
NodeFinder: Scalable Search over Highly Dynamic Geo-distributed State

Azzam Alsudais1, Zhe Huang2, Bharath Balasubramanian2, Shankaranarayanan Puzhavakath

Narayanan2, Eric Keller1, and Kaustubh Joshi2

1University of Colorado Boulder 2AT&T Labs-Research

Abstract
Finding nodes with certain criteria is a critical need for

many cloud services. For example, a cloud monitoring

service needs to query thousands of hosts in a data-center

to check for resource usage while a cloud homing ser-

vice needs to find edge data centers across the world that

satisfy certain complex constraints. This is a challeng-

ing problem, especially when confronted with highly dy-

namic state, scale on the order of hundreds or even thou-

sands, geo-distribution and complex query constraints

that traverse decentralized data sources. In this paper, we

address this problem through the design of NodeFinder

that is based on a novel pull-based approach in which

we maintain decentralized (peer-to-peer) groups of nodes

structured according to the node attribute values (i.e.,

their state). This allows queries to be sent to only a few

representatives of the groups that have the potential of

satisfying the constraints, and then the representatives

gossip with their peers and return the latest set of nodes.

This guarantees freshness of results, and ensures directed

and thereby scalable querying. We show NodeFinder’s

use in production use-cases such as host monitoring in

our OpenStack clouds and NFV homing on edge clouds.

Our preliminary experiments on Amazon EC2 illustrate

NodeFinder’s scalability and efficiency as compared to

today’s approaches.

1 Introduction

In this paper, we introduce NodeFinder, a scalable

service providing timely search across geo-distributed

nodes with varied and highly dynamic state.

This is a critical service for cloud systems [3, 4, 7, 12],

such as OpenStack, where they need to monitor the phys-

ical hosts’ resource usage, such that admins and schedul-

ing algorithms can identify nodes with certain properties

(e.g., those that have high CPU utilization) in order to

make decisions (e.g., migrate a virtual machine to an-

other server). Edge cloud frameworks [10, 17, 21], as

in ISP deployments of Network Function Virtualization

(NFV) [16], make decisions on which network func-

tions to run and where based on a variety of proper-

ties that are locally known, such as hardware capabilities

and availability of host resources or the current profile

of the traffic properties (e.g., to defend against a DDoS

attack [19]). In each case, these applications need to in-

corporate some ad-hoc mechanism in order to find nodes

(hosts or edge clouds).

This task has proven to be a challenging problem, and

is becoming increasingly more challenging – mainly due

to three intertwined reasons: (i) Highly dynamic state:

the state of the nodes can change dynamically in the mat-

ter of minutes or seconds. For example, the resources

available on a host (CPU, memory, disk) in a cloud sys-

tem can change every few minutes based on the tenants

running on the host, and similarly, the available band-

width for a VM can change in the order of seconds - de-

pending on the network activity. Hence, we need a sys-

tem which provides search over fresh state. (ii) Scale and

geo-distribution: the number of nodes can be on the or-

der of thousands for the cloud and edge use-cases. Even

worse, they could be distributed across the world (e.g.,

multisite clouds [11]) and are accessible through the

wide-area network. At this scale, the resource require-

ments to enable search (in terms of bandwidth, compute

power, etc.) cannot grow in direct proportion to the num-

ber of nodes in the system. (iii) Complex queries span-

ning different data sources: the queries for nodes in real-

world services often contain constraints/sub-queries that

need to be simultaneously satisfied by different nodes,

and the information to answer these queries may be

drawn from decentralized, heterogeneous data sources.

For example, a single query may contain two sub-queries

one of which requires node attributes from an Open-

Stack [12] cloud while the other requires AWS [3] cloud

information (we elaborate more on this in §2.2).

As distributed applications continue to grow in size

and geographical distribution, and as nodes are able (re-

1

vG Hosting

Infrastructure

vG

Virtual

Gateway

vGMux

vG

Multiplexer

BRG

Bridged

Residential

Gatewaydevice 1

device 2

device n

(a)

Provider

Inventory

Resource

Inventory

Distance: [customer, vGMux] < x km

Cloud affinity: [vGMux, vG] same site

Hardware capability: [NUMA, large pages]

Dynamic cloud capacities:

vCPU > X, mem >= Y GB, disk > Z GB

vGMux

vG

(b)

Logical Subscriber Link

Figure 2: VNF homing: an apt use-case for NodeFinder that illus-

trates homing requirements for the residential vCPE service [8].

and then collect up to date state from their peers only

when needed.

2.2 VNF Homing on Edge Clouds

A crucial network service management function for large

scale Network Service Providers (NSPs) is the homing

service, which uses optimization techniques to find suit-

able sites on which to deploy complex Network Ser-

vices [9]. NSPs often have hundreds of sites (expected to

increase to thousands for edge use-cases) spread across

tens of countries hosting anywhere between 10 and 500

compute servers. The “home” (or location) of a VNF

is chosen based on policies and requirements from ser-

vice providers, cloud operators and VNF vendors. Hom-

ing is a challenging problem since the constraints that

need to be satisfied for site selection often contain sub-

queries that needs to be simultaneously satisfied by dif-

ferent nodes, often requiring fresh information of dy-

namic node attributes (such as available CPUs on a host).

Further, information to answer these queries may be

drawn from decentralized, heterogeneous data sources

(edge clouds such as Akraino [1], OpenStack clouds or

even third party clouds like Azure [7] or AWS [3]).

Figure 2 shows the homing requirements of a real-

world network service, virtual Customer Premises

Equipment (vCPE) [8], that provides residential broad-

band connectivity. Figure 2(a) shows the layout archi-

tecture, connecting the residence to the vG (virtual gate-

way) hosting infrastructure at the Service Provider Edge

(PE). Here, the bridged residential gateway (BRG) is

the vCPE located at the residential customer premises,

while the vGMux is a shared network function at the

PE that maps layer-2 traffic between a subscriber’s BRG

and its unique vG (which hosts the service related Net-

work Functions), ensuring traffic isolation between mul-

tiple customers. Figure 2(b) shows the homing poli-

cies (or constraints) that drive the selection of an opti-

mal PE site to host the vGMux and vG for a given cus-

tomer. While constraints like distance or cloud affinity

depend on relatively static cloud attributes (from service

provider inventories), the other two constraints depend

on attributes that are relatively more dynamic (from re-

source inventories and cloud providers). Resource capa-

bilities within a cloud site may change as new host ag-

gregates are added, while instantaneous site capacities

may vary at even shorter time scales since resources are

typically shared among multiple services and customers.

One of the principal challenges in homing is collect-

ing and aggregating the information required for hom-

ing from multiple data sources in a holistic manner, and

at different time granularities. Further, this information

needs to be collected from thousands of sites including

service provider-owned sites and third party clouds like

Azure and AWS. The critical need is for a service that can

provide a holistic, up-to-date list of the cloud sites that

satisfy all the constraints. NodeFinder is well suited to

address this problem, where each data source (including

cloud sites) can simply run the NodeFinder agents form-

ing p2p groups for the different attributes (e.g., one group

for clouds that have CPU greater than a certain value

while another group for clouds that have hosts with CPU

pinning). Further, these agents can also act as “trans-

lators”, using the cloud native APIs to acquire informa-

tion about their attributes, which may differ across cloud

providers. Instead, the homing service can simply query

NodeFinder and use the aggregated information to iden-

tify sites that satisfy the constraints.

3 Abstractions

In this section, we provide a high-level overview of the

abstractions provided by NodeFinder. Figure 1 depicts

the high-level design of NodeFinder wherein an applica-

tion can specify constraints for the nodes it wants to find,

and NodeFinder will efficiently query the end nodes and

return a list of nodes satisfying the constraints out of pos-

sibly thousands of nodes.

Node Attributes: Nodes have attributes that can be

described as static or dynamic. Values of static attributes

do not change (e.g., number of CPUs) while values of

dynamic attributes can and do change over time (e.g., free

memory).

Query Structure: Queries are attribute-oriented,

meaning that each application issuing a query should

specify the attributes and their desired values. A query

structure contains a list of “queryable” attributes, and for

each attribute there are the following fields: name, up-

per bound value, lower bound value, and a freshness pa-

rameter. The attribute name is used to describe the at-

3

tribute of interest to the requester application. The up-

per bound and lower bound values are used to support

less/greater than operations. If an exact match is needed,

then both bounds should be of the same value. And fi-

nally, the freshness field can be specified in terms of

milliseconds (a value of zero means the response must

be as close to real time as possible to guarantee ex-

tremely fresh results). We note that this is one version

of a query structure, and there are multiple versions that

NodeFinder supports for other attribute types (e.g., loca-

tion, text-based attributes, etc).

4 Under the Hood

NodeFinder (shown in Figure 1) consists of three main

components elaborated here: a Registrar, where nodes

and their attributes are learned and maintained, a Groups

Manager, where nodes are placed into groups based on

attribute values, and a Query Router, where NodeFinder

can selectively pull from a select group of nodes based

on the filtering already performed in managing groups.

4.1 Node Registry

The very initial step for end nodes (running NodeFinder

agents) is to register themselves with NodeFinder by

consuming NodeFinder’s southbound API (the Regis-

trar). The Registrar acts as a rendezvous point for newly

arrived nodes and is responsible for knowing all nodes

in the system. To facilitate the attribute based group-

ing, when a node registers, it will provide information

about what attributes it has. NodeFinder, in turn, knows

what and how many attributes it will be handling, which

is needed to appropriately create and manage the cor-

responding p2p groups. In addition, upon node regis-

tration, NodeFinder classifies each of the provided at-

tributes as static or dynamic, which is useful for query

processing (static state is answered locally and dynamic

state is fetched from nodes).

4.2 Dynamic Group Management

NodeFinder groups nodes based on their attribute val-

ues (one p2p group per range of attribute values) and dy-

namically adjusts these groups as nodes change values,

in a loosely-coupled fashion. This is so that by the time

a query comes in, NodeFinder has already pre-filtered

nodes based on their attribute values to only those that

have the potential to successfully match the query.

P2P Group Life-cycle: Upon node registration, and

depending on its attributes and values, NodeFinder will

suggest the appropriate p2p groups for each of the re-

ported attributes, and the node then will join such groups.

For the very first node that registers for an attribute,

there will not be established groups yet, so NodeFinder

instructs the node to start a group and act as a group

representative. During the operation of a p2p group, a

group representative pushes periodic updates (with a fre-

quency set by NodeFinder) containing group member-

ship information. NodeFinder, through its Groups Man-

ager, uses this information to populate a mapping table to

keep track of which nodes are in which p2p groups. The

Groups Manager uses this information to decide to: start

a “twin” group (e.g., when group size exceeds a thresh-

old), terminate a group (e.g., empty group), or elect a

new node as a group representative (e.g., when current

representative times out). When NodeFinder refers a

node to a group, it also announces the group boundaries

(i.e., upper and lower bounds described in §3) so that

the node leaves the group when the new values fall out-

side the specified range. Unless the new values fall out-

side the specified range of the group, nodes do not need

to communicate with the NodeFinder server, thereby en-

abling a loosely-coupled style of node management.

4.3 Query Routing

NodeFinder adopts a pull-based approach to acquire dy-

namic node state. The use of groups enables NodeFinder

to be highly scalable and efficient by significantly nar-

rowing down the number of nodes to pull from. After de-

termining the p2p groups based on adaptive attribute fil-

tering (§4.2), the Query Router needs to route the query

to the node to get the current value, and returns a fresh

result to the query requester. As described in §3, each

query request consists of a list of queryable attributes.

For each of which, NodeFinder sends a query to the cor-

responding p2p group. When a member of the p2p group

receives a query, it gossips the query with other nodes,

and returns the aggregate results to NodeFinder.

Optimizations: We optimize the Query Router in

three ways. First, our Query Router processes the list

of attributes of a query request in parallel. Second, we

cache results to serve future queries. Third, the Query

Router, with the help of the Groups Manager (§4.2),

sends the query only to the smallest p2p group in order to

get faster responses. The latter is only done for queries

whose constraints should be all met.

5 Evaluation

We have implemented a prototype of NodeFinder and

used it to gain some preliminary insight into the scala-

bility and efficiency of the queries. Our prototype lever-

ages existing tools, such as: Apache Cassandra [20] as

an inventory and Serf by HashiCorp [15] for the p2p

groups. We deployed NodeFinder on Amazon EC2 [2],

with nodes spanning 4 different regions in the United

4

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600

B
a
n
d
w
id
th
C
o
n
s
u
m
p
ti
o
n
(K
B
p
s
)

Number of Nodes

NodeFinder

Pull/Push

Figure 3: This preliminary experiment illustrates how NodeFinder

scales much better with the number of nodes as compared to push/pull

approaches, despite pulling information once every second to deal with

the dynamic nature of the attributes.

States (400 nodes/region). Each node reported four at-

tributes, and there were four p2p group bins per attribute

resulting in 16 p2p groups in total with 100 nodes on

average per group. For example, the four groups corre-

sponding to percentage CPU utilization of a node were

CPU-25, CPU-50, CPU-75 and CPU-100.

Scalability of querying dynamic state: We mea-

sured the bandwidth consumption at the NodeFinder’s

server (residing in one of the 4 regions) when query-

ing nodes using three approaches: (i) NodeFinder’s ap-

proach where we pull information from the group rep-

resentatives, (ii) a simple pull approach where the cen-

tral NodeFinder server pulls information from each node,

and (iii) a push approach where each node updates its in-

formation at the NodeFinder server. The querying fre-

quency across the three approaches was set to once per

second. Figure 3 shows that the bandwidth consumption

of pull/push approaches 2 increases linearly as the num-

ber of nodes increases, while NodeFinder’s scale stays

relatively constant. As a result, NodeFinder can elimi-

nate about 93% of unneeded communication while main-

taining service.

Resource overhead of running node agent: Our pro-

totype of the NodeFinder node agent consumes about

10MB of memory for each p2p group it joins. Running

NodeFinder agent at the group representative also does

not introduce significant overhead, even when the rep-

resentative queries the entire group every second. We

found that when processing 1 query/second, it consumes

about 5 to 50KBps for groups of 50 and 400 nodes, re-

spectively. This also shows that NodeFinder does not

impose significant overhead on small scale systems.

Query response time: NodeFinder demonstrated fast

query processing when responding to queries targeting

groups with 100, 300, and 500 nodes/group, where end-

to-end query response times were 660ms, 900ms, and

945ms, respectively. These times can be further im-

proved by tuning the p2p group configurations (fanout,

2pull and push both showed identical results.

frequency, etc) [5].

6 Discussion and Future Work

Our work on NodeFinder is ongoing and we are explor-

ing all aspects to enabling NodeFinder to serve as an

essential service for existing and emerging cloud plat-

forms and applications. First, while the current design of

NodeFinder efficiently tackles the challenges of dynamic

state, scale and geo-distribution, there is more research to

efficiently tackle the challenge of complex queries span-

ning different data sources (as exemplified by our VNF

homing use-case in §2.2).

Second, we plan on experimenting with different tech-

niques for deciding the right splitting for the p2p group

sizes. The current implementation assumes fixed and

equally-split groups for each attribute. However, this

might not always lead to the optimal decision as it could

create imbalances across different groups for the same at-

tribute. One way to resolve this is to use heuristics from

real query traces as well as resource information heuris-

tics from the end nodes to assist NodeFinder in deciding

how to organize those dynamic p2p groups.

To enable wide-spread use of NodeFinder, we are

also working toward integrating NodeFinder into exist-

ing cloud frameworks such as OpenStack [12] and net-

work automation platforms like ONAP [10], especially

with respect to the the use-cases described in this pa-

per. Lastly, NodeFinder, as presented, is a system that

responds to queries. Another highly related function is

continuous monitoring for specific events (triggers). To

do so, we can expand the node agents with triggering

queries to be installed to offer a more automatic event

monitoring mechanism.

7 Conclusion

We present NodeFinder, a scalable search service for

highly dynamic and geo-distributed state by organizing

similar nodes in p2p groups for faster and more scalable

query processing. The design of NodeFinder is moti-

vated by real world cloud use-cases. Our preliminary ex-

periments with a prototype of NodeFinder suggest that it

can be scalable (reduces resource usage of the search ser-

vice by almost an order of magnitude), lightweight (does

not impose significant overhead on end nodes), and quick

(answers queries in less than 1 second).

Acknowledgement

This research was supported in part by the National Sci-

ence Foundation under grants 1652698 (CAREER) and

1320389 (NeTS).

5

References

[1] Akraino Edge Stack. https://www.akraino.org/.

[2] Amazon Elastic Compute Cloud (EC2).

https://aws.amazon.com/ec2/.

[3] Amazon Web Services (AWS) - Cloud Management Services.

https://aws.amazon.com.

[4] Apache CloudStack. https://cloudstack.apache.org.

[5] Convergence Simulator - Serf by HashiCorp.

https://www.serf.io/docs/internals/simulator.html.

[6] Eclipse Jetty. https://www.eclipse.org/jetty/.

[7] Microsoft Azure Cloud Computing Platform and Services.

https://azure.microsoft.com.

[8] Network Enhanced Residential Gateway.

https://www.broadband-forum.org/technical/download/TR-

317.pdf.

[9] Onap homing and allocation service.

https://wiki.onap.org/pages/viewpage.action?pageId=16005528.

[10] Open Network Automation Platform (ONAP).

https://www.onap.org.

[11] Openstack cascading solution. https://wiki.openstack.org/wiki

/OpenStack cascading solution.

[12] Openstack: Open source software for creating private and public

clouds. https://www.openstack.org.

[13] OpenStack Scalability Tests. https://docs.openstack.org/developer

/performance-docs/test results/1000 nodes/index.html.

[14] Rabbitmq. https://www.rabbitmq.com/.

[15] Serf: Decentralized Cluster Membership, Failure Detection, and

Orchestration. https://www.serf.io/.

[16] Network Functions Virtualisation: An Introduction,

Benefits, Enablers, Challenges and Call for Action.

http://portal.etsi.org/NFV/NFV White Paper.pdf, 2012.

[17] Central Office Rearchitected as a Datacenter (CORD).

http://opencord.org/wp-content/uploads/2016/03/CORD-

Whitepaper.pdf, Mar. 2016.

[18] CHEN, Y., GRIFFITH, R., LIU, J., KATZ, R. H., AND JOSEPH,

A. D. Understanding TCP Incast Throughput Collapse in Data-

center Networks. In Proc. ACM Workshop on Research on Enter-

prise Networking (WREN) (2009).

[19] FAYAZ, S. K., TOBIOKA, Y., SEKAR, V., AND BAILEY, M. Bo-

hatei: Flexible and Elastic DDoS Defense. In USENIX Security

Symposium (USENIX Security) (2015).

[20] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems Re-

view 44, 2 (2010), 35–40.

[21] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RAT-

NASAMY, S., RIZZO, L., AND SHENKER, S. E2: A Framework

for NFV Applications. In Proceedings of the 25th Symposium on

Operating Systems Principles (SOSP) (2015).

[22] PHANISHAYEE, A., KREVAT, E., VASUDEVAN, V., ANDER-

SEN, D. G., GANGER, G. R., GIBSON, G. A., AND SESHAN,

S. Measurement and Analysis of TCP Throughput Collapse in

Cluster-based Storage Systems. In Proc. USENIX Conference on

File and Storage Technologies (FAST) (2008), FAST’08.

[23] SERUGENDO, G. D. M., GLEIZES, M.-P., AND KARAGEOR-

GOS, A. Self-organising software: From natural to artificial

adaptation. Springer Science & Business Media, 2011.

6

