
Packet-Level Analytics in Software without Compromises

Oliver Michel

University of Colorado Boulder

John Sonchack

University of Pennsylvania

Eric Keller

University of Colorado Boulder

Jonathan M. Smith

University of Pennsylvania

Abstract

Traditionally, network monitoring and analytics systems

rely on aggregation (e.g., flow records) or sampling to

cope with high packet rates. This has the downside

that, in doing so, we lose data granularity and accu-

racy, and, in general, limit the possible network analytics

we can perform. Recent proposals leveraging software-

defined networking or programmable hardware provide

more fine-grained, per-packet monitoring but are still

based on the fundamental principle of data reduction in

the network, before analytics. In this paper, we pro-

vide a first step towards a cloud-scale, packet-level mon-

itoring and analytics system based on stream processing

entirely in software. Software provides virtually unlim-

ited programmability and makes modern (e.g., machine-

learning) network analytics applications possible. We

identify unique features of network analytics applica-

tions which enable the specialization of stream process-

ing systems. As a result, an evaluation with our pre-

liminary implementation shows that we can scale up to

several million packets per second per core and together

with load balancing and further optimizations, the vision

of cloud-scale per-packet network analytics is possible.

1 Introduction

Network monitoring and analytics are crucial for the re-

liable and secure operation of cloud-scale networking

environments. A monitoring system captures informa-

tion about traffic. An analytics system processes that in-

formation to detect equipment failures, incorrect behav-

ior (e.g., packet drops or routing loops), and attacks, as

well as to identify and locate performance issues within

the infrastructure [34, 23, 21, 37, 15, 20]. In order to

reduce the load on the analytics systems, compromises

have been made in the monitoring systems. Aggregation

(e.g, pre-calculating information about entire flows, and

aggregating into a flow record) and sampling (only look-

ing at a subset of the flows or packets), have been the

de-facto standards for decades as the software systems

just could not process the information fast enough. These

approaches, of course, reduce information – aggregation

reduces the load of the analytics system at the cost of

granularity, as per-packet data is reduced to groups of

packets in the form of sums or counts [3, 16]. Sampling

and filtering reduces the number of packets or flows to be

analyzed. Reducing information reduces load, but it also

increases the chance of missing critical information, and

restricts the set of possible applications [30, 28].

Recent advances in software-defined networking

(SDN) and more programmable hardware have provided

opportunities for more fine-grained monitoring, towards

packet-level network analytics. Packet-level analytics

systems provide the benefit of complete insight into the

network and open up opportunities for applications that

require per-packet data in the network [37]. But, com-

promises are still being made.

For example, [34, 23, 21] leverage processing prim-

itives in hardware for custom aggregation (as opposed

to fixed aggregation in legacy hardware). Although cus-

tom, the aggregation is still limited to a set of pre-defined

functions that are implementable in programmable for-

warding engines (PFE) [5, 10], and thus imposes re-

strictions on possible applications (e.g., [9, 19, 24, 31]).

These new programmable data planes have also been

used for more granular and iteratively refined filtering in

hardware [37, 15]. This, however, is only effective at re-

ducing load if the application is only interested in a small

subset of the overall traffic (e.g., only DNS packets).

In summary, monitoring systems are historically de-

signed to reduce the load of the software analytics plat-

form based on the assumption that it cannot handle the

load.

In this paper we challenge that assumption. We ask:

What are the limits of software analytics systems – is it

possible to perform packet-level analytics on cloud scale

infrastructures in software?

We start with the assumption that hardware can send

per-packet records [29] to the software-based analytics



system. The challenge is then processing those records

as (i) modern networks run at traffic rates of several ter-

abits of data per second, which can equate to hundreds of

millions of packets per second [27], and (ii) modern an-

alytics systems, specifically stream processing systems

(which is an ideal programming model for network an-

alytics), such as Apache Flink [6], or Kafka [7], simply

are not capable of handling these rates. Even more re-

cent work, such as StreamBox, a stream processor de-

signed for efficiency [22], can only support around 30M

records/s with a 56 core server for a basic example appli-

cation unrelated to network processing. In modern net-

works, where even 10 Gb/s links have packet arrival rates

of 500K packets per second [4], real time packet ana-

lytics with such general purpose systems would require

racks full of servers.

Our insight is that stream processing for network an-

alytics has fundamentally different characteristics than

traditional uses of stream processing. In this paper

we highlight some of these differences and show how

they can impact the achievable processing rates (Sec-

tion 3). As a step towards validating our vision, we

outline an architecture (Section 4), and built a proto-

type with some preliminary optimizations (Section 5).

With this, our evaluations indicate more than two orders

of magnitude speedup (163×) over state-of-the-art solu-

tions [15, 37, 22] (Section 6). Based on data from Face-

book [27], we demonstrate that for an entire cluster in

a Facebook data center our prototype can analyze every

packet leaving the cluster on a single commodity server

(representing only 0.5% of the cluster’s hardware). As a

result, we believe that powerful packet-level analytics in

software at cloud scale (without compromise) is indeed

within reach.

2 Stream Processing Overview

Stream processing is a paradigm for parallel data pro-

cessing applications. Stream processors are composed of

sequential data processing functions, that are connected

by FIFO queues transferring the streams of data. The

benefit of stream processing is that it compartmentalizes

state and logic. Processing functions only share data via

streams. This allows each processing element to run in

parallel, on a separate processing core or even a separate

server. In this model, each processor (or kernel) usually

transforms data (or tuples) from one or multiple input

streams into one or multiple output streams by perform-

ing some sort of stateful or stateless computation on the

tuples and including the results in the output tuple. Re-

cently, with the increasing focus on real time and big data

analysis, there have been many new streaming platforms

that focus on efficient scaling and ease of use [7, 6, 35].

3 Stream Processing for Packet Records

Stream processing is widely used in many domains be-

cause it is a flexible and scalable way to process un-

bounded streams of records in real-time. These prop-

erties also make stream processing a natural fit for real-

izing the goal of a software platform capable of flexible

analytics with visibility into every packet.

As explained in the introduction, using general pur-

pose stream processors for packet analytics, however, is

not efficient enough to be practical. The root cause of

these issues are the differences between the workloads

for packet analytics and those typical to stream process-

ing. The differences present challenges, but also intro-

duce new opportunities for optimization. By taking ad-

vantage of them, we can specialize stream processing

systems for packet analytics to build systems that have

not only the flexibility and scalability benefits inherent

to the processing model, but also the efficiency to make

software visibility into every packet practical at large

scales.

In this section, we explore some of the distinct charac-

teristics of packet analytics workloads and how we can

optimize stream processors for them.

3.1 Packet Analytics Workloads

We illustrate the differences between a packet analytics

workload and that of a typical stream processing task

with a case study based on Twitter’s well-documented

use of stream processing [32, 33].

High Record Rates One of the most striking differ-

ences between packet analytics workloads and typical

stream processing workloads are higher record rates. For

example, Twitter reports that their stream processing sys-

tems handle up to 46 M events per second. For compari-

son, the aggregate rate of packets leaving one small com-

ponent of their platform is over 320 M per second. This

network (the “Twitter Cache”), only represents 3% of the

total infrastructure.

Small Records Although record rates are higher for

packet analytics, the sizes of individual records are

smaller, which makes the overall bit-rate of the process-

ing manageable. Network analytics applications are pre-

dominately interested in statistics derived from packet

headers and processing metadata, which are only a small

portion of each packet. A 40 B packet record, for ex-

ample, can contain the headers required for most packet

analytics tasks. In contrast, records in typical stream pro-

cessing workloads are much larger.

Event Rate Reduction Packet analytics applications

often aggregate data significantly before applying heavy-

weight data mining or visualization algorithms, e.g., by

TCP connection. This is not true for general stream pro-

cessing workloads, where the back-end algorithm may



Switch

Switch

Alerting

Storage

NIC

mirrored packet
headers

parsed packet
headers

Kernel Bypass 
(e.g., DPDK, 

netmap)

Packet Queue

intermediate
results

kernel

Figure 1: System Architecture

operate on features derived from each record.

Simple, Well Formed Records Packet analytics

records are also simple and well formed. Each record

has the same size and contains the same fields. Within

the fields, the values are also of fixed size and have sim-

ple types, e.g., counters or flags. Records are much more

complex for general stream processing systems, they rep-

resent complex objects, e.g., web pages, and are encoded

in serialization formats such as JSON and ProtoBuf.

Common Preprocessing As a result of the standard-

ized record formats, packet analytics tasks often rely on

the same types of preprocessing logic, e.g., grouping

packets by source IP is the first step in many different

applications. In typical stream processing workloads, the

variability of the input types means that each application

is more likely to require different, custom types of pre-

processing.

Network Attached Input Data for packet analytics

comes from one source: the network. Be it a router,

switch, or middlebox, that exports them, they will ulti-

mately arrive to the software via a NIC. In general stream

processing workloads, the input source can be anything:

a database, a sensor, or another stream processor.

Partionability There are common ways to partition

packet records, e.g., for load balancing, that are relevant

to many different applications. Further, since the fields of

a packet are well defined, the partitioning is straightfor-

ward to implement. In general stream processing work-

loads, partitioning is application specific and can require

parsing fields from complex objects.

3.2 Bottlenecks in Stream Processors

We identified five important components of stream pro-

cessing systems where there is significant potential for

optimization to account for the workload characteristics

described above.

Data Input In general purpose stream processing sys-

tems, data can be read from many sources such as a

HTTP API, a message queue system (such as RabbitMQ

or Kafka), or from a specialized file system like HDFS.

These frameworks can add overhead at many levels, in-

cluding due to context switches and copy operations.

Since packet analytics tasks all have the same source, the

network, a stream processing system designed for packet

analytics can use kernel bypass and related technologies,

such as DPDK [2], PF RING [25], or netmap [26], to

reduce overhead by mapping the packet records directly

to buffers in the stream processing system. Benchmarks

have shown that DPDK, for example, can process up to

48 million packets per second in user space [17]. De-

pending on the exact application and network interface

cards, these numbers can be even higher.

Zero-Copy Message Passing Through our initial ex-

periments we have identified that for most applications

the performance of a single kernel is I/O-bound. Specif-

ically, frequent read, write, and copy operations into the

queues connecting kernels introduce significant perfor-

mance penalties. This is true especially in early stages

of the processing graph, where the data rate is still high

as no aggregation has yet occurred. Since packet records

are small and well formed, a stream processing frame-

work for packet analytics can eliminate this overhead

by pre-allocating buffers and simply passing pointers be-

tween kernels, to significantly improve performance.

(Off)load Balancing Load balancing is critical in

stream processing, but sometimes the load balancing ker-

nel itself can be a bottleneck. A stream processor de-

signed for packet analytics can avoid this overhead by

pushing the load balancing down to the NIC, e.g., by

using multiple receiver queues [26]. Instead of reading

from a load balancer, the worker nodes could each read

from independent buffers, populated by the NIC driver.

This optimization takes advantage of the inherent par-

titionability of packet records, which maps well to the

capabilities of the underlying hardware, and the fact that

packet records all have a common source, the NIC itself.

Concurrent Queues Kernels in stream processing sys-

tems communicate using queues. The queue implemen-

tation itself can have significant impact on the overall

application performance. Stream processors use generic

queue implementations that allow for multiple concur-

rent readers and writers [8]. Additionally, many queue

implementations use mutual exclusions and locks to en-

sure thread-safety. Through simple experiments, we

identified locks to be one of the main performance bot-

tlenecks of queue implementations. We will elaborate

more on these experiments in Section 6. The main ben-

efit of multiple readers and writers is flexibility to im-

plement more custom load balancing schemes. This is

less important for packet records because they are highly







References

[1] 128bit hash comparison with sse. https:

//stackoverflow.com/questions/4534203/

128bit-hash-comparison-with-sse.

[2] Data Plane Development Kit. https://dpdk.org.

[3] Rfc 3917: Requirements for ip flow information export (ipfix).

https://tools.ietf.org/html/rfc3917.

[4] Trace statistics for caida passive oc48 and oc192 traces – 2015-

02-19. https://www.caida.org/data/passive/trace_

stats/.

[5] P4: Programming Protocol-independent Packet Processors. SIG-

COMM Comput. Commun. Rev. 44, 3 (jul 2014), 87–95.

[6] APACHE SOFTWARE FOUNDATION. Flink. https://flink.

apache.org.

[7] APACHE SOFTWARE FOUNDATION. Kafka. http://kafka.

apache.org.

[8] BEARD, J. C., LI, P., AND CHAMBERLAIN, R. D. Raftlib: A

c++ template library for high performance stream parallel pro-

cessing. International Journal of High Performance Computing

Applications (2016).

[9] BHUYAN, M. H., BHATTACHARYYA, D. K., AND KALITA,

J. K. Network anomaly detection: methods, systems and tools.

IEEE Communications Surveys & Tutorials 16, 1 (2014), 303–

336.

[10] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKE-

OWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ, M. For-

warding Metamorphosis: Fast Programmable Match-action Pro-

cessing in Hardware for SDN. In Proceedings of the ACM SIG-

COMM 2013 Conference on SIGCOMM (2013), SIGCOMM ’13,

ACM, pp. 99–110.

[11] DELL. Poweredge r940 server. http://i.dell.com/

sites/doccontent/shared-content/data-sheets/en/

Documents/poweredge-r940-spec-sheet.pdf.

[12] DESROCHERS, C. Concurrent queue. https://github.com/

cameron314/concurrentqueue.

[13] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,

FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND

RATNASAMY, S. Routebricks: Exploiting parallelism to scale

software routers. In Proceedings of the ACM SIGOPS 22Nd Sym-

posium on Operating Systems Principles (New York, NY, USA,

2009), SOSP ’09, ACM, pp. 15–28.

[14] FARRINGTON, N., AND ANDREYEV, A. Facebook’s data center

network architecture. In 2013 Optical Interconnects Conference

(may 2013), pp. 49–50.

[15] GUPTA, A., BIRKNER, R., CANINI, M., FEAMSTER, N., MAC-

STOKER, C., AND WILLINGER, W. Network Monitoring As a

Streaming Analytics Problem. In Proceedings of the 15th ACM

Workshop on Hot Topics in Networks (New York, NY, USA,

2016), HotNets ’16, ACM, pp. 106–112.

[16] HOFSTEDE, R., ČELEDA, P., TRAMMELL, B., DRAGO, I.,

SADRE, R., SPEROTTO, A., AND PRAS, A. Flow monitoring

explained: from packet capture to data analysis with netflow and

ipfix. IEEE Communications Surveys & Tutorials 16, 4 (2014),

2037–2064.

[17] INTEL. DPDK Performance Report. https://fast.dpdk.

org/doc/perf/DPDK_16_11_Intel_NIC_performance_

report.pdf.

[18] INTEL. Intel streaming simd extensions. https://software.

intel.com/en-us/node/524253.

[19] KIM, H., CLAFFY, K. C., FOMENKOV, M., BARMAN, D.,

FALOUTSOS, M., AND LEE, K. Internet traffic classification de-

mystified: myths, caveats, and the best practices. In Proceedings

of the 2008 ACM CoNEXT conference (2008), ACM, p. 11.

[20] LI, Y., MIAO, R., KIM, C., AND YU, M. FlowRadar: A Better

NetFlow for Data Centers. In Proceedings of the 13th USENIX

Conference on Networked Systems Design and Implementation

(Santa Clara, CA, 2016), USENIX Association, pp. 311–324.

[21] LIU, Z., MANOUSIS, A., VORSANGER, G., SEKAR, V., AND

BRAVERMAN, V. One sketch to rule them all: Rethinking net-

work flow monitoring with univmon. In Proceedings of the 2016

ACM SIGCOMM Conference (New York, NY, USA, 2016), SIG-

COMM ’16, ACM, pp. 101–114.

[22] MIAO, H., PARK, H., JEON, M., PEKHIMENKO, G., MCKIN-

LEY, K. S., AND LIN, F. X. StreamBox: Modern Stream Pro-

cessing on a Multicore Machine. In 2017 USENIX Annual Tech-

nical Conference (USENIX ATC 17) (Santa Clara, CA, 2017),

{USENIX} Association, pp. 617–629.

[23] NARAYANA, S., SIVARAMAN, A., NATHAN, V., GOYAL, P.,

ARUN, V., ALIZADEH, M., JEYAKUMAR, V., AND KIM, C.

Language-Directed Hardware Design for Network Performance

Monitoring. In Proceedings of the Conference of the ACM Spe-

cial Interest Group on Data Communication (New York, NY,

USA, 2017), SIGCOMM ’17, ACM, pp. 85–98.

[24] NGUYEN, T. T., AND ARMITAGE, G. A survey of techniques

for internet traffic classification using machine learning. IEEE

Communications Surveys & Tutorials 10, 4 (2008), 56–76.

[25] NTOP. Pf ring high-speed packet capture, filtering and analy-

sis. https://www.ntop.org/products/packet-capture/

pf_ring/.

[26] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In

2012 USENIX Annual Technical Conference (USENIX ATC 12)

(Boston, MA, 2012), USENIX Association, pp. 101–112.

[27] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN,

A. C. Inside the social network’s (datacenter) network. In ACM

SIGCOMM Computer Communication Review (2015), vol. 45,

ACM, pp. 123–137.

[28] SFLOW. sflow sampling rates. http://blog.sflow.com/

2009/06/sampling-rates.html.

[29] SONCHAK, J., AVIV, A. J., KELLER, E., AND SMITH, J. M.

Turboflow: Information rich flow record generation on commod-

ity switches. In Proceedings EuroSys 2018 (2018).

[30] SUH, J., KWON, T. T., DIXON, C., FELTER, W., AND CARTER,

J. Opensample: A low-latency, sampling-based measurement

platform for commodity sdn. In Distributed Computing Systems

(ICDCS), 2014 IEEE 34th International Conference on (2014),

IEEE, pp. 228–237.

[31] SUN, S., HUANG, Z., ZHONG, H., DAI, D., LIU, H., AND LI,

J. Efficient monitoring of skyline queries over distributed data

streams. Knowledge and Information Systems 25, 3 (Dec 2010),

575–606.

[32] TWITTER. The infrastructure behind twit-

ter - scale. https://blog.twitter.com/

engineering/en_us/topics/infrastructure/2017/

the-infrastructure-behind-twitter-scale.html.

[33] TWITTER. Observability at twitter - technical overview. https:

//blog.twitter.com/engineering/en_us/a/2016/

observability-at-twitter-technical-overview-part-i.

html.

[34] YU, M., JOSE, L., AND MIAO, R. Software Defined Traf-

fic Measurement with OpenSketch. In Proceedings of the 10th

USENIX Conference on Networked Systems Design and Imple-

mentation (Berkeley, CA, USA, 2013), NSDI ’13, USENIX As-

sociation, pp. 29–42.



[35] ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARM-

BRUST, M., DAVE, A., MENG, X., ROSEN, J., VENKATARA-

MAN, S., FRANKLIN, M. J., ET AL. Apache spark: A unified

engine for big data processing. Communications of the ACM 59,

11, 56–65.

[36] ZHOU, D., FAN, B., LIM, H., KAMINSKY, M., AND ANDER-

SEN, D. G. Scalable, high performance ethernet forwarding with

cuckooswitch. In Proceedings of the Ninth ACM Conference on

Emerging Networking Experiments and Technologies (New York,

NY, USA, 2013), CoNEXT ’13, ACM, pp. 97–108.

[37] ZHU, Y., KANG, N., CAO, J., GREENBERG, A., LU, G., MA-

HAJAN, R., MALTZ, D., YUAN, L., ZHANG, M., ZHAO, B. Y.,

AND ZHENG, H. Packet-Level Telemetry in Large Datacen-

ter Networks. In Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication (New York, NY,

USA, 2015), SIGCOMM ’15, ACM, pp. 479–491.


