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Abstract

Traditionally, network monitoring and analytics systems
rely on aggregation (e.g., flow records) or sampling to
cope with high packet rates. This has the downside
that, in doing so, we lose data granularity and accu-
racy, and, in general, limit the possible network analytics
we can perform. Recent proposals leveraging software-
defined networking or programmable hardware provide
more fine-grained, per-packet monitoring but are still
based on the fundamental principle of data reduction in
the network, before analytics. In this paper, we pro-
vide a first step towards a cloud-scale, packet-level mon-
itoring and analytics system based on stream processing
entirely in software. Software provides virtually unlim-
ited programmability and makes modern (e.g., machine-
learning) network analytics applications possible. We
identify unique features of network analytics applica-
tions which enable the specialization of stream process-
ing systems. As a result, an evaluation with our pre-
liminary implementation shows that we can scale up to
several million packets per second per core and together
with load balancing and further optimizations, the vision
of cloud-scale per-packet network analytics is possible.

1 Introduction

Network monitoring and analytics are crucial for the re-
liable and secure operation of cloud-scale networking
environments. A monitoring system captures informa-
tion about traffic. An analytics system processes that in-
formation to detect equipment failures, incorrect behav-
ior (e.g., packet drops or routing loops), and attacks, as
well as to identify and locate performance issues within
the infrastructure [34, 23, 21, 37, 15, 20]. In order to
reduce the load on the analytics systems, compromises
have been made in the monitoring systems. Aggregation
(e.g, pre-calculating information about entire flows, and
aggregating into a flow record) and sampling (only look-
ing at a subset of the flows or packets), have been the
de-facto standards for decades as the software systems
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just could not process the information fast enough. These
approaches, of course, reduce information — aggregation
reduces the load of the analytics system at the cost of
granularity, as per-packet data is reduced to groups of
packets in the form of sums or counts [3, 16]. Sampling
and filtering reduces the number of packets or flows to be
analyzed. Reducing information reduces load, but it also
increases the chance of missing critical information, and
restricts the set of possible applications [30, 28].

Recent advances in software-defined networking
(SDN) and more programmable hardware have provided
opportunities for more fine-grained monitoring, towards
packet-level network analytics. Packet-level analytics
systems provide the benefit of complete insight into the
network and open up opportunities for applications that
require per-packet data in the network [37]. But, com-
promises are still being made.

For example, [34, 23, 21] leverage processing prim-
itives in hardware for custom aggregation (as opposed
to fixed aggregation in legacy hardware). Although cus-
tom, the aggregation is still limited to a set of pre-defined
functions that are implementable in programmable for-
warding engines (PFE) [5, 10], and thus imposes re-
strictions on possible applications (e.g., [9, 19, 24, 31]).
These new programmable data planes have also been
used for more granular and iteratively refined filtering in
hardware [37, 15]. This, however, is only effective at re-
ducing load if the application is only interested in a small
subset of the overall traffic (e.g., only DNS packets).

In summary, monitoring systems are historically de-
signed to reduce the load of the software analytics plat-
form based on the assumption that it cannot handle the
load.

In this paper we challenge that assumption. We ask:
What are the limits of software analytics systems — is it
possible to perform packet-level analytics on cloud scale
infrastructures in software?

We start with the assumption that hardware can send
per-packet records [29] to the software-based analytics



system. The challenge is then processing those records
as (i) modern networks run at traffic rates of several ter-
abits of data per second, which can equate to hundreds of
millions of packets per second [27], and (ii) modern an-
alytics systems, specifically stream processing systems
(which is an ideal programming model for network an-
alytics), such as Apache Flink [6], or Kafka [7], simply
are not capable of handling these rates. Even more re-
cent work, such as StreamBox, a stream processor de-
signed for efficiency [22], can only support around 30M
records/s with a 56 core server for a basic example appli-
cation unrelated to network processing. In modern net-
works, where even 10 Gb/s links have packet arrival rates
of 500K packets per second [4], real time packet ana-
Iytics with such general purpose systems would require
racks full of servers.

Our insight is that stream processing for network an-
alytics has fundamentally different characteristics than
traditional uses of stream processing. In this paper
we highlight some of these differences and show how
they can impact the achievable processing rates (Sec-
tion 3). As a step towards validating our vision, we
outline an architecture (Section 4), and built a proto-
type with some preliminary optimizations (Section 5).
With this, our evaluations indicate more than two orders
of magnitude speedup (163 x) over state-of-the-art solu-
tions [15, 37, 22] (Section 6). Based on data from Face-
book [27], we demonstrate that for an entire cluster in
a Facebook data center our prototype can analyze every
packet leaving the cluster on a single commodity server
(representing only 0.5% of the cluster’s hardware). As a
result, we believe that powerful packet-level analytics in
software at cloud scale (without compromise) is indeed
within reach.

2 Stream Processing Overview

Stream processing is a paradigm for parallel data pro-
cessing applications. Stream processors are composed of
sequential data processing functions, that are connected
by FIFO queues transferring the streams of data. The
benefit of stream processing is that it compartmentalizes
state and logic. Processing functions only share data via
streams. This allows each processing element to run in
parallel, on a separate processing core or even a separate
server. In this model, each processor (or kernel) usually
transforms data (or fuples) from one or multiple input
streams into one or multiple output streams by perform-
ing some sort of stateful or stateless computation on the
tuples and including the results in the output tuple. Re-
cently, with the increasing focus on real time and big data
analysis, there have been many new streaming platforms
that focus on efficient scaling and ease of use [7, 6, 35].

3 Stream Processing for Packet Records

Stream processing is widely used in many domains be-
cause it is a flexible and scalable way to process un-
bounded streams of records in real-time. These prop-
erties also make stream processing a natural fit for real-
izing the goal of a software platform capable of flexible
analytics with visibility into every packet.

As explained in the introduction, using general pur-
pose stream processors for packet analytics, however, is
not efficient enough to be practical. The root cause of
these issues are the differences between the workloads
for packet analytics and those typical to stream process-
ing. The differences present challenges, but also intro-
duce new opportunities for optimization. By taking ad-
vantage of them, we can specialize stream processing
systems for packet analytics to build systems that have
not only the flexibility and scalability benefits inherent
to the processing model, but also the efficiency to make
software visibility into every packet practical at large
scales.

In this section, we explore some of the distinct charac-
teristics of packet analytics workloads and how we can
optimize stream processors for them.

3.1 Packet Analytics Workloads

We illustrate the differences between a packet analytics
workload and that of a typical stream processing task
with a case study based on Twitter’s well-documented
use of stream processing [32, 33].

High Record Rates One of the most striking differ-
ences between packet analytics workloads and typical
stream processing workloads are higher record rates. For
example, Twitter reports that their stream processing sys-
tems handle up to 46 M events per second. For compari-
son, the aggregate rate of packets leaving one small com-
ponent of their platform is over 320 M per second. This
network (the “Twitter Cache”), only represents 3% of the
total infrastructure.

Small Records Although record rates are higher for
packet analytics, the sizes of individual records are
smaller, which makes the overall bit-rate of the process-
ing manageable. Network analytics applications are pre-
dominately interested in statistics derived from packet
headers and processing metadata, which are only a small
portion of each packet. A 40 B packet record, for ex-
ample, can contain the headers required for most packet
analytics tasks. In contrast, records in typical stream pro-
cessing workloads are much larger.

Event Rate Reduction Packet analytics applications
often aggregate data significantly before applying heavy-
weight data mining or visualization algorithms, e.g., by
TCP connection. This is not true for general stream pro-
cessing workloads, where the back-end algorithm may
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Figure 1: System Architecture

operate on features derived from each record.

Simple, Well Formed Records Packet analytics
records are also simple and well formed. Each record
has the same size and contains the same fields. Within
the fields, the values are also of fixed size and have sim-
ple types, e.g., counters or flags. Records are much more
complex for general stream processing systems, they rep-
resent complex objects, e.g., web pages, and are encoded
in serialization formats such as JSON and ProtoBuf.

Common Preprocessing As a result of the standard-
ized record formats, packet analytics tasks often rely on
the same types of preprocessing logic, e.g., grouping
packets by source IP is the first step in many different
applications. In typical stream processing workloads, the
variability of the input types means that each application
is more likely to require different, custom types of pre-
processing.

Network Attached Input Data for packet analytics
comes from one source: the network. Be it a router,
switch, or middlebox, that exports them, they will ulti-
mately arrive to the software via a NIC. In general stream
processing workloads, the input source can be anything:
a database, a sensor, or another stream processor.

Partionability There are common ways to partition
packet records, e.g., for load balancing, that are relevant
to many different applications. Further, since the fields of
a packet are well defined, the partitioning is straightfor-
ward to implement. In general stream processing work-
loads, partitioning is application specific and can require
parsing fields from complex objects.

3.2 Bottlenecks in Stream Processors

We identified five important components of stream pro-
cessing systems where there is significant potential for
optimization to account for the workload characteristics
described above.

Data Input In general purpose stream processing sys-
tems, data can be read from many sources such as a
HTTP API, a message queue system (such as RabbitMQ
or Kafka), or from a specialized file system like HDFS.
These frameworks can add overhead at many levels, in-
cluding due to context switches and copy operations.
Since packet analytics tasks all have the same source, the
network, a stream processing system designed for packet
analytics can use kernel bypass and related technologies,

such as DPDK [2], PF_RING [25], or netmap [26], to
reduce overhead by mapping the packet records directly
to buffers in the stream processing system. Benchmarks
have shown that DPDK, for example, can process up to
48 million packets per second in user space [17]. De-
pending on the exact application and network interface
cards, these numbers can be even higher.

Zero-Copy Message Passing Through our initial ex-
periments we have identified that for most applications
the performance of a single kernel is I/O-bound. Specif-
ically, frequent read, write, and copy operations into the
queues connecting kernels introduce significant perfor-
mance penalties. This is true especially in early stages
of the processing graph, where the data rate is still high
as no aggregation has yet occurred. Since packet records
are small and well formed, a stream processing frame-
work for packet analytics can eliminate this overhead
by pre-allocating buffers and simply passing pointers be-
tween kernels, to significantly improve performance.

(Off)load Balancing Load balancing is critical in
stream processing, but sometimes the load balancing ker-
nel itself can be a bottleneck. A stream processor de-
signed for packet analytics can avoid this overhead by
pushing the load balancing down to the NIC, e.g., by
using multiple receiver queues [26]. Instead of reading
from a load balancer, the worker nodes could each read
from independent buffers, populated by the NIC driver.
This optimization takes advantage of the inherent par-
titionability of packet records, which maps well to the
capabilities of the underlying hardware, and the fact that
packet records all have a common source, the NIC itself.

Concurrent Queues Kernels in stream processing sys-
tems communicate using queues. The queue implemen-
tation itself can have significant impact on the overall
application performance. Stream processors use generic
queue implementations that allow for multiple concur-
rent readers and writers [8]. Additionally, many queue
implementations use mutual exclusions and locks to en-
sure thread-safety. Through simple experiments, we
identified locks to be one of the main performance bot-
tlenecks of queue implementations. We will elaborate
more on these experiments in Section 6. The main ben-
efit of multiple readers and writers is flexibility to im-
plement more custom load balancing schemes. This is
less important for packet records because they are highly
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Figure 2: Detailed Stream Processor Architecture

partitionable and we can largely offload this task to the
NIC. Even without NIC support, load balancers can be
implemented in preprocessing kernels, which would al-
low general reuse across many applications.

Hash Tables A common type of preprocessing in net-
work analytics applications is aggregation, which re-
quires a hash table. Since packet records are well formed
and have fixed width values, there are many optimiza-
tions that we can apply to the data structures used in-
ternally by the stream processor, for example, encod-
ing keys consisting of IP 5-tuple values as 128 bit in-
tegers to minimize the cost of key comparisons during
lookup [1, 18]. The work on data plane implementations
contains many other optimizations to draw from [36, 13].

4 A High-Throughput Stream Processing
Architecture

To make high-performance packet-level network analyt-
ics feasible, we envision an architecture based on the
paradigm of stream processing together with components
optimized for the network domain. Our overall system is
divided into three main parts, as depicted in Figure 1: A
component that reads packet headers from a network in-
terface card, the stream processor that does the analysis;
and an alerting, visualization, or storage backend.

Packet Interface The packet interface is the part of the
system that receives packet records from the respective
network devices. Ideally, the records already come in a
parsed format that only contains those header fields that
are of interest for most applications. Otherwise, switches
can generally mirror and truncate packets from a port.
These packets can be relatively small (e.g., 54 Bytes,
which would include the Ethernet, IP and TCP/UDP
headers), which is sufficient for most analytics appli-
cations since they do not perform deep-packet inspec-
tion. Packets in this case would have to be parsed, which
however is computationally inexpensive due to the fixed
memory layout of network packets. As explained before,
operating system kernel bypass technologies can be used
to read packets into user space memory at high rates.

Stream Processor The stream processor is the main
and most critical component of our system. It needs to be
able to properly load-balance traffic across cores while
maintaining state in order to then perform the required
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Figure 3: Performance of different concurrent queues

computations on packets or intermediate results. In our
model, all packets are stored in a large buffer and for
the initial computation steps (where packets have not yet
been transformed into tuples of a different type), point-
ers to packets are passed through the processing pipeline
instead of copying data in or out of the FIFO queues con-
necting the processing elements as shown in Figure 2.
Eventually, as soon as the original complete packet head-
ers are not needed anymore, a packet can be marked as
processed and will then be removed from the buffer to
make space for new packets. Intermediate results that are
passed between processing kernels are generally smaller
in size than the full packet header (e.g. a counter for each
5-tuple) and are actually copied between processors. In
order to scale to entire large-scale networks, multiple of
such pipeline can run in parallel by making use of the
partitionability of packet records (cp. Section 3.1).

Analytics Results Finally, results, which generally are
being produced at significantly lower data rates and/or
are also smaller in size, can be used to generate alerts or
visualizations to easily monitor the status of the network.
Alternatively, the results can simply be sent to storage for
later, more detailed offline analysis, or auditing.

S Prototype Implementation

As an initial proof of concept to illustrate that packet
records processing in software at high data rates is fea-
sible, we implemented prototype of the the stream pro-
cessor part of the architecture described in Section 4 in
C++11 only using the standard library. The processing
kernels are implemented through instances of std::thread
with a reference to a runtime manager, that maintains
and provides access to the respective queues connecting
a kernel to its neighbors in the processing graph. The
application logic a kernel implements is specified by an
anonymous function that is being called when a kernel
begins execution.

As pointed out before, a suitable concurrent queue im-
plementation is key to achieving high throughput. We
tried different queue implementations using a simple ex-
periment connecting two kernels and passing as many 4
Byte Integers through the queue as possible. These ex-
periments were performed on a dual core 3.1 GHz In-
tel Core 17 CPU. The results are shown in Figure 3. We
started out with a very simple array and lock-based queue
implementation, improved this design to a lock-free and
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linked list based implementation . We then found an
open source high performing queue implementation [12]
(cameron314). Finally, we implemented a custom lock-
free concurrent queue using an array (i.e., a ring buffer).
For this implementation, which we are using in our pro-
totype system, we use C++11 memory ordering primi-
tives and atomic variables to achieve thread-safety. The
results of this experiment show that a fast and carefully
designed concurrent queue implementation is a key fac-
tor for achieving high performance in stream processors.

6 Evaluation

To evaluate the performance of our prototype, we imple-
mented a simple (but somewhat typical) network moni-
toring application. The application computes the number
of packets and bytes per source IP address on a packet
stream. The first stage reads packets from a buffer, the
second does the computation and maintains the state, and
the last captures the results and performs benchmarking.
The middle stage performs a hash table lookup for every
single packet and can be parallelized by a replication fac-
tor . The first kernel statically load balances across the
replicas based on a hash of the source IP address.

Using a data set of 100 million packet records from
a 10 Gb/s Internet backbone trace [4], we benchmarked
the sustained throughput of the system on a 6 core 2.4
GHz Intel Xeon v3 CPU with 64 GB of RAM. Figure 4
shows the throughput as the number of replicas varies.
Per socket, our system scales linearly to four replicas,
excluding the source and sink kernels (i.e., 6 threads —
the number of cores). The application sustained around
2.9 M packets/s per core, enough to monitor around
58 Gb/s of aggregate link capacity with a single core,
or 230 Gb/s of the evaluated workload with the entire
server. For perspective, a 56 core server running Stream-
Box [22], sustained around 1 M packets/s (around 20 K
packets/s per core) for a similar application that groups
packets by IP pairs and computes average latency. For
comparison, we also implemented a second application
that just passes packet records through the same pipeline
without any computations. This applications sustains
around 4.8 M packets/s with a single core. Previous work
[22] has shown, that multiple such independent pipelines
can scale linearly with CPU core count.

To put these numbers into perspective of a cloud data
center, we looked at traffic statistics reported by Face-
book in [27, 14]. Facebook’s data centers are organized
in clusters, where each cluster contains either 4 or 8 racks
with up to 44 servers each. In the web server cluster,
the average server generates around 2 Gb/s of traffic, of
which 500 Mb/s leaves the cluster. Given the reported
median packet size of 120 bytes, this corresponds to
520K packets/s per server leaving the cluster. The aggre-
gate egress traffic rate for a cluster is then 91M packets/s
for 4 racks (176 servers) or 182M packets/s for 8 racks
(352 servers). When processing around 2.9 M packets
per second per core, this would require 32 cores for 4
racks or 64 cores for 8 racks, as compared to 5096 or
10192 cores for StreamBox [22] (a 163 X improvement).

As aresult, all egress traffic of such a cluster can be an-
alyzed in software on a single server with between 32 and
64 cores. Typical high-performance commodity servers
in 2U or 3U form factor (e.g., [11]) have 4 sockets with
28 cores each. A single server in the context of such a
cluster represents a maximum of 0.5% of the entire clus-
ter hardware, which is more than reasonable to get in-
sight into every single packet leaving the cluster.

7 Conclusion and Future Work

In this paper, we motivated why high performance net-
work analytics at cloud data center or backbone WAN
scales do not necessarily require sampling or aggrega-
tion. Instead, high-performance packet-level analytics
can be realized with domain-specific optimizations and
finely tuned software platforms. With this we get the
benefits that software analytics systems have of sim-
plified programmability through general-purpose lan-
guages, as well as deployability on commodity hardware.

Through preliminary experimentation we demonstrate
that software analytics systems can indeed scale to sev-
eral million packets per second per core with relatively
simple optimizations and adaptations for the network do-
main. To further study our hypothesis that optimized
and domain-specific software systems can process packet
records at data center, we are in the process of build-
ing a complete end-to-end prototype. We plan to explore
the rich set of possible optimizations including kernel-
bypass technologies for packet input, optimized hash ta-
bles; along with load balancing strategies to distribute the
analytics processing graphs across machines. This pa-
per takes an important first step towards answering these
questions and enabling powerful software analytics at the
packet level in cloud-scale networks.
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