resis-

tance, despite notable differences in the gene expression response to ethanol in the mutant

[45]. Likewise, despite previous studies implicating Hap1p as a regulator of oxidative stress

defense genes [77, 78],HAP1 is apparently dispensable for same-stress acquired H2O2 resis-

tance [47]. These observations suggest that the molecular mechanisms underlying various

acquired stress resistance phenotypes can differ, even when the identity of the secondary stress

is the same.

A role forHAP1 in ethanol-induced cross protection against severe H2O2

Because we previously implicated HAP1 as a major ethanol-responsive eQTL hotspot affecting

over 100 genes, we hypothesized that ethanol-induced cross protection against H2O2 may

depend upon Hap1p-regulated genes. However, it was formally possible thatHAP1 was merely

linked to the truly causal polymorphism. To distinguish between these possibilities, we gener-

ated deletion mutations in the YPS163 background for every non-essential gene within the

Fig 2. The genetic basis of natural variation for basal and acquired stress resistance is distinct. Linkage mapping of
the S288c x YPS163 cross identified no significant QTLs for basal H2O2 resistance (top panel), but did identify a major
QTL on chromosome XII for ethanol-induced cross protection against H2O2 (bottom panel). The red horizontal line
denotes the LOD threshold for significance (1% FDR).

https://doi.org/10.1371/journal.pgen.1007335.g002
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1.5-LOD support interval of the QTL peak (encompassing IFH1 –YCS4). Of the 36 mutants

tested, two showed significantly and highly diminished acquired H2O2 resistance (Fig 3 and S2

Fig), hap1Δ and top3Δ (encoding DNA topoisomerase III). To determine whether different

alleles ofHAP1 and/or TOP3were responsible for natural variation in acquired H2O2 resis-

tance, we applied an approach called reciprocal hemizygosity analysis [80], where the TOP3

andHAP1 alleles were analyzed in an otherwise isogenic S288c-YPS163 hybrid background

(see Fig 4A for a schematic). In each of the two reciprocal strains, one allele of the candidate

gene was deleted, producing a hybrid strain containing either the S288c or YPS163 allele in

single copy (i.e. hemizygous for TOP3 orHAP1). While we found only mild allelic effects for

TOP3, the effects of different HAP1 alleles were striking (Fig 4B and 4C). The hybrid strain

containing theHAP1YPS163 allele showed full cross protection, while the strain containing the

HAP1S288c allele showed none. Thus, we examined the effects ofHAP1 on acquired H2O2 resis-

tance further. Intriguingly, we found that the YPS163 hap1Δmutant was unaffected for

acquired H2O2 resistance when mild H2O2 or mild NaCl were used as mild stress pretreat-

ments (Fig 5), suggesting that Hap1p plays a distinct role in ethanol-induced cross protection

(see Discussion).

Fig 3. Ethanol-induced cross protection against H2O2 in YPS163 requiresHAP1 and TOP3.Deletions of all non-
essential genes within the 1.5-LOD support interval of the chromosome XII QTL peak were constructed in JL111
(YPS163MATa haploid) background and tested for defects in acquired H2O2 resistance. Each plot shows the mean
and standard deviation of 2 independent biological replicates, with the exception of the JL111 control (35 replicates).
The replicates for several strains all had the same tolerance score and thus zero standard deviation (see S1 Table for raw
numerical data). Asterisks represent acquired H2O2 resistance that was significantly lower than wild-type YPS163 (�

P< 0.001, one-way ANOVA).

https://doi.org/10.1371/journal.pgen.1007335.g003
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Finally, we performed allele swap experiments to examine the effects of the differentHAP1

alleles in the original parental backgrounds. We introduced only the Ty element from

HAP1S288c into the YPS163 HAP1 gene, and observed a loss of acquired H2O2 resistance simi-

lar to the YPS163 hap1Δ strain (Fig 6). We next tested whether repair of the defective hap1

allele in S288c could restore cross protection. Surprisingly, S288c repaired withHAP1 YPS163

was largely unable to acquire further H2O2 resistance (Fig 6). This additional layer of genetic

complexity suggests that S288c harbors additional polymorphisms that affect cross protection.

To determine whether this was due to allelic variation in TOP3, the only other locus showing a

difference in acquired H2O2 resistance, we genotyped each of the segregants at both theHAP1

and TOP3 loci. We identified two segregants with both theHAP1 YPS163 and TOP3YPS163 alleles

that were nonetheless unable to acquire further resistance (S3 Fig, S1 Table). These data, along

Fig 4. Allelic variation inHAP1 affects ethanol-induced cross protection against H2O2. (A) Schematic of reciprocal hemizygosity analysis. Each
block represents a gene, and each hybrid strain contains a single-copy deletion of hap1 or top3, and a single copy of the respective S288c (lab) or
YPS163 (oak) allele. (B) Representative acquired H2O2 resistance assays for wild-type YPS163, the YPS163-S288c hybrid, and the reciprocal
hemizygotes. (C) Each survival score plot shows the mean and standard deviation of biological triplicates. Asterisks represent significant differences
in acquired resistance between denoted strains (�� P< 0.01, ��� P< 0.001, ns = not significant (P> 0.05), t-test).

https://doi.org/10.1371/journal.pgen.1007335.g004
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with the continuous distribution of F2 phenotypes (S1 Fig), is consistent with other loci outside

of the chromosome XII QTL peak contributing to variation in acquired H2O2 resistance.

Moreover, the causative alleles at these loci are apparently masked in YPS163-S288c hybrids

that fully acquire H2O2 resistance, suggesting that they are recessive (see Discussion). We also

noted during the genotyping that a small number of segregants contained theHAP1 S288c (or

TOP3S288c) allele but were still able to acquire further H2O2 resistance (S3 Fig and S1 Table),

suggesting thatHAP1 function is conditionally necessary in certain genetic backgrounds. To

determine whether this was due to a unique genetic background for YPS163, we deletedHAP1

in three additional wild strains. A wild oak (YPS1000) and wild vineyard (M22) strain showed

defects in acquired H2O2 resistance similar to that of the YPS163 hap1Δ strain, while a wild

coconut (Y10) strain showed a very slight defect (S4 Fig). Altogether, these results are consis-

tent with HAP1 being necessary for ethanol-induced cross protection against H2O2 in some

genetic backgrounds, including those of several wild strains, but not others (see Discussion).

Fig 5. HAP1 is not required for acquired H2O2 resistance following mild H2O2 or mild NaCl pretreatments.

Cultures of wild-type YPS163 and the YPS163 hap1Δmutant were split and exposed to either 0.4 mMH2O2, 0.4 M
NaCl, or a mock (media only) treatment for 60 min, washed, exposed to 11 doses of severe H2O2 for 2 hr, and then
plated to score viability. The survival scores across each of the 11 doses are plotted as the mean and standard deviation
of biological triplicates.

https://doi.org/10.1371/journal.pgen.1007335.g005

Fig 6. Allele swaps suggest thatHAP1 is necessary for acquired H2O2 resistance in YPS163, but not sufficient to restore acquired H2O2 resistance in
S288c. (A) Representative acquired H2O2 resistance assays for wild-type YPS163 (oak), YPS163 hap1Δmutant, YPS163HAP1S288c, and S288cHAP1YPS163. (B)
Each survival score plot shows the mean and standard deviation of at least biological triplicates. The replicates for YPS163HAP1S288c all had the same
tolerance score and thus zero standard deviation (see S1 Table for raw numerical data). Asterisks represent significant differences in acquired resistance
between denoted strains (�� P< 0.01, ��� P< 0.001, ns = not significant (P> 0.05), t-test).

https://doi.org/10.1371/journal.pgen.1007335.g006
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HAP1 affects catalase expression and peroxidase activity during ethanol
stress

Because Hap1p is a transcription factor, we hypothesized that acquired H2O2 resistance relied

on Hap1p-dependent expression of a stress protectant protein. We reasoned that the putative

stress protectant protein should have the following properties: i) a biological function consis-

tent with H2O2 detoxification or damage repair, ii) reduced ethanol-responsive expression in

S288c versus YPS163, iii) be a target gene of theHAP1 eQTL hotspot, and iv) possess evidence

of regulation by Hap1p.

We first looked for overlap between our previously identifiedHAP1 eQTL hotspot (encompass-

ing 376 genes) and genes with significantly reduced ethanol-responsive induction in S288c versus

YPS163 (309 genes) [64]. Thirty-four genes overlapped for both criteria, including several that dir-

ectly defend against reactive oxygen species (TSA2 encoding thioredoxin peroxidase, SOD2 encod-

ing mitochondrial manganese superoxide dismutase, CTT1 encoding cytosolic catalase T, and

GSH1 encoding γ-glutamylcysteine synthetase (Fig 7A and S1 Table)). Of those 34 genes, 8 also had

direct evidence of Hap1p binding to their promoters [81] (Fig 7B and S1 Table), including CTT1

andGSH1 (though both TSA2 and SOD2 have indirect evidence of regulation by Hap1p [82, 83]).

We first focused on CTT1, since it is both necessary for NaCl-induced cross protection against

H2O2 in S288c [84], and sufficient to increase H2O2 resistance when exogenously overexpressed

in S288c [85]. We deleted CTT1 in the YPS163 background, and found that ethanol-induced

cross protection against H2O2was completely eliminated (Fig 8). The complete lack of cross pro-

tection in the ctt1Δmutant suggests that other peroxidases cannot compensate for the lack of cata-

lase activity under this condition. Next, because CTT1was part of theHAP1 eQTL hotspot (Fig

7C, plotted using the data described in [64]), we tested whether the S288cHAP1 allele reduced

CTT1 expression during ethanol stress. To do this, we performed qPCR to measure CTT1mRNA

induction following a 30-minute ethanol treatment (i.e. the peak ethanol response [45]). Consis-

tent with our previous microarray data [45, 64], we saw lower induction of CTT1by ethanol in

S288c relative to YPS163 (Fig 9A). Moreover, we saw dramatically reduced induction of CTT1 in

a YPS163 hap1Δmutant compared to the wild-type YPS163 control (Fig 9A). Further support

thatHAP1 is causative for reduced CTT1 expression was provided by performing qPCR in the

HAP1 reciprocal hemizygotes, where we found that theHAP1S288c allele resulted in significantly

reduced CTT1 induction compared to theHAP1YPS163 allele (Fig 9A).

To determine whether the differences in CTT1 induction across strain backgrounds also

manifested as differences in each strain’s ability to detoxify H2O2, we measured in vitro peroxi-

dase activity in cell-free extracts. We compared in vitro peroxidase activity in extracts from

unstressed cells and cells exposed to ethanol stress for 60 minutes (i.e. the same pre-treatment

time that induces acquired H2O2 resistance (see Materials and Methods)). For wild-type

YPS163, ethanol strongly induced peroxidase activity, and this induction was completely

dependent upon CTT1 (Fig 9B). Mirroring CTT1 gene expression patterns, the induction of

peroxidase activity was reduced in a YPS163 hap1Δmutant. Additionally, reciprocal hemizyg-

osity analysis provided further support that lack ofHAP1 function results in decreased peroxi-

dase activity, as the hybrid containing theHAP1S288c allele showed significantly reduced

peroxidase activity following ethanol stress compared to the hybrid containing theHAP1YPS163

allele (Fig 9B). Notably, the hybrid containing theHAP1YPS163 allele had lower CTT1 induction

and in vitro peroxidase activity following ethanol shock than wild-type YPS163, despite equiva-

lent levels of acquired H2O2 resistance in the strains. These results suggest thatHAP1may play

additional roles in acquired H2O2 resistance beyond H2O2 detoxification, depending upon the

genetic background (see Discussion). Interestingly, S288c showed no induction of peroxidase

activity upon ethanol treatment, despite modest induction of the CTT1 transcript. This result
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is reminiscent of Ctt1p regulation during heat shock in the S288c background, where mRNA

levels increase without a concomitant increase in protein levels [84]. Thus, in addition to

strain-specific differences in CTT1 regulation at the RNA level, there are likely differences in

regulation at the level of translation and/or protein stability.

Discussion

In this study, we leveraged extensive natural variation in the yeast ethanol response to under-

stand potential connections between gene expression variation and higher-order organismal

Fig 7. Expression variation in Hap1p regulatory targets implicates oxidative stress defense genes as the direct

effectors of ethanol-induced cross protection against H2O2. (A) Overlap between genes that wereHAP1 eQTL
hotspot targets from [64], genes with defective induction in S288c vs. YPS163 from [64], and direct targets ofHAP1
identified via ChIP experiments compiled from [81]. (B) Descriptions of the eight genes that overlapped for all three
criteria. (C) Previous eQTLmapping of the yeast ethanol response (newly plotted here using data described in [64]),
implicatedHAP1 as causative for natural variation in CTT1 induction levels during ethanol stress.

https://doi.org/10.1371/journal.pgen.1007335.g007
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traits. Previous screens of gene deletion libraries have found surprisingly little overlap between

the genes necessary for surviving stress and genes that are induced by stress. [34–43]. Instead,

gene induction may be a better predictor of a gene’s requirement for acquired stress resistance

Fig 8. CTT1 function is necessary for ethanol-induced cross protection against H2O2. (A) Representative acquired
H2O2 resistance assays for wild-type YPS163 and the YPS163 ctt1Δmutant. (B) Survival score plots indicating the
mean and standard deviation of biological triplicates. Asterisks represent significant differences in acquired resistance
between denoted strains (��� P< 0.001, t-test).

https://doi.org/10.1371/journal.pgen.1007335.g008

Fig 9. HAP1 is required for full induction of CTT1 gene expression and cellular peroxidase activity during ethanol stress. (A) Fold
induction of CTT1mRNA in indicated strains following 30 min ethanol stress compared to unstressed cells, assessed by qPCR. (B)
Peroxidase activity measured in cell-free extracts in either mock-treated or ethanol-stressed cells. The plots indicate the mean and standard
deviation of biological triplicates (mRNA) or quadruplicates (peroxidase activity). Asterisks represent significant differences in CTT1
mRNA induction or peroxidase activity between denoted strains (� P< 0.05, �� P< 0.01, paired t-test).

https://doi.org/10.1371/journal.pgen.1007335.g009
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[84]. Thus, we hypothesized that phenotypic variation in acquired stress resistance may be

linked to natural variation in stress-activated gene expression. Our results provide a compel-

ling case study in support of this notion—namely that a polymorphism in theHAP1 transcrip-

tion factor affects natural variation in acquired H2O2 resistance, but not the basal H2O2

resistance of unstressed cells. Forward genetic screens have shown that the genes necessary for

basal and acquired resistance are largely non-overlapping [34, 36, 84], suggesting that mecha-

nisms underlying basal and acquired stress resistance are distinct. We provide further genetic

evidence to support this model. YPS163 hap1Δmutants and the hybrid carrying theHAP1S288c

allele had strong acquired H2O2 defects, but no differences in their basal H2O2 resistance (Figs

4 and 6). Moreover, the YPS163 hap1Δmutant was affected only when ethanol was the mild

pretreatment, and was able to fully acquire H2O2 resistance following mild H2O2 or mild NaCl

(Fig 5). These results suggest that the mechanisms underlying acquired resistance differ

depending upon the mild stress that provokes the response. Further dissection of the mecha-

nisms underlying acquired stress resistance will provide a more integrated view of eukaryotic

stress biology.

Our results reveal a new role for Hap1p in cross protection against H2O2 that has been lost

in the S288c lab strain. We propose that a major mechanism underlying ethanol-induced cross

protection against H2O2 is the induction of cytosolic catalase T (Ctt1p), and that in the

YPS163 background, Hap1p is necessary for proper induction of CTT1 during ethanol stress.

We based this mechanism on the following observations. First, over-expression of CTT1 in

S288c is sufficient to induce high H2O2 resistance [85]. Second, a YPS163 ctt1Δmutant cannot

acquire any further H2O2 resistance following ethanol pre-treatment (Fig 8), suggesting that

no other antioxidant defenses are able to compensate under this condition. Lastly, the defect

in cross protection for the YPS163 hap1Δmutant correlates with reduced CTT1 expression

and peroxidase activity during ethanol stress (compare Figs 6 and 9). How Hap1p is involved

in the regulation of CTT1 during ethanol stress remains an open question, but we offer some

possibilities. Hap1p is activated by heme, thus promoting transcription of genes involved in

respiration, ergosterol biosynthesis, and oxidative stress defense including CTT1 [75, 76, 78,

82]. Because heme biosynthesis requires oxygen, Hap1p is an indirect oxygen sensor and regu-

lator of aerobically expressed genes [74, 75, 86]. There is currently no evidence that heme levels

are affected by ethanol stress, nor is there evidence that Hap1p is “super-activating” under cer-

tain conditions. Thus, we disfavor a mechanism of induction caused solely by Hap1p activa-

tion. Instead, we favor a mechanism where Hap1p interacts with other transcription factors at

the CTT1 promoter during ethanol stress, leading to full CTT1 induction. One possibility that

we favor is recruitment of the general stress transcription factor Msn2p, which plays a known

role in acquired stress resistance [44, 45]. We previously showed that a YPS163msn2Δmutant

had no induction of CTT1mRNA during ethanol stress [45], suggesting that Msn2p was an

essential activator for CTT1 under this condition. The CTT1 promoter region contains three

Msn2p DNA-binding sites, two of which are ~100-bp away from the Hap1p binding site.

Hap1p binding to the CTT1 promoter could help recruit Msn2p during ethanol stress, possibly

through chromatin remodeling that increases accessibility of the Msn2p binding sites as pro-

posed by Elfving and colleagues [87].

What is the physiological role of Hap1p-dependent induction of CTT1 during ethanol

stress? One possibility is that regulation tied to the heme- and oxygen-sensing role of Hap1p

ensures that CTT1 induction only occurs under environmental conditions where reactive oxy-

gen species (ROS) are most likely to be encountered—namely stressful conditions that are also

aerobic. In the context of ethanol stress, aerobic fermentation would lead to subsequent respi-

ration of the produced ethanol and simultaneous ROS production. Under these conditions,

CTT1 induction leading to ethanol-mediated cross protection against ROS would likely confer
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a fitness advantage. On the other hand, during stressful yet anoxic conditions, Ctt1p and other

ROS-scavenging proteins are likely unnecessary. Furthermore, because heme is not synthesized

during anoxic conditions [74], Hap1p would fail to induce CTT1 and other genes encoding

non-essential heme-containing proteins. This may improve fitness by conserving energy used

for biosynthesis and by redirecting limited heme to more essential heme-containing proteins.

The S288c lab strain has long been known to possess a defective HAP1 allele [79]. Appar-

ently, the defective allele arose relatively recently, as only S288c contains aHAP1 Ty1 insertion

out of over 100 sequenced strains [88, 89]. The lack ofHAP1 function in S288c could be due to

relaxation of selective constraint, though others have argued in favor of positive selection for

reduced ergosterol biosynthetic gene expression [90, 91]. Regardless, the loss of ethanol-

induced acquired H2O2 resistance is likely a secondary effect of the loss of Hap1p function.

Intriguingly, we did find that two (non-S288c) domesticated yeast strains also lack ethanol-

induced cross protection against H2O2 (S5 Fig), suggesting that phenotypic differences in

acquired stress resistance may differentiate domesticated versus wild yeast. Because environ-

mental stresses are likely encountered in combination or sequentially [92], acquired stress

resistance is likely an important phenotype in certain natural ecological settings. Future studies

directed at understanding differences in acquired stress resistance phenotypes in diverse wild

yeast strains may provide unique insights into the ecology of yeast.

While our QTL mapping identified HAP1 as the major effector of cross protection, we note

that additional complexity remains unexplained. Notably, despite the strong cross protection

defect in the YPS163 hap1Δmutant, some residual cross protection persists that is absent in

S288c (Fig 6). Intriguingly, the residual cross protection is also absent in the hybrid carrying

theHAP1S288c allele, suggesting the involvement of other genes depending upon the genetic

background (Fig 4B and 4C). It is known that yeast strains with respiratory defects have

increased ROS sensitivity [93, 94], potentially due to increased programmed cell death [95]. It

is possible that reduced respiratory activity and concomitant ROS sensitivity in strains lacking

HAP1 is exacerbated by genetic interactions with other alleles.

The lack of cross protection in S288c and theHAP1S288c hybrid correlates with the lack of

inducible peroxidase activity following ethanol pretreatment in those strains. The lack of

inducible peroxidase activity in S288c despite modest induction of CTT1mRNA could be due

to translational regulation, which is supported by the observation that while mild heat shock

induces CTT1mRNA, protein levels remain nearly undetectable [84]. Strikingly, the hybrid

carrying theHAP1YPS163 allele still cross protects despite levels of CTT1mRNA induction and

peroxidase activity that are lower than in the YPS163 hap1Δ strain that is unable to acquire fur-

ther resistance (Fig 9). These data suggest thatHAP1 plays an additional role in ethanol-

induced cross protection beyond H2O2 detoxification by Ctt1p. Moreover, the continuous dis-

tribution of the cross protection phenotype in the segregants (S1 Fig) and the results of allele

swap experiments (Fig 6) strongly implicate other genes and processes in this complex trait.

Specifically, the lack of complementation by theHAP1YPS163 allele in the S288c background

suggests that additional loci in S288c renderHAP1 necessary but not sufficient for cross pro-

tection in this background. Moreover, our genotyping of the segregants atHAP1 revealed a

small number that still possessed cross protection in the absence of functionalHAP1 (S3 Fig

and S1 Table), suggesting thatHAP1 is dispensable in certain genetic backgrounds. We exam-

ined the effects of hap1Δmutations in other wild strain backgrounds and found two additional

strains with a strongHAP1 requirement and a third strain with at most a mildHAP1 effect (S4

Fig). This result, as well as those from other recent studies [96–98], suggests that these types of

genetic background effects are likely the rule rather than the exception. Future high resolution

mapping experiments will be necessary to identify and characterize the source of these genetic

background effects.
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Gene expression variation is extensive in nature and is hypothesized to be a major driver of

higher-order phenotypic variation. However, there are inherent challenges to connecting gene

expression variation to higher-order organismal traits. Hundreds to thousands of genes are

often differentially expressed across individuals, so identifying which particular transcripts

exert effects on fitness is difficult. By studying acquired stress resistance—a phenotype better

correlated with stress-activated gene expression changes—we were able to uncover a novel

connection between gene expression variation and an organismal trait.

Materials andmethods

Strains and growth conditions

Strains and primers used in this study are listed in S2 and S3 Tables, respectively. The parental

strains for QTL mapping were YPS163 (oak strain) and the S288c-derived DBY8268 (lab

strain; referred to throughout the text as S288c). The construction of the S288c x YPS163 QTL

mapping strain panel (44 F2 progeny) is described in [99] (kindly provided by Justin Fay).

Genotypes for the strain panel are listed in S4 Table. During the course of analyzing HAP1

genotypes, we found one segregant (YS.15.2) to be a mixed population, so it was removed

from subsequent analyses. Deletions in the BY4741 (S288c) background were obtained from

Open Biosystems (now GE Dharmacon), with the exception of hap1 (whose construction is

described in [45]). Deletions were moved into haploidMATa derivatives of DBY8268, M22,

and YPS163 by homologous recombination with the deletion::KanMX cassette amplified from

the appropriate yeast knockout strain [100]. Homozygous hap1Δ strains of YPS1000 and Y10

were generated by moving the hap1Δ::KanMX allele from the BY4741 background into the

strains, followed by sporulation and tetrad dissection. All deletions were verified by diagnostic

PCR. DBY8268 containing a wild-typeHAP1 allele from YPS163 was constructed in two steps.

First, the MX cassette from the hap1Δ::KanMX deletion was replaced with a URA3MX cassette,

selecting for uracil prototrophy. Then, URA3was replaced with wild-typeHAP1 from YPS163

(amplified using primers 498-bp upstream and 1572-bp downstream of theHAP1ORF), while

selecting for loss of URA3 on 5-fluoroorotic acid (5-FOA) plates. Deletions and repair ofHAP1

were confirmed by diagnostic PCR (see S3 Table for primer sequences). YPS163 containing a

HAP1S288c allele was constructed by first inserting a KanMX cassette into S288c 117-bp down-

stream of the Ty element to create JL1032. We then amplified and transformed the Ty element

into YPS163 using primers that annealed 103-bp upstream of the Ty element and 177-bp down-

stream of the KanMX cassette, generating JL1069. Diploid strains forHAP1 and TOP3 recipro-

cal hemizygosity analysis were generated as follows. The hemizygote containing the wild-type

S228cHAP1 allele (JL580) was generated by mating JL140 (YPS163MATa hoΔ::HygMX

hap1Δ::KanMX) to JL506 (DBY8268MATα ho ura3 hap1). The hemizygote containing the

wild-type YPS163 allele (JL581) was generated by mating JL112 (YPS163MATα hoΔ::HygMX

HAP1) to JL533 (DBY8268MATa ho ura3 hap1Δ::KanMX). The hemizygote containing the

wild-type S288c TOP3 allele (JL1107) was created by mating JL1066 (YPS163MATa hoΔ::
HygMX top3Δ::KanMX) to BY4742 (MATα TOP3). The hemizygote containing the wild-type

YPS163 allele (JL1106) was created by mating JL1121 (BY4741MATa top3Δ::KanMX) to JL112
(YPS163MATα hoΔ::HygMX TOP3). All strains were grown in batch culture in YPD (1% yeast

extract, 2% peptone, 2% dextrose) at 30˚C with orbital shaking (270 rpm).

HAP1 and TOP3 genotyping

To identify possible promoter polymorphisms, theHAP1 promoters of the DBY8268 (JL505),

YPS163 (JL111), and S288cHAP1YPS163 (JL975) strains were amplified using primers that

anneal 1091-bp upstream and 134-bp downstream of theHAP1 start codon. PCR products
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were purified with a PureLink PCR cleanup kit (Invitrogen) and sequenced by Sanger Se-

quencing (Eurofins Genomics) using a primer that anneals 498-bp upstream of theHAP1 start

codon. Sequences were aligned to the S288c and YPS163 reference sequences using SnapGene

v4.1 (GSL Biotech). This verified the presence of a 1-bp indel within a poly-A stretch that dif-

fers between S288c and YPS163. The S288cHAP1YPS163 (JL975) strain contains the YPS163

HAP1 promoter sequence. Additionally, the YPS163 strain containing theHAP1S288cwas con-

structed to only contain the Ty element and not the S288c promoter polymorphism.

TheHAP1 allele of each segregant for the QTL mapping panel was genotyped by differential

PCR analysis where the same forward primer (HAP1 int 3’ F) was paired with two different

reverse primers. One primer (Ty R) anneals specifically to the Ty element, yielding an 856-bp

product when amplifying the S288c allele. The second primer (HAP1 3’ end R) anneals 3’ to

the Ty element ofHAP1S288c, yielding a 570-bp product forHAP1YPS163 and a 6.5-kb product

forHAP1S288c. Each segregant was genotyped using both sets of primer pairs, and only one

segregant (YS.15.2) appeared to contain bothHAP1 alleles. Subsequent analysis of multiple

colonies verified that YS.15.2 was a mixed population, and thus it was removed it from all sub-

sequent analyses.

The TOP3 alleles of S288c and YPS163 contain two non-synonymous SNPs at nucleotide

positions 1,398 and 1,422. Segregant genotypes at TOP3were determined by analyzing restric-

tion fragment length polymorphisms. TOP3was amplified using primers (TOP3 up F and

TOP3 down R) that anneal ~500-bp upstream and downstream of the open reading frame,

generating a 2.9-kb product. PCR products were digested with either 1) PstI, which cuts at

position 1,248 only within the TOP3YPS163ORF allele yielding 1.7- and 1.2-kb products, or (2)

KflI, which cuts at position 1,155 only within the TOP3S288c yielding 1.6- and 1.3-kb products.

Genotypes forHAP1 and TOP3 are listed in S1 Table.

Cross protection assays

Cross-protection assays were performed as described in [44] with slight modifications. Briefly,

3–4 freshly streaked isolated colonies (<1 week old) were grown overnight to saturation, sub-

cultured into 6 ml fresh media, and then grown for at least 8 generations (>12 h) to mid-expo-

nential phase (OD600 of 0.3–0.6) to reset any cellular memory of acquired stress resistance

[85]. Each culture was split into two cultures and pretreated with YPDmedia containing either

a single mild “primary” dose or the same concentration of water as a mock-pretreatment con-

trol. Primary doses consisted of 5% v/v ethanol, 0.4 M NaCl, or 0.4 mMH2O2. Thereafter,

mock and primary-treated cells were handled identically. Following 1-hour pretreatment at

30˚C with orbital shaking (270 rpm), cells were collected by mild centrifugation at 1,500 x g for

3 min. Pelleted cells were resuspended in fresh medium to an OD600 of 0.6, then diluted 3-fold

into a microtiter plate containing a panel of severe “secondary” H2O2 doses ranging from 0.5–

5.5 mM (0.5 mM increments; 150 μl total volume). Microtiter plates were sealed with air-per-

meable Rayon films (VWR), and cells were exposed to secondary stress for 2 hours at 30˚C

with 800 rpm shaking in a VWR symphony Incubating Microplate Shaker. Four μl of a 50-fold

dilution was spotted onto YPD agar plates and grown 48 h at 30˚C. Viability at each dose was

scored using a 4-point semi-quantitative scale to score survival compared to a no-secondary

stress (YPD only) control: 100% = 3 pts, 50–90% = 2 pts, 10–50% = 1 pt, or 0% (3 or less colo-

nies) = 0 pts. An overall H2O2 tolerance score was calculated as the sum of scores over the 11

doses of secondary stress. Raw phenotypes for all acquired stress resistance assays can be

found in S1 Table. A fully detailed acquired stress protocol has been deposited to protocols.io

under doi dx.doi.org/10.17504/protocols.io.g7sbzne. Statistical analyses were performed using

Prism 7 (GraphPad Software).
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QTLmapping and heritability estimates

Phenotyping of the QTL mapping strain panel for basal and acquired H2O2 resistance was per-

formed in biological duplicate. Because cross-protection assays on the entire strain panel could

not all be performed at the same time, we sought to minimize day-to-day variability. We found

that minor differences in temperature and shaking speed affected H2O2 resistance; as a result,

we used a digital thermometer and tachometer to ensure standardization across experiments.

Moreover, we found that differences in handling time were a critical determinant of experi-

mental variability. To minimize this source of variability, all cell dilutions were performed

quickly using multichannel pipettes, and no more than two microtiter plates were assayed dur-

ing a single experiment. To ensure that replicates on a given day were reproducible, we always

included the YPS163 wild-type parent as a reference.

Single mapping scans were performed using Haley-Knott regression [101] implemented

through the R/QTL software package [102]. Genotype probabilities were estimated at every

cM across the genome using the calc.genoprob function. Significant LOD scores were deter-

mined by 100,000 permutations that randomly shuffled phenotype data (i.e. strain labels) rela-

tive to the genotype data. The maximum LOD scores for the permuted scans were sorted, and

the 99th percentile was used to set the genome-wide FDR at 1%. This resulted in LOD cutoffs

of 3.07 for QTL mapping of basal H2O2 resistance, and 4.24 for acquired H2O2 resistance.

Broad-sense heritability (H2) was estimated from the segregant data as described in [71]

using a random-effects ANOVAmodel implemented through the lmer function in the lme4 R

package [103].H2 was estimated using the equation
s
2
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þs

2

E
Þ
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G represents the genetic

variance due to the effects of segregrant, and s2

E represents the residual (error or environmen-

tal) variance. The proportion of variance explained by a QTL was estimated using the equation

1� 10
ð�2
n�LODÞ, where n represents the number of segregants.

Quantitative PCR of CTT1 expression and cellular peroxidase assays

Induction of CTT1 by ethanol was assessed by real-time quantitative PCR (qPCR) using the

Maxima SYBR q-PCRMaster Mix (Thermo Fisher Scientific) and a Bio-Rad CFX96 Touch

Real-Time PCR Detection System, according to the manufacturers’ instructions. Cells were

grown to mid-exponential phase (OD600 of 0.3–0.6) as described for the cross-protection

assays. Cells were collected by centrifugation at 1,500 x g for 3 minutes immediately prior to

the addition of 5% v/v ethanol (unstressed sample) and 30 minutes post-ethanol treatment,

which encompasses the peak of global expression changes to acute ethanol stress [45]. Cell pel-

lets were flash frozen in liquid nitrogen and stored at -80˚C until processed. Total RNA was

recovered by hot phenol extraction as previously described [104], and then purified with a

Quick-RNAMiniPrep Plus Kit (Zymo Research) including on-column DNase I treatment.

cDNA synthesis was performed as described [104], using 10 μg total RNA, 3 μg anchored

oligo-dT (T20VN), and SuperScript III (Thermo Fisher Scientific). One ng cDNA was used as

template for qPCR with the following parameters: initial denaturation at 95˚C for 3 minutes

followed by 40 cycles of 95˚C for 15 seconds and 55˚C annealing and elongation for 1 minute.

Cq was determined using regression analysis, with baseline subtraction via curve fit. The pres-

ence of a single amplicon for each reaction was validated by melt curve analysis. The average

of two technical replicates were used to determine relative CTT1mRNA abundance via the

ΔΔCqmethod [105], by normalizing to an internal control gene (ERV25) whose expression is

unaffected by ethanol stress and does not vary in expression between S288c and YPS163 [45].

Primers for CTT1 and ERV25 were designed to span ~200 bp in the 3’ region of each ORF (to

decrease the likelihood of artifacts due to premature termination during cDNA synthesis), and
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for gene regions free of polymorphisms between S288c and YPS163 (see S3 Table for primer

sequences). Three biological replicates were performed and statistical significance was assessed

via a paired t-test using Prism 7 (GraphPad Software).

For peroxidase activity assays, mid-exponential phase cells were collected immediately

prior to and 60 minutes post-ethanol treatment, to assess peroxidase activity levels during the

induction of cross protection. Cells were collected by centrifugation at 1,500 x g for 3 minutes,

washed twice in 50 mM potassium phosphate buffer, pH 7.0 (KPi), flash frozen in liquid nitro-

gen, and then stored at -80˚C until processed. For preparation of whole cell extracts, cells were

thawed on ice, resuspended in 1 ml KPi buffer, and then transferred to 2-ml screw-cap tubes

for bead beating. An equal volume (1 ml) of acid-washed glass beads (425–600 micron, Sigma-

Aldrich) was added to each tube. Cells were lysed by four 30-second cycles of bead beating in a

BioSpec Mini-Beadbeater-24 (3,500 oscillations/minute, 2 minutes on ice between cycles). Cel-

lular debris was removed by centrifugation at 21,000 x g for 30 minutes at 4˚C. The protein

concentration of each lysate was measured by Bradford assay (Bio-Rad) using bovine serum

albumin (BSA) as a standard [106]. Peroxidase activity in cellular lysates was monitored as

described [107], with slight modifications. Briefly, 50 μg of cell free extract was added to 1 ml

of 15 mMH2O2 in KPi buffer. H2O2 decomposition was monitored continuously for 10 min-

utes in Quartz cuvettes (Starna Cells, Inc.) at 240 nm (ε240 = 43.6 M-1 cm-1) using a Spectra-

Max Plus Spectrophotometer (Molecular Devices). One unit of catalase activity catalyzed the

decomposition of 1 μmol of H2O2 per minute. For each sample, results represent the average

of technical duplicates. To assess statistical significance, four biological replicates were per-

formed and significance was assessed via a paired t-test using Prism 7 (GraphPad Software).

Supporting information

S1 Fig. Distribution of phenotypes in the F2 segregants. Survival score plots indicating the

mean of biological duplicates for (A) basal and (B) acquired H2O2 resistance.

(EPS)

S2 Fig. Representative acquired H2O2 resistance assays for candidate genes under the chro-

mosome XII QTL peaks. Representative acquired H2O2 resistance assays for wild-type

YPS163 and each of 36 mutants generated for candidates falling within the 1.5-LOD support

interval of the chromosome XII QTL peak.

(EPS)

S3 Fig. Effect plots forHAP1 and TOP3 alleles. Boxplots and raw data points depict the dis-

tribution of segregant phenotypes depending on their alleles for eitherHAP1 or TOP3 (see

methods for genotyping details).

(EPS)

S4 Fig.HAP1 is necessary for acquired H2O2 resistance in some wild strains. Survival score

plots indicating the mean and standard deviation of at least biological triplicates. The replicates

for mock-treated Y10 all had the same tolerance score and thus zero standard deviation (see S1

Table for raw numerical data). Asterisks represent significant differences in acquired resistance

between denoted strains (� P< 0.05, �� P< 0.01, ��� P< 0.001, ns = not significant (P> 0.05),

t-test).

(EPS)

S5 Fig. Other non-S288c-derived yeast isolates lack ethanol-induced cross protection

against H2O2. (A) Representative acquired H2O2 resistance assays for wild-type YPS163,

YJM627, and YJM1129. (B) Survival score plots indicating the mean and standard deviation of
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biological duplicates. The replicates for ethanol-treated YJM627 all had the same tolerance

score and thus zero standard deviation (see S1 Table for raw numerical data).

(EPS)

S1 Table. Raw data used to generate each figure.

(XLSX)

S2 Table. Strains used in this study.

(XLSX)

S3 Table. Primers used in this study.

(XLSX)

S4 Table. Genotypes for S288c x YPS163 QTL mapping strain panel. The “Strain” heading

for column 1 denotes strain labels for the parental strains (Y = YPS163, S = S288c) and each

segregant. Subsequent columns represent genotypes at each marker (Row heading 1 = marker

name; Row heading 2 = marker chromosome; Row heading 3 = marker position in cM). Geno-

types at each marker are denoted as having the S288c allele (S), YPS163 allele (W), or missing

data (NA).

(XLSX)
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